summaryrefslogtreecommitdiff
path: root/Master/tlpkg/tlperl/lib/re.pm
blob: d1db4625c006b0d67b5fa5228544459f85166280 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
package re;

# pragma for controlling the regexp engine
use strict;
use warnings;

our $VERSION     = "0.41";
our @ISA         = qw(Exporter);
our @EXPORT_OK   = qw{
	is_regexp regexp_pattern
	regname regnames regnames_count
	regmust optimization
};
our %EXPORT_OK = map { $_ => 1 } @EXPORT_OK;

my %bitmask = (
    taint   => 0x00100000, # HINT_RE_TAINT
    eval    => 0x00200000, # HINT_RE_EVAL
);

my $flags_hint = 0x02000000; # HINT_RE_FLAGS
my $PMMOD_SHIFT = 0;
my %reflags = (
    m => 1 << ($PMMOD_SHIFT + 0),
    s => 1 << ($PMMOD_SHIFT + 1),
    i => 1 << ($PMMOD_SHIFT + 2),
    x => 1 << ($PMMOD_SHIFT + 3),
   xx => 1 << ($PMMOD_SHIFT + 4),
    n => 1 << ($PMMOD_SHIFT + 5),
    p => 1 << ($PMMOD_SHIFT + 6),
    strict => 1 << ($PMMOD_SHIFT + 10),
# special cases:
    d => 0,
    l => 1,
    u => 2,
    a => 3,
    aa => 4,
);

sub setcolor {
 eval {				# Ignore errors
  require Term::Cap;

  my $terminal = Tgetent Term::Cap ({OSPEED => 9600}); # Avoid warning.
  my $props = $ENV{PERL_RE_TC} || 'md,me,so,se,us,ue';
  my @props = split /,/, $props;
  my $colors = join "\t", map {$terminal->Tputs($_,1)} @props;

  $colors =~ s/\0//g;
  $ENV{PERL_RE_COLORS} = $colors;
 };
 if ($@) {
    $ENV{PERL_RE_COLORS} ||= qq'\t\t> <\t> <\t\t';
 }

}

my %flags = (
    COMPILE           => 0x0000FF,
    PARSE             => 0x000001,
    OPTIMISE          => 0x000002,
    TRIEC             => 0x000004,
    DUMP              => 0x000008,
    FLAGS             => 0x000010,
    TEST              => 0x000020,

    EXECUTE           => 0x00FF00,
    INTUIT            => 0x000100,
    MATCH             => 0x000200,
    TRIEE             => 0x000400,

    EXTRA             => 0x3FF0000,
    TRIEM             => 0x0010000,
    OFFSETS           => 0x0020000,
    OFFSETSDBG        => 0x0040000,
    STATE             => 0x0080000,
    OPTIMISEM         => 0x0100000,
    STACK             => 0x0280000,
    BUFFERS           => 0x0400000,
    GPOS              => 0x0800000,
    DUMP_PRE_OPTIMIZE => 0x1000000,
    WILDCARD          => 0x2000000,
);
$flags{ALL} = -1 & ~($flags{OFFSETS}
                    |$flags{OFFSETSDBG}
                    |$flags{BUFFERS}
                    |$flags{DUMP_PRE_OPTIMIZE}
                    |$flags{WILDCARD}
                    );
$flags{All} = $flags{all} = $flags{DUMP} | $flags{EXECUTE};
$flags{Extra} = $flags{EXECUTE} | $flags{COMPILE} | $flags{GPOS};
$flags{More} = $flags{MORE} =
                    $flags{All} | $flags{TRIEC} | $flags{TRIEM} | $flags{STATE};
$flags{State} = $flags{DUMP} | $flags{EXECUTE} | $flags{STATE};
$flags{TRIE} = $flags{DUMP} | $flags{EXECUTE} | $flags{TRIEC};

if (defined &DynaLoader::boot_DynaLoader) {
    require XSLoader;
    XSLoader::load();
}
# else we're miniperl
# We need to work for miniperl, because the XS toolchain uses Text::Wrap, which
# uses re 'taint'.

sub _load_unload {
    my ($on)= @_;
    if ($on) {
	# We call install() every time, as if we didn't, we wouldn't
	# "see" any changes to the color environment var since
	# the last time it was called.

	# install() returns an integer, which if casted properly
	# in C resolves to a structure containing the regexp
	# hooks. Setting it to a random integer will guarantee
	# segfaults.
	$^H{regcomp} = install();
    } else {
        delete $^H{regcomp};
    }
}

sub bits {
    my $on = shift;
    my $bits = 0;
    my $turning_all_off = ! @_ && ! $on;
    my $seen_Debug = 0;
    my $seen_debug = 0;
    if ($turning_all_off) {

        # Pretend were called with certain parameters, which are best dealt
        # with that way.
        push @_, keys %bitmask; # taint and eval
        push @_, 'strict';
    }

    # Process each subpragma parameter
   ARG:
    foreach my $idx (0..$#_){
        my $s=$_[$idx];
        if ($s eq 'Debug' or $s eq 'Debugcolor') {
            if (! $seen_Debug) {
                $seen_Debug = 1;

                # Reset to nothing, and then add what follows.  $seen_Debug
                # allows, though unlikely someone would do it, more than one
                # Debug and flags in the arguments
                ${^RE_DEBUG_FLAGS} = 0;
            }
            setcolor() if $s =~/color/i;
            for my $idx ($idx+1..$#_) {
                if ($flags{$_[$idx]}) {
                    if ($on) {
                        ${^RE_DEBUG_FLAGS} |= $flags{$_[$idx]};
                    } else {
                        ${^RE_DEBUG_FLAGS} &= ~ $flags{$_[$idx]};
                    }
                } else {
                    require Carp;
                    Carp::carp("Unknown \"re\" Debug flag '$_[$idx]', possible flags: ",
                               join(", ",sort keys %flags ) );
                }
            }
            _load_unload($on ? 1 : ${^RE_DEBUG_FLAGS});
            last;
        } elsif ($s eq 'debug' or $s eq 'debugcolor') {

            # These default flags should be kept in sync with the same values
            # in regcomp.h
            ${^RE_DEBUG_FLAGS} = $flags{'EXECUTE'} | $flags{'DUMP'};
	    setcolor() if $s =~/color/i;
	    _load_unload($on);
            $seen_debug = 1;
        } elsif (exists $bitmask{$s}) {
	    $bits |= $bitmask{$s};
	} elsif ($EXPORT_OK{$s}) {
	    require Exporter;
	    re->export_to_level(2, 're', $s);
        } elsif ($s eq 'strict') {
            if ($on) {
                $^H{reflags} |= $reflags{$s};
                warnings::warnif('experimental::re_strict',
                                 "\"use re 'strict'\" is experimental");

                # Turn on warnings if not already done.
                if (! warnings::enabled('regexp')) {
                    require warnings;
                    warnings->import('regexp');
                    $^H{re_strict} = 1;
                }
            }
            else {
                $^H{reflags} &= ~$reflags{$s} if $^H{reflags};

                # Turn off warnings if we turned them on.
                warnings->unimport('regexp') if $^H{re_strict};
            }
	    if ($^H{reflags}) {
                $^H |= $flags_hint;
            }
            else {
                $^H &= ~$flags_hint;
            }
	} elsif ($s =~ s/^\///) {
	    my $reflags = $^H{reflags} || 0;
	    my $seen_charset;
            my $x_count = 0;
	    while ($s =~ m/( . )/gx) {
                local $_ = $1;
		if (/[adul]/) {
                    # The 'a' may be repeated; hide this from the rest of the
                    # code by counting and getting rid of all of them, then
                    # changing to 'aa' if there is a repeat.
                    if ($_ eq 'a') {
                        my $sav_pos = pos $s;
                        my $a_count = $s =~ s/a//g;
                        pos $s = $sav_pos - 1;  # -1 because got rid of the 'a'
                        if ($a_count > 2) {
			    require Carp;
                            Carp::carp(
                            qq 'The "a" flag may only appear a maximum of twice'
                            );
                        }
                        elsif ($a_count == 2) {
                            $_ = 'aa';
                        }
                    }
		    if ($on) {
			if ($seen_charset) {
			    require Carp;
                            if ($seen_charset ne $_) {
                                Carp::carp(
                                qq 'The "$seen_charset" and "$_" flags '
                                .qq 'are exclusive'
                                );
                            }
                            else {
                                Carp::carp(
                                qq 'The "$seen_charset" flag may not appear '
                                .qq 'twice'
                                );
                            }
			}
			$^H{reflags_charset} = $reflags{$_};
			$seen_charset = $_;
		    }
		    else {
			delete $^H{reflags_charset}
                                     if defined $^H{reflags_charset}
                                        && $^H{reflags_charset} == $reflags{$_};
		    }
		} elsif (exists $reflags{$_}) {
                    if ($_ eq 'x') {
                        $x_count++;
                        if ($x_count > 2) {
			    require Carp;
                            Carp::carp(
                            qq 'The "x" flag may only appear a maximum of twice'
                            );
                        }
                        elsif ($x_count == 2) {
                            $_ = 'xx';  # First time through got the /x
                        }
                    }

                    $on
		      ? $reflags |= $reflags{$_}
		      : ($reflags &= ~$reflags{$_});
		} else {
		    require Carp;
		    Carp::carp(
		     qq'Unknown regular expression flag "$_"'
		    );
		    next ARG;
		}
	    }
	    ($^H{reflags} = $reflags or defined $^H{reflags_charset})
	                    ? $^H |= $flags_hint
	                    : ($^H &= ~$flags_hint);
	} else {
	    require Carp;
            if ($seen_debug && defined $flags{$s}) {
                Carp::carp("Use \"Debug\" not \"debug\", to list debug types"
                         . " in \"re\".  \"$s\" ignored");
            }
            else {
                Carp::carp("Unknown \"re\" subpragma '$s' (known ones are: ",
                       join(', ', map {qq('$_')} 'debug', 'debugcolor', sort keys %bitmask),
                       ")");
            }
	}
    }

    if ($turning_all_off) {
        _load_unload(0);
        $^H{reflags} = 0;
        $^H{reflags_charset} = 0;
        $^H &= ~$flags_hint;
    }

    $bits;
}

sub import {
    shift;
    $^H |= bits(1, @_);
}

sub unimport {
    shift;
    $^H &= ~ bits(0, @_);
}

1;

__END__

=head1 NAME

re - Perl pragma to alter regular expression behaviour

=head1 SYNOPSIS

    use re 'taint';
    ($x) = ($^X =~ /^(.*)$/s);     # $x is tainted here

    $pat = '(?{ $foo = 1 })';
    use re 'eval';
    /foo${pat}bar/;		   # won't fail (when not under -T
                                   # switch)

    {
	no re 'taint';		   # the default
	($x) = ($^X =~ /^(.*)$/s); # $x is not tainted here

	no re 'eval';		   # the default
	/foo${pat}bar/;		   # disallowed (with or without -T
                                   # switch)
    }

    use re 'strict';               # Raise warnings for more conditions

    use re '/ix';
    "FOO" =~ / foo /; # /ix implied
    no re '/x';
    "FOO" =~ /foo/; # just /i implied

    use re 'debug';		   # output debugging info during
    /^(.*)$/s;			   # compile and run time


    use re 'debugcolor';	   # same as 'debug', but with colored
                                   # output
    ...

    use re qw(Debug All);          # Same as "use re 'debug'", but you
                                   # can use "Debug" with things other
                                   # than 'All'
    use re qw(Debug More);         # 'All' plus output more details
    no re qw(Debug ALL);           # Turn on (almost) all re debugging
                                   # in this scope

    use re qw(is_regexp regexp_pattern); # import utility functions
    my ($pat,$mods)=regexp_pattern(qr/foo/i);
    if (is_regexp($obj)) {
        print "Got regexp: ",
            scalar regexp_pattern($obj); # just as perl would stringify
    }                                    # it but no hassle with blessed
                                         # re's.

(We use $^X in these examples because it's tainted by default.)

=head1 DESCRIPTION

=head2 'taint' mode

When C<use re 'taint'> is in effect, and a tainted string is the target
of a regexp, the regexp memories (or values returned by the m// operator
in list context) are tainted.  This feature is useful when regexp operations
on tainted data aren't meant to extract safe substrings, but to perform
other transformations.

=head2 'eval' mode

When C<use re 'eval'> is in effect, a regexp is allowed to contain
C<(?{ ... })> zero-width assertions and C<(??{ ... })> postponed
subexpressions that are derived from variable interpolation, rather than
appearing literally within the regexp.  That is normally disallowed, since
it is a
potential security risk.  Note that this pragma is ignored when the regular
expression is obtained from tainted data, i.e.  evaluation is always
disallowed with tainted regular expressions.  See L<perlre/(?{ code })> 
and L<perlre/(??{ code })>.

For the purpose of this pragma, interpolation of precompiled regular
expressions (i.e., the result of C<qr//>) is I<not> considered variable
interpolation.  Thus:

    /foo${pat}bar/

I<is> allowed if $pat is a precompiled regular expression, even
if $pat contains C<(?{ ... })> assertions or C<(??{ ... })> subexpressions.

=head2 'strict' mode

Note that this is an experimental feature which may be changed or removed in a
future Perl release.

When C<use re 'strict'> is in effect, stricter checks are applied than
otherwise when compiling regular expressions patterns.  These may cause more
warnings to be raised than otherwise, and more things to be fatal instead of
just warnings.  The purpose of this is to find and report at compile time some
things, which may be legal, but have a reasonable possibility of not being the
programmer's actual intent.  This automatically turns on the C<"regexp">
warnings category (if not already on) within its scope.

As an example of something that is caught under C<"strict'>, but not
otherwise, is the pattern

 qr/\xABC/

The C<"\x"> construct without curly braces should be followed by exactly two
hex digits; this one is followed by three.  This currently evaluates as
equivalent to

 qr/\x{AB}C/

that is, the character whose code point value is C<0xAB>, followed by the
letter C<C>.  But since C<C> is a hex digit, there is a reasonable chance
that the intent was

 qr/\x{ABC}/

that is the single character at C<0xABC>.  Under C<'strict'> it is an error to
not follow C<\x> with exactly two hex digits.  When not under C<'strict'> a
warning is generated if there is only one hex digit, and no warning is raised
if there are more than two.

It is expected that what exactly C<'strict'> does will evolve over time as we
gain experience with it.  This means that programs that compile under it in
today's Perl may not compile, or may have more or fewer warnings, in future
Perls.  There is no backwards compatibility promises with regards to it.  Also
there are already proposals for an alternate syntax for enabling it.  For
these reasons, using it will raise a C<experimental::re_strict> class warning,
unless that category is turned off.

Note that if a pattern compiled within C<'strict'> is recompiled, say by
interpolating into another pattern, outside of C<'strict'>, it is not checked
again for strictness.  This is because if it works under strict it must work
under non-strict.

=head2 '/flags' mode

When C<use re '/I<flags>'> is specified, the given I<flags> are automatically
added to every regular expression till the end of the lexical scope.
I<flags> can be any combination of
C<'a'>,
C<'aa'>,
C<'d'>,
C<'i'>,
C<'l'>,
C<'m'>,
C<'n'>,
C<'p'>,
C<'s'>,
C<'u'>,
C<'x'>,
and/or
C<'xx'>.

C<no re '/I<flags>'> will turn off the effect of C<use re '/I<flags>'> for the
given flags.

For example, if you want all your regular expressions to have /msxx on by
default, simply put

    use re '/msxx';

at the top of your code.

The character set C</adul> flags cancel each other out. So, in this example,

    use re "/u";
    "ss" =~ /\xdf/;
    use re "/d";
    "ss" =~ /\xdf/;

the second C<use re> does an implicit C<no re '/u'>.

Similarly,

    use re "/xx";   # Doubled-x
    ...
    use re "/x";    # Single x from here on
    ...

Turning on one of the character set flags with C<use re> takes precedence over the
C<locale> pragma and the 'unicode_strings' C<feature>, for regular
expressions. Turning off one of these flags when it is active reverts to
the behaviour specified by whatever other pragmata are in scope. For
example:

    use feature "unicode_strings";
    no re "/u"; # does nothing
    use re "/l";
    no re "/l"; # reverts to unicode_strings behaviour

=head2 'debug' mode

When C<use re 'debug'> is in effect, perl emits debugging messages when
compiling and using regular expressions.  The output is the same as that
obtained by running a C<-DDEBUGGING>-enabled perl interpreter with the
B<-Dr> switch. It may be quite voluminous depending on the complexity
of the match.  Using C<debugcolor> instead of C<debug> enables a
form of output that can be used to get a colorful display on terminals
that understand termcap color sequences.  Set C<$ENV{PERL_RE_TC}> to a
comma-separated list of C<termcap> properties to use for highlighting
strings on/off, pre-point part on/off.
See L<perldebug/"Debugging Regular Expressions"> for additional info.

As of 5.9.5 the directive C<use re 'debug'> and its equivalents are
lexically scoped, as the other directives are.  However they have both
compile-time and run-time effects.

See L<perlmodlib/Pragmatic Modules>.

=head2 'Debug' mode

Similarly C<use re 'Debug'> produces debugging output, the difference
being that it allows the fine tuning of what debugging output will be
emitted. Options are divided into three groups, those related to
compilation, those related to execution and those related to special
purposes. The options are as follows:

=over 4

=item Compile related options

=over 4

=item COMPILE

Turns on all non-extra compile related debug options.

=item PARSE

Turns on debug output related to the process of parsing the pattern.

=item OPTIMISE

Enables output related to the optimisation phase of compilation.

=item TRIEC

Detailed info about trie compilation.

=item DUMP

Dump the final program out after it is compiled and optimised.

=item FLAGS

Dump the flags associated with the program

=item TEST

Print output intended for testing the internals of the compile process

=back

=item Execute related options

=over 4

=item EXECUTE

Turns on all non-extra execute related debug options.

=item MATCH

Turns on debugging of the main matching loop.

=item TRIEE

Extra debugging of how tries execute.

=item INTUIT

Enable debugging of start-point optimisations.

=back

=item Extra debugging options

=over 4

=item EXTRA

Turns on all "extra" debugging options.

=item BUFFERS

Enable debugging the capture group storage during match. Warning,
this can potentially produce extremely large output.

=item TRIEM

Enable enhanced TRIE debugging. Enhances both TRIEE
and TRIEC.

=item STATE

Enable debugging of states in the engine.

=item STACK

Enable debugging of the recursion stack in the engine. Enabling
or disabling this option automatically does the same for debugging
states as well. This output from this can be quite large.

=item GPOS

Enable debugging of the \G modifier.

=item OPTIMISEM

Enable enhanced optimisation debugging and start-point optimisations.
Probably not useful except when debugging the regexp engine itself.

=item OFFSETS

Dump offset information. This can be used to see how regops correlate
to the pattern. Output format is

   NODENUM:POSITION[LENGTH]

Where 1 is the position of the first char in the string. Note that position
can be 0, or larger than the actual length of the pattern, likewise length
can be zero.

=item OFFSETSDBG

Enable debugging of offsets information. This emits copious
amounts of trace information and doesn't mesh well with other
debug options.

Almost definitely only useful to people hacking
on the offsets part of the debug engine.

=item DUMP_PRE_OPTIMIZE

Enable the dumping of the compiled pattern before the optimization phase.

=item WILDCARD

When Perl encounters a wildcard subpattern, (see L<perlunicode/Wildcards in
Property Values>), it suspends compilation of the main pattern, compiles the
subpattern, and then matches that against all legal possibilities to determine
the actual code points the subpattern matches.  After that it adds these to
the main pattern, and continues its compilation.

You may very well want to see how your subpattern gets compiled, but it is
likely of less use to you to see how Perl matches that against all the legal
possibilities, as that is under control of Perl, not you.   Therefore, the
debugging information of the compilation portion is as specified by the other
options, but the debugging output of the matching portion is normally
suppressed.

You can use the WILDCARD option to enable the debugging output of this
subpattern matching.  Careful!  This can lead to voluminous outputs, and it
may not make much sense to you what and why Perl is doing what it is.
But it may be helpful to you to see why things aren't going the way you
expect.

Note that this option alone doesn't cause any debugging information to be
output.  What it does is stop the normal suppression of execution-related
debugging information during the matching portion of the compilation of
wildcards.  You also have to specify which execution debugging information you
want, such as by also including the EXECUTE option.

=back

=item Other useful flags

These are useful shortcuts to save on the typing.

=over 4

=item ALL

Enable all options at once except OFFSETS, OFFSETSDBG, BUFFERS, WILDCARD, and
DUMP_PRE_OPTIMIZE.
(To get every single option without exception, use both ALL and EXTRA, or
starting in 5.30 on a C<-DDEBUGGING>-enabled perl interpreter, use
the B<-Drv> command-line switches.)

=item All

Enable DUMP and all non-extra execute options. Equivalent to:

  use re 'debug';

=item MORE

=item More

Enable the options enabled by "All", plus STATE, TRIEC, and TRIEM.

=back

=back

As of 5.9.5 the directive C<use re 'debug'> and its equivalents are
lexically scoped, as are the other directives.  However they have both
compile-time and run-time effects.

=head2 Exportable Functions

As of perl 5.9.5 're' debug contains a number of utility functions that
may be optionally exported into the caller's namespace. They are listed
below.

=over 4

=item is_regexp($ref)

Returns true if the argument is a compiled regular expression as returned
by C<qr//>, false if it is not.

This function will not be confused by overloading or blessing. In
internals terms, this extracts the regexp pointer out of the
PERL_MAGIC_qr structure so it cannot be fooled.

=item regexp_pattern($ref)

If the argument is a compiled regular expression as returned by C<qr//>,
then this function returns the pattern.

In list context it returns a two element list, the first element
containing the pattern and the second containing the modifiers used when
the pattern was compiled.

  my ($pat, $mods) = regexp_pattern($ref);

In scalar context it returns the same as perl would when stringifying a raw
C<qr//> with the same pattern inside.  If the argument is not a compiled
reference then this routine returns false but defined in scalar context,
and the empty list in list context. Thus the following

    if (regexp_pattern($ref) eq '(?^i:foo)')

will be warning free regardless of what $ref actually is.

Like C<is_regexp> this function will not be confused by overloading
or blessing of the object.

=item regname($name,$all)

Returns the contents of a named buffer of the last successful match. If
$all is true, then returns an array ref containing one entry per buffer,
otherwise returns the first defined buffer.

=item regnames($all)

Returns a list of all of the named buffers defined in the last successful
match. If $all is true, then it returns all names defined, if not it returns
only names which were involved in the match.

=item regnames_count()

Returns the number of distinct names defined in the pattern used
for the last successful match.

B<Note:> this result is always the actual number of distinct
named buffers defined, it may not actually match that which is
returned by C<regnames()> and related routines when those routines
have not been called with the $all parameter set.

=item regmust($ref)

If the argument is a compiled regular expression as returned by C<qr//>,
then this function returns what the optimiser considers to be the longest
anchored fixed string and longest floating fixed string in the pattern.

A I<fixed string> is defined as being a substring that must appear for the
pattern to match. An I<anchored fixed string> is a fixed string that must
appear at a particular offset from the beginning of the match. A I<floating
fixed string> is defined as a fixed string that can appear at any point in
a range of positions relative to the start of the match. For example,

    my $qr = qr/here .* there/x;
    my ($anchored, $floating) = regmust($qr);
    print "anchored:'$anchored'\nfloating:'$floating'\n";

results in

    anchored:'here'
    floating:'there'

Because the C<here> is before the C<.*> in the pattern, its position
can be determined exactly. That's not true, however, for the C<there>;
it could appear at any point after where the anchored string appeared.
Perl uses both for its optimisations, preferring the longer, or, if they are
equal, the floating.

B<NOTE:> This may not necessarily be the definitive longest anchored and
floating string. This will be what the optimiser of the Perl that you
are using thinks is the longest. If you believe that the result is wrong
please report it via the L<perlbug> utility.

=item optimization($ref)

If the argument is a compiled regular expression as returned by C<qr//>,
then this function returns a hashref of the optimization information
discovered at compile time, so we can write tests around it. If any
other argument is given, returns C<undef>.

The hash contents are expected to change from time to time as we develop
new ways to optimize - no assumption of stability should be made, not
even between minor versions of perl.

For the current version, the hash will have the following contents:

=over 4

=item minlen

An integer, the least number of characters in any string that can match.

=item minlenret

An integer, the least number of characters that can be in C<$&> after a
match. (Consider eg C< /ns(?=\d)/ >.)

=item gofs

An integer, the number of characters before C<pos()> to start match at.

=item noscan

A boolean, C<TRUE> to indicate that any anchored/floating substrings
found should not be used. (CHECKME: apparently this is set for an
anchored pattern with no floating substring, but never used.)

=item isall

A boolean, C<TRUE> to indicate that the optimizer information is all
that the regular expression contains, and thus one does not need to
enter the regexp runtime engine at all.

=item anchor SBOL

A boolean, C<TRUE> if the pattern is anchored to start of string.

=item anchor MBOL

A boolean, C<TRUE> if the pattern is anchored to any start of line
within the string.

=item anchor GPOS

A boolean, C<TRUE> if the pattern is anchored to the end of the previous
match.

=item skip

A boolean, C<TRUE> if the start class can match only the first of a run.

=item implicit

A boolean, C<TRUE> if a C</.*/> has been turned implicitly into a C</^.*/>.

=item anchored/floating

A byte string representing an anchored or floating substring respectively
that any match must contain, or undef if no such substring was found, or
if the substring would require utf8 to represent.

=item anchored utf8/floating utf8

A utf8 string representing an anchored or floating substring respectively
that any match must contain, or undef if no such substring was found, or
if the substring contains only 7-bit ASCII characters.

=item anchored min offset/floating min offset

An integer, the first offset in characters from a match location at which
we should look for the corresponding substring.

=item anchored max offset/floating max offset

An integer, the last offset in characters from a match location at which
we should look for the corresponding substring.

Ignored for anchored, so may be 0 or same as min.

=item anchored end shift/floating end shift

FIXME: not sure what this is, something to do with lookbehind. regcomp.c
says:
    When the final pattern is compiled and the data is moved from the
    scan_data_t structure into the regexp structure the information
    about lookbehind is factored in, with the information that would
    have been lost precalculated in the end_shift field for the
    associated string.

=item checking

A constant string, one of "anchored", "floating" or "none" to indicate
which substring (if any) should be checked for first.

=item stclass

A string representation of a character class ("start class") that must
be the first character of any match.

TODO: explain the representations.

=back

=back

=head1 SEE ALSO

L<perlmodlib/Pragmatic Modules>.

=cut