summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/glossaries/samples/sampleEqPg.tex
diff options
context:
space:
mode:
Diffstat (limited to 'macros/latex/contrib/glossaries/samples/sampleEqPg.tex')
-rw-r--r--macros/latex/contrib/glossaries/samples/sampleEqPg.tex22
1 files changed, 11 insertions, 11 deletions
diff --git a/macros/latex/contrib/glossaries/samples/sampleEqPg.tex b/macros/latex/contrib/glossaries/samples/sampleEqPg.tex
index 980cb82f34..6061bb72d9 100644
--- a/macros/latex/contrib/glossaries/samples/sampleEqPg.tex
+++ b/macros/latex/contrib/glossaries/samples/sampleEqPg.tex
@@ -137,15 +137,15 @@ This is a sample document illustrating the use of the \textsf{glossaries}
package. The functions here have been taken from ``Tables of
Integrals, Series, and Products'' by I.S.~Gradshteyn and I.M~Ryzhik.
-The glossary lists both page numbers and equation numbers.
+The glossary lists both page numbers and equation numbers.
Since the majority of the entries use the equation number,
\texttt{counter=equation} was used as a package option.
Note that this example will only work where the
-page number and equation number compositor is the same. So
-it won't work if, say, the page numbers are of the form
-2-4 and the equation numbers are of the form 4.6.
-As most of the glossary entries should have an italic
-format, it is easiest to set the default format to
+page number and equation number compositor is the same. So
+it won't work if, say, the page numbers are of the form
+2-4 and the equation numbers are of the form 4.6.
+As most of the glossary entries should have an italic
+format, it is easiest to set the default format to
italic.
\end{abstract}
@@ -156,7 +156,7 @@ italic.
\chapter{Gamma Functions}
-The \glslink[format=hyperbf,counter=page]{Gamma}{gamma function} is
+The \glslink[format=hyperbf,counter=page]{Gamma}{gamma function} is
defined as
\begin{equation}
\gls{Gamma} = \int_{0}^{\infty}e^{-t}t^{z-1}\,dt
@@ -177,7 +177,7 @@ defined as
\newpage
\begin{equation}
-\glslink{Gamma}{\ensuremath{\Gamma(\alpha)}} =
+\glslink{Gamma}{\ensuremath{\Gamma(\alpha)}} =
\Gamma(\alpha, x) + \gamma(\alpha, x)
\end{equation}
@@ -233,7 +233,7 @@ Alternatively:
\chapter{Laguerre polynomials}
\begin{equation}
-\gls{Lna} = \frac{1}{n!}e^x x^{-\alpha}
+\gls{Lna} = \frac{1}{n!}e^x x^{-\alpha}
\frac{d^n}{dx^n}(e^{-x}x^{n+\alpha})
\end{equation}
@@ -241,7 +241,7 @@ Alternatively:
Bessel functions $Z_\nu(z)$ are solutions of
\begin{equation}
-\frac{d^2\glslink{Znu}{Z_\nu}}{dz^2} + \frac{1}{z}\,\frac{dZ_\nu}{dz} +
+\frac{d^2\glslink{Znu}{Z_\nu}}{dz^2} + \frac{1}{z}\,\frac{dZ_\nu}{dz} +
\left(
1-\frac{\nu^2}{z^2}Z_\nu = 0
\right)
@@ -278,7 +278,7 @@ Bessel functions $Z_\nu(z)$ are solutions of
\chapter{Elliptical Integral of the First Kind}
\begin{equation}
-\gls{Fpk} = \int_0^\phi
+\gls{Fpk} = \int_0^\phi
\frac{d\alpha}{\sqrt{1-k^2\sin^2\alpha}}
\end{equation}