summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/exam-n/sample/dynamical3.tex
diff options
context:
space:
mode:
Diffstat (limited to 'macros/latex/contrib/exam-n/sample/dynamical3.tex')
-rw-r--r--macros/latex/contrib/exam-n/sample/dynamical3.tex59
1 files changed, 59 insertions, 0 deletions
diff --git a/macros/latex/contrib/exam-n/sample/dynamical3.tex b/macros/latex/contrib/exam-n/sample/dynamical3.tex
new file mode 100644
index 0000000000..abc51017ea
--- /dev/null
+++ b/macros/latex/contrib/exam-n/sample/dynamical3.tex
@@ -0,0 +1,59 @@
+\documentclass[compose]{exam-n}
+\begin{document}
+
+\begin{question}{30} \comment{by Declan Diver}
+For a system of $N$ objects, each having mass $m_i$ and position
+vector $\mathbf{R}_i$ with respect to a fixed co-ordinate system,
+use the moment of inertia
+\[
+I=\sum_{i=1}^N m_i R_i^2
+\]
+to deduce the virial theorem in the forms
+\[
+\ddot{I}=4E_k+2E_G=2E_k+2E
+\]
+where $E_k$ and $E_G$ are respectively the total kinetic and
+gravitational potential energy, and $E$ is the total energy of
+the system.
+\partmarks{8}
+
+Given the inequality
+\ifbigfont
+ \begin{multline*}
+ \left(\sum_{i=1}^N
+ a_i^2\right) \left(\sum_{i=1}^N b_i^2\right) \\
+\ge \left(\sum_{i=1}^N \mathbf{a}_i\cdot\mathbf{b}_i\right)^2 \\
++ \left(\sum_{i=1}^N \mathbf{a}_i\times\mathbf{b}_i\right)^2
+ \end{multline*}
+\else
+ \begin{equation*}
+ \left(\sum_{i=1}^N
+ a_i^2\right) \left(\sum_{i=1}^N b_i^2\right) \ge \left(\sum_{i=1}^N
+ \mathbf{a}_i\cdot\mathbf{b}_i\right)^2 + \left(\sum_{i=1}^N
+ \mathbf{a}_i\times\mathbf{b}_i\right)^2
+ \end{equation*}
+\fi
+for arbitrary vectors $\mathbf{a}_i$, $\mathbf{b}_i$,
+$i=1,\ldots,N$, deduce the following relationship for the $N$-body
+system
+\begin{equation*}
+\frac{1}{4}\dot{I}^2+J^2\le 2IE_k,
+\end{equation*}
+where $\mathbf{J}$ is the total angular momentum of the system.
+\partmarks{8}
+
+Assuming the system is isolated, use the virial theorem to deduce
+further the generalised Sundman inequality
+\begin{equation*}
+\frac{\dot{\sigma}}{\dot{\rho}}\ge 0,
+\end{equation*}
+in which $\rho^2=I$ and
+$\displaystyle\sigma=\rho\dot{\rho}^2+\frac{J^2}{\rho}-2\rho E $.
+\partmarks{8}
+
+Why does this inequality preclude the possibility of an
+$N$-fold collision for a system with finite angular momentum?
+\partmarks{6}
+
+\end{question}
+\end{document}