summaryrefslogtreecommitdiff
path: root/fonts/eulerpx/doc
diff options
context:
space:
mode:
authorNorbert Preining <norbert@preining.info>2022-07-15 03:01:16 +0000
committerNorbert Preining <norbert@preining.info>2022-07-15 03:01:16 +0000
commit672664411215c14fc71db763da169731d3c6a361 (patch)
tree4271cb2ba5f7f1488b07cbaa63fe29df67f69554 /fonts/eulerpx/doc
parent247e399be12f89ba7ad8f79d3c582512e4913abf (diff)
CTAN sync 202207150301
Diffstat (limited to 'fonts/eulerpx/doc')
-rw-r--r--fonts/eulerpx/doc/eulerpxdoc.pdfbin0 -> 363770 bytes
-rw-r--r--fonts/eulerpx/doc/eulerpxdoc.tex154
-rw-r--r--fonts/eulerpx/doc/sample.tex176
3 files changed, 330 insertions, 0 deletions
diff --git a/fonts/eulerpx/doc/eulerpxdoc.pdf b/fonts/eulerpx/doc/eulerpxdoc.pdf
new file mode 100644
index 0000000000..5db89daa35
--- /dev/null
+++ b/fonts/eulerpx/doc/eulerpxdoc.pdf
Binary files differ
diff --git a/fonts/eulerpx/doc/eulerpxdoc.tex b/fonts/eulerpx/doc/eulerpxdoc.tex
new file mode 100644
index 0000000000..8a3b4ee4b7
--- /dev/null
+++ b/fonts/eulerpx/doc/eulerpxdoc.tex
@@ -0,0 +1,154 @@
+
+\documentclass[11pt,a4paper,english]{article}
+
+\usepackage{babel}
+\usepackage[margin=25mm]{geometry}
+\usepackage{graphicx}
+\usepackage{amsmath}
+
+\usepackage[helvratio=0.9]{newpxtext}
+\usepackage[upint]{newpxmath}
+\usepackage[nonpxmath]{../tex/eulerpx}
+\def\hmmax{0}
+\def\bmmax{0}
+\usepackage{bm}
+\usepackage{microtype}
+
+\usepackage[hidelinks,breaklinks=true]{hyperref}
+\usepackage{bookmark}
+\usepackage{biblatex}
+
+\usepackage{fonttable}
+
+\newcommand*\pkg[1]{{\sf #1}}
+\newcommand*\cs[1]{{\tt\textbackslash #1}}
+\newcommand*\printdef[2]{{\tt\cs{def}\cs{#1}\{#2\}}}
+
+%\urlstyle{tt}
+
+\frenchspacing
+
+\title{The \pkg{eulerpx} font package}
+\author{%
+ Luuk T\ij ssen\thanks{%
+ The intial versions of this package were written by Jabir Ali Ouassou.
+ }\\
+ \nolinkurl{ltijssen2502@gmail.com}%
+}
+
+\begin{document}
+
+\maketitle
+
+\section*{Getting started}
+You can start using \pkg{eulerpx} in your document right away by adding
+\begin{verbatim}
+ \usepackage{newpxtext}
+ \usepackage{eulerpx}
+\end{verbatim}
+to your document preamble.
+Euler Fraktur can be accessed through the \cs{mathfrak}-macro, likewise Euler Script through \cs{mathscr}.
+The bold math font (Euler) can be accessed through \cs{boldsymbol}, and the bold text font through \cs{mathbf}.
+Alternative versions of various math symbols and alphabets from \pkg{newpx} are provided by \cs{varmathfrak}, \cs{varmathscr}, \cs{varsum} and \cs{varaleph}.
+
+%In case you get the error
+%\begin{verbatim}
+% $! LaTeX Error: Too many math alphabets used in version normal.
+%\end{verbatim}
+%with this package, try using
+%\begin{verbatim}
+% \let\mathfrak=\varmathfrak
+% \let\mathscr=\varmathscr
+%\end{verbatim}
+%and do \emph{not} use the \pkg{amssymb} package with \pkg{eulerpx}!
+
+\section{Introduction}
+\AmS{} Euler (from here on simply referred to as `Euler') is a typeface created by Hermann Zapf (1918-2015) in 1983.
+Unfortunately, Zapf wasn't able to complete the font during his lifetime, meaning that many frequently-used math symbols are missing from it.
+In order to make Euler usable, these symbols have to be substituted from other fonts.
+Other \LaTeX{} implementations of Euler, such as the \pkg{euler} and \pkg{eulervm} packages, use the default Computer Modern typeface for these substitutions.
+
+The big issue with using Computer Modern for substituting math symbols in Euler, is that these two fonts generally don't go well together.
+The \pkg{eulerpx} package tries to alleviate this issue by allowing the user to choose different math fonts for its substitutions.
+The obvious and default choice for this font is the Palatino typeface, another typeface created by Zapf.
+This font is conveniently provided by the package \pkg{newpx}, and hence the name `eulerpx.'
+
+%\subsection{Further reading}
+%Test
+
+\section{Options}
+In initial versions of this package, \pkg{newpx} was the only font option.
+But, since version 1{.}0, you can load your own math font \emph{before} \pkg{eulerpx}, if you use the \verb|nonpxmath|-option.
+We additionally provide the key-value option \verb|scale| (for instance, \verb|scale=0.9|, for a fractional scale of 0{.}9).
+This allows you to scale the Euler symbols to match the size of the symbols from the other font.
+
+Not all font combinations are guaranteed to look good, so exercise some caution in your font choice.
+Additionally, you should try to stick to math fonts that include upright integrals (for instance, through an \verb|upint|-option), and slanted versions of the inequality symbols, which are selected automatically by \pkg{eulerpx}, if available.
+If you prefer the non-slanted inequality symbols, this behaviour can be inhibited using the \verb|noslant|-option.
+
+\subsection{Example}
+For instance, in order to use the Times typeface (package \pkg{newtx}) with Euler, you can add
+\begin{verbatim}
+ \usepackage{newtxtext}
+ \usepackage[upint]{newtxmath}
+ \usepackage[nonpxmath,scale=0.95]{eulerpx}
+\end{verbatim}
+to your document preamble.
+The scale factor of 0{.}95 was derived empirically by trying to match the height of the text and math `x;' \verb|x$x$|.
+
+\section{Deprecated options}
+Some of the options that were previously offered by this package are now deprecated.
+These options were not correctly implemented and could cause visual artifacts.
+If you would still like to use some of these options, alternatives that mimic their original behaviour are provided below.
+
+\subsection{The {\tt sansmath}-option}
+If you want to use the sans-serif text font for operators (as opposed to the default serif text font), you can add the following to your document preamble:
+\begin{verbatim}
+ \usepackage{newpxtext}
+ \let\oldrmdefault=\rmdefault
+ \let\rmdefault=\sfdefault
+ \usepackage{eulerpx}
+ \let\rmdefault=\oldrmdefault
+\end{verbatim}
+
+\subsection{The {\tt unicode}-option}
+If you want to write mathematics in Unicode in {\tt pdflatex}, you can add this to your document preamble:\footnote{Credit: David Carlisle on Stack Exchange, \url{https://tex.stackexchange.com/a/601583}.}
+\begin{verbatim}
+ \usepackage{newpxtext}
+ \usepackage{eulerpx}
+ \let\rmdefault=\oldrmdefault
+ \def\z"{}
+ \def\UnicodeMathSymbol#1#2#3#4{%
+ \ifnum#1>"A0
+ \DeclareUnicodeCharacter{\z#1}{#2}%
+ \fi
+ }
+ \input unicode-math-table
+\end{verbatim}
+Though, in that case, you may also want to switch to Xe\LaTeX, in which case you can use the \pkg{unicode-math} package.
+
+\pagebreak
+\appendix
+\section{Font sample}\label{sec:sample}
+The following excerpt is taken from Michael Sharpe's \pkg{stickstoo} package documentation (page 4), who in turn sourced it from the \TeX Book and Karl Berry's torture test.
+
+\input sample.tex
+
+\newpage
+\section{Font tables}\label{sec:tables}
+\subsection{euf}
+\fonttable{eufm10}
+
+\newpage
+\subsection{zeur}
+\fonttable{zeurm10}
+
+\newpage
+\subsection{zeus}
+\fonttable{zeusm10}
+
+\newpage
+\subsection{zeuex}
+\fonttable{zeuex10}
+
+\end{document}
diff --git a/fonts/eulerpx/doc/sample.tex b/fonts/eulerpx/doc/sample.tex
new file mode 100644
index 0000000000..5505c02a57
--- /dev/null
+++ b/fonts/eulerpx/doc/sample.tex
@@ -0,0 +1,176 @@
+
+\newcommand*\mat[1]{\bm{#1}}
+%\newcommand*\mat[1]{\textsf{#1}}
+
+%The following snippets mostly originated with the \TeX Book and were adapted for \LaTeX{} from Karl~Berry's torture test for plain \TeX{} math fonts.
+
+$x + y - z$, \quad $x + y * z$, \quad $z * y / z$, \quad
+$(x+y)(x-y) = x^2 - y^2$,
+
+$x \times y \cdot z = [x\, y\, z]$, \quad $x\circ y \bullet z$, \quad
+$x\cup y \cap z$, \quad $x\sqcup y \sqcap z$, \quad
+
+$x \vee y \wedge z$, \quad $x\pm y\mp z$, \quad
+$x=y/z$, \quad $x \coloneq y$, \quad $x\le y \ne z$, \quad $x \sim y \simeq z$
+$x \equiv y \nequiv z$, \quad $x\subset y \subseteq z$
+
+$\sin2\theta=2\sin\theta\cos\theta$, \quad
+$\hbox{O}(n\log n\log n)$, \quad
+$\Pr(X>x)=\exp(-x/\mu)$,
+
+$\bigl(x\in A(n)\bigm|x\in B(n)\bigr)$, \quad
+$\bigcup_n X_n\bigm\|\bigcap_n Y_n$
+
+% page 178
+
+In text matrices $\binom{1\,1}{0\,1}$ and $\bigl(\genfrac{}{}{0pt}{}{a}{1}\genfrac{}{}{0pt}{}{b}{m}\genfrac{}{}{0pt}{}{c}{n}\bigr)$
+
+% page 142
+
+\[a_0+\frac1{\displaystyle a_1 +
+{\strut \frac1{\displaystyle a_2 +
+{\strut \frac1{\displaystyle a_3 +
+{\strut \frac1{\displaystyle a_4}}}}}}}\]
+
+% page 143
+
+\[\binom{p}{2}x^2y^{p-2} - \frac1{1 - x}\frac{1}{1 - x^2}
+=
+\frac{a+1}{b}\bigg/\frac{c+1}{d}.\]
+
+%% page 145
+
+\[\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+x}}}}}\]
+
+%% page 147
+
+\[\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)
+\bigl|\varphi(x+iy)\bigr|^2=0\]
+
+%% page 149
+
+% \[\pi(n)=\sum_{m=2}^n\left\lfloor\biggl(\sum_{k=1}^{m-1}\bigl
+% \lfloor(m/k)\big/\lceil m/k\rceil\bigr\rfloor\biggr)^{-1}\right\rfloor.\]
+
+\[\pi(n)=\sum_{m=2}^n\left\lfloor\Biggl(\sum_{k=1}^{m-1}\bigl
+\lfloor(m/k)\big/\lceil m/k\rceil\bigr\rfloor\Biggr)^{-1}\right\rfloor.\]
+
+% page 168
+
+\[\int_0^\infty \frac{t - i b}{t^2 + b^2}e^{iat}\,dt=e^{ab}E_1(ab), \quad
+a,b > 0.\]
+
+% page 176
+
+\[\mat{A} \coloneq \begin{pmatrix}x-\lambda&1&0\\
+0&x-\lambda&1\\
+0&0&x-\lambda\end{pmatrix}.\]
+
+\[\left\lgroup\begin{matrix}a&b&c\\ d&e&f\\\end{matrix}\right\rgroup
+\left\lgroup\begin{matrix}u&x\cr v&y\cr w&z\end{matrix}\right\rgroup\]
+
+% page 177
+
+\[\mat{A} = \begin{pmatrix}a_{11}&a_{12}&\ldots&a_{1n}\\
+a_{21}&a_{22}&\ldots&a_{2n}\\
+\vdots&\vdots&\ddots&\vdots\\
+a_{m1}&a_{m2}&\ldots&a_{mn}\end{pmatrix}\]
+
+\[\mat{M}=\bordermatrix{&C&I&C'\cr
+C&1&0&0\cr I&b&1-b&0\cr C'&0&a&1-a}\]
+
+%% page 186
+
+\[\sum_{n=0}^\infty a_nz^n\qquad\hbox{converges if}\qquad
+|z|<\Bigl(\limsup_{n\to\infty}\root n\of{|a_n|}\,\Bigr)^{-1}.\]
+
+\[\frac{f(x+\Delta x)-f(x)}{\Delta x}\to f'(x)
+\qquad \hbox{as $\Delta x\to0$.}\]
+
+\[\|u_i\|=1,\qquad u_i\cdot u_j=0\quad\hbox{if $i\ne j$.}\]
+
+%% page 191
+
+\[\it\hbox{The confluent image of}\quad
+\begin{Bmatrix}\hbox{an arc}\hfill\\\hbox{a circle}\hfill\\
+\hbox{a fan}\hfill\\\end{Bmatrix}
+\quad\hbox{is}\quad
+\begin{Bmatrix}\hbox{an arc}\hfill\\
+\hbox{an arc or a circle}\hfill\\
+\hbox{a fan or an arc}\hfill\end{Bmatrix}.\]
+
+%% page 191
+
+\begin{align*}
+T(n)\le T(2^{\lceil\lg n\rceil})
+&\le c(3^{\lceil\lg n\rceil}-2^{\lceil\lg n\rceil})\\
+&<3c\cdot3^{\lg n}\\
+&=3c\,n^{\lg3}.
+\end{align*}
+
+%\begin{align*}
+%\left\{%
+%\begin{gathered}\alpha&=f(z)\\ \beta&=f(z^2)\\ \gamma&=f(z^3)
+%\end{gathered}
+%\right\}
+%\qquad
+%\left\{%
+%\begin{gathered}
+%x&=\alpha^2-\beta\\ y&=2\gamma
+%\end{gathered}
+%\right\}%
+%\end{align*}
+
+%\[\left\{
+%\begin{align}
+%\alpha&=f(z)\cr \beta&=f(z^2)\cr \gamma&=f(z^3)\\
+%%\end{align}
+%\right\}
+%\qquad
+%\left\{
+%%\begin{align}
+%x&=\alpha^2-\beta\cr y&=2\gamma\\
+%\end{align}
+%\right\}.\]
+%%% page 192
+
+\begin{align*}
+\begin{aligned}
+(x+y)(x-y)&=x^2-xy+yx-y^2\\
+&=x^2-y^2\\
+(x+y)^2&=x^2+2xy+y^2.
+\end{aligned}
+\end{align*}
+
+%% page 192
+
+\begin{align*}
+\begin{aligned}
+\biggl(\int_{-\infty}^\infty e^{-x^2}\,dx\biggr)^2
+&=\int_{-\infty}^\infty\int_{-\infty}^\infty e^{-(x^2+y^2)}\,dx\,dy\\
+&=\int_0^{2\pi}\int_0^\infty e^{-r^2}\,dr\,d\theta\\
+&=\int_0^{2\pi}\biggl(e^{-\frac{r^2}{2}}
+\biggl|_{r=0}^{r=\infty}\,\biggr)\,d\theta\\
+&=\pi.
+\end{aligned}
+\end{align*}
+
+%% page 197
+
+\[\prod_{k\ge0}\frac{1}{(1-q^kz)}=
+\sum_{n\ge0}z^n\bigg/\!\!\prod_{1\le k\le n}(1-q^k).\]
+
+\[\sum_{\substack{\scriptstyle 0< i\le m\\\scriptstyle0<j\le n}}p(i,j) \,\ne
+%
+% \[\sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^r a_{ij} b_{jk} c_{ki}\]
+%
+\sum_{i=1}^p \sum_{j=1}^q \sum_{k=1}^r a_{ij} b_{jk} c_{ki} \,\ne
+%
+\sum_{\substack{\scriptstyle 1\le i\le p \\ \scriptstyle 1\le j\le q\\
+\scriptstyle 1\le k\le r}} a_{ij} b_{jk} c_{ki}\]
+
+\[\max_{1\le n\le m}\log_2P_n \quad \hbox{and} \quad
+\lim_{x\to0}\frac{\sin x}{x}=1\]
+
+\[p_1(n)=\lim_{m\to\infty}\sum_{\nu=0}^\infty\bigl(1-\cos^{2m}(\nu!^n\pi/n)\bigr)\]
+