summaryrefslogtreecommitdiff
path: root/macros/latex/contrib/easybook/doc/pages/chapter2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'macros/latex/contrib/easybook/doc/pages/chapter2.tex')
-rw-r--r--macros/latex/contrib/easybook/doc/pages/chapter2.tex6
1 files changed, 3 insertions, 3 deletions
diff --git a/macros/latex/contrib/easybook/doc/pages/chapter2.tex b/macros/latex/contrib/easybook/doc/pages/chapter2.tex
index c81e0d01bc..49e9d1e824 100644
--- a/macros/latex/contrib/easybook/doc/pages/chapter2.tex
+++ b/macros/latex/contrib/easybook/doc/pages/chapter2.tex
@@ -10,17 +10,17 @@
\end{outline}
\section{定理}\index{d@定理}
-\begin{theorem}[(高斯公式\footnote{选自高等数学公式。})]\label{gauss formula}\index{d@定理!g@高斯公式}
+\begin{theorem}[(高斯公式\footnote{选自高等数学公式。})]\label{theorem:gauss formula}\index{d@定理!g@高斯公式}
设空间闭区域$\Omega$是由分片光滑的闭曲面$\Sigma$围成,若函数$P(x,y,z)$,$Q(x,y,z)$,$R(x,y,z)$在$\Omega$上具有一节连续偏导数,则有
\begin{align}
\iiint_\Omega\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial x}\right)\mathrm{d}V & =\oiint_\Sigma P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}z\mathrm{d}x+R\mathrm{d}x\mathrm{d}y
\\
& =\oiint_\Sigma \left(P\cos\alpha+Q\cos\beta+R\cos\gamma\right)\mathrm{d}S
\end{align}
-这里$\Sigma$是整个边界曲面$\Omega$的外侧,$\cos\alpha,\cos\beta,\cos\gamma$是$\Sigma$在点$(x,y,z)$处的法向量的方向余弦。引用这个公式如\cref{gauss formula}。
+这里$\Sigma$是整个边界曲面$\Omega$的外侧,$\cos\alpha,\cos\beta,\cos\gamma$是$\Sigma$在点$(x,y,z)$处的法向量的方向余弦。引用这个公式如\cref{theorem:gauss formula}。
\end{theorem}
-\begin{definition}[(Stokes formula)]\label{defi1}\index{d@定理!s@Stokes formula}
+\begin{definition}[(Stokes formula)]\index{d@定理!s@Stokes formula}
Let $\Gamma$ be a piecewise smooth directed closed curve, $\Sigma$ is a piecewise smooth directed surface bounded by $\Gamma$, the side of $\Gamma$ and the positive direction of $\Sigma$ According to the right-hand rule, if the function $P(x,y,z)$, $Q(x,y,z)$, $R(x,y,z)$ has a first-order continuous deviation on the curve $\Sigma$ Derivative, then
\begin{multline}
\iint_\Sigma\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)\mathrm{d}y\mathrm{d}z+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)\mathrm{d}z\mathrm{d}x+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\mathrm{d}x\mathrm{d}y