summaryrefslogtreecommitdiff
path: root/dviware/dvisvgm/libs/brotli/enc/block_splitter_inc.h
diff options
context:
space:
mode:
Diffstat (limited to 'dviware/dvisvgm/libs/brotli/enc/block_splitter_inc.h')
-rw-r--r--dviware/dvisvgm/libs/brotli/enc/block_splitter_inc.h431
1 files changed, 431 insertions, 0 deletions
diff --git a/dviware/dvisvgm/libs/brotli/enc/block_splitter_inc.h b/dviware/dvisvgm/libs/brotli/enc/block_splitter_inc.h
new file mode 100644
index 0000000000..023712b84d
--- /dev/null
+++ b/dviware/dvisvgm/libs/brotli/enc/block_splitter_inc.h
@@ -0,0 +1,431 @@
+/* NOLINT(build/header_guard) */
+/* Copyright 2013 Google Inc. All Rights Reserved.
+
+ Distributed under MIT license.
+ See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
+*/
+
+/* template parameters: FN, DataType */
+
+#define HistogramType FN(Histogram)
+
+static void FN(InitialEntropyCodes)(const DataType* data, size_t length,
+ size_t stride,
+ size_t num_histograms,
+ HistogramType* histograms) {
+ uint32_t seed = 7;
+ size_t block_length = length / num_histograms;
+ size_t i;
+ FN(ClearHistograms)(histograms, num_histograms);
+ for (i = 0; i < num_histograms; ++i) {
+ size_t pos = length * i / num_histograms;
+ if (i != 0) {
+ pos += MyRand(&seed) % block_length;
+ }
+ if (pos + stride >= length) {
+ pos = length - stride - 1;
+ }
+ FN(HistogramAddVector)(&histograms[i], data + pos, stride);
+ }
+}
+
+static void FN(RandomSample)(uint32_t* seed,
+ const DataType* data,
+ size_t length,
+ size_t stride,
+ HistogramType* sample) {
+ size_t pos = 0;
+ if (stride >= length) {
+ stride = length;
+ } else {
+ pos = MyRand(seed) % (length - stride + 1);
+ }
+ FN(HistogramAddVector)(sample, data + pos, stride);
+}
+
+static void FN(RefineEntropyCodes)(const DataType* data, size_t length,
+ size_t stride,
+ size_t num_histograms,
+ HistogramType* histograms) {
+ size_t iters =
+ kIterMulForRefining * length / stride + kMinItersForRefining;
+ uint32_t seed = 7;
+ size_t iter;
+ iters = ((iters + num_histograms - 1) / num_histograms) * num_histograms;
+ for (iter = 0; iter < iters; ++iter) {
+ HistogramType sample;
+ FN(HistogramClear)(&sample);
+ FN(RandomSample)(&seed, data, length, stride, &sample);
+ FN(HistogramAddHistogram)(&histograms[iter % num_histograms], &sample);
+ }
+}
+
+/* Assigns a block id from the range [0, num_histograms) to each data element
+ in data[0..length) and fills in block_id[0..length) with the assigned values.
+ Returns the number of blocks, i.e. one plus the number of block switches. */
+static size_t FN(FindBlocks)(const DataType* data, const size_t length,
+ const double block_switch_bitcost,
+ const size_t num_histograms,
+ const HistogramType* histograms,
+ double* insert_cost,
+ double* cost,
+ uint8_t* switch_signal,
+ uint8_t* block_id) {
+ const size_t data_size = FN(HistogramDataSize)();
+ const size_t bitmaplen = (num_histograms + 7) >> 3;
+ size_t num_blocks = 1;
+ size_t i;
+ size_t j;
+ BROTLI_DCHECK(num_histograms <= 256);
+ if (num_histograms <= 1) {
+ for (i = 0; i < length; ++i) {
+ block_id[i] = 0;
+ }
+ return 1;
+ }
+ memset(insert_cost, 0, sizeof(insert_cost[0]) * data_size * num_histograms);
+ for (i = 0; i < num_histograms; ++i) {
+ insert_cost[i] = FastLog2((uint32_t)histograms[i].total_count_);
+ }
+ for (i = data_size; i != 0;) {
+ --i;
+ for (j = 0; j < num_histograms; ++j) {
+ insert_cost[i * num_histograms + j] =
+ insert_cost[j] - BitCost(histograms[j].data_[i]);
+ }
+ }
+ memset(cost, 0, sizeof(cost[0]) * num_histograms);
+ memset(switch_signal, 0, sizeof(switch_signal[0]) * length * bitmaplen);
+ /* After each iteration of this loop, cost[k] will contain the difference
+ between the minimum cost of arriving at the current byte position using
+ entropy code k, and the minimum cost of arriving at the current byte
+ position. This difference is capped at the block switch cost, and if it
+ reaches block switch cost, it means that when we trace back from the last
+ position, we need to switch here. */
+ for (i = 0; i < length; ++i) {
+ const size_t byte_ix = i;
+ size_t ix = byte_ix * bitmaplen;
+ size_t insert_cost_ix = data[byte_ix] * num_histograms;
+ double min_cost = 1e99;
+ double block_switch_cost = block_switch_bitcost;
+ size_t k;
+ for (k = 0; k < num_histograms; ++k) {
+ /* We are coding the symbol in data[byte_ix] with entropy code k. */
+ cost[k] += insert_cost[insert_cost_ix + k];
+ if (cost[k] < min_cost) {
+ min_cost = cost[k];
+ block_id[byte_ix] = (uint8_t)k;
+ }
+ }
+ /* More blocks for the beginning. */
+ if (byte_ix < 2000) {
+ block_switch_cost *= 0.77 + 0.07 * (double)byte_ix / 2000;
+ }
+ for (k = 0; k < num_histograms; ++k) {
+ cost[k] -= min_cost;
+ if (cost[k] >= block_switch_cost) {
+ const uint8_t mask = (uint8_t)(1u << (k & 7));
+ cost[k] = block_switch_cost;
+ BROTLI_DCHECK((k >> 3) < bitmaplen);
+ switch_signal[ix + (k >> 3)] |= mask;
+ }
+ }
+ }
+ { /* Trace back from the last position and switch at the marked places. */
+ size_t byte_ix = length - 1;
+ size_t ix = byte_ix * bitmaplen;
+ uint8_t cur_id = block_id[byte_ix];
+ while (byte_ix > 0) {
+ const uint8_t mask = (uint8_t)(1u << (cur_id & 7));
+ BROTLI_DCHECK(((size_t)cur_id >> 3) < bitmaplen);
+ --byte_ix;
+ ix -= bitmaplen;
+ if (switch_signal[ix + (cur_id >> 3)] & mask) {
+ if (cur_id != block_id[byte_ix]) {
+ cur_id = block_id[byte_ix];
+ ++num_blocks;
+ }
+ }
+ block_id[byte_ix] = cur_id;
+ }
+ }
+ return num_blocks;
+}
+
+static size_t FN(RemapBlockIds)(uint8_t* block_ids, const size_t length,
+ uint16_t* new_id, const size_t num_histograms) {
+ static const uint16_t kInvalidId = 256;
+ uint16_t next_id = 0;
+ size_t i;
+ for (i = 0; i < num_histograms; ++i) {
+ new_id[i] = kInvalidId;
+ }
+ for (i = 0; i < length; ++i) {
+ BROTLI_DCHECK(block_ids[i] < num_histograms);
+ if (new_id[block_ids[i]] == kInvalidId) {
+ new_id[block_ids[i]] = next_id++;
+ }
+ }
+ for (i = 0; i < length; ++i) {
+ block_ids[i] = (uint8_t)new_id[block_ids[i]];
+ BROTLI_DCHECK(block_ids[i] < num_histograms);
+ }
+ BROTLI_DCHECK(next_id <= num_histograms);
+ return next_id;
+}
+
+static void FN(BuildBlockHistograms)(const DataType* data, const size_t length,
+ const uint8_t* block_ids,
+ const size_t num_histograms,
+ HistogramType* histograms) {
+ size_t i;
+ FN(ClearHistograms)(histograms, num_histograms);
+ for (i = 0; i < length; ++i) {
+ FN(HistogramAdd)(&histograms[block_ids[i]], data[i]);
+ }
+}
+
+static void FN(ClusterBlocks)(MemoryManager* m,
+ const DataType* data, const size_t length,
+ const size_t num_blocks,
+ uint8_t* block_ids,
+ BlockSplit* split) {
+ uint32_t* histogram_symbols = BROTLI_ALLOC(m, uint32_t, num_blocks);
+ uint32_t* block_lengths = BROTLI_ALLOC(m, uint32_t, num_blocks);
+ const size_t expected_num_clusters = CLUSTERS_PER_BATCH *
+ (num_blocks + HISTOGRAMS_PER_BATCH - 1) / HISTOGRAMS_PER_BATCH;
+ size_t all_histograms_size = 0;
+ size_t all_histograms_capacity = expected_num_clusters;
+ HistogramType* all_histograms =
+ BROTLI_ALLOC(m, HistogramType, all_histograms_capacity);
+ size_t cluster_size_size = 0;
+ size_t cluster_size_capacity = expected_num_clusters;
+ uint32_t* cluster_size = BROTLI_ALLOC(m, uint32_t, cluster_size_capacity);
+ size_t num_clusters = 0;
+ HistogramType* histograms = BROTLI_ALLOC(m, HistogramType,
+ BROTLI_MIN(size_t, num_blocks, HISTOGRAMS_PER_BATCH));
+ size_t max_num_pairs =
+ HISTOGRAMS_PER_BATCH * HISTOGRAMS_PER_BATCH / 2;
+ size_t pairs_capacity = max_num_pairs + 1;
+ HistogramPair* pairs = BROTLI_ALLOC(m, HistogramPair, pairs_capacity);
+ size_t pos = 0;
+ uint32_t* clusters;
+ size_t num_final_clusters;
+ static const uint32_t kInvalidIndex = BROTLI_UINT32_MAX;
+ uint32_t* new_index;
+ size_t i;
+ uint32_t sizes[HISTOGRAMS_PER_BATCH] = { 0 };
+ uint32_t new_clusters[HISTOGRAMS_PER_BATCH] = { 0 };
+ uint32_t symbols[HISTOGRAMS_PER_BATCH] = { 0 };
+ uint32_t remap[HISTOGRAMS_PER_BATCH] = { 0 };
+
+ if (BROTLI_IS_OOM(m)) return;
+
+ memset(block_lengths, 0, num_blocks * sizeof(uint32_t));
+
+ {
+ size_t block_idx = 0;
+ for (i = 0; i < length; ++i) {
+ BROTLI_DCHECK(block_idx < num_blocks);
+ ++block_lengths[block_idx];
+ if (i + 1 == length || block_ids[i] != block_ids[i + 1]) {
+ ++block_idx;
+ }
+ }
+ BROTLI_DCHECK(block_idx == num_blocks);
+ }
+
+ for (i = 0; i < num_blocks; i += HISTOGRAMS_PER_BATCH) {
+ const size_t num_to_combine =
+ BROTLI_MIN(size_t, num_blocks - i, HISTOGRAMS_PER_BATCH);
+ size_t num_new_clusters;
+ size_t j;
+ for (j = 0; j < num_to_combine; ++j) {
+ size_t k;
+ FN(HistogramClear)(&histograms[j]);
+ for (k = 0; k < block_lengths[i + j]; ++k) {
+ FN(HistogramAdd)(&histograms[j], data[pos++]);
+ }
+ histograms[j].bit_cost_ = FN(BrotliPopulationCost)(&histograms[j]);
+ new_clusters[j] = (uint32_t)j;
+ symbols[j] = (uint32_t)j;
+ sizes[j] = 1;
+ }
+ num_new_clusters = FN(BrotliHistogramCombine)(
+ histograms, sizes, symbols, new_clusters, pairs, num_to_combine,
+ num_to_combine, HISTOGRAMS_PER_BATCH, max_num_pairs);
+ BROTLI_ENSURE_CAPACITY(m, HistogramType, all_histograms,
+ all_histograms_capacity, all_histograms_size + num_new_clusters);
+ BROTLI_ENSURE_CAPACITY(m, uint32_t, cluster_size,
+ cluster_size_capacity, cluster_size_size + num_new_clusters);
+ if (BROTLI_IS_OOM(m)) return;
+ for (j = 0; j < num_new_clusters; ++j) {
+ all_histograms[all_histograms_size++] = histograms[new_clusters[j]];
+ cluster_size[cluster_size_size++] = sizes[new_clusters[j]];
+ remap[new_clusters[j]] = (uint32_t)j;
+ }
+ for (j = 0; j < num_to_combine; ++j) {
+ histogram_symbols[i + j] = (uint32_t)num_clusters + remap[symbols[j]];
+ }
+ num_clusters += num_new_clusters;
+ BROTLI_DCHECK(num_clusters == cluster_size_size);
+ BROTLI_DCHECK(num_clusters == all_histograms_size);
+ }
+ BROTLI_FREE(m, histograms);
+
+ max_num_pairs =
+ BROTLI_MIN(size_t, 64 * num_clusters, (num_clusters / 2) * num_clusters);
+ if (pairs_capacity < max_num_pairs + 1) {
+ BROTLI_FREE(m, pairs);
+ pairs = BROTLI_ALLOC(m, HistogramPair, max_num_pairs + 1);
+ if (BROTLI_IS_OOM(m)) return;
+ }
+
+ clusters = BROTLI_ALLOC(m, uint32_t, num_clusters);
+ if (BROTLI_IS_OOM(m)) return;
+ for (i = 0; i < num_clusters; ++i) {
+ clusters[i] = (uint32_t)i;
+ }
+ num_final_clusters = FN(BrotliHistogramCombine)(
+ all_histograms, cluster_size, histogram_symbols, clusters, pairs,
+ num_clusters, num_blocks, BROTLI_MAX_NUMBER_OF_BLOCK_TYPES,
+ max_num_pairs);
+ BROTLI_FREE(m, pairs);
+ BROTLI_FREE(m, cluster_size);
+
+ new_index = BROTLI_ALLOC(m, uint32_t, num_clusters);
+ if (BROTLI_IS_OOM(m)) return;
+ for (i = 0; i < num_clusters; ++i) new_index[i] = kInvalidIndex;
+ pos = 0;
+ {
+ uint32_t next_index = 0;
+ for (i = 0; i < num_blocks; ++i) {
+ HistogramType histo;
+ size_t j;
+ uint32_t best_out;
+ double best_bits;
+ FN(HistogramClear)(&histo);
+ for (j = 0; j < block_lengths[i]; ++j) {
+ FN(HistogramAdd)(&histo, data[pos++]);
+ }
+ best_out = (i == 0) ? histogram_symbols[0] : histogram_symbols[i - 1];
+ best_bits =
+ FN(BrotliHistogramBitCostDistance)(&histo, &all_histograms[best_out]);
+ for (j = 0; j < num_final_clusters; ++j) {
+ const double cur_bits = FN(BrotliHistogramBitCostDistance)(
+ &histo, &all_histograms[clusters[j]]);
+ if (cur_bits < best_bits) {
+ best_bits = cur_bits;
+ best_out = clusters[j];
+ }
+ }
+ histogram_symbols[i] = best_out;
+ if (new_index[best_out] == kInvalidIndex) {
+ new_index[best_out] = next_index++;
+ }
+ }
+ }
+ BROTLI_FREE(m, clusters);
+ BROTLI_FREE(m, all_histograms);
+ BROTLI_ENSURE_CAPACITY(
+ m, uint8_t, split->types, split->types_alloc_size, num_blocks);
+ BROTLI_ENSURE_CAPACITY(
+ m, uint32_t, split->lengths, split->lengths_alloc_size, num_blocks);
+ if (BROTLI_IS_OOM(m)) return;
+ {
+ uint32_t cur_length = 0;
+ size_t block_idx = 0;
+ uint8_t max_type = 0;
+ for (i = 0; i < num_blocks; ++i) {
+ cur_length += block_lengths[i];
+ if (i + 1 == num_blocks ||
+ histogram_symbols[i] != histogram_symbols[i + 1]) {
+ const uint8_t id = (uint8_t)new_index[histogram_symbols[i]];
+ split->types[block_idx] = id;
+ split->lengths[block_idx] = cur_length;
+ max_type = BROTLI_MAX(uint8_t, max_type, id);
+ cur_length = 0;
+ ++block_idx;
+ }
+ }
+ split->num_blocks = block_idx;
+ split->num_types = (size_t)max_type + 1;
+ }
+ BROTLI_FREE(m, new_index);
+ BROTLI_FREE(m, block_lengths);
+ BROTLI_FREE(m, histogram_symbols);
+}
+
+static void FN(SplitByteVector)(MemoryManager* m,
+ const DataType* data, const size_t length,
+ const size_t literals_per_histogram,
+ const size_t max_histograms,
+ const size_t sampling_stride_length,
+ const double block_switch_cost,
+ const BrotliEncoderParams* params,
+ BlockSplit* split) {
+ const size_t data_size = FN(HistogramDataSize)();
+ size_t num_histograms = length / literals_per_histogram + 1;
+ HistogramType* histograms;
+ if (num_histograms > max_histograms) {
+ num_histograms = max_histograms;
+ }
+ if (length == 0) {
+ split->num_types = 1;
+ return;
+ } else if (length < kMinLengthForBlockSplitting) {
+ BROTLI_ENSURE_CAPACITY(m, uint8_t,
+ split->types, split->types_alloc_size, split->num_blocks + 1);
+ BROTLI_ENSURE_CAPACITY(m, uint32_t,
+ split->lengths, split->lengths_alloc_size, split->num_blocks + 1);
+ if (BROTLI_IS_OOM(m)) return;
+ split->num_types = 1;
+ split->types[split->num_blocks] = 0;
+ split->lengths[split->num_blocks] = (uint32_t)length;
+ split->num_blocks++;
+ return;
+ }
+ histograms = BROTLI_ALLOC(m, HistogramType, num_histograms);
+ if (BROTLI_IS_OOM(m)) return;
+ /* Find good entropy codes. */
+ FN(InitialEntropyCodes)(data, length,
+ sampling_stride_length,
+ num_histograms, histograms);
+ FN(RefineEntropyCodes)(data, length,
+ sampling_stride_length,
+ num_histograms, histograms);
+ {
+ /* Find a good path through literals with the good entropy codes. */
+ uint8_t* block_ids = BROTLI_ALLOC(m, uint8_t, length);
+ size_t num_blocks = 0;
+ const size_t bitmaplen = (num_histograms + 7) >> 3;
+ double* insert_cost = BROTLI_ALLOC(m, double, data_size * num_histograms);
+ double* cost = BROTLI_ALLOC(m, double, num_histograms);
+ uint8_t* switch_signal = BROTLI_ALLOC(m, uint8_t, length * bitmaplen);
+ uint16_t* new_id = BROTLI_ALLOC(m, uint16_t, num_histograms);
+ const size_t iters = params->quality < HQ_ZOPFLIFICATION_QUALITY ? 3 : 10;
+ size_t i;
+ if (BROTLI_IS_OOM(m)) return;
+ for (i = 0; i < iters; ++i) {
+ num_blocks = FN(FindBlocks)(data, length,
+ block_switch_cost,
+ num_histograms, histograms,
+ insert_cost, cost, switch_signal,
+ block_ids);
+ num_histograms = FN(RemapBlockIds)(block_ids, length,
+ new_id, num_histograms);
+ FN(BuildBlockHistograms)(data, length, block_ids,
+ num_histograms, histograms);
+ }
+ BROTLI_FREE(m, insert_cost);
+ BROTLI_FREE(m, cost);
+ BROTLI_FREE(m, switch_signal);
+ BROTLI_FREE(m, new_id);
+ BROTLI_FREE(m, histograms);
+ FN(ClusterBlocks)(m, data, length, num_blocks, block_ids, split);
+ if (BROTLI_IS_OOM(m)) return;
+ BROTLI_FREE(m, block_ids);
+ }
+}
+
+#undef HistogramType