summaryrefslogtreecommitdiff
path: root/graphics/asymptote/base/tube.asy
diff options
context:
space:
mode:
Diffstat (limited to 'graphics/asymptote/base/tube.asy')
-rw-r--r--graphics/asymptote/base/tube.asy167
1 files changed, 167 insertions, 0 deletions
diff --git a/graphics/asymptote/base/tube.asy b/graphics/asymptote/base/tube.asy
new file mode 100644
index 0000000000..33e2ea3c86
--- /dev/null
+++ b/graphics/asymptote/base/tube.asy
@@ -0,0 +1,167 @@
+// Author: Philippe Ivaldi
+// http://www.piprime.fr/
+// Based on this paper:
+// http://www.cs.hku.hk/research/techreps/document/TR-2007-07.pdf
+// Note: the additional rotation for a cyclic smooth spine curve is not
+// yet properly determined.
+// TODO: Implement variational principles for RMF with boundary conditions:
+// minimum total angular speed OR minimum total squared angular speed
+
+import three;
+
+// A 3D version of roundedpath(path, real).
+path3 roundedpath(path3 A, real r)
+{
+ // Author of this routine: Jens Schwaiger
+ guide3 rounded;
+ triple before, after, indir, outdir;
+ int len=length(A);
+ bool cyclic=cyclic(A);
+ if(len < 2) {return A;};
+ if(cyclic) {rounded=point(point(A,0)--point(A,1),r);}
+ else {rounded=point(A,0);}
+ for(int i=1; i < len; i=i+1) {
+ before=point(point(A,i)--point(A,i-1),r);
+ after=point(point(A,i)--point(A,i+1),r);
+ indir=dir(point(A,i-1)--point(A,i),1);
+ outdir=dir(point(A,i)--point(A,i+1),1);
+ rounded=rounded--before{indir}..{outdir}after;
+ }
+ if(cyclic) {
+ before=point(point(A,0)--point(A,len-1),r);
+ indir=dir(point(A,len-1)--point(A,0),1);
+ outdir=dir(point(A,0)--point(A,1),1);
+ rounded=rounded--before{indir}..{outdir}cycle;
+ } else rounded=rounded--point(A,len);
+
+ return rounded;
+}
+
+real[] sample(path3 g, real r, real relstep=0)
+{
+ real[] t;
+ int n=length(g);
+ if(relstep <= 0) {
+ for(int i=0; i < n; ++i) {
+ real S=straightness(g,i);
+ if(S < sqrtEpsilon*r)
+ t.push(i);
+ else
+ render(subpath(g,i,i+1),new void(path3, real s) {t.push(i+s);});
+ }
+ t.push(n);
+ } else {
+ int nb=ceil(1/relstep);
+ relstep=n/nb;
+ for(int i=0; i <= nb; ++i)
+ t.push(i*relstep);
+ }
+ return t;
+}
+
+real degrees(rmf a, rmf b)
+{
+ real d=degrees(acos1(dot(a.r,b.r)));
+ real dt=dot(cross(a.r,b.r),a.t);
+ d=dt > 0 ? d : 360-d;
+ return d%360;
+}
+
+restricted int coloredNodes=1;
+restricted int coloredSegments=2;
+
+struct coloredpath
+{
+ path p;
+ pen[] pens(real);
+ bool usepens=false;
+ int colortype=coloredSegments;
+
+ void operator init(path p, pen[] pens=new pen[] {currentpen},
+ int colortype=coloredSegments)
+ {
+ this.p=p;
+ this.pens=new pen[] (real t) {return pens;};
+ this.usepens=true;
+ this.colortype=colortype;
+ }
+
+ void operator init(path p, pen[] pens(real), int colortype=coloredSegments)
+ {
+ this.p=p;
+ this.pens=pens;
+ this.usepens=true;
+ this.colortype=colortype;
+ }
+
+ void operator init(path p, pen pen(real))
+ {
+ this.p=p;
+ this.pens=new pen[] (real t) {return new pen[] {pen(t)};};
+ this.usepens=true;
+ this.colortype=coloredSegments;
+ }
+}
+
+coloredpath operator cast(path p)
+{
+ coloredpath cp=coloredpath(p);
+ cp.usepens=false;
+ return cp;
+}
+
+coloredpath operator cast(guide p)
+{
+ return coloredpath(p);
+}
+
+private surface surface(rmf[] R, real[] t, coloredpath cp, transform T(real),
+ bool cyclic)
+{
+ path g=cp.p;
+ int l=length(g);
+ bool[] planar;
+ for(int i=0; i < l; ++i)
+ planar[i]=straight(g,i);
+
+ surface s;
+ path3 sec=path3(T(t[0]/l)*g);
+ real adjust=0;
+ if(cyclic) adjust=-degrees(R[0],R[R.length-1])/(R.length-1);
+ path3 sec1=shift(R[0].p)*transform3(R[0].r,R[0].s,R[0].t)*sec,
+ sec2;
+
+ for(int i=1; i < R.length; ++i) {
+ sec=path3(T(t[i]/l)*g);
+ sec2=shift(R[i].p)*transform3(R[i].r,cross(R[i].t,R[i].r),R[i].t)*
+ rotate(i*adjust,Z)*sec;
+ for(int j=0; j < l; ++j) {
+ surface st=surface(subpath(sec1,j,j+1)--subpath(sec2,j+1,j)--cycle,
+ planar=planar[j]);
+ if(cp.usepens) {
+ pen[] tp1=cp.pens(t[i-1]/l), tp2=cp.pens(t[i]/l);
+ tp1.cyclic=true; tp2.cyclic=true;
+ if(cp.colortype == coloredSegments) {
+ st.colors(new pen[][] {{tp1[j],tp1[j],tp2[j],tp2[j]}});
+ } else {
+ st.colors(new pen[][] {{tp1[j],tp1[j+1],tp2[j+1],tp2[j]}});
+ }
+ }
+ s.append(st);
+ }
+ sec1=sec2;
+ }
+ return s;
+}
+
+surface tube(path3 g, coloredpath section,
+ transform T(real)=new transform(real t) {return identity();},
+ real corner=1, real relstep=0)
+{
+ pair M=max(section.p), m=min(section.p);
+ real[] t=sample(g,max(M.x-m.x,M.y-m.y)/max(realEpsilon,abs(corner)),
+ min(abs(relstep),1));
+ bool cyclic=cyclic(g);
+ t.cyclic=cyclic;
+ return surface(rmf(g,t),t,section,T,cyclic);
+}