diff options
author | Norbert Preining <norbert@preining.info> | 2023-09-05 03:01:09 +0000 |
---|---|---|
committer | Norbert Preining <norbert@preining.info> | 2023-09-05 03:01:09 +0000 |
commit | 42959ab19eab5531850a6067d53d13f777ec160b (patch) | |
tree | 5f0d408ae32b7e1883bf93283384c92c9de1ef30 /fonts/arsenal/sample-math.dtx | |
parent | 6cc1e9947e6e547a181fd0510d399af947c7bbc9 (diff) |
CTAN sync 202309050301
Diffstat (limited to 'fonts/arsenal/sample-math.dtx')
-rw-r--r-- | fonts/arsenal/sample-math.dtx | 127 |
1 files changed, 127 insertions, 0 deletions
diff --git a/fonts/arsenal/sample-math.dtx b/fonts/arsenal/sample-math.dtx new file mode 100644 index 0000000000..7e84d2c398 --- /dev/null +++ b/fonts/arsenal/sample-math.dtx @@ -0,0 +1,127 @@ +\documentclass{article} +%<iwona>\usepackage[default, math=iwona]{arsenal} +%<kpsans>\usepackage[default, math=kpsans]{arsenal} +\usepackage{natbib, hyperref, amsmath} +\usepackage{microtype} +\setcounter{secnumdepth}{0} +%<iwona>\usepackage{amssymb} +\usepackage[ukrainian, english]{babel} +\providecommand\pkg[1]{\textit{#1}} +\newcommand{\abc}{abcdefghijklmnopqrstuvwxyz} +\newcommand{\ABC}{ABCDEFGHIJKLMNOPQRSTUVWXYZ} +\newcommand{\alphabeta}{\alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta\iota\kappa\varkappa\lambda\mu\nu\xi o\pi\varpi\rho\varrho\sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega} +\newcommand{\AlphaBeta}{\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega} +%% Getting version and date +\makeatletter +\def\GetFileInfo#1{% + \def\filename{#1}% + \def\@tempb##1 ##2 ##3\relax##4\relax{% + \def\filedate{##1}% + \def\fileversion{##2}% + \def\fileinfo{##3}}% + \edef\@tempa{\csname ver@#1\endcsname}% + \expandafter\@tempb\@tempa\relax? ? \relax\relax} +\makeatother +\GetFileInfo{arsenal.sty} +\begin{document} +\selectlanguage{english} +\title{Sample of Arsenal font with +%<iwona> Iwona +%<kpsans> KpSans +math} +\author{Boris Veytsman} +\date{Arsenal package version \fileversion, \filedate} +\maketitle + +\section{Introduction} +\label{sec:intro} + + +The samples below are based on the example from~\citep{Hartke06, + free-math-font-survey}. The math fonts are scaled based on lower +case characters. + + +\section{English} +\label{sec:english} + + + +\textbf{Theorem 1 (Residue Theorem).} +Let $f$ be analytic in the region $G$ except for the isolated singularities $a_1,a_2,\ldots,a_m$. If $\gamma$ is a closed rectifiable curve in $G$ which does not pass through any of the points $a_k$ and if $\gamma\approx 0$ in $G$ then +\[ +\frac{1}{2\pi i}\int_\gamma f = \sum_{k=1}^m n(\gamma;a_k) \text{Res}(f;a_k). +\] + +\textbf{Theorem 2 (Maximum Modulus).} +\emph{Let $G$ be a bounded open set in $\mathbb{C}$ and suppose that $f$ is a continuous function on $G^-$ which is analytic in $G$. Then} +\[ +\max\{|f(z)|:z\in G^-\}=\max \{|f(z)|:z\in \partial G \}. +\] +\vspace*{-1em} + + +\ABC \quad $\ABC$ + +\abc \quad $\abc$ \quad $01234567890$ + +$\AlphaBeta$ \quad $\alphabeta$ \quad $\ell\wp\aleph\infty\propto\emptyset\nabla\partial\mho\imath\jmath\hslash\eth$ + +$\mathrm{A} \Lambda \Delta \nabla \mathrm{B C D} \Sigma \mathrm{E F} \Gamma \mathrm{G H I J K L M N O} \Theta \Omega \mho \mathrm{P} \Phi \Pi \Xi \mathrm{Q R S T U V W X Y} \Upsilon \Psi \mathrm{Z} $ $ \quad 1234567890 $ + +%$\mathit{A \Lambda \Delta B C D E F \Gamma G H I J K L M N O \Theta \Omega P \Phi \Pi \Xi Q R S T U V W X Y \Upsilon \Psi Z }$ + +% don't allow overfull boxes +{\par \tolerance=0 \emergencystretch=100em $a\alpha b \beta c \partial d \delta e \epsilon \varepsilon f \zeta \xi g \gamma h \hbar \hslash \iota i \imath j \jmath k \kappa \varkappa l \ell \lambda m n \eta \theta \vartheta o \sigma \varsigma \phi \varphi \wp p \rho \varrho q r s t \tau \pi u \mu \nu v \upsilon w \omega \varpi x \chi y \psi z$ \linebreak[3] $\infty \propto \emptyset \varnothing \mathrm{d}\eth \backepsilon$\par} + +$\mathcal{\ABC} \quad \mathbb{\ABC}$ + +{\boldmath $\alpha + b = 27$} + +\section{Ukrainian} +\label{sec:ukr} + +\selectlanguage{ukrainian} + + + +\textbf{Теорема 1 (Теорема про залишки).} +Нехай $f$ аналітична в області $G$ за винятком ізольованих +сингулярностей $a_1,a_2,\ldots,a_m$. Якщо $\gamma$ є замкнута крива в $G$, що +може бути спрямована, яка не проходить скрізь жодну з точок +$a_k$, і якщо $\gamma\approx 0$ в $G$, то +\[ +\frac{1}{2\pi i}\int_\gamma f = \sum_{k=1}^m n(\gamma;a_k) \text{Res}(f;a_k). +\] + +\textbf{Теорема 2 (Максимальне значення).} +\emph{Нехай $G$ є обмежена множина в $\mathbb{C}$, і нехай $f$ є + безперервна функція на $G^-$, аналітична в $G$. Тоді} +\[ +\max\{|f(z)|:z\in G^-\}=\max \{|f(z)|:z\in \partial G \}. +\] +\vspace*{-1em} + + +\ABC \quad $\ABC$ + +\abc \quad $\abc$ \quad $01234567890$ + +$\AlphaBeta$ \quad $\alphabeta$ \quad $\ell\wp\aleph\infty\propto\emptyset\nabla\partial\mho\imath\jmath\hslash\eth$ + +$\mathrm{A} \Lambda \Delta \nabla \mathrm{B C D} \Sigma \mathrm{E F} \Gamma \mathrm{G H I J K L M N O} \Theta \Omega \mho \mathrm{P} \Phi \Pi \Xi \mathrm{Q R S T U V W X Y} \Upsilon \Psi \mathrm{Z} $ $ \quad 1234567890 $ + +%$\mathit{A \Lambda \Delta B C D E F \Gamma G H I J K L M N O \Theta \Omega P \Phi \Pi \Xi Q R S T U V W X Y \Upsilon \Psi Z }$ + +% don't allow overfull boxes +{\par \tolerance=0 \emergencystretch=100em $a\alpha b \beta c \partial d \delta e \epsilon \varepsilon f \zeta \xi g \gamma h \hbar \hslash \iota i \imath j \jmath k \kappa \varkappa l \ell \lambda m n \eta \theta \vartheta o \sigma \varsigma \phi \varphi \wp p \rho \varrho q r s t \tau \pi u \mu \nu v \upsilon w \omega \varpi x \chi y \psi z$ \linebreak[3] $\infty \propto \emptyset \varnothing \mathrm{d}\eth \backepsilon$\par} + +$\mathcal{\ABC} \quad \mathbb{\ABC}$ + +{\boldmath $\alpha + b = 27$} + +\selectlanguage{english} +\bibliography{arsenal} +\bibliographystyle{plainnat} + +\end{document} |