summaryrefslogtreecommitdiff
path: root/fonts/newcomputermodern/newcomputermodern-sample.tex
diff options
context:
space:
mode:
Diffstat (limited to 'fonts/newcomputermodern/newcomputermodern-sample.tex')
-rw-r--r--fonts/newcomputermodern/newcomputermodern-sample.tex28
1 files changed, 15 insertions, 13 deletions
diff --git a/fonts/newcomputermodern/newcomputermodern-sample.tex b/fonts/newcomputermodern/newcomputermodern-sample.tex
index a461d165f3..a01749d963 100644
--- a/fonts/newcomputermodern/newcomputermodern-sample.tex
+++ b/fonts/newcomputermodern/newcomputermodern-sample.tex
@@ -8,23 +8,23 @@
\RequirePackage{fontspec}
\RequirePackage{unicode-math}
\setmainfont[%
-ItalicFont=NewCM10-Italic.otf,%
+ItalicFont=NewCM10-BookItalic.otf,%
BoldFont=NewCM10-Bold.otf,%
BoldItalicFont=NewCM10-BoldItalic.otf,%
-SmallCapsFeatures={Numbers=OldStyle}]{NewCM10-Regular.otf}
+SmallCapsFeatures={Numbers=OldStyle}]{NewCM10-Book.otf}
\setsansfont[%
-ItalicFont=NewCMSans10-Oblique.otf,%
+ItalicFont=NewCMSans10-BookOblique.otf,%
BoldFont=NewCMSans10-Bold.otf,%
BoldItalicFont=NewCMSans10-BoldOblique.otf,%
-SmallCapsFeatures={Numbers=OldStyle}]{NewCMSans10-Regular.otf}
+SmallCapsFeatures={Numbers=OldStyle}]{NewCMSans10-Book.otf}
-\setmonofont[ItalicFont=NewCMMono10-Italic.otf,%
+\setmonofont[ItalicFont=NewCMMono10-BookItalic.otf,%
BoldFont=NewCMMono10-Bold.otf,%
BoldItalicFont=NewCMMono10-BoldOblique.otf,%
-SmallCapsFeatures={Numbers=OldStyle}]{NewCMMono10-Regular.otf}
+SmallCapsFeatures={Numbers=OldStyle}]{NewCMMono10-Book.otf}
-\setmathfont{NewCMMath-Regular.otf}
+\setmathfont{NewCMMath-Book.otf}
\newcommand{\tttextsc}[1]{{\ttscshape#1}}
@@ -34,10 +34,12 @@ SmallCapsFeatures={Numbers=OldStyle}]{NewCMMono10-Regular.otf}
\begin{document}
+
+
\begin{theorem}[Dominated convergence of Lebesgue]
Assume that $g$ is an
-in\-te\-grable func\-tion defined on the measurable set $E$ and hat
- $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that
+in\-te\-grable func\-tion defined on the measurable set $E$ and that
+ $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able functions so that
$|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere
then $$\lim_{n\to\infty}\int f_n=\int f.$$
\end{theorem}
@@ -82,8 +84,8 @@ $$\lim \int f_n =\int f.$$
\begin{theorem}[Dominated convergence of Lebesgue]
Assume that $g$ is an
-in\-te\-grable func\-tion defined on the measurable set $E$ and hat
- $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that
+in\-te\-grable func\-tion defined on the measurable set $E$ and that
+ $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able functions so that
$|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere
then $$\lim_{n\to\infty}\int f_n=\int f.$$
\end{theorem}
@@ -128,8 +130,8 @@ $$\lim \int f_n =\int f.$$
\begin{theorem}[Dominated convergence of Lebesgue]
Assume that $g$ is an
-in\-te\-grable func\-tion defined on the measurable set $E$ and hat
- $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able function so that
+in\-te\-grable func\-tion defined on the measurable set $E$ and that
+ $(f_n)_{n\in\mathbb N}$ is a sequence of mea\-sur\-able functions so that
$|f_n|\leq g$. If $f$ is a function so that $f_n\to f$ almost everywhere
then $$\lim_{n\to\infty}\int f_n=\int f.$$
\end{theorem}