summaryrefslogtreecommitdiff
path: root/macros/latex-dev/required/l3kernel/l3intarray.dtx
diff options
context:
space:
mode:
Diffstat (limited to 'macros/latex-dev/required/l3kernel/l3intarray.dtx')
-rw-r--r--macros/latex-dev/required/l3kernel/l3intarray.dtx974
1 files changed, 974 insertions, 0 deletions
diff --git a/macros/latex-dev/required/l3kernel/l3intarray.dtx b/macros/latex-dev/required/l3kernel/l3intarray.dtx
new file mode 100644
index 0000000000..bbc41c0cdb
--- /dev/null
+++ b/macros/latex-dev/required/l3kernel/l3intarray.dtx
@@ -0,0 +1,974 @@
+% \iffalse meta-comment
+%
+%% File: l3intarray.dtx
+%
+% Copyright (C) 2017-2024 The LaTeX Project
+%
+% It may be distributed and/or modified under the conditions of the
+% LaTeX Project Public License (LPPL), either version 1.3c of this
+% license or (at your option) any later version. The latest version
+% of this license is in the file
+%
+% https://www.latex-project.org/lppl.txt
+%
+% This file is part of the "l3kernel bundle" (The Work in LPPL)
+% and all files in that bundle must be distributed together.
+%
+% -----------------------------------------------------------------------
+%
+% The development version of the bundle can be found at
+%
+% https://github.com/latex3/latex3
+%
+% for those people who are interested.
+%
+%<*driver>
+\documentclass[full,kernel]{l3doc}
+\begin{document}
+ \DocInput{\jobname.dtx}
+\end{document}
+%</driver>
+% \fi
+%
+%
+% \title{^^A
+% The \pkg{l3intarray} module\\ Fast global integer arrays^^A
+% }
+%
+% \author{^^A
+% The \LaTeX{} Project\thanks
+% {^^A
+% E-mail:
+% \href{mailto:latex-team@latex-project.org}
+% {latex-team@latex-project.org}^^A
+% }^^A
+% }
+%
+% \date{Released 2024-04-11}
+%
+% \maketitle
+%
+% \begin{documentation}
+%
+% For applications requiring heavy use of integers, this module provides
+% arrays which can be accessed in constant time (contrast \pkg{l3seq},
+% where access time is linear). These arrays have several important
+% features
+% \begin{itemize}
+% \item The size of the array is fixed and must be given at
+% point of initialisation
+% \item The absolute value of each entry has maximum $2^{30}-1$
+% (\emph{i.e.}~one power lower than the usual \cs{c_max_int}
+% ceiling of $2^{31}-1$)
+% \end{itemize}
+% The use of \texttt{intarray} data is therefore recommended for cases where
+% the need for fast access is of paramount importance.
+%
+% \section{Creating and initialising integer array variables}
+%
+% \begin{function}[added = 2018-03-29]{\intarray_new:Nn, \intarray_new:cn}
+% \begin{syntax}
+% \cs{intarray_new:Nn} \meta{intarray~var} \Arg{size}
+% \end{syntax}
+% Evaluates the integer expression \meta{size} and allocates an
+% \meta{integer array variable} with that number of (zero) entries.
+% The variable name should start with |\g_| because assignments are
+% always global.
+% \end{function}
+%
+% \begin{function}[added = 2018-05-04]
+% {\intarray_const_from_clist:Nn, \intarray_const_from_clist:cn}
+% \begin{syntax}
+% \cs{intarray_const_from_clist:Nn} \meta{intarray~var} \meta{int expr clist}
+% \end{syntax}
+% Creates a new constant \meta{integer array variable} or raises an
+% error if the name is already taken. The \meta{integer array
+% variable} is set (globally) to contain as its items the results of
+% evaluating each \meta{integer expression} in the \meta{comma list}.
+% \end{function}
+%
+% \begin{function}[added = 2018-05-04]{\intarray_gzero:N, \intarray_gzero:c}
+% \begin{syntax}
+% \cs{intarray_gzero:N} \meta{intarray~var}
+% \end{syntax}
+% Sets all entries of the \meta{integer array variable} to zero.
+% Assignments are always global.
+% \end{function}
+%
+% \section{Adding data to integer arrays}
+%
+% \begin{function}[added = 2018-03-29]{\intarray_gset:Nnn, \intarray_gset:cnn}
+% \begin{syntax}
+% \cs{intarray_gset:Nnn} \meta{intarray~var} \Arg{position} \Arg{value}
+% \end{syntax}
+% Stores the result of evaluating the integer expression \meta{value}
+% into the \meta{integer array variable} at the (integer expression)
+% \meta{position}. If the \meta{position} is not between $1$ and the
+% \cs{intarray_count:N}, or the \meta{value}'s absolute value is
+% bigger than $2^{30}-1$, an error occurs. Assignments are always
+% global.
+% \end{function}
+%
+% \section{Couting entries in integer arrays}
+%
+% \begin{function}[EXP, added = 2018-03-29]{\intarray_count:N, \intarray_count:c}
+% \begin{syntax}
+% \cs{intarray_count:N} \meta{intarray~var}
+% \end{syntax}
+% Expands to the number of entries in the \meta{integer array variable}.
+% Contrarily to \cs{seq_count:N} this is performed in constant time.
+% \end{function}
+%
+% \section{Using a single entry}
+%
+% \begin{function}[EXP, added = 2018-03-29]{\intarray_item:Nn, \intarray_item:cn}
+% \begin{syntax}
+% \cs{intarray_item:Nn} \meta{intarray~var} \Arg{position}
+% \end{syntax}
+% Expands to the integer entry stored at the (integer expression)
+% \meta{position} in the \meta{integer array variable}. If the
+% \meta{position} is not between $1$ and the \cs{intarray_count:N}, an
+% error occurs.
+% \end{function}
+%
+% \begin{function}[EXP, added = 2018-05-05]
+% {\intarray_rand_item:N, \intarray_rand_item:c}
+% \begin{syntax}
+% \cs{intarray_rand_item:N} \meta{intarray~var}
+% \end{syntax}
+% Selects a pseudo-random item of the \meta{integer array}. If the
+% \meta{integer array} is empty, produce an error.
+% \end{function}
+%
+% \section{Integer array conditional}
+%
+% \begin{function}[pTF, added = 2024-03-31]
+% {\intarray_if_exist:N, \intarray_if_exist:c}
+% \begin{syntax}
+% \cs{intarray_if_exist_p:N} \meta{intarray~var}
+% \cs{intarray_if_exist:NTF} \meta{intarray~var} \Arg{true code} \Arg{false code}
+% \end{syntax}
+% Tests whether the \meta{intarray~var} is currently defined. This
+% does not check that the \meta{intarray~var} really is an integer
+% array variable.
+% \end{function}
+%
+% \section{Viewing integer arrays}
+%
+% \begin{function}[added = 2018-05-04]
+% {\intarray_show:N, \intarray_show:c, \intarray_log:N, \intarray_log:c}
+% \begin{syntax}
+% \cs{intarray_show:N} \meta{intarray~var}
+% \cs{intarray_log:N} \meta{intarray~var}
+% \end{syntax}
+% Displays the items in the \meta{integer array variable} in the
+% terminal or writes them in the log file.
+% \end{function}
+%
+% \section{Implementation notes}
+%
+% It is a wrapper around the \tn{fontdimen} primitive, used to store
+% arrays of integers (with a restricted range: absolute value at most
+% $2^{30}-1$). In contrast to \pkg{l3seq} sequences the access to
+% individual entries is done in constant time rather than linear time,
+% but only integers can be stored. More precisely, the primitive
+% \tn{fontdimen} stores dimensions but the \pkg{l3intarray} module
+% transparently converts these from/to integers. Assignments are always
+% global.
+%
+% While \LuaTeX{}'s memory is extensible, other engines can
+% \enquote{only} deal with a bit less than $4\times 10^6$ entries in all
+% \tn{fontdimen} arrays combined (with default \TeX{} Live settings).
+%
+% \end{documentation}
+%
+% \begin{implementation}
+%
+% \section{\pkg{l3intarray} implementation}
+%
+% \begin{macrocode}
+%<*package>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<@@=intarray>
+% \end{macrocode}
+%
+% There are two implementations for this module: One \cs{fontdimen} based one
+% for more traditional \TeX\ engines and a Lua based one for engines with Lua support.
+%
+% Both versions do not allow negative array sizes.
+% \begin{macrocode}
+%<*tex>
+\msg_new:nnn { kernel } { negative-array-size }
+ { Size~of~array~may~not~be~negative:~#1 }
+% \end{macrocode}
+%
+% \begin{variable}{\l_@@_loop_int}
+% A loop index.
+% \begin{macrocode}
+\int_new:N \l_@@_loop_int
+% \end{macrocode}
+% \end{variable}
+%
+% \subsection{Lua implementation}
+% First, let's look at the Lua variant:
+%
+% We select the Lua version if the Lua helpers were defined. This can be detected by
+% the presence of \cs{@@_gset_count:Nw}.
+%
+% \begin{macrocode}
+\cs_if_exist:NTF \@@_gset_count:Nw
+ {
+% \end{macrocode}
+%
+% \subsubsection{Allocating arrays}
+%
+% \begin{variable}{\g_@@_table_int, \l_@@_bad_index_int}
+% Used to differentiate intarrays in Lua and to record an invalid index.
+% \begin{macrocode}
+ \int_new:N \g_@@_table_int
+ \int_new:N \l_@@_bad_index_int
+%</tex>
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\@@:w}
+% Used as marker for intarrays in Lua. Followed by an unbraced number
+% identifying the array and a single space. This format is used to make it
+% easy to scan from Lua.
+% \begin{macrocode}
+%<*lua>
+luacmd('@@:w', function()
+ scan_int()
+ tex.error'LaTeX Error: Isolated intarray ignored'
+end, 'protected', 'global')
+%</lua>
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\intarray_new:Nn, \intarray_new:cn}
+% \begin{macro}{\@@_new:N}
+% Declare |#1| as a tokenlist with the scanmark and a unique number.
+% Pass the array's size to the Lua helper.
+% Every \texttt{intarray} must be global; it's enough to run this
+% check in \cs{intarray_new:Nn}.
+% \begin{macrocode}
+%<*tex>
+ \cs_new_protected:Npn \@@_new:N #1
+ {
+ \__kernel_chk_if_free_cs:N #1
+ \int_gincr:N \g_@@_table_int
+ \cs_gset_nopar:Npe #1 { \@@:w \int_use:N \g_@@_table_int \c_space_tl }
+ }
+ \cs_new_protected:Npn \intarray_new:Nn #1#2
+ {
+ \@@_new:N #1
+ \@@_gset_count:Nw #1 \int_eval:n {#2} \scan_stop:
+ \int_compare:nNnT { \intarray_count:N #1 } < 0
+ {
+ \msg_error:nne { kernel } { negative-array-size }
+ { \intarray_count:N #1 }
+ }
+ }
+ \cs_generate_variant:Nn \intarray_new:Nn { c }
+%</tex>
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% Before we get to the first command implmented in Lua, we first need some
+% definitions. Since \texttt{token.create} only works correctly if \TeX{}
+% has seen the tokens before, we first run a short \TeX{} sequence to ensure
+% that all relevant control sequences are known.
+% \begin{macrocode}
+%<*lua>
+
+local scan_token = token.scan_token
+local put_next = token.put_next
+local intarray_marker = token_create_safe'@@:w'
+local use_none = token_create_safe'use_none:n'
+local use_i = token_create_safe'use:n'
+local expand_after_scan_stop = {token_create_safe'exp_after:wN',
+ token_create_safe'scan_stop:'}
+local comma = token_create(string.byte',')
+% \end{macrocode}
+%
+% \begin{macro}{@@_table}
+% Internal helper to scan an intarray token, extract the associated
+% Lua table and return an error if the input is invalid.
+%
+% \begin{macrocode}
+local @@_table do
+ local tables = get_luadata and get_luadata'@@' or {[0] = {}}
+ function @@_table()
+ local t = scan_token()
+ if t ~= intarray_marker then
+ put_next(t)
+ tex.error'LaTeX Error: intarray expected'
+ return tables[0]
+ end
+ local i = scan_int()
+ local current_table = tables[i]
+ if current_table then return current_table end
+ current_table = {}
+ tables[i] = current_table
+ return current_table
+ end
+% \end{macrocode}
+% Since in \LaTeX{} this is loaded in the format, we want to preserve any intarrays
+% which are created while format building for the actual run.
+%
+% To do this, we use the \texttt{register_luadata} mechanism from \pkg{l3luatex}:
+% Directly before the format get dumped, the following function gets invoked and serializes
+% all existing tables into a string. This string gets compiled and dumped into the format and
+% is made available at the beginning of regular runs as \texttt{get_luadata'@@'}.
+% \begin{macrocode}
+ if register_luadata then
+ register_luadata('@@', function()
+ local t = "{[0]={},"
+ for i=1, #tables do
+ t = string.format("%s{%s},", t, table.concat(tables[i], ','))
+ end
+ return t .. "}"
+ end)
+ end
+end
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}[EXP]{\intarray_count:N, \intarray_count:c}
+% \begin{macro}[EXP]{\@@_gset_count:Nw}
+% Set and get the size of an array. ``Setting the size'' means in this context that
+% we add zeros until we reach the desired size.
+% \begin{macrocode}
+
+local sprint = tex.sprint
+
+luacmd('@@_gset_count:Nw', function()
+ local t = @@_table()
+ local n = scan_int()
+ for i=#t+1, n do t[i] = 0 end
+end, 'protected', 'global')
+
+luacmd('intarray_count:N', function()
+ sprint(-2, #@@_table())
+end, 'global')
+%</lua>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*tex>
+ \cs_generate_variant:Nn \intarray_count:N { c }
+%</tex>
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \subsubsection{Array items}
+%
+% \begin{macro}{\@@_gset:wF, \@@_gset:w}
+% The setter provided by Lua. The argument order somewhat emulates the |\fontdimen|:
+% First the array index, followed by the intarray and then the new value.
+% This has been chosen over a more conventional order to provide a delimiter for the numbers.
+% \begin{macrocode}
+%<*lua>
+luacmd('@@_gset:wF', function()
+ local i = scan_int()
+ local t = @@_table()
+ if t[i] then
+ t[i] = scan_int()
+ put_next(use_none)
+ else
+ tex.count.l_@@_bad_index_int = i
+ scan_int()
+ put_next(use_i)
+ end
+end, 'protected', 'global')
+
+luacmd('@@_gset:w', function()
+ local i = scan_int()
+ local t = @@_table()
+ t[i] = scan_int()
+end, 'protected', 'global')
+%</lua>
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\intarray_gset:Nnn, \intarray_gset:cnn, \__kernel_intarray_gset:Nnn}
+% The \cs{__kernel_intarray_gset:Nnn} function does not use
+% \cs{int_eval:n}, namely its arguments must be suitable for
+% \cs{int_value:w}. The user version checks the position and value
+% are within bounds.
+% \begin{macrocode}
+%<*tex>
+ \cs_new_protected:Npn \__kernel_intarray_gset:Nnn #1#2#3
+ { \@@_gset:w #2 #1 #3 \scan_stop: }
+ \cs_new_protected:Npn \intarray_gset:Nnn #1#2#3
+ {
+ \@@_gset:wF \int_eval:n {#2} #1 \int_eval:n{#3}
+ {
+ \msg_error:nneee { kernel } { out-of-bounds }
+ { \token_to_str:N #1 } { \int_use:N \l_@@_bad_index_int } { \intarray_count:N #1 }
+ }
+ }
+ \cs_generate_variant:Nn \intarray_gset:Nnn { c }
+%</tex>
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\intarray_gzero:N, \intarray_gzero:c}
+% Set the appropriate array entry to zero. No bound checking
+% needed.
+% \begin{macrocode}
+%<*lua>
+luacmd('intarray_gzero:N', function()
+ local t = @@_table()
+ for i=1, #t do
+ t[i] = 0
+ end
+end, 'global', 'protected')
+%</lua>
+%<*tex>
+ \cs_generate_variant:Nn \intarray_gzero:N { c }
+%</tex>
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}[EXP]{\intarray_item:Nn, \intarray_item:cn, \__kernel_intarray_item:Nn}
+% \begin{macro}{\@@_item:wF,\@@_item:w}
+% Get the appropriate entry and perform bound checks. The
+% \cs{__kernel_intarray_item:Nn} function omits bound checks and omits
+% \cs{int_eval:n}, namely its argument must be a \TeX{} integer
+% suitable for \cs{int_value:w}.
+% \begin{macrocode}
+%<*lua>
+luacmd('@@_item:wF', function()
+ local i = scan_int()
+ local t = @@_table()
+ local item = t[i]
+ if item then
+ put_next(use_none)
+ else
+ tex.l_@@_bad_index_int = i
+ put_next(use_i)
+ end
+ put_next(expand_after_scan_stop)
+ scan_token()
+ if item then
+ sprint(-2, item)
+ end
+end, 'global')
+
+luacmd('@@_item:w', function()
+ local i = scan_int()
+ local t = @@_table()
+ sprint(-2, t[i])
+end, 'global')
+%</lua>
+% \end{macrocode}
+%
+% \begin{macrocode}
+%<*tex>
+ \cs_new:Npn \__kernel_intarray_item:Nn #1#2
+ { \@@_item:w #2 #1 }
+ \cs_new:Npn \intarray_item:Nn #1#2
+ {
+ \@@_item:wF \int_eval:n {#2} #1
+ {
+ \msg_expandable_error:nnfff { kernel } { out-of-bounds }
+ { \token_to_str:N #1 } { \int_use:N \l_@@_bad_index_int } { \intarray_count:N #1 }
+ 0
+ }
+ }
+ \cs_generate_variant:Nn \intarray_item:Nn { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\intarray_rand_item:N, \intarray_rand_item:c}
+% Importantly, \cs{intarray_item:Nn} only evaluates its argument once.
+% \begin{macrocode}
+ \cs_new:Npn \intarray_rand_item:N #1
+ { \intarray_item:Nn #1 { \int_rand:n { \intarray_count:N #1 } } }
+ \cs_generate_variant:Nn \intarray_rand_item:N { c }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsubsection{Working with contents of integer arrays}
+%
+% \begin{macro}{\intarray_const_from_clist:Nn, \intarray_const_from_clist:cn}
+% We use the \cs{__kernel_intarray_gset:Nnn} which does not do bounds checking
+% and instead automatically resizes the array.
+% This is not implemented in Lua to ensure that the clist parsing is consistent
+% with the clist module.
+% \begin{macrocode}
+ \cs_new_protected:Npn \intarray_const_from_clist:Nn #1#2
+ {
+ \@@_new:N #1
+ \int_zero:N \l_@@_loop_int
+ \clist_map_inline:nn {#2}
+ {
+ \int_incr:N \l_@@_loop_int
+ \__kernel_intarray_gset:Nnn #1 \l_@@_loop_int { \int_eval:n {##1} } }
+ }
+ \cs_generate_variant:Nn \intarray_const_from_clist:Nn { c }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}[rEXP]{\@@_to_clist:Nn, \@@_to_clist:w}
+% The \cs{@@_to_clist:Nn} auxiliary allows to choose the delimiter and
+% is also used in \cs{intarray_show:N}. Here we just pass the information
+% to Lua and let \texttt{table.concat} do the actual work.
+% We discard the category codes of the passed delimiter but this is not
+% an issue since the delimiter is always just a comma or a comma and a space.
+% In both cases \texttt{sprint(2, ...)} provides the right catcodes.
+% \begin{macrocode}
+%</tex>
+%<*lua>
+local concat = table.concat
+luacmd('@@_to_clist:Nn', function()
+ local t = @@_table()
+ local sep = token.scan_string()
+ sprint(-2, concat(t, sep))
+end, 'global')
+%</lua>
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}[rEXP]{\__kernel_intarray_range_to_clist:Nnn, \@@_range_to_clist:w}
+% Loop through part of the array.
+% \begin{macrocode}
+%<*tex>
+ \cs_new:Npn \__kernel_intarray_range_to_clist:Nnn #1#2#3
+ {
+ \@@_range_to_clist:w #1
+ \int_eval:n {#2} ~ \int_eval:n {#3} ~
+ }
+%</tex>
+%<*lua>
+luacmd('@@_range_to_clist:w', function()
+ local t = @@_table()
+ local from = scan_int()
+ local to = scan_int()
+ sprint(-2, concat(t, ',', from, to))
+end, 'global')
+%</lua>
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\__kernel_intarray_gset_range_from_clist:Nnn, \@@_gset_range:nNw}
+% Loop through part of the array. We allow additional commas at the end.
+% \begin{macrocode}
+%<*tex>
+ \cs_new_protected:Npn \__kernel_intarray_gset_range_from_clist:Nnn #1#2#3
+ {
+ \@@_gset_range:w \int_eval:w #2 #1 #3 , , \scan_stop:
+ }
+%</tex>
+%<*lua>
+luacmd('@@_gset_range:w', function()
+ local from = scan_int()
+ local t = @@_table()
+ while true do
+ local tok = scan_token()
+ if tok == comma then
+ repeat
+ tok = scan_token()
+ until tok ~= comma
+ break
+ else
+ put_next(tok)
+ end
+ t[from] = scan_int()
+ scan_token()
+ from = from + 1
+ end
+ end, 'global', 'protected')
+%</lua>
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\@@_gset_overflow_test:nw}
+% In order to allow some code sharing later we provide the
+% \cs{@@_gset_overflow_test:nw} name here. It doesn't actually test anything
+% since the Lua implementation accepts all integers which could be tested with
+% \cs{tex_ifabsnum:D}.
+% \begin{macrocode}
+%<*tex>
+ \cs_new_protected:Npn \@@_gset_overflow_test:nw #1
+ {
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsection{Font dimension based implementation}
+%
+% Go to the false branch of the conditional above.
+% \begin{macrocode}
+ }
+ {
+% \end{macrocode}
+%
+% \subsubsection{Allocating arrays}
+%
+% \begin{macro}{\@@_entry:w, \@@_count:w}
+% We use these primitives quite a lot in this module.
+% \begin{macrocode}
+ \cs_new_eq:NN \@@_entry:w \tex_fontdimen:D
+ \cs_new_eq:NN \@@_count:w \tex_hyphenchar:D
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{variable}{\c_@@_sp_dim}
+% Used to convert integers to dimensions fast.
+% \begin{macrocode}
+ \dim_const:Nn \c_@@_sp_dim { 1 sp }
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{variable}{\g_@@_font_int}
+% Used to assign one font per array.
+% \begin{macrocode}
+ \int_new:N \g_@@_font_int
+% \end{macrocode}
+% \end{variable}
+%
+% \begin{macro}{\intarray_new:Nn, \intarray_new:cn}
+% \begin{macro}{\@@_new:N}
+% Declare |#1| to be a font (arbitrarily |cmr10| at a never-used
+% size). Store the array's size as the \tn{hyphenchar} of that font
+% and make sure enough \tn{fontdimen} are allocated, by setting the
+% last one. Then clear any \tn{fontdimen} that |cmr10| starts with.
+% It seems \LuaTeX{}'s |cmr10| has an extra \tn{fontdimen} parameter
+% number $8$ compared to other engines (for a math font we would
+% replace $8$ by $22$ or some such).
+% Every \texttt{intarray} must be global; it's enough to run this
+% check in \cs{intarray_new:Nn}.
+% \begin{macrocode}
+ \cs_new_protected:Npn \@@_new:N #1
+ {
+ \__kernel_chk_if_free_cs:N #1
+ \int_gincr:N \g_@@_font_int
+ \tex_global:D \tex_font:D #1
+ = cmr10~at~ \g_@@_font_int \c_@@_sp_dim \scan_stop:
+ \int_step_inline:nn { 8 }
+ { \__kernel_intarray_gset:Nnn #1 {##1} \c_zero_int }
+ }
+ \cs_new_protected:Npn \intarray_new:Nn #1#2
+ {
+ \@@_new:N #1
+ \@@_count:w #1 = \int_eval:n {#2} \scan_stop:
+ \int_compare:nNnT { \intarray_count:N #1 } < 0
+ {
+ \msg_error:nne { kernel } { negative-array-size }
+ { \intarray_count:N #1 }
+ }
+ \int_compare:nNnT { \intarray_count:N #1 } > 0
+ { \__kernel_intarray_gset:Nnn #1 { \intarray_count:N #1 } { 0 } }
+ }
+ \cs_generate_variant:Nn \intarray_new:Nn { c }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[EXP]{\intarray_count:N, \intarray_count:c}
+% Size of an array.
+% \begin{macrocode}
+ \cs_new:Npn \intarray_count:N #1 { \int_value:w \@@_count:w #1 }
+ \cs_generate_variant:Nn \intarray_count:N { c }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsubsection{Array items}
+%
+% \begin{macro}[EXP]{\@@_signed_max_dim:n}
+% Used when an item to be stored is larger than \cs{c_max_dim} in
+% absolute value; it is replaced by $\pm\cs{c_max_dim}$.
+% \begin{macrocode}
+ \cs_new:Npn \@@_signed_max_dim:n #1
+ { \int_value:w \int_compare:nNnT {#1} < 0 { - } \c_max_dim }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}[EXP]{\@@_bounds:NNnTF, \@@_bounds_error:NNnw}
+% The functions \cs{intarray_gset:Nnn} and \cs{intarray_item:Nn} share
+% bounds checking. The |T| branch is used if |#3| is within bounds of
+% the array |#2|.
+% \begin{macrocode}
+ \cs_new:Npn \@@_bounds:NNnTF #1#2#3
+ {
+ \if_int_compare:w 1 > #3 \exp_stop_f:
+ \@@_bounds_error:NNnw #1 #2 {#3}
+ \else:
+ \if_int_compare:w #3 > \intarray_count:N #2 \exp_stop_f:
+ \@@_bounds_error:NNnw #1 #2 {#3}
+ \fi:
+ \fi:
+ \use_i:nn
+ }
+ \cs_new:Npn \@@_bounds_error:NNnw #1#2#3#4 \use_i:nn #5#6
+ {
+ #4
+ #1 { kernel } { out-of-bounds }
+ { \token_to_str:N #2 } {#3} { \intarray_count:N #2 }
+ #6
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\intarray_gset:Nnn, \intarray_gset:cnn, \__kernel_intarray_gset:Nnn}
+% \begin{macro}{\@@_gset:Nnn, \@@_gset_overflow:Nnn}
+% Set the appropriate \tn{fontdimen}. The
+% \cs{__kernel_intarray_gset:Nnn} function does not use
+% \cs{int_eval:n}, namely its arguments must be suitable for
+% \cs{int_value:w}. The user version checks the position and value
+% are within bounds.
+% \begin{macrocode}
+ \cs_new_protected:Npn \__kernel_intarray_gset:Nnn #1#2#3
+ { \@@_entry:w #2 #1 #3 \c_@@_sp_dim }
+ \cs_new_protected:Npn \intarray_gset:Nnn #1#2#3
+ {
+ \exp_after:wN \@@_gset:Nww
+ \exp_after:wN #1
+ \int_value:w \int_eval:n {#2} \exp_after:wN ;
+ \int_value:w \int_eval:n {#3} ;
+ }
+ \cs_generate_variant:Nn \intarray_gset:Nnn { c }
+ \cs_new_protected:Npn \@@_gset:Nww #1#2 ; #3 ;
+ {
+ \@@_bounds:NNnTF \msg_error:nneee #1 {#2}
+ {
+ \@@_gset_overflow_test:nw {#3}
+ \__kernel_intarray_gset:Nnn #1 {#2} {#3}
+ }
+ { }
+ }
+ \cs_if_exist:NTF \tex_ifabsnum:D
+ {
+ \cs_new_protected:Npn \@@_gset_overflow_test:nw #1
+ {
+ \tex_ifabsnum:D #1 > \c_max_dim
+ \exp_after:wN \@@_gset_overflow:NNnn
+ \fi:
+ }
+ }
+ {
+ \cs_new_protected:Npn \@@_gset_overflow_test:nw #1
+ {
+ \if_int_compare:w \int_abs:n {#1} > \c_max_dim
+ \exp_after:wN \@@_gset_overflow:NNnn
+ \fi:
+ }
+ }
+ \cs_new_protected:Npn \@@_gset_overflow:NNnn #1#2#3#4
+ {
+ \msg_error:nneeee { kernel } { overflow }
+ { \token_to_str:N #2 } {#3} {#4} { \@@_signed_max_dim:n {#4} }
+ #1 #2 {#3} { \@@_signed_max_dim:n {#4} }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\intarray_gzero:N, \intarray_gzero:c}
+% Set the appropriate \tn{fontdimen} to zero. No bound checking
+% needed. The \cs{prg_replicate:nn} possibly uses quite a lot of
+% memory, but this is somewhat comparable to the size of the array,
+% and it is much faster than an \cs{int_step_inline:nn} loop.
+% \begin{macrocode}
+ \cs_new_protected:Npn \intarray_gzero:N #1
+ {
+ \int_zero:N \l_@@_loop_int
+ \prg_replicate:nn { \intarray_count:N #1 }
+ {
+ \int_incr:N \l_@@_loop_int
+ \@@_entry:w \l_@@_loop_int #1 \c_zero_dim
+ }
+ }
+ \cs_generate_variant:Nn \intarray_gzero:N { c }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}[EXP]{\intarray_item:Nn, \intarray_item:cn, \__kernel_intarray_item:Nn}
+% \begin{macro}{\@@_item:Nw}
+% Get the appropriate \tn{fontdimen} and perform bound checks. The
+% \cs{__kernel_intarray_item:Nn} function omits bound checks and omits
+% \cs{int_eval:n}, namely its argument must be a \TeX{} integer
+% suitable for \cs{int_value:w}.
+% \begin{macrocode}
+ \cs_new:Npn \__kernel_intarray_item:Nn #1#2
+ { \int_value:w \@@_entry:w #2 #1 }
+ \cs_new:Npn \intarray_item:Nn #1#2
+ {
+ \exp_after:wN \@@_item:Nw
+ \exp_after:wN #1
+ \int_value:w \int_eval:n {#2} ;
+ }
+ \cs_generate_variant:Nn \intarray_item:Nn { c }
+ \cs_new:Npn \@@_item:Nw #1#2 ;
+ {
+ \@@_bounds:NNnTF \msg_expandable_error:nnfff #1 {#2}
+ { \__kernel_intarray_item:Nn #1 {#2} }
+ { 0 }
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}{\intarray_rand_item:N, \intarray_rand_item:c}
+% Importantly, \cs{intarray_item:Nn} only evaluates its argument once.
+% \begin{macrocode}
+ \cs_new:Npn \intarray_rand_item:N #1
+ { \intarray_item:Nn #1 { \int_rand:n { \intarray_count:N #1 } } }
+ \cs_generate_variant:Nn \intarray_rand_item:N { c }
+% \end{macrocode}
+% \end{macro}
+%
+% \subsubsection{Working with contents of integer arrays}
+%
+% \begin{macro}{\intarray_const_from_clist:Nn, \intarray_const_from_clist:cn}
+% \begin{macro}{\@@_const_from_clist:nN}
+% Similar to \cs{intarray_new:Nn} (which we don't use because when
+% debugging is enabled that function checks the variable name starts
+% with |g_|). We make use of the fact that \TeX{} allows allocation
+% of successive \tn{fontdimen} as long as no other font has been
+% declared: no need to count the comma list items first. We need the
+% code in \cs{intarray_gset:Nnn} that checks the item value is not too
+% big, namely \cs{@@_gset_overflow_test:nw}, but not the code that
+% checks bounds. At the end, set the size of the intarray.
+% \begin{macrocode}
+ \cs_new_protected:Npn \intarray_const_from_clist:Nn #1#2
+ {
+ \@@_new:N #1
+ \int_zero:N \l_@@_loop_int
+ \clist_map_inline:nn {#2}
+ { \exp_args:Nf \@@_const_from_clist:nN { \int_eval:n {##1} } #1 }
+ \@@_count:w #1 \l_@@_loop_int
+ }
+ \cs_generate_variant:Nn \intarray_const_from_clist:Nn { c }
+ \cs_new_protected:Npn \@@_const_from_clist:nN #1#2
+ {
+ \int_incr:N \l_@@_loop_int
+ \@@_gset_overflow_test:nw {#1}
+ \__kernel_intarray_gset:Nnn #2 \l_@@_loop_int {#1}
+ }
+% \end{macrocode}
+% \end{macro}
+% \end{macro}
+%
+% \begin{macro}[rEXP]{\@@_to_clist:Nn, \@@_to_clist:w}
+% Loop through the array, putting a comma before each item. Remove
+% the leading comma with |f|-expansion. We also use the auxiliary in
+% \cs{intarray_show:N} with argument comma, space.
+% \begin{macrocode}
+ \cs_new:Npn \@@_to_clist:Nn #1#2
+ {
+ \int_compare:nNnF { \intarray_count:N #1 } = \c_zero_int
+ {
+ \exp_last_unbraced:Nf \use_none:n
+ { \@@_to_clist:w 1 ; #1 {#2} \prg_break_point: }
+ }
+ }
+ \cs_new:Npn \@@_to_clist:w #1 ; #2#3
+ {
+ \if_int_compare:w #1 > \@@_count:w #2
+ \prg_break:n
+ \fi:
+ #3 \__kernel_intarray_item:Nn #2 {#1}
+ \exp_after:wN \@@_to_clist:w
+ \int_value:w \int_eval:w #1 + \c_one_int ; #2 {#3}
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}[rEXP]{\__kernel_intarray_range_to_clist:Nnn, \@@_range_to_clist:ww}
+% Loop through part of the array.
+% \begin{macrocode}
+ \cs_new:Npn \__kernel_intarray_range_to_clist:Nnn #1#2#3
+ {
+ \exp_last_unbraced:Nf \use_none:n
+ {
+ \exp_after:wN \@@_range_to_clist:ww
+ \int_value:w \int_eval:w #2 \exp_after:wN ;
+ \int_value:w \int_eval:w #3 ;
+ #1 \prg_break_point:
+ }
+ }
+ \cs_new:Npn \@@_range_to_clist:ww #1 ; #2 ; #3
+ {
+ \if_int_compare:w #1 > #2 \exp_stop_f:
+ \prg_break:n
+ \fi:
+ , \__kernel_intarray_item:Nn #3 {#1}
+ \exp_after:wN \@@_range_to_clist:ww
+ \int_value:w \int_eval:w #1 + \c_one_int ; #2 ; #3
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\__kernel_intarray_gset_range_from_clist:Nnn, \@@_gset_range:Nw}
+% Loop through part of the array.
+% \begin{macrocode}
+ \cs_new_protected:Npn \__kernel_intarray_gset_range_from_clist:Nnn #1#2#3
+ {
+ \int_set:Nn \l_@@_loop_int {#2}
+ \@@_gset_range:Nw #1 #3 , , \prg_break_point:
+ }
+ \cs_new_protected:Npn \@@_gset_range:Nw #1 #2 ,
+ {
+ \if_catcode:w \scan_stop: \tl_to_str:n {#2} \scan_stop:
+ \prg_break:n
+ \fi:
+ \__kernel_intarray_gset:Nnn #1 \l_@@_loop_int {#2}
+ \int_incr:N \l_@@_loop_int
+ \@@_gset_range:Nw #1
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macrocode}
+ }
+% \end{macrocode}
+%
+% \subsection{Common parts}
+%
+% \begin{macro}[pTF]{\intarray_if_exist:N, \intarray_if_exist:c}
+% Copies of the \texttt{cs} functions defined in \pkg{l3basics}.
+% \begin{macrocode}
+\prg_new_eq_conditional:NNn \intarray_if_exist:N \cs_if_exist:N
+ { TF , T , F , p }
+\prg_new_eq_conditional:NNn \intarray_if_exist:c \cs_if_exist:c
+ { TF , T , F , p }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macro}{\intarray_show:N, \intarray_show:c, \intarray_log:N, \intarray_log:c}
+% Convert the list to a comma list (with spaces after each comma)
+% \begin{macrocode}
+\cs_new_protected:Npn \intarray_show:N { \@@_show:NN \msg_show:nneeee }
+\cs_generate_variant:Nn \intarray_show:N { c }
+\cs_new_protected:Npn \intarray_log:N { \@@_show:NN \msg_log:nneeee }
+\cs_generate_variant:Nn \intarray_log:N { c }
+\cs_new_protected:Npn \@@_show:NN #1#2
+ {
+ \__kernel_chk_defined:NT #2
+ {
+ #1 { intarray } { show }
+ { \token_to_str:N #2 }
+ { \intarray_count:N #2 }
+ { >~ \@@_to_clist:Nn #2 { , ~ } }
+ { }
+ }
+ }
+% \end{macrocode}
+% \end{macro}
+%
+% \begin{macrocode}
+%</tex>
+%</package>
+% \end{macrocode}
+%
+% \end{implementation}
+%
+% \PrintIndex