summaryrefslogtreecommitdiff
path: root/fonts/arsenal/sample-math.dtx
diff options
context:
space:
mode:
authorNorbert Preining <norbert@preining.info>2023-09-05 03:01:09 +0000
committerNorbert Preining <norbert@preining.info>2023-09-05 03:01:09 +0000
commit42959ab19eab5531850a6067d53d13f777ec160b (patch)
tree5f0d408ae32b7e1883bf93283384c92c9de1ef30 /fonts/arsenal/sample-math.dtx
parent6cc1e9947e6e547a181fd0510d399af947c7bbc9 (diff)
CTAN sync 202309050301
Diffstat (limited to 'fonts/arsenal/sample-math.dtx')
-rw-r--r--fonts/arsenal/sample-math.dtx127
1 files changed, 127 insertions, 0 deletions
diff --git a/fonts/arsenal/sample-math.dtx b/fonts/arsenal/sample-math.dtx
new file mode 100644
index 0000000000..7e84d2c398
--- /dev/null
+++ b/fonts/arsenal/sample-math.dtx
@@ -0,0 +1,127 @@
+\documentclass{article}
+%<iwona>\usepackage[default, math=iwona]{arsenal}
+%<kpsans>\usepackage[default, math=kpsans]{arsenal}
+\usepackage{natbib, hyperref, amsmath}
+\usepackage{microtype}
+\setcounter{secnumdepth}{0}
+%<iwona>\usepackage{amssymb}
+\usepackage[ukrainian, english]{babel}
+\providecommand\pkg[1]{\textit{#1}}
+\newcommand{\abc}{abcdefghijklmnopqrstuvwxyz}
+\newcommand{\ABC}{ABCDEFGHIJKLMNOPQRSTUVWXYZ}
+\newcommand{\alphabeta}{\alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta\iota\kappa\varkappa\lambda\mu\nu\xi o\pi\varpi\rho\varrho\sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega}
+\newcommand{\AlphaBeta}{\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega}
+%% Getting version and date
+\makeatletter
+\def\GetFileInfo#1{%
+ \def\filename{#1}%
+ \def\@tempb##1 ##2 ##3\relax##4\relax{%
+ \def\filedate{##1}%
+ \def\fileversion{##2}%
+ \def\fileinfo{##3}}%
+ \edef\@tempa{\csname ver@#1\endcsname}%
+ \expandafter\@tempb\@tempa\relax? ? \relax\relax}
+\makeatother
+\GetFileInfo{arsenal.sty}
+\begin{document}
+\selectlanguage{english}
+\title{Sample of Arsenal font with
+%<iwona> Iwona
+%<kpsans> KpSans
+math}
+\author{Boris Veytsman}
+\date{Arsenal package version \fileversion, \filedate}
+\maketitle
+
+\section{Introduction}
+\label{sec:intro}
+
+
+The samples below are based on the example from~\citep{Hartke06,
+ free-math-font-survey}. The math fonts are scaled based on lower
+case characters.
+
+
+\section{English}
+\label{sec:english}
+
+
+
+\textbf{Theorem 1 (Residue Theorem).}
+Let $f$ be analytic in the region $G$ except for the isolated singularities $a_1,a_2,\ldots,a_m$. If $\gamma$ is a closed rectifiable curve in $G$ which does not pass through any of the points $a_k$ and if $\gamma\approx 0$ in $G$ then
+\[
+\frac{1}{2\pi i}\int_\gamma f = \sum_{k=1}^m n(\gamma;a_k) \text{Res}(f;a_k).
+\]
+
+\textbf{Theorem 2 (Maximum Modulus).}
+\emph{Let $G$ be a bounded open set in $\mathbb{C}$ and suppose that $f$ is a continuous function on $G^-$ which is analytic in $G$. Then}
+\[
+\max\{|f(z)|:z\in G^-\}=\max \{|f(z)|:z\in \partial G \}.
+\]
+\vspace*{-1em}
+
+
+\ABC \quad $\ABC$
+
+\abc \quad $\abc$ \quad $01234567890$
+
+$\AlphaBeta$ \quad $\alphabeta$ \quad $\ell\wp\aleph\infty\propto\emptyset\nabla\partial\mho\imath\jmath\hslash\eth$
+
+$\mathrm{A} \Lambda \Delta \nabla \mathrm{B C D} \Sigma \mathrm{E F} \Gamma \mathrm{G H I J K L M N O} \Theta \Omega \mho \mathrm{P} \Phi \Pi \Xi \mathrm{Q R S T U V W X Y} \Upsilon \Psi \mathrm{Z} $ $ \quad 1234567890 $
+
+%$\mathit{A \Lambda \Delta B C D E F \Gamma G H I J K L M N O \Theta \Omega P \Phi \Pi \Xi Q R S T U V W X Y \Upsilon \Psi Z }$
+
+% don't allow overfull boxes
+{\par \tolerance=0 \emergencystretch=100em $a\alpha b \beta c \partial d \delta e \epsilon \varepsilon f \zeta \xi g \gamma h \hbar \hslash \iota i \imath j \jmath k \kappa \varkappa l \ell \lambda m n \eta \theta \vartheta o \sigma \varsigma \phi \varphi \wp p \rho \varrho q r s t \tau \pi u \mu \nu v \upsilon w \omega \varpi x \chi y \psi z$ \linebreak[3] $\infty \propto \emptyset \varnothing \mathrm{d}\eth \backepsilon$\par}
+
+$\mathcal{\ABC} \quad \mathbb{\ABC}$
+
+{\boldmath $\alpha + b = 27$}
+
+\section{Ukrainian}
+\label{sec:ukr}
+
+\selectlanguage{ukrainian}
+
+
+
+\textbf{Теорема 1 (Теорема про залишки).}
+Нехай $f$ аналітична в області $G$ за винятком ізольованих
+сингулярностей $a_1,a_2,\ldots,a_m$. Якщо $\gamma$ є замкнута крива в $G$, що
+може бути спрямована, яка не проходить скрізь жодну з точок
+$a_k$, і якщо $\gamma\approx 0$ в $G$, то
+\[
+\frac{1}{2\pi i}\int_\gamma f = \sum_{k=1}^m n(\gamma;a_k) \text{Res}(f;a_k).
+\]
+
+\textbf{Теорема 2 (Максимальне значення).}
+\emph{Нехай $G$ є обмежена множина в $\mathbb{C}$, і нехай $f$ є
+ безперервна функція на $G^-$, аналітична в $G$. Тоді}
+\[
+\max\{|f(z)|:z\in G^-\}=\max \{|f(z)|:z\in \partial G \}.
+\]
+\vspace*{-1em}
+
+
+\ABC \quad $\ABC$
+
+\abc \quad $\abc$ \quad $01234567890$
+
+$\AlphaBeta$ \quad $\alphabeta$ \quad $\ell\wp\aleph\infty\propto\emptyset\nabla\partial\mho\imath\jmath\hslash\eth$
+
+$\mathrm{A} \Lambda \Delta \nabla \mathrm{B C D} \Sigma \mathrm{E F} \Gamma \mathrm{G H I J K L M N O} \Theta \Omega \mho \mathrm{P} \Phi \Pi \Xi \mathrm{Q R S T U V W X Y} \Upsilon \Psi \mathrm{Z} $ $ \quad 1234567890 $
+
+%$\mathit{A \Lambda \Delta B C D E F \Gamma G H I J K L M N O \Theta \Omega P \Phi \Pi \Xi Q R S T U V W X Y \Upsilon \Psi Z }$
+
+% don't allow overfull boxes
+{\par \tolerance=0 \emergencystretch=100em $a\alpha b \beta c \partial d \delta e \epsilon \varepsilon f \zeta \xi g \gamma h \hbar \hslash \iota i \imath j \jmath k \kappa \varkappa l \ell \lambda m n \eta \theta \vartheta o \sigma \varsigma \phi \varphi \wp p \rho \varrho q r s t \tau \pi u \mu \nu v \upsilon w \omega \varpi x \chi y \psi z$ \linebreak[3] $\infty \propto \emptyset \varnothing \mathrm{d}\eth \backepsilon$\par}
+
+$\mathcal{\ABC} \quad \mathbb{\ABC}$
+
+{\boldmath $\alpha + b = 27$}
+
+\selectlanguage{english}
+\bibliography{arsenal}
+\bibliographystyle{plainnat}
+
+\end{document}