summaryrefslogtreecommitdiff
path: root/texmf-dist/doc/latex/eqexam/examples/hw01.tex
blob: c9489aa2d30034611727a875283ddde89560e8f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
\documentclass[12pt]{article}
\usepackage[fleqn]{amsmath}

% This set of parameters are used to distribute the assignment to the class (in paper form)
% and for posting on the class web site (for those who missed the class).
% With the pdf option the information contained in the keys below are placed
% in the document info of the PDF document. If you don't have the AcroTeX Bundle
% installed, remove the pdf option.
\usepackage[pdf,forpaper,cfg=hw,nopoints,nosolutions]{eqexam}

% Note: When using a PDF option like pdf, you need to specify a driver
% that is passed to hyperref, web.sty etc. For example,
% \usepackage[pdf,pdftex,forpaper,cfg=hw,nopoints,nosolutions]{eqexam}

% This set of parameters are used to publish the solutions on the class web site, if
% desired.
% \usepackage[pdf,forpaper,cfg=hw,pointsonleft,answerkey]{eqexam}

% Try compiling the file with vspacewithsolns
% % \usepackage[pdf,forpaper,cfg=hw,pointsonleft,vspacewithsolns]{eqexam}

% Note the use of the myconfigi parameter. This then inputs eqexami.cfg, there I
% have placed some definitions specific to a homework assignment.

\subject[AC2]{Advanced Calculus II}
\title[HW1]{HW \#1}
\author{Dr.\ D. P. Story}
\date{Spring 2005}
\duedate{01/28/05}
\keywords{Homework due \theduedate}

\solAtEndFormatting{\eqequesitemsep{3pt}}


\begin{document}

\maketitle

\begin{exam}{HW}

\ifanswerkey
\begin{instructions}[Solutions]
Below, please find a set of solutions to this assignment.
\end{instructions}
\else
\begin{instructions}[]
Assignments should be neatly-written, well-organized and concise.
If you miss a class and need to get an assignment, see
\[
   \text{\url{http://www.math.uakron.edu/~dpstory/}}
\]
All class assignments and other announcements will be posted on
this web site.
\end{instructions}
\fi

\begin{eqComments}[]\S4.3, page 155, in the text\end{eqComments}

\begin{problem}[4]
Problem 15. Use the definition to prove $f(x) = x^2$ is convex on
$\mathbb{R}$.
\begin{solution}
Let $[c,d]$ be any interval and let $t\in[0,1]$, we need to prove
\begin{equation}
    f\bigl(  (1-t)c + td \bigr) \le (1-t) f(c) + tf(d)\label{eq0}
\end{equation}
or,
\begin{equation}
    \bigl( ( 1-t )c + td \bigr)^2 \le (1-t) c^2 + t d^2\label{eq2}
\end{equation}
We show that the right-side minus the left-side in \eqref{eq2} is  nonnegative. Indeed,
\begin{align*}
    (1-t) c^2 + &t d^2 - \left( ( 1-t )c + td \right)^2 \\&
        = (1-t) c^2 + t d^2 - \left( ( 1-t )^2 c^2 + 2t(1-t)cd + t^2d^2 \right)\\&
        = (1-t)[1-(1-t)]c^2 - 2t(1-t)cd + t(1-t)d^2\\&
        = t(1-t)c^2 - 2t(1-t)cd + t(1-t)d^2\\&
        = t(1-t)( c - d )^2 \ge 0
\end{align*}
From the first and last lines we have  $(1-t) c^2 + t d^2 - \left( ( 1-t )c + td \right)^2\ge0$. This is equivalent
to the desired inequality~\eqref{eq2}. \eqfititin{$\square$}

\medskip\noindent\textit{Alternate Solution}:
We apply the \textbf{Cauchy-Schwartz Inequality}, page.~16, to the expression on the left side of line~\eqref{eq2}.
For convenience, I paraphrase the \textbf{Cauchy-Schwartz Inequality}:
\[
    \left(\sum_{k=1}^n a_k b_k \right)^2 \le  \left(\sum_{k=1}^n a_k^2 \right) \left(\sum_{k=1}^n b_k^2 \right)
\]
Applying this inequality, with $a_1 = \sqrt{1-t}$, $b_1 =
\sqrt{1-t}\,c$,  $a_2 = \sqrt{t}$, $b_2 = \sqrt{t}\,d$  (here,
$n=2$, two terms),  we obtain,
\begin{align*}
(1-t)^2 c^2 + t^2 d^2 &
    \le \left( (\sqrt{1-t})^2 + (\sqrt{t})^2\right)\left((\sqrt{1-t}\,c)^2 + (\sqrt{t}\,d)^2\right)\\&
    = (1-t)c^2 + td^2
\end{align*}
Thus,
\[
    (1-t)^2 c^2 + t^2 d^2 \le (1-t)c^2 + td^2
\]
which is line~\eqref{eq2}, what we wanted to prove.
\end{solution}
\end{problem}

\begin{problem}[3]
Problem 18. Prove the sum of two convex functions is convex.
\begin{solution}
Seems simple enough. Suppose $f$ and $g$ be convex on $I$. Let $[\,c,d\,]\subseteq$ and let $t\in[\,0,1\,]$. Then
\begin{align*}
    (f+g)\bigl( (1-t) c + td \bigr) &
        = f\bigl( (1-t) c + td \bigr) + g\bigl( (1-t) c + td \bigr)\\&
        \le (1-t) f(c) + tf(d) + (1-t) g(c) + tg(d)\\&
        = (1-t) (f+g)(c) + t(f+g)(d)
\end{align*}
Thus, $(f+g)\bigl( (1-t) c + td \bigr) \le (1-t) (f+g)(c) + t(f+g)(d)$, which is what we wanted to prove.
\end{solution}
\end{problem}

\begin{problem}[2]
Problem 20. Give an example of a function that is convex and unbounded on $(0,1)$.
\begin{solution}
Let $ f(x) = 1/x $, $ x \in (0,1) $. This function is clearly unbounded and since $ f''(x) = 1/x^3\ge 0$ on $(0,1)$,
it is convex on $(0,1)$.
\end{solution}
\end{problem}

\begin{problem}[4]
Problem 21. Define
\[
    f(x) = \begin{cases}
                2, & x = -1;\\
                x^2, & -1 < x < 2;\\
                5,   & x = 2
           \end{cases}
\]
Show $f$ is convex on $[\,-1,2\,]$ but not continuous on  $[\,-1,2\,]$.
\begin{solution}
Define $g(x) = x^2$, $x\in[\,-1,2\,]$. Then $g$ is twice differentiable on $[\,-1,2\,]$ and $ g''(x) = 2\ge 0$, hence,
$g$ is convex on $[\,-1,2\,]$. Note that $ g(x) \le f(x) $ for all $x\in[\,-1,2\,]$.

Let $[\,c,d\,]\subseteq [\,-1,2\,]$, we need to show, $\forall t \in [\,0,1\,]$,
$$
    f\bigl(  (1-t)c + td \bigr) \le (1-t) f(c) + tf(d)
$$
This inequality is \emph{always true} for $t=0$ and $t=1$, so it suffices to assume
$t\in(0,1)$, this implies $(1-t)c \ne -1$ and $ td \ne 2$, hence, $(1-t)c + td\in(-1,2)$ . Thus,
$$
    f\bigl(  (1-t)c + td \bigr) = g\bigl(  (1-t)c + td \bigr)) \le (1-t) g(c) + tg(d) = (1-t) f(c) + tf(d)
$$
As the assertion about the discontinuity of $f$ (at its endpoints) is obvious, this completes the proof.
\end{solution}
\end{problem}

\begin{problem}[3]
Problem 23. Suppose $f$ is convex on $\mathbb R$, prove $f$ is continuous on $\mathbb R$.
\begin{solution}
This is an application of \textbf{Theorem~4.28}. Let $x\in\mathbb R$, enclose $x$ in a open
interval $(a,b)$, where $a$, $b\in\mathbb R$. Then $f$ is convex on $(a,b)$, since it is convex
on $\mathbb R$, so by  \textbf{Theorem~4.28}, $f$ is continuous on $(a,b)$. Since $f$ is continuous
on $(a,b)$, it is, in particular, continuous at $x\in(a,b)$.

We have shown that for any $x\in\mathbb R$, $f$ is continuous at
$x$, this means that $f$ is continuous on $\mathbb R$.
\end{solution}
\end{problem}
\end{exam}
\end{document}