summaryrefslogtreecommitdiff
path: root/texmf-dist/doc/latex/eqexam/examples/quiz02.tex
blob: 091d20304f6ae3d12164b8b5b11f2216d069f3cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
\documentclass{article}
\usepackage[fleqn]{amsmath}
\usepackage[pdf,cfg=quiz,forpaper,pointsonleft,
% compile with exactly one of the following three
    nosolutions
%    answerkey
%    vspacewithsolns
]{eqexam}

\examNum{2}\numVersions{2}\forVersion{a}
\longTitleText
    {Quiz~\nExam--003}
    {Quiz~\nExam--007}
\endlongTitleText
\shortTitleText
    {Q{\nExam}s3}
    {Q{\nExam}s7}
\endshortTitleText


\title[\sExam]{\bfseries\Exam}
\author{D. P. Story}
\subject[C1]{Calculus I}
\date{Spring \the\year}
\keywords{Test~\nExam, Section \vA{003}\vB{007}}
\email{dpstory@uakron.edu}

\vspacewithkeyOn
\solAtEndFormatting{\eqequesitemsep{3pt}}
\everymath{\displaystyle}

\begin{document}

\maketitle

\begin{exam}{qz02}

\begin{instructions}[Global Instructions:]
Solve each of the following problems without error. \textit{Show all details.} Box in your
$\boxed{\text{answers.}}$ Use good notation, you \emph{will} be marked off for bad notation.
\end{instructions}

\begin{problem}[3]
Identify all numbers $x$ at which the function $ f(x) = \frac{x+2}{\sqrt{\vA{x-1}\vB{2-x}}} $ is continuous.

\begin{solution}[.75in]
We require $ \vA{x - 1}\vB{2-x} >0 $ or $ \vA{x > 1}\vB{x<2} $. In
interval notation, the set of all numbers at which $f$ is continuous is
$\boxed{\vA{( 1, \infty )}\vB{(-\infty, 2)} }$.
\end{solution}
\end{problem}

\begin{problem}[3]
Given  $ f(x) = \begin{cases}
    3x^2 - 2x           & x < -1 \\
    6x^2  + x \vB{+1}   & x \ge -1
\end{cases}$. Is this function (a) continuous at $ x = -1 $;, (b)~discontinuous with a removable discontinuity
at $ x = -1 $; or (c)~discontinuous with a jump discontinuity at $ x = -1 $?  Justify your response.

\begin{solution}[2in]
Look at the left and right limits:
\begin{align*}
    \lim_{x\to-1^-}f(x) &= \lim_{x\to-1^-} 3x^2 - 2x = 5\\
    \lim_{x\to-1^+}f(x) &= \lim_{x\to-1^+}  6x^2  + x \vB{+1} = \vA{5}\vB{6} \vA{=}\vB{\neq} f(-1)
\end{align*}
Thus, $\lim_{x\to-1^-}f(x) \vA{=}\vB{\neq}
\lim_{x\to-1^+}f(x)\vA{=f(-1)}$. The two sided limit \vA{exists}\vB{does
not exist}\vA{ and $\lim_{x\to-1}f(x)=f(-1)$}. This function \vA{is}\vB{is
not} continuous at $x=-1$, \vB{it has a jump discontinuity, since
$\lim_{x\to-1^-}f(x) \neq \lim_{x\to-1^+}f(x)$}; as a result, the answer
is \vA{(a)}\vB{(c)}.
\end{solution}
\end{problem}

\begin{problem}[4]
Define the function $ f(x) = 3x^2 - 2x $. Use one of the formulas:
\[
        m = \lim_{x\to a} \frac{f(x) - f(a)}{x-a}\quad\text{or}\quad
        m = \lim_{h\to 0} \frac{f(a+h) - f(a)}{h}
\]
Then the slope of the line tangent to the graph of $f$ at the point $
\vA{( 1, 1 )}\vB{(-1,5)} $.

\renameSolnAfterTo{}
\begin{solution}[2in]\ifkeyalt We make the following calculations:\fi
\begin{multicols}{2}
\noindent\textbf{Calculations}
\begin{verA}
\begin{alignat*}{2}
    m &= \lim_{x\to1} \frac{f(x)-f(1)}{x-1}\\&
        = \lim_{x\to1} 3x+1&&\quad\text{from side calc}\\&
        = \boxed4
\end{alignat*}
\end{verA}
\begin{verB}
\begin{alignat*}{2}
    m &= \lim_{x\to-1} \frac{f(x)-f(-1)}{x+1}\\&
        = \lim_{x\to-1} 3x-5&&\quad\text{from side calc}\\&
        = \boxed{-8}
\end{alignat*}
\end{verB}

\columnbreak
\noindent\textbf{Side Calculations}
\begin{verA}
\begin{align*}
    f(x)-f(1) &= 3x^2 - 2x - 1\\&
                = (x-1)(3x+1)
\intertext{thus, the difference quotient is}
   \frac{f(x)-f(1)}{x-1} &= 3x+1
\end{align*}
\end{verA}
\begin{verB}
\begin{align*}
    f(x)-f(-1) &= 3x^2 - 2x - 5\\&
                = (x+1)(3x-5)
\intertext{thus, the difference quotient is}
   \frac{f(x)-f(-1)}{x+1} &= 3x-5
\end{align*}
\end{verB}


\vfill
\vspace*{\sameVspace}
\vfill
\end{multicols}
\end{solution}
\begin{workarea}{\sameVspace}\parindent0pt\bfseries
\begin{multicols}{2}
\textbf{Calculations}

\vfil\vspace*{\sameVspace}\vfil


\columnbreak
\textbf{Side Calculations}

\vfil\vspace*{1.9in}\vfil

\end{multicols}
\end{workarea}

\end{problem}

\end{exam}
\end{document}