diff options
author | Norbert Preining <norbert@preining.info> | 2021-09-01 03:02:13 +0000 |
---|---|---|
committer | Norbert Preining <norbert@preining.info> | 2021-09-01 03:02:13 +0000 |
commit | 692575a36c0469a733dc7a6f68e945db811fb0c6 (patch) | |
tree | ba036f23385aca10e8e7844420c25650cd9822cb /macros/latex/contrib/profcollege | |
parent | 1a217cc34d8be62cccd53866a6ce55f7fdaad8d8 (diff) |
CTAN sync 202109010302
Diffstat (limited to 'macros/latex/contrib/profcollege')
-rw-r--r-- | macros/latex/contrib/profcollege/doc/ProfCollege-doc.pdf | bin | 3380542 -> 3604456 bytes | |||
-rw-r--r-- | macros/latex/contrib/profcollege/latex/ProfCollege.sty | 736 |
2 files changed, 597 insertions, 139 deletions
diff --git a/macros/latex/contrib/profcollege/doc/ProfCollege-doc.pdf b/macros/latex/contrib/profcollege/doc/ProfCollege-doc.pdf Binary files differindex b411e0ee22..743db170d1 100644 --- a/macros/latex/contrib/profcollege/doc/ProfCollege-doc.pdf +++ b/macros/latex/contrib/profcollege/doc/ProfCollege-doc.pdf diff --git a/macros/latex/contrib/profcollege/latex/ProfCollege.sty b/macros/latex/contrib/profcollege/latex/ProfCollege.sty index ab00d8a9b9..5fe1d04716 100644 --- a/macros/latex/contrib/profcollege/latex/ProfCollege.sty +++ b/macros/latex/contrib/profcollege/latex/ProfCollege.sty @@ -3,7 +3,7 @@ % or later, see http://www.latex-project.org/lppl.txtf \NeedsTeXFormat{LaTeX2e} -\ProvidesPackage{ProfCollege}[2021/08/22 v0.99-f Aide pour l'utilisation de LaTeX au collège] +\ProvidesPackage{ProfCollege}[2021/09/01 v0.99-g Aide pour l'utilisation de LaTeX au collège] \RequirePackage{verbatim} @@ -99,6 +99,8 @@ \RequirePackage{stackengine} \RequirePackage[thicklines]{cancel} +\RequirePackage{fontawesome5}%Pour l'environnement Twitter + \RequirePackage{nicematrix}%pour le tableur \let\myoldmulticolumn\multicolumn @@ -155,6 +157,17 @@ \end{tikzpicture}% } +\newcommand\LogoTW[2]{% +\setbox1=\hbox{\includegraphics[scale=#2]{#1}} +\begin{tikzpicture}% + \clip (0,0) circle (4mm); + \draw (0,0) circle (4mm); + \node[xshift=0mm, yshift=0mm, inner xsep=0pt, inner ysep=0pt] (0,0) {% + \includegraphics[scale=#2]{#1}% + };% +\end{tikzpicture}% +}% + \makeatletter \def\Dotfill{% \leavevmode @@ -506,6 +519,166 @@ } %%% +% Twitter +%%% +\setKVdefault[Twitter]{Largeur=0.95\linewidth,Auteur=Christophe,Date=\today,Url=ViveLaTeX,EchelleLogo=0.035,Logo=DrStrange,Publie=false} + +\NewEnviron{Twitter}[1][]{% + \useKVdefault[Twitter]% + \setKV[Twitter]{#1}% + \xdef\EchelleLogo{\useKV[Twitter]{EchelleLogo}}% + \begin{tcolorbox}[% + enhanced,% + overlay unbroken and first={% + \node[anchor=west,xshift=3em,yshift=-2em] at (frame.north west) {\textbf{\useKV[Twitter]{Auteur}}~{\color{gray}@\ttfamily \useKV[Twitter]{Url} - \useKV[Twitter]{Date}}}; + \node[anchor=center,xshift=1em+2mm,yshift=-2em] at (frame.north west) {\LogoTW{\useKV[Twitter]{Logo}}{\EchelleLogo}}; + \node[xshift=-1em,yshift=-2em] at (frame.north east) {\color{gray}...}; + \coordinate[yshift=1em] (A) at (frame.south west); + \coordinate[yshift=1em] (B) at (frame.south east); + \node[] (C1) at ($(A)!0.1!(B)$) {\faComment[regular]\ifboolKV[Twitter]{Publie}{~\fpeval{randint(1,10)}}{}}; + \node[] (C2) at ($(A)!0.325!(B)$) {\faRetweet\ifboolKV[Twitter]{Publie}{~\fpeval{randint(1,10)}}{}}; + \node[] (C3) at ($(A)!0.55!(B)$) {\faHeart[regular]\ifboolKV[Twitter]{Publie}{~\fpeval{randint(1,10)}}{}}; + \node[] (C4) at ($(A)!0.775!(B)$) {\faShareSquare}; + }, + colback=white, + colframe=gray!15, + top=2em, + left=3em, + bottom=2em] + \vspace*{0.5em}\par + \BODY% + \end{tcolorbox} +} + +%%% +% Facebook +%%% +\setKVdefault[Facebook]{Largeur=0.95\linewidth,Auteur=Christophe,Date=\today,Heure=3:14,EchelleLogo=0.035,Logo=DrStrange,Publie=false} + +\NewEnviron{Facebook}[1][]{% + \useKVdefault[Facebook]% + \setKV[Facebook]{#1}% + \xdef\EchelleLogo{\useKV[Facebook]{EchelleLogo}}% + \begin{tcolorbox}[% + enhanced,% + overlay unbroken and first={% + \node[anchor=west,xshift=3em,yshift=-1em] at (frame.north west) {\textbf{\useKV[Facebook]{Auteur}}}; + \node[anchor=west,xshift=3em,yshift=-2em] at (frame.north west) {\scriptsize\color{gray}\useKV[Facebook]{Date}, \useKV[Facebook]{Heure}}; + \node[anchor=center,xshift=1em+2mm,yshift=-1.5em] at (frame.north west) {\LogoTW{\useKV[Facebook]{Logo}}{\EchelleLogo}}; + \node[xshift=-1em,yshift=-1.5em] at (frame.north east) {\bfseries\color{gray}...}; + \coordinate[yshift=1.15em] (A) at (frame.south west); + \coordinate[yshift=1.15em] (B) at (frame.south east); + \coordinate[xshift=0.5em,yshift=1.8em] (A1) at (frame.south west); + \coordinate[xshift=-0.5em,yshift=1.8em] (B1) at (frame.south east); + \coordinate[xshift=0.5em,yshift=0.5em] (A2) at (frame.south west); + \coordinate[xshift=-0.5em,yshift=0.5em] (B2) at (frame.south east); + \ifboolKV[Facebook]{Publie}{% + \coordinate[xshift=1em,yshift=1em] (A3) at (A1); + \draw[blue,fill=blue] (A3) circle (1.5mm); + \node[] at (A3) {\tiny\color{white}\faThumbsUp}; + \node[anchor=west] at (A3) {~\scriptsize\fpeval{randint(1,150)}}; + \node[anchor=east,xshift=-1em,yshift=1em] at (B1) {\scriptsize\fpeval{randint(2,20)} commentaires~\fpeval{randint(2,10)} partages}; + }{} + \draw[gray] (A1)--(B1); + \draw[gray] (A2)--(B2); + \node[] (C1) at ($(A)!0.15!(B)$) {\footnotesize\faThumbsUp{}~\bfseries J'aime}; + \node[] (C2) at ($(A)!0.5!(B)$) {\footnotesize\faComment*[regular]~\bfseries Commenter}; \node[] (C3) at ($(A)!0.85!(B)$) {\footnotesize\faShareSquare~\bfseries Partager}; + }, + colback=white, + colframe=gray!15, + top=2em, + left=3em, + bottom=4em] + %\vspace*{0.5em}\par + \BODY% + \end{tcolorbox} +} + +%%% +% Instagram +%%% +\setKVdefault[Instagram]{Largeur=0.95\linewidth,Auteur=Christophe,Expediteur=Pierre,Date=\today,Temps=34,Publie=false,Logo=DrStrange,LogoEx=tiger,EchelleLogo=0.035,Texte={}} + +\NewEnviron{Instagram}[1][]{% + \useKVdefault[Instagram]% + \setKV[Instagram]{#1}% + \xdef\EchelleLogo{\useKV[Instagram]{EchelleLogo}}% + \begin{tcolorbox}[% + enhanced,% + underlay unbroken and first={% + \node[anchor=west,xshift=3em,yshift=-1.5em] at (frame.north west) {\textbf{\useKV[Instagram]{Expediteur}}}; + \node[anchor=center,xshift=1em+2mm,yshift=-1.5em] at (frame.north west) {\LogoTW{\useKV[Instagram]{LogoEx}}{\EchelleLogo}}; + \node[xshift=-1em,yshift=-1.5em,rotate=90] at (frame.north east) {\bfseries\color{gray}...}; + \coordinate[yshift=-3em] (HA) at (frame.north west); + \coordinate[yshift=-3em] (HB) at (frame.north east); + \draw[gray!15] (HA)--(HB); + \coordinate[yshift=7em] (BA) at (frame.south west); + \coordinate[yshift=7em] (BB) at (frame.south east); + \draw[gray!15] (BA)--(BB); + \coordinate[xshift=1em,yshift=6em] (A) at (frame.south west); + \node[anchor=west] at (A) {\bfseries\faHeart[regular]\quad\faComment[regular]\quad\faPaperPlane}; + \coordinate[xshift=-1em,yshift=6em] (A1) at (frame.south east); + \node[anchor=east] at (A1) {\bfseries\faBookmark[regular]}; + \coordinate[xshift=1em,yshift=5em] (B) at (frame.south west); + \node[anchor=west] at (B) {\footnotesize\bfseries\fpeval{randint(10,30)} J'aime}; + \coordinate[xshift=1em,yshift=4em] (C) at (frame.south west); + \node[anchor=west] at (C) {\textbf{\useKV[Instagram]{Expediteur}}~\useKV[Instagram]{Texte}}; + \node[anchor=center,xshift=2em,yshift=2.25em] at (frame.south west) {\LogoTW{\useKV[Instagram]{Logo}}{\EchelleLogo}}; + \node[anchor=west,xshift=4em,yshift=2.25em] at (frame.south west) {\textcolor{gray!50}{Ajouter un commentaire\dots}}; + \node[anchor=east,xshift=-1em,yshift=2.25em] at (frame.south east) {\textcolor{red}{\faHeart}\quad\textcolor{Gold}{\faHandSpock}\quad\textcolor{gray!50}{\faPlusCircle}}; + \node[anchor=west,xshift=1em,yshift=0.5em] at (frame.south west) {\scriptsize\color{gray} Il y a \useKV[Instagram]{Temps} secondes}; + }, + colback=white, + colframe=gray!15, + top=3em, + left=3em, + bottom=7em] + \BODY% + \end{tcolorbox} +} + +%%% +% Snapchat +%%% +\setKVdefault[Snapchat]{Largeur=0.95\linewidth,Auteur=Christophe,Date=\today,Temps=34,Logo=DrStrange,EchelleLogo=0.035,Texte=Envoyer un Chat} + +\NewEnviron{Snapchat}[1][]{% + \useKVdefault[Snapchat]% + \setKV[Snapchat]{#1}% + \xdef\EchelleLogo{\useKV[Snapchat]{EchelleLogo}}% + \begin{tcolorbox}[% + enhanced,% + underlay unbroken and first={% + \node[anchor=west,xshift=3em,yshift=-1em] at (frame.north west) {\textbf{\useKV[Snapchat]{Auteur}}}; + \node[anchor=west,xshift=3em,yshift=-2em] at (frame.north west) {\scriptsize\color{gray} il y a \useKV[Snapchat]{Temps}~min}; + \node[anchor=center,xshift=1em+2mm,yshift=-1.5em] at (frame.north west) {\LogoTW{\useKV[Snapchat]{Logo}}{\EchelleLogo}}; + \node[xshift=-1em,yshift=-1.5em,rotate=90] at (frame.north east) {\bfseries...}; + \node[xshift=-3em,yshift=-1.5em] at (frame.north east) {\faBell[regular]}; + \coordinate[xshift=2em,yshift=2em] (P1) at (frame.south west); + \coordinate[xshift=4.5em,yshift=2em] (P2) at (frame.south west); + \coordinate[xshift=-3em,yshift=2em] (P4) at (frame.south west); + \coordinate[xshift=-2em,yshift=2em] (P3) at (frame.south east); + \coordinate[xshift=4.5em,yshift=1em] (P5) at (frame.south west); + \coordinate[xshift=4.5em,yshift=3em] (P8) at (frame.south west); + \coordinate[xshift=-4.5em,yshift=1em] (P6) at (frame.south east); + \coordinate[xshift=-4.5em,yshift=3em] (P7) at (frame.south east); + \draw (P1) circle (1em); + \node at (P1) {\faCamera}; + \draw (P3) circle (1em); + \node[xshift=-0.125em,rotate=-45] at (P3) {\faLocationArrow}; + \node[anchor=west,inner sep=0pt] at (P2) {\useKV[Snapchat]{Texte}}; + \draw (P5) -- (P6) arc(270:450:1em) -- (P7) -- (P8) arc(90:270:1em) -- cycle; + }, + colback=white, + colframe=gray!15, + top=3em, + left=3em, + bottom=3em] + \BODY% + \end{tcolorbox} +} + +%%% % Bon de sortie %%% \newtcolorbox{Sortie}{% @@ -1189,6 +1362,151 @@ } %%% +% Triominos +%%% +\setKVdefault[ClesTriomino]{Longueur=5cm,Etages=3,AffichagePiece=false} +\defKV[ClesTriomino]{Piece=\setKV[ClesTriomino]{AffichagePiece=true}}% + +\def\TraceTriomino#1{% + \ifluatex + \mplibforcehmode + \begin{mplibcode} + u:=\useKV[ClesTriomino]{Longueur}; + Rayon:=0.75*u*sqrt(3)/6; + Etages:=\useKV[ClesTriomino]{Etages}; + pair A,B,C,D,E,F; + A=(0,0); + B-A=Etages*u*(1,0); + C=rotation(B,A,60); + D=(1/Etages)[C,A]; + E=(1/Etages)[C,B]; + F=C; + trace polygone(A,B,C); + for k=1 upto Etages-1: + trace (k/Etages)[C,A]--(k/Etages)[C,B]; + trace (k/Etages)[A,C]--(k/Etages)[A,B]; + trace (k/Etages)[B,A]--(k/Etages)[B,C]; + endfor; + pair G[];color H[];%Couleur pour garder l'orientation des textes... + G[1]=iso(D,E,F); + H1=blue; + n=1; + for k=1 upto Etages-1: + for l=0 upto (2*k): + n:=n+1; + if (l mod 2=0): + G[n]=G[1] shifted(k*(D-F)+(l div 2)*(E-D)); + H[n]=blue; + else: + G[n]=symetrie(G[1],D,E) shifted((k-1)*(D-F)+(l div 2)*(E-D)); + H[n]=green; + fi; + endfor; + endfor; + % affichage des textes + nba=0; + for p_=#1: + if (nba mod 3)=1: + if H[(nba div 3)+1]=blue: + label(TEX(p_) rotated 120,pointarc(cercles(G[(nba div 3)+1],Rayon),30)); + else: + label(TEX(p_) rotated 180,pointarc(cercles(G[(nba div 3)+1],Rayon),90)); + fi; + elseif (nba mod 3)=2: + if H[(nba div 3)+1]=blue: + label(TEX(p_),pointarc(cercles(G[(nba div 3)+1],Rayon),270)); + else: + label(TEX(p_) rotated 60,pointarc(cercles(G[(nba div 3)+1],Rayon),330)); + fi; + else: + if H[(nba div 3)+1]=blue: + label(TEX(p_) rotated 240,pointarc(cercles(G[(nba div 3)+1],Rayon),150)); + else: + label(TEX(p_) rotated 300,pointarc(cercles(G[(nba div 3)+1],Rayon),210)); + fi; + fi; + nba:=nba+1; + endfor; + \end{mplibcode} + \else + \begin{mpost}[mpsettings={u:=\useKV[ClesTriomino]{Longueur}; Etages:=\useKV[ClesTriomino]{Etages};}] + Rayon:=0.75*u*sqrt(3)/6; + pair A,B,C,D,E,F; + A=(0,0); + B-A=Etages*u*(1,0); + C=rotation(B,A,60); + D=(1/Etages)[C,A]; + E=(1/Etages)[C,B]; + F=C; + trace polygone(A,B,C); + for k=1 upto Etages-1: + trace (k/Etages)[C,A]--(k/Etages)[C,B]; + trace (k/Etages)[A,C]--(k/Etages)[A,B]; + trace (k/Etages)[B,A]--(k/Etages)[B,C]; + endfor; + pair G[];color H[];%Couleur pour garder l'orientation des textes... + G[1]=iso(D,E,F); + H1=blue; + n=1; + for k=1 upto Etages-1: + for l=0 upto (2*k): + n:=n+1; + if (l mod 2=0): + G[n]=G[1] shifted(k*(D-F)+(l div 2)*(E-D)); + H[n]=blue; + else: + G[n]=symetrie(G[1],D,E) shifted((k-1)*(D-F)+(l div 2)*(E-D)); + H[n]=green; + fi; + endfor; + endfor; + % affichage des textes + nba=0; + for p_=#1: + if (nba mod 3)=1: + if H[(nba div 3)+1]=blue: + label(LATEX(p_) rotated 120,pointarc(cercles(G[(nba div 3)+1],Rayon),30)); + else: + label(LATEX(p_) rotated 180,pointarc(cercles(G[(nba div 3)+1],Rayon),90)); + fi; + elseif (nba mod 3)=2: + if H[(nba div 3)+1]=blue: + label(LATEX(p_),pointarc(cercles(G[(nba div 3)+1],Rayon),270)); + else: + label(LATEX(p_) rotated 60,pointarc(cercles(G[(nba div 3)+1],Rayon),330)); + fi; + else: + if H[(nba div 3)+1]=blue: + label(LATEX(p_) rotated 240,pointarc(cercles(G[(nba div 3)+1],Rayon),150)); + else: + label(LATEX(p_) rotated 300,pointarc(cercles(G[(nba div 3)+1],Rayon),210)); + fi; + fi; + nba:=nba+1; + endfor; + \end{mpost} + \fi +} + +\newtoks\toklisteTriomino% +\def\UpdatetoksTriomino#1\nil{\addtotok\toklisteTriomino{"#1",}}% + +\newcommand\Triomino[2][]{% + \useKVdefault[ClesTriomino]% + \setKV[ClesTriomino]{#1}% + \setsepchar{§}%\ignoreemptyitems% + \readlist*\ListeTriominos{#2}% + \toklisteTriomino{} + \ifboolKV[ClesTriomino]{AffichagePiece}{% + \setKV[ClesTriomino]{Etages=1}% + \TraceTriomino{"\ListeTriominos[\fpeval{3*\useKV[ClesTriomino]{Piece}-2}]","\ListeTriominos[\fpeval{3*\useKV[ClesTriomino]{Piece}-1}]","\ListeTriominos[\fpeval{3*\useKV[ClesTriomino]{Piece}}]"}% + }{% + \foreachitem\compteur\in\ListeTriominos{\expandafter\UpdatetoksTriomino\compteur\nil}% + \TraceTriomino{\the\toklisteTriomino}% + }% +}% + +%%% % Labyrinthe Nombre %%% @@ -3042,6 +3360,76 @@ couleur indiquée, le nombre de cases donné par le résultat du calcul. }% %%% +% Rapido +%%% +%% D'après https://www.facebook.com/groups/994675223903586/user/100017057226847 +%% et une programmation de Laurent Lassale-Carrere +\newcounter{nexo} +\newtcolorbox[use counter=nexo,number format=\arabic]{RapidoBox}{% + % Titre + colbacktitle=white, + fonttitle=\color{black}\Large\bfseries, + toptitle=1mm, + bottomtitle=1mm, + bottom=1mm, + title={Rapido n°\thetcbcounter\hfill Date :\hspace*{2.5cm}}, + %% Cadre principal + enhanced, + %nobeforeafter, + width=\WidthRapido, + colback=white, + valign=top, + drop lifted shadow%, + %grow to left by=5mm +} +\newtcolorbox{QuestionBox}{enhanced,nobeforeafter,size=small,sidebyside adapt=left} +\newtcolorbox{QuestionReponse}{enhanced,nobeforeafter,upperbox=invisible,colback=white,width=1.5cm,grow to left by=3mm,grow to right by=3mm,height=10mm} + +\setKVdefault[ClesRapido]{Debut=false,Largeur=0.9\linewidth}% +\defKV[ClesRapido]{Numero=\setKV[ClesRapido]{Debut=true}} + +\newlength{\WidthRapido} + +\newcommand\Rapido[2][]{% numéro +\useKVdefault[ClesRapido]% +\setKV[ClesRapido]{#1}% +% +\ifboolKV[ClesRapido]{Debut}{% + \setcounter{nexo}{\fpeval{\useKV[ClesRapido]{Numero}-1}} +}{}% +\setlength{\WidthRapido}{\useKV[ClesRapido]{Largeur}}% +% +\setsepchar[*]{§*/}% +\readlist*\ListeRapido{#2}% +\begin{RapidoBox} + \xintFor* ##1 in {\xintSeq {1}{\ListeRapidolen}}\do{% + \tcbsidebyside[ + sidebyside adapt=right, + bicolor, + colback=white,colbacklower=yellow!10!white, + nobeforeafter, + top=0mm,left=1mm, + grow to left by=3mm, + grow to right by=3mm, + bottom=0mm, + ]{% + \ListeRapido[##1,1] + }{% + \ListeRapido[##1,2] + } +} +\end{RapidoBox} +} + +\newcommand\BoiteRapido[1]{% + \ifx\bla#1\bla% + \tcbox[BoiteExpression]{\phantom{100000}}% + \else + \tcbox[BoiteExpression]{#1}% + \fi +} + +%%% % Fractions %%% \setKVdefault[ClesFraction]{Rayon=2cm,Disque,Regulier=false,Segment=false,Rectangle=false,Longueur=5cm,Largeur=2cm,Cotes=5,Triangle=false,Parts=3,Couleur=green,Reponse=false,Multiple=1,Hachures=false,Epaisseur=1} @@ -4454,7 +4842,7 @@ couleur indiquée, le nombre de cases donné par le résultat du calcul. %%% % Le th\'eor\`eme de Pythagore %%% -\setKVdefault[ClesPythagore]{Exact=false,AvantRacine=false,Racine=false,Entier=false,Egalite=false,Precision=2,Soustraction=false,Figure=false,FigureSeule=false,Angle=0,Echelle=1cm,Reciproque=false,ReciColonnes=false,Faible=false,Unite=cm,EnchaineA=false,EnchaineB=false,EnchaineC=false,ValeurA=0,ValeurB=0,ValeurC=0,Perso=false} +\setKVdefault[ClesPythagore]{Exact=false,AvantRacine=false,Racine=false,Entier=false,Egalite=false,Precision=2,Soustraction=false,Figure=false,FigureSeule=false,Angle=0,Echelle=1cm,Reciproque=false,ReciColonnes=false,Faible=false,Unite=cm,EnchaineA=false,EnchaineB=false,EnchaineC=false,ValeurA=0,ValeurB=0,ValeurC=0,Perso=false,AllPerso=false} % On d\'efinit les figures \`a utiliser \def\MPFigurePytha#1#2#3#4#5#6{% @@ -4635,9 +5023,13 @@ couleur indiquée, le nombre de cases donné par le résultat du calcul. \fi } -\newcommand\RedactionPythagore{} +\newcommand\RedactionPythagore{}% +\newcommand\RedactionReciPythagore{}% +\newcommand\RedactionCalculsPythagore{}% +\newcommand\RedactionCalculsReciPythagore{}% +\newcommand\RedactionConclusionReciPythagore{}% -\newcommand{\Pythagore}[5][]{% +\newcommand\Pythagore[5][]{% % #1 Param\`etres sous forme de cl\'es % #2 Nom "complet" du triangle : ABC par exemple % #3 Premi\`ere longueur @@ -4650,10 +5042,14 @@ couleur indiquée, le nombre de cases donné par le résultat du calcul. \StrMid{#2}{1}{1}[\NomA]% \StrMid{#2}{2}{2}[\NomB]% \StrMid{#2}{3}{3}[\NomC]% + \xdef\NomTriangle{\NomA\NomB\NomC}% % on stocke les valeurs donn\'ees \opcopy{#3}{A1}% \opcopy{#4}{A2}% \opcopy{#5}{A3}% + \xdef\GrandCote{#3}% + \xdef\PetitCote{#4}% + \xdef\MoyenCote{#5}% % On trace une figure ou pas ? \ifboolKV[ClesPythagore]{FigureSeule}{% \MPFigureReciPytha{\NomA}{\NomB}{\NomC}{#3}{#4}{#5}{\useKV[ClesPythagore]{Angle}}% @@ -4663,8 +5059,56 @@ couleur indiquée, le nombre de cases donné par le résultat du calcul. {\em La figure est donn\'ee \`a titre indicatif.}% \[\MPFigureReciPytha{\NomA}{\NomB}{\NomC}{#3}{#4}{#5}{\useKV[ClesPythagore]{Angle}}\]% \par\columnbreak\par% - % on r\'edige - Dans le triangle $#2$, $[\NomA\NomC]$ est le plus grand c\^ot\'e.% + \ifboolKV[ClesPythagore]{AllPerso}{% + \RedactionReciPythagore% + \RedactionCalculsReciPythagore% + \RedactionConclusionReciPythagore% + }{% + % on r\'edige + \ifboolKV[ClesPythagore]{Perso}{% + \RedactionReciPythagore% + }{% + Dans le triangle $#2$, $[\NomA\NomC]$ est le plus grand c\^ot\'e.% + } + \ifboolKV[ClesPythagore]{ReciColonnes}{% + \[ + \begin{array}{cccc|cccc} + &&\NomA\NomC^2&&&\NomA\NomB^2&+&\NomB\NomC^2\\ + &&\opexport{A1}{\Aun}\num{\Aun}^2&&&\opexport{A2}{\Adeux}\num{\Adeux}^2&+&\opexport{A3}{\Atrois}\num{\Atrois}^2\\ + &&\opmul*{A1}{A1}{a1}&&&\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}&+&\opmul*{A3}{A3}{a3}\opexport{a3}{\Atrois}\num{\Atrois}\\ + &&\opexport{a1}{\Aun}\num{\Aun}&&&\multicolumn{3}{c}{\opadd*{a2}{a3}{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}}\\ + \end{array} + \] + }{% + \[\left. + \begin{array}{l} + \NomA\NomC^2=\opexport{A1}{\Aun}\num{\Aun}^2=\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}\\ + \\ + \NomA\NomB^2+\NomB\NomC^2=\opexport{A2}{\Adeux}\num{\Adeux}^2+\opexport{A3}{\Atrois}\num{\Atrois}^2=\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}+\opmul*{A3}{A3}{a3}\opexport{a3}{\Atrois}\num{\Atrois}=\opadd*{a2}{a3}{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}\\ + \end{array} + \right\}\opcmp{a1}{a4}\ifopeq\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2\fi\opcmp{a1}{a4}\ifopneq\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2\fi + \] + } + \ifboolKV[ClesPythagore]{Egalite}{% + \opcmp{a1}{a4}\ifopeq Comme $\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2$, alors l'\'egalit\'e de Pythagore est v\'erifi\'ee. Donc le triangle $#2$ est rectangle en $\NomB$.\fi% + \opcmp{a1}{a4}\ifopneq Comme $\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2$, alors l'\'egalit\'e de Pythagore n'est pas v\'erifi\'ee. Donc le triangle $#2$ n'est pas rectangle.\fi% + }{% + \opcmp{a1}{a4}\ifopeq Comme $\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2$, alors le triangle $#2$ est rectangle + en $\NomB$ d'apr\`es la r\'eciproque du th\'eor\`eme de Pythagore.\fi% + \opcmp{a1}{a4}\ifopneq Comme $\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2$, alors le + triangle $#2$ n'est pas rectangle\ifboolKV[ClesPythagore]{Faible}{.}{ d'apr\`es la contrapos\'ee du th\'eor\`eme de Pythagore.}\fi% + } + } + \end{multicols} + }{% + \ifboolKV[ClesPythagore]{AllPerso}{% + \RedactionReciPythagore% + \RedactionCalculsReciPythagore% + \RedactionConclusionReciPythagore% + }{% + \ifboolKV[ClesPythagore]{Perso}{\RedactionReciPythagore}{% + Dans le triangle $#2$, $[\NomA\NomC]$ est le plus grand c\^ot\'e.% + } \ifboolKV[ClesPythagore]{ReciColonnes}{% \[ \begin{array}{cccc|cccc} @@ -4683,7 +5127,7 @@ couleur indiquée, le nombre de cases donné par le résultat du calcul. \end{array} \right\}\opcmp{a1}{a4}\ifopeq\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2\fi\opcmp{a1}{a4}\ifopneq\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2\fi \] - } + }% \ifboolKV[ClesPythagore]{Egalite}{% \opcmp{a1}{a4}\ifopeq Comme $\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2$, alors l'\'egalit\'e de Pythagore est v\'erifi\'ee. Donc le triangle $#2$ est rectangle en $\NomB$.\fi% \opcmp{a1}{a4}\ifopneq Comme $\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2$, alors l'\'egalit\'e de Pythagore n'est pas v\'erifi\'ee. Donc le triangle $#2$ n'est pas rectangle.\fi% @@ -4692,37 +5136,7 @@ couleur indiquée, le nombre de cases donné par le résultat du calcul. en $\NomB$ d'apr\`es la r\'eciproque du th\'eor\`eme de Pythagore.\fi% \opcmp{a1}{a4}\ifopneq Comme $\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2$, alors le triangle $#2$ n'est pas rectangle\ifboolKV[ClesPythagore]{Faible}{.}{ d'apr\`es la contrapos\'ee du th\'eor\`eme de Pythagore.}\fi% - } - \end{multicols} - }{% - Dans le triangle $#2$, $[\NomA\NomC]$ est le plus grand c\^ot\'e.% - \ifboolKV[ClesPythagore]{ReciColonnes}{% - \[ - \begin{array}{cccc|cccc} - &&\NomA\NomC^2&&&\NomA\NomB^2&+&\NomB\NomC^2\\ - &&\opexport{A1}{\Aun}\num{\Aun}^2&&&\opexport{A2}{\Adeux}\num{\Adeux}^2&+&\opexport{A3}{\Atrois}\num{\Atrois}^2\\ - &&\opmul*{A1}{A1}{a1}&&&\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}&+&\opmul*{A3}{A3}{a3}\opexport{a3}{\Atrois}\num{\Atrois}\\ - &&\opexport{a1}{\Aun}\num{\Aun}&&&\multicolumn{3}{c}{\opadd*{a2}{a3}{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}}\\ - \end{array} - \] - }{% - \[\left. - \begin{array}{l} - \NomA\NomC^2=\opexport{A1}{\Aun}\num{\Aun}^2=\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}\\ - \\ - \NomA\NomB^2+\NomB\NomC^2=\opexport{A2}{\Adeux}\num{\Adeux}^2+\opexport{A3}{\Atrois}\num{\Atrois}^2=\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}+\opmul*{A3}{A3}{a3}\opexport{a3}{\Atrois}\num{\Atrois}=\opadd*{a2}{a3}{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}\\ - \end{array} - \right\}\opcmp{a1}{a4}\ifopeq\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2\fi\opcmp{a1}{a4}\ifopneq\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2\fi - \] - }% - \ifboolKV[ClesPythagore]{Egalite}{% - \opcmp{a1}{a4}\ifopeq Comme $\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2$, alors l'\'egalit\'e de Pythagore est v\'erifi\'ee. Donc le triangle $#2$ est rectangle en $\NomB$.\fi% - \opcmp{a1}{a4}\ifopneq Comme $\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2$, alors l'\'egalit\'e de Pythagore n'est pas v\'erifi\'ee. Donc le triangle $#2$ n'est pas rectangle.\fi% - }{% - \opcmp{a1}{a4}\ifopeq Comme $\NomA\NomC^2=\NomA\NomB^2+\NomB\NomC^2$, alors le triangle $#2$ est rectangle - en $\NomB$ d'apr\`es la r\'eciproque du th\'eor\`eme de Pythagore.\fi% - \opcmp{a1}{a4}\ifopneq Comme $\NomA\NomC^2\not=\NomA\NomB^2+\NomB\NomC^2$, alors le - triangle $#2$ n'est pas rectangle\ifboolKV[ClesPythagore]{Faible}{.}{ d'apr\`es la contrapos\'ee du th\'eor\`eme de Pythagore.}\fi% + }% }% }% }% @@ -4731,6 +5145,13 @@ couleur indiquée, le nombre de cases donné par le résultat du calcul. \opcopy{#3}{A1}% \opcopy{#4}{A2}% \opcopy{\useKV[ClesPythagore]{Precision}}{pres}% + \xintifboolexpr{#3<#4 || #3==#4}{ + \xdef\PetitCote{#3}% + \xdef\MoyenCote{#4}% + }{% + \xdef\GrandCote{#3}% + \xdef\MoyenCote{#4}% + } % On retient les noms des sommets \StrMid{#2}{1}{1}[\NomA]% \StrMid{#2}{2}{2}[\NomB]% @@ -4754,12 +5175,55 @@ couleur indiquée, le nombre de cases donné par le résultat du calcul. \[\MPFigurePytha{\NomA}{\NomB}{\NomC}{#3}{#4}{\useKV[ClesPythagore]{Angle}}\] \par\columnbreak\par% % On d\'emarre la r\'esolution + \ifboolKV[ClesPythagore]{AllPerso}{% + \RedactionPythagore% + \RedactionCalculsPythagore% + }{% + \ifboolKV[ClesPythagore]{Perso}{% + \RedactionCalculsPythagore% + }{% + \ifboolKV[ClesPythagore]{Egalite}{Comme le triangle $#2$ est rectangle en $\NomB$, alors l'\'egalit\'e de Pythagore est v\'erifi\'ee :}{Dans le triangle $#2$ rectangle en $\NomB$, le th\'eor\`eme de Pythagore permet d'\'ecrire :% + }% + } + \xintifboolexpr{#3<#4 || #3==#4}{%\ifnum#3<#4% + \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}% + % \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}% + \begin{align*} + \NomA\NomC^2&=\NomA\NomB^2+\NomB\NomC^2\\ + \NomA\NomC^2&=\ifboolKV[ClesPythagore]{EnchaineA}{\opcopy{\useKV[ClesPythagore]{ValeurA}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}+\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ + \NomA\NomC^2&=\ifboolKV[ClesPythagore]{EnchaineA}{\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}+\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ + \NomA\NomC^2&=\opadd*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ + \ifboolKV[ClesPythagore]{AvantRacine}{}{% + \ifboolKV[ClesPythagore]{Entier}{}{\\\NomA\NomC&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}} + \ifboolKV[ClesPythagore]{Racine}{}{\\\ifboolKV[ClesPythagore]{Exact}{\NomA\NomC&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomC&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ + }% + \end{align*} + }{%\else% + \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2-#4^2),\useKV[ClesPythagore]{Precision})}}% + \begin{align*} + \NomA\NomC^2&=\NomA\NomB^2+\NomB\NomC^2\\ + \ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}&=\NomA\NomB^2+\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ + \ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}&=\NomA\NomB^2+\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ + \NomA\NomB^2&=\ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}-\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ + \NomA\NomB^2&=\opsub*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ + \ifboolKV[ClesPythagore]{AvantRacine}{}{% + \ifboolKV[ClesPythagore]{Entier}{}{\\\NomA\NomB&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}} + \ifboolKV[ClesPythagore]{Racine}{}{\\\ifboolKV[ClesPythagore]{Exact}{\NomA\NomB&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomB&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ + }% + \end{align*} + }%\fi% + } + \end{multicols} + }{% + % On d\'emarre la r\'esolution + \ifboolKV[ClesPythagore]{AllPerso}{% + \RedactionPythagore% + \RedactionCalculsPythagore% + }{% \ifboolKV[ClesPythagore]{Perso}{\RedactionPythagore}{\ifboolKV[ClesPythagore]{Egalite}{Comme le triangle $#2$ est rectangle en $\NomB$, alors l'\'egalit\'e de Pythagore est v\'erifi\'ee :}{Dans le triangle $#2$ rectangle en $\NomB$, le th\'eor\`eme de Pythagore permet d'\'ecrire :% - }% - }% + }}% \xintifboolexpr{#3<#4 || #3==#4}{%\ifnum#3<#4% \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}% - %\xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}% \begin{align*} \NomA\NomC^2&=\NomA\NomB^2+\NomB\NomC^2\\ \NomA\NomC^2&=\ifboolKV[ClesPythagore]{EnchaineA}{\opcopy{\useKV[ClesPythagore]{ValeurA}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}+\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ @@ -4767,67 +5231,37 @@ couleur indiquée, le nombre de cases donné par le résultat du calcul. \NomA\NomC^2&=\opadd*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ \ifboolKV[ClesPythagore]{AvantRacine}{}{% \ifboolKV[ClesPythagore]{Entier}{}{\\\NomA\NomC&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}} - \ifboolKV[ClesPythagore]{Racine}{}{\\\ifboolKV[ClesPythagore]{Exact}{\NomA\NomC&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomC&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ - }% + \ifboolKV[ClesPythagore]{Racine}{}{\\\ifboolKV[ClesPythagore]{Exact}{\NomA\NomC&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomC&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ + } \end{align*} - }{%\else% + }{%\else \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2-#4^2),\useKV[ClesPythagore]{Precision})}}% - \begin{align*} - \NomA\NomC^2&=\NomA\NomB^2+\NomB\NomC^2\\ - \ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}&=\NomA\NomB^2+\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ - \ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}&=\NomA\NomB^2+\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ - \NomA\NomB^2&=\ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}-\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ - \NomA\NomB^2&=\opsub*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ - \ifboolKV[ClesPythagore]{AvantRacine}{}{% - \ifboolKV[ClesPythagore]{Entier}{}{\\\NomA\NomB&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}} - \ifboolKV[ClesPythagore]{Racine}{}{\\\ifboolKV[ClesPythagore]{Exact}{\NomA\NomB&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomB&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ - }% - \end{align*} + \ifboolKV[ClesPythagore]{Soustraction}{% + \begin{align*} + \NomA\NomB^2&=\NomA\NomC^2-\NomB\NomC^2\\ + \NomA\NomB^2&=\ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}-\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ + \NomA\NomB^2&=\ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}-\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ + \NomA\NomB^2&=\opsub*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ + \ifboolKV[ClesPythagore]{AvantRacine}{}{% + \ifboolKV[ClesPythagore]{Entier}{}{\\\NomA\NomB&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}} + \ifboolKV[ClesPythagore]{Racine}{}{\\\ifboolKV[ClesPythagore]{Exact}{\NomA\NomB&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomB&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ + } + \end{align*} + }{% + \begin{align*} + \NomA\NomC^2&=\NomA\NomB^2+\NomB\NomC^2\\ + \ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}&=\NomA\NomB^2+\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ + \ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}&=\NomA\NomB^2+\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ + \NomA\NomB^2&=\ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}-\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ + \NomA\NomB^2&=\opsub*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ + \ifboolKV[ClesPythagore]{AvantRacine}{}{% + \ifboolKV[ClesPythagore]{Entier}{}{\\\NomA\NomB&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}}% + \ifboolKV[ClesPythagore]{Racine}{}{\\\ifboolKV[ClesPythagore]{Exact}{\NomA\NomB&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomB&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ + } + \end{align*} + }% }%\fi% - \end{multicols} - }{% - % On d\'emarre la r\'esolution - \ifboolKV[ClesPythagore]{Perso}{\RedactionPythagore}{\ifboolKV[ClesPythagore]{Egalite}{Comme le triangle $#2$ est rectangle en $\NomB$, alors l'\'egalit\'e de Pythagore est v\'erifi\'ee :}{Dans le triangle $#2$ rectangle en $\NomB$, le th\'eor\`eme de Pythagore permet d'\'ecrire :% - }}% - \xintifboolexpr{#3<#4 || #3==#4}{%\ifnum#3<#4% - \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2+#4^2),\useKV[ClesPythagore]{Precision})}}% - \begin{align*} - \NomA\NomC^2&=\NomA\NomB^2+\NomB\NomC^2\\ - \NomA\NomC^2&=\ifboolKV[ClesPythagore]{EnchaineA}{\opcopy{\useKV[ClesPythagore]{ValeurA}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}+\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ - \NomA\NomC^2&=\ifboolKV[ClesPythagore]{EnchaineA}{\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}+\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ - \NomA\NomC^2&=\opadd*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ - \ifboolKV[ClesPythagore]{AvantRacine}{}{% - \ifboolKV[ClesPythagore]{Entier}{}{\\\NomA\NomC&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}} - \ifboolKV[ClesPythagore]{Racine}{}{\\\ifboolKV[ClesPythagore]{Exact}{\NomA\NomC&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomC&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ - } - \end{align*} - }{%\else - \xdef\ResultatPytha{\fpeval{round(sqrt(#3^2-#4^2),\useKV[ClesPythagore]{Precision})}}% - \ifboolKV[ClesPythagore]{Soustraction}{% - \begin{align*} - \NomA\NomB^2&=\NomA\NomC^2-\NomB\NomC^2\\ - \NomA\NomB^2&=\ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}-\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ - \NomA\NomB^2&=\ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}-\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ - \NomA\NomB^2&=\opsub*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ - \ifboolKV[ClesPythagore]{AvantRacine}{}{% - \ifboolKV[ClesPythagore]{Entier}{}{\\\NomA\NomB&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}} - \ifboolKV[ClesPythagore]{Racine}{}{\\\ifboolKV[ClesPythagore]{Exact}{\NomA\NomB&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomB&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ - } - \end{align*} - }{% - \begin{align*} - \NomA\NomC^2&=\NomA\NomB^2+\NomB\NomC^2\\ - \ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opexport{A1}{\Aun}\num{\Aun}^2}&=\NomA\NomB^2+\ifboolKV[ClesPythagore]{EnchaineB}{\opcopy{\useKV[ClesPythagore]{ValeurB}}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}{\opexport{A2}{\Adeux}\num{\Adeux}^2}\\ - \ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}&=\NomA\NomB^2+\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ - \NomA\NomB^2&=\ifboolKV[ClesPythagore]{EnchaineC}{\opcopy{\useKV[ClesPythagore]{ValeurC}}{a1}\opexport{a1}{\Aun}\num{\Aun}}{\opmul*{A1}{A1}{a1}\opexport{a1}{\Aun}\num{\Aun}}-\ifboolKV[ClesPythagore]{EnchaineB}{\opexport{a2}{\Adeux}\num{\Adeux}}{\opmul*{A2}{A2}{a2}\opexport{a2}{\Adeux}\num{\Adeux}}\\ - \NomA\NomB^2&=\opsub*{a1}{a2}{a3}\opexport{a3}{\Atrois}\num{\Atrois}%\\ - \ifboolKV[ClesPythagore]{AvantRacine}{}{% - \ifboolKV[ClesPythagore]{Entier}{}{\\\NomA\NomB&=\sqrt{\opexport{a3}{\Atrois}\num{\Atrois}}}% - \ifboolKV[ClesPythagore]{Racine}{}{\\\ifboolKV[ClesPythagore]{Exact}{\NomA\NomB&=\opsqrt[maxdivstep=3]{a3}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}{\NomA\NomB&\approx\opsqrt[maxdivstep=5]{a3}{a4}\opround{a4}{pres}{a4}\opunzero{a4}\opexport{a4}{\Aquatre}\num{\Aquatre}~\text{\useKV[ClesPythagore]{Unite}}}}%\\ - } - \end{align*} - }% - }%\fi% + }% }% }% }% @@ -6853,7 +7287,7 @@ vardef Positions(expr Step)= \ppcm=\numexpr#1*#2/\pgcd\relax } -\setKVdefault[ClesThales]{Calcul=true,Droites=false,Propor=false,Segment=false,Figure=false,FigureSeule=false,Figurecroisee=false,FigurecroiseeSeule=false,Angle=0,Precision=2,Entier=false,Unite=cm,Reciproque=false,Produit=false,ChoixCalcul=0,Simplification,Redaction=false,Remediation=false,Echelle=1cm} +\setKVdefault[ClesThales]{Calcul=true,Droites=false,Propor=false,Segment=false,Figure=false,FigureSeule=false,Figurecroisee=false,FigurecroiseeSeule=false,Angle=0,Precision=2,Entier=false,Unite=cm,Reciproque=false,Produit=false,ChoixCalcul=0,Simplification,Redaction=false,Remediation=false,Echelle=1cm,Perso=false,CalculsPerso=false} %On d\'efinit la figure \`a utiliser \def\MPFigThales#1#2#3#4#5#6{ @@ -6862,6 +7296,7 @@ vardef Positions(expr Step)= % #3 Troisi\`eme sommet % #4 point sur le segment #1#2 % #5 point sur le segment #1#3 + % #6 angle de rotation \ifluatex \mplibcodeinherit{enable} \mplibforcehmode @@ -7263,33 +7698,39 @@ vardef Positions(expr Step)= \fi } +\newcommand\RedactionThales{}% +\newcommand\EcritureCalculs{}% +\newcommand\EcritureQuotients{}% + %%% \newcommand{\TTThales}[6][]{% \useKVdefault[ClesThales]% \setKV[ClesThales]{#1}% - \ifboolKV[ClesThales]{Droites}{% - Les droites \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$(#3#5)$} et \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$(#4#6)$} sont s\'ecantes en \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$#2$}.% - }{% - Dans le triangle \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$#2#3#4$}, \ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{$#5$} est un point \ifboolKV[ClesThales]{Segment}{du segment}{de la - droite} - \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{\ifboolKV[ClesThales]{Segment}{$[#2#3]$}{$(#2#3)$}}, - \ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{$#6$} est un - point \ifboolKV[ClesThales]{Segment}{du segment}{de la droite} - \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{\ifboolKV[ClesThales]{Segment}{$[#2#4]$}{$(#2#4)$}}.% - } - \\Comme les droites \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$(#5#6)$} et \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$(#3#4)$} sont parall\`eles, alors \ifboolKV[ClesThales]{Propor}{le tableau% - \[\begin{array}{c|c|c} - \ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#5}&\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#6}&\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#5#6}\\ - \hline - \ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#3}&\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#4}&\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#3#4}\\ - \end{array} - \] - est un tableau de proportionnalit\'e\ifboolKV[ClesThales]{Segment}{.}{ d'apr\`es le th\'eor\`eme de Thal\`es.}% - }{% - \ifboolKV[ClesThales]{Segment}{on a :}{le th\'eor\`eme de Thal\`es permet d'\'ecrire :}% - \[\frac{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#5}}{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#3}}=\frac{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#6}}{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#4}}=\frac{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#5#6}}{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#3#4}}\]% - } -} + \ifboolKV[ClesThales]{Perso}{\RedactionThales}{% + \ifboolKV[ClesThales]{Droites}{% + Les droites \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$(#3#5)$} et \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$(#4#6)$} sont s\'ecantes en \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$#2$}.% + }{% + Dans le triangle \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$#2#3#4$}, \ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{$#5$} est un point \ifboolKV[ClesThales]{Segment}{du segment}{de la + droite} + \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{\ifboolKV[ClesThales]{Segment}{$[#2#3]$}{$(#2#3)$}}, + \ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{$#6$} est un + point \ifboolKV[ClesThales]{Segment}{du segment}{de la droite} + \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{\ifboolKV[ClesThales]{Segment}{$[#2#4]$}{$(#2#4)$}}.% + } + \\Comme les droites \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$(#5#6)$} et \ifboolKV[ClesThales]{Remediation}{\pointilles[2cm]}{$(#3#4)$} sont parall\`eles, alors \ifboolKV[ClesThales]{Propor}{le tableau% + \[\begin{array}{c|c|c} + \ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#5}&\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#6}&\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#5#6}\\ + \hline + \ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#3}&\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#4}&\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#3#4}\\ + \end{array} + \] + est un tableau de proportionnalit\'e\ifboolKV[ClesThales]{Segment}{.}{ d'apr\`es le th\'eor\`eme de Thal\`es.}% + }{% + \ifboolKV[ClesThales]{Segment}{on a :}{le th\'eor\`eme de Thal\`es permet d'\'ecrire :}% + \[\frac{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#5}}{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#3}}=\frac{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#6}}{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#2#4}}=\frac{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#5#6}}{\ifboolKV[ClesThales]{Remediation}{\pointilles[1cm]}{#3#4}}\]% + }% + }% +}% \newcommand{\TThalesCalculsD}[8][]{% \setKV[ClesThales]{#1}% @@ -7422,23 +7863,30 @@ vardef Positions(expr Step)= \ifboolKV[ClesThales]{Calcul}{% %%%%%%%%%%%%%%%%%%%%%%%%%%% On remplace par les longueurs connues :% - \ifboolKV[ClesThales]{Propor}{% - \[\begin{array}{c|c|c} - \IfDecimal{#3}{\num{#3}}{#3}&\IfDecimal{#4}{\num{#4}}{#4}&\IfDecimal{#5}{\num{#5}}{#5}\\ - \hline - \IfDecimal{#6}{\num{#6}}{#6}&\IfDecimal{#7}{\num{#7}}{#7}&\IfDecimal{#8}{\num{#8}}{#8} - \end{array} - \] + \ifboolKV[ClesThales]{CalculsPerso}{% + \EcritureQuotients% }{% - \[\frac{\IfDecimal{#3}{\num{#3}}{#3}}{\IfDecimal{#6}{\num{#6}}{#6}}=\frac{\IfDecimal{#4}{\num{#4}}{#4}}{\IfDecimal{#7}{\num{#7}}{#7}}=\frac{\IfDecimal{#5}{\num{#5}}{#5}}{\IfDecimal{#8}{\num{#8}}{#8}}\] + \ifboolKV[ClesThales]{Propor}{% + \[\begin{array}{c|c|c} + \IfDecimal{#3}{\num{#3}}{#3}&\IfDecimal{#4}{\num{#4}}{#4}&\IfDecimal{#5}{\num{#5}}{#5}\\ + \hline + \IfDecimal{#6}{\num{#6}}{#6}&\IfDecimal{#7}{\num{#7}}{#7}&\IfDecimal{#8}{\num{#8}}{#8} + \end{array} + \] + }{% + \[\frac{\IfDecimal{#3}{\num{#3}}{#3}}{\IfDecimal{#6}{\num{#6}}{#6}}=\frac{\IfDecimal{#4}{\num{#4}}{#4}}{\IfDecimal{#7}{\num{#7}}{#7}}=\frac{\IfDecimal{#5}{\num{#5}}{#5}}{\IfDecimal{#8}{\num{#8}}{#8}}\] + }% }% % On choisit \'eventuellement le calcul \`a faire s'il y en a plusieurs. \xdef\CompteurCalcul{\useKV[ClesThales]{ChoixCalcul}}% \xintifboolexpr{\CompteurCalcul>0}{\xintifboolexpr{\CompteurCalcul==1}{\xdef\cmya{0}\xdef\cmza{0}}{\xintifboolexpr{\CompteurCalcul==2}{\xdef\cmxa{0}\xdef\cmza{0}}{\xdef\cmxa{0}\xdef\cmya{0}}}}{}% - %%on fait les calculs -\begin{align*} - %Premier compteur \xxx - \ifnum\cmxa>0 + %% on fait les calculs + \ifboolKV[ClesThales]{CalculsPerso}{% + \EcritureCalculs% + }{% + \begin{align*} + % Premier compteur \xxx + \ifnum\cmxa>0 \Nomx\uppercase{&}=\frac{\opexport{valx}{\valx}\num{\valx}\times\opexport{Valx}{\Valx}\num{\Valx}}{\opexport{denox}{\denox}\num{\denox}}\relax%\global\numx=\numexpr\opprint{valx}*\opprint{Valx}\relax \fi % % Deuxi\`eme compteur \yyy @@ -7517,7 +7965,8 @@ vardef Positions(expr Step)= \uppercase{&}\Nomz\uppercase{&}\opdiv*{numz}{denoz}{resultatz}{restez}\opcmp{restez}{0}\ifopeq=\num{\ResultatThalesz}\else\approx\num{\fpeval{round(\ResultatThalesz,\useKV[ClesThales]{Precision})}}\fi~\text{\useKV[ClesThales]{Unite}}% \fi \fi -\end{align*} + \end{align*} + } }{} } @@ -7638,7 +8087,7 @@ vardef Positions(expr Step)= \StrMid{\the\xxx}{1}{1}[\cmxa]% \ifboolKV[ClesThales]{Calcul}{% %%%%%%%%%%%%%%%%%%%%%%%%%%% - On remplace par les longueurs connues : + On remplace par les longueurs connues : \ifboolKV[ClesThales]{Propor}{% \[\begin{array}{c|c|c} \IfDecimal{#3}{\num{#3}}{#3}&\IfDecimal{#4}{\num{#4}}{#4}&\IfDecimal{#5}{\num{#5}}{#5}\\ @@ -7875,7 +8324,7 @@ vardef Positions(expr Step)= }% %%%% -\newcommand{\ReciThales}[6][]{% +\newcommand\ReciThales[6][]{% \ifboolKV[ClesThales]{Droites}{% Les droites $(#3#5)$ et $(#4#6)$ sont s\'ecantes en $#2$. }{% @@ -8004,9 +8453,18 @@ vardef Positions(expr Step)= }% }% -\newcommand{\Thales}[8][]{% +\newcommand\Thales[8][]{% \useKVdefault[ClesThales]% \setKV[ClesThales]{#1}% + %Définir les points pour une utilisation perso + \StrMid{#2}{1}{1}[\NomA]\StrMid{#2}{2}{2}[\NomB]\StrMid{#2}{3}{3}[\NomC]\StrMid{#2}{4}{4}[\NomM]\StrMid{#2}{5}{5}[\NomN]% + \xdef\NomPointA{\NomA}% + \xdef\NomPointB{\NomB}% + \xdef\NomPointC{\NomC}% + \xdef\NomTriangle{\NomA\NomB\NomC}% + \xdef\NomPointM{\NomM}% + \xdef\NomPointN{\NomN}% + % \ifboolKV[ClesThales]{Reciproque}{% \ReciproqueThales[#1]{#2}{#3}{#4}{#5}{#6}{#7}{#8}% }{% |