1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
|
#
# "Tax the rat farms." - Lord Vetinari
#
# The following hash values are used:
# sign : +,-,NaN,+inf,-inf
# _d : denominator
# _n : numerator (value = _n/_d)
# _a : accuracy
# _p : precision
# You should not look at the innards of a BigRat - use the methods for this.
package Math::BigRat;
# anything older is untested, and unlikely to work
use 5.006;
use strict;
use Carp ();
use Math::BigFloat;
use vars qw($VERSION @ISA $upgrade $downgrade
$accuracy $precision $round_mode $div_scale $_trap_nan $_trap_inf);
@ISA = qw(Math::BigFloat);
$VERSION = '0.26_02';
$VERSION = eval $VERSION;
# inherit overload from Math::BigFloat, but disable the bitwise ops that don't
# make much sense for rationals unless they're truncated or something first
use overload
map {
my $op = $_;
($op => sub {
Carp::croak("bitwise operation $op not supported in Math::BigRat");
});
} qw(& | ^ ~ << >> &= |= ^= <<= >>=);
BEGIN
{
*objectify = \&Math::BigInt::objectify; # inherit this from BigInt
*AUTOLOAD = \&Math::BigFloat::AUTOLOAD; # can't inherit AUTOLOAD
# we inherit these from BigFloat because currently it is not possible
# that MBF has a different $MBI variable than we, because MBF also uses
# Math::BigInt::config->('lib'); (there is always only one library loaded)
*_e_add = \&Math::BigFloat::_e_add;
*_e_sub = \&Math::BigFloat::_e_sub;
*as_int = \&as_number;
*is_pos = \&is_positive;
*is_neg = \&is_negative;
}
##############################################################################
# Global constants and flags. Access these only via the accessor methods!
$accuracy = $precision = undef;
$round_mode = 'even';
$div_scale = 40;
$upgrade = undef;
$downgrade = undef;
# These are internally, and not to be used from the outside at all!
$_trap_nan = 0; # are NaNs ok? set w/ config()
$_trap_inf = 0; # are infs ok? set w/ config()
# the package we are using for our private parts, defaults to:
# Math::BigInt->config()->{lib}
my $MBI = 'Math::BigInt::Calc';
my $nan = 'NaN';
my $class = 'Math::BigRat';
sub isa
{
return 0 if $_[1] =~ /^Math::Big(Int|Float)/; # we aren't
UNIVERSAL::isa(@_);
}
##############################################################################
sub _new_from_float
{
# turn a single float input into a rational number (like '0.1')
my ($self,$f) = @_;
return $self->bnan() if $f->is_nan();
return $self->binf($f->{sign}) if $f->{sign} =~ /^[+-]inf$/;
$self->{_n} = $MBI->_copy( $f->{_m} ); # mantissa
$self->{_d} = $MBI->_one();
$self->{sign} = $f->{sign} || '+';
if ($f->{_es} eq '-')
{
# something like Math::BigRat->new('0.1');
# 1 / 1 => 1/10
$MBI->_lsft ( $self->{_d}, $f->{_e} ,10);
}
else
{
# something like Math::BigRat->new('10');
# 1 / 1 => 10/1
$MBI->_lsft ( $self->{_n}, $f->{_e} ,10) unless
$MBI->_is_zero($f->{_e});
}
$self;
}
sub new
{
# create a Math::BigRat
my $class = shift;
my ($n,$d) = @_;
my $self = { }; bless $self,$class;
# input like (BigInt) or (BigFloat):
if ((!defined $d) && (ref $n) && (!$n->isa('Math::BigRat')))
{
if ($n->isa('Math::BigFloat'))
{
$self->_new_from_float($n);
}
if ($n->isa('Math::BigInt'))
{
# TODO: trap NaN, inf
$self->{_n} = $MBI->_copy($n->{value}); # "mantissa" = N
$self->{_d} = $MBI->_one(); # d => 1
$self->{sign} = $n->{sign};
}
if ($n->isa('Math::BigInt::Lite'))
{
# TODO: trap NaN, inf
$self->{sign} = '+'; $self->{sign} = '-' if $$n < 0;
$self->{_n} = $MBI->_new(abs($$n)); # "mantissa" = N
$self->{_d} = $MBI->_one(); # d => 1
}
return $self->bnorm(); # normalize (120/1 => 12/10)
}
# input like (BigInt,BigInt) or (BigLite,BigLite):
if (ref($d) && ref($n))
{
# do N first (for $self->{sign}):
if ($n->isa('Math::BigInt'))
{
# TODO: trap NaN, inf
$self->{_n} = $MBI->_copy($n->{value}); # "mantissa" = N
$self->{sign} = $n->{sign};
}
elsif ($n->isa('Math::BigInt::Lite'))
{
# TODO: trap NaN, inf
$self->{sign} = '+'; $self->{sign} = '-' if $$n < 0;
$self->{_n} = $MBI->_new(abs($$n)); # "mantissa" = $n
}
else
{
require Carp;
Carp::croak(ref($n) . " is not a recognized object format for Math::BigRat->new");
}
# now D:
if ($d->isa('Math::BigInt'))
{
# TODO: trap NaN, inf
$self->{_d} = $MBI->_copy($d->{value}); # "mantissa" = D
# +/+ or -/- => +, +/- or -/+ => -
$self->{sign} = $d->{sign} ne $self->{sign} ? '-' : '+';
}
elsif ($d->isa('Math::BigInt::Lite'))
{
# TODO: trap NaN, inf
$self->{_d} = $MBI->_new(abs($$d)); # "mantissa" = D
my $ds = '+'; $ds = '-' if $$d < 0;
# +/+ or -/- => +, +/- or -/+ => -
$self->{sign} = $ds ne $self->{sign} ? '-' : '+';
}
else
{
require Carp;
Carp::croak(ref($d) . " is not a recognized object format for Math::BigRat->new");
}
return $self->bnorm(); # normalize (120/1 => 12/10)
}
return $n->copy() if ref $n; # already a BigRat
if (!defined $n)
{
$self->{_n} = $MBI->_zero(); # undef => 0
$self->{_d} = $MBI->_one();
$self->{sign} = '+';
return $self;
}
# string input with / delimiter
if ($n =~ /\s*\/\s*/)
{
return $class->bnan() if $n =~ /\/.*\//; # 1/2/3 isn't valid
return $class->bnan() if $n =~ /\/\s*$/; # 1/ isn't valid
($n,$d) = split (/\//,$n);
# try as BigFloats first
if (($n =~ /[\.eE]/) || ($d =~ /[\.eE]/))
{
local $Math::BigFloat::accuracy = undef;
local $Math::BigFloat::precision = undef;
# one of them looks like a float
my $nf = Math::BigFloat->new($n,undef,undef);
$self->{sign} = '+';
return $self->bnan() if $nf->is_nan();
$self->{_n} = $MBI->_copy( $nf->{_m} ); # get mantissa
# now correct $self->{_n} due to $n
my $f = Math::BigFloat->new($d,undef,undef);
return $self->bnan() if $f->is_nan();
$self->{_d} = $MBI->_copy( $f->{_m} );
# calculate the difference between nE and dE
my $diff_e = $nf->exponent()->bsub( $f->exponent);
if ($diff_e->is_negative())
{
# < 0: mul d with it
$MBI->_lsft( $self->{_d}, $MBI->_new( $diff_e->babs()), 10);
}
elsif (!$diff_e->is_zero())
{
# > 0: mul n with it
$MBI->_lsft( $self->{_n}, $MBI->_new( $diff_e), 10);
}
}
else
{
# both d and n look like (big)ints
$self->{sign} = '+'; # no sign => '+'
$self->{_n} = undef;
$self->{_d} = undef;
if ($n =~ /^([+-]?)0*([0-9]+)\z/) # first part ok?
{
$self->{sign} = $1 || '+'; # no sign => '+'
$self->{_n} = $MBI->_new($2 || 0);
}
if ($d =~ /^([+-]?)0*([0-9]+)\z/) # second part ok?
{
$self->{sign} =~ tr/+-/-+/ if ($1 || '') eq '-'; # negate if second part neg.
$self->{_d} = $MBI->_new($2 || 0);
}
if (!defined $self->{_n} || !defined $self->{_d})
{
$d = Math::BigInt->new($d,undef,undef) unless ref $d;
$n = Math::BigInt->new($n,undef,undef) unless ref $n;
if ($n->{sign} =~ /^[+-]$/ && $d->{sign} =~ /^[+-]$/)
{
# both parts are ok as integers (wierd things like ' 1e0'
$self->{_n} = $MBI->_copy($n->{value});
$self->{_d} = $MBI->_copy($d->{value});
$self->{sign} = $n->{sign};
$self->{sign} =~ tr/+-/-+/ if $d->{sign} eq '-'; # -1/-2 => 1/2
return $self->bnorm();
}
$self->{sign} = '+'; # a default sign
return $self->bnan() if $n->is_nan() || $d->is_nan();
# handle inf cases:
if ($n->is_inf() || $d->is_inf())
{
if ($n->is_inf())
{
return $self->bnan() if $d->is_inf(); # both are inf => NaN
my $s = '+'; # '+inf/+123' or '-inf/-123'
$s = '-' if substr($n->{sign},0,1) ne $d->{sign};
# +-inf/123 => +-inf
return $self->binf($s);
}
# 123/inf => 0
return $self->bzero();
}
}
}
return $self->bnorm();
}
# simple string input
if (($n =~ /[\.eE]/) && $n !~ /^0x/)
{
# looks like a float, quacks like a float, so probably is a float
$self->{sign} = 'NaN';
local $Math::BigFloat::accuracy = undef;
local $Math::BigFloat::precision = undef;
$self->_new_from_float(Math::BigFloat->new($n,undef,undef));
}
else
{
# for simple forms, use $MBI directly
if ($n =~ /^([+-]?)0*([0-9]+)\z/)
{
$self->{sign} = $1 || '+';
$self->{_n} = $MBI->_new($2 || 0);
$self->{_d} = $MBI->_one();
}
else
{
my $n = Math::BigInt->new($n,undef,undef);
$self->{_n} = $MBI->_copy($n->{value});
$self->{_d} = $MBI->_one();
$self->{sign} = $n->{sign};
return $self->bnan() if $self->{sign} eq 'NaN';
return $self->binf($self->{sign}) if $self->{sign} =~ /^[+-]inf$/;
}
}
$self->bnorm();
}
sub copy
{
# if two arguments, the first one is the class to "swallow" subclasses
my ($c,$x) = @_;
if (scalar @_ == 1)
{
$x = $_[0];
$c = ref($x);
}
return unless ref($x); # only for objects
my $self = bless {}, $c;
$self->{sign} = $x->{sign};
$self->{_d} = $MBI->_copy($x->{_d});
$self->{_n} = $MBI->_copy($x->{_n});
$self->{_a} = $x->{_a} if defined $x->{_a};
$self->{_p} = $x->{_p} if defined $x->{_p};
$self;
}
##############################################################################
sub config
{
# return (later set?) configuration data as hash ref
my $class = shift || 'Math::BigRat';
if (@_ == 1 && ref($_[0]) ne 'HASH')
{
my $cfg = $class->SUPER::config();
return $cfg->{$_[0]};
}
my $cfg = $class->SUPER::config(@_);
# now we need only to override the ones that are different from our parent
$cfg->{class} = $class;
$cfg->{with} = $MBI;
$cfg;
}
##############################################################################
sub bstr
{
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/) # inf, NaN etc
{
my $s = $x->{sign}; $s =~ s/^\+//; # +inf => inf
return $s;
}
my $s = ''; $s = $x->{sign} if $x->{sign} ne '+'; # '+3/2' => '3/2'
return $s . $MBI->_str($x->{_n}) if $MBI->_is_one($x->{_d});
$s . $MBI->_str($x->{_n}) . '/' . $MBI->_str($x->{_d});
}
sub bsstr
{
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
if ($x->{sign} !~ /^[+-]$/) # inf, NaN etc
{
my $s = $x->{sign}; $s =~ s/^\+//; # +inf => inf
return $s;
}
my $s = ''; $s = $x->{sign} if $x->{sign} ne '+'; # +3 vs 3
$s . $MBI->_str($x->{_n}) . '/' . $MBI->_str($x->{_d});
}
sub bnorm
{
# reduce the number to the shortest form
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
# Both parts must be objects of whatever we are using today.
if ( my $c = $MBI->_check($x->{_n}) )
{
require Carp; Carp::croak ("n did not pass the self-check ($c) in bnorm()");
}
if ( my $c = $MBI->_check($x->{_d}) )
{
require Carp; Carp::croak ("d did not pass the self-check ($c) in bnorm()");
}
# no normalize for NaN, inf etc.
return $x if $x->{sign} !~ /^[+-]$/;
# normalize zeros to 0/1
if ($MBI->_is_zero($x->{_n}))
{
$x->{sign} = '+'; # never leave a -0
$x->{_d} = $MBI->_one() unless $MBI->_is_one($x->{_d});
return $x;
}
return $x if $MBI->_is_one($x->{_d}); # no need to reduce
# reduce other numbers
my $gcd = $MBI->_copy($x->{_n});
$gcd = $MBI->_gcd($gcd,$x->{_d});
if (!$MBI->_is_one($gcd))
{
$x->{_n} = $MBI->_div($x->{_n},$gcd);
$x->{_d} = $MBI->_div($x->{_d},$gcd);
}
$x;
}
##############################################################################
# sign manipulation
sub bneg
{
# (BRAT or num_str) return BRAT
# negate number or make a negated number from string
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return $x if $x->modify('bneg');
# for +0 dont negate (to have always normalized +0). Does nothing for 'NaN'
$x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $MBI->_is_zero($x->{_n}));
$x;
}
##############################################################################
# special values
sub _bnan
{
# used by parent class bnan() to initialize number to NaN
my $self = shift;
if ($_trap_nan)
{
require Carp;
my $class = ref($self);
# "$self" below will stringify the object, this blows up if $self is a
# partial object (happens under trap_nan), so fix it beforehand
$self->{_d} = $MBI->_zero() unless defined $self->{_d};
$self->{_n} = $MBI->_zero() unless defined $self->{_n};
Carp::croak ("Tried to set $self to NaN in $class\::_bnan()");
}
$self->{_n} = $MBI->_zero();
$self->{_d} = $MBI->_zero();
}
sub _binf
{
# used by parent class bone() to initialize number to +inf/-inf
my $self = shift;
if ($_trap_inf)
{
require Carp;
my $class = ref($self);
# "$self" below will stringify the object, this blows up if $self is a
# partial object (happens under trap_nan), so fix it beforehand
$self->{_d} = $MBI->_zero() unless defined $self->{_d};
$self->{_n} = $MBI->_zero() unless defined $self->{_n};
Carp::croak ("Tried to set $self to inf in $class\::_binf()");
}
$self->{_n} = $MBI->_zero();
$self->{_d} = $MBI->_zero();
}
sub _bone
{
# used by parent class bone() to initialize number to +1/-1
my $self = shift;
$self->{_n} = $MBI->_one();
$self->{_d} = $MBI->_one();
}
sub _bzero
{
# used by parent class bzero() to initialize number to 0
my $self = shift;
$self->{_n} = $MBI->_zero();
$self->{_d} = $MBI->_one();
}
##############################################################################
# mul/add/div etc
sub badd
{
# add two rational numbers
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
# +inf + +inf => +inf, -inf + -inf => -inf
return $x->binf(substr($x->{sign},0,1))
if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
# +inf + -inf or -inf + +inf => NaN
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
# 1 1 gcd(3,4) = 1 1*3 + 1*4 7
# - + - = --------- = --
# 4 3 4*3 12
# we do not compute the gcd() here, but simple do:
# 5 7 5*3 + 7*4 43
# - + - = --------- = --
# 4 3 4*3 12
# and bnorm() will then take care of the rest
# 5 * 3
$x->{_n} = $MBI->_mul( $x->{_n}, $y->{_d});
# 7 * 4
my $m = $MBI->_mul( $MBI->_copy( $y->{_n} ), $x->{_d} );
# 5 * 3 + 7 * 4
($x->{_n}, $x->{sign}) = _e_add( $x->{_n}, $m, $x->{sign}, $y->{sign});
# 4 * 3
$x->{_d} = $MBI->_mul( $x->{_d}, $y->{_d});
# normalize result, and possible round
$x->bnorm()->round(@r);
}
sub bsub
{
# subtract two rational numbers
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
# flip sign of $x, call badd(), then flip sign of result
$x->{sign} =~ tr/+-/-+/
unless $x->{sign} eq '+' && $MBI->_is_zero($x->{_n}); # not -0
$x->badd($y,@r); # does norm and round
$x->{sign} =~ tr/+-/-+/
unless $x->{sign} eq '+' && $MBI->_is_zero($x->{_n}); # not -0
$x;
}
sub bmul
{
# multiply two rational numbers
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x->bnan() if ($x->{sign} eq 'NaN' || $y->{sign} eq 'NaN');
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
{
return $x->bnan() if $x->is_zero() || $y->is_zero();
# result will always be +-inf:
# +inf * +/+inf => +inf, -inf * -/-inf => +inf
# +inf * -/-inf => -inf, -inf * +/+inf => -inf
return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
return $x->binf('-');
}
# x== 0 # also: or y == 1 or y == -1
return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero();
# XXX TODO:
# According to Knuth, this can be optimized by doing gcd twice (for d and n)
# and reducing in one step. This would save us the bnorm() at the end.
# 1 2 1 * 2 2 1
# - * - = ----- = - = -
# 4 3 4 * 3 12 6
$x->{_n} = $MBI->_mul( $x->{_n}, $y->{_n});
$x->{_d} = $MBI->_mul( $x->{_d}, $y->{_d});
# compute new sign
$x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-';
$x->bnorm()->round(@r);
}
sub bdiv
{
# (dividend: BRAT or num_str, divisor: BRAT or num_str) return
# (BRAT,BRAT) (quo,rem) or BRAT (only rem)
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $self->_div_inf($x,$y)
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
# x== 0 # also: or y == 1 or y == -1
return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero();
# XXX TODO: list context, upgrade
# According to Knuth, this can be optimized by doing gcd twice (for d and n)
# and reducing in one step. This would save us the bnorm() at the end.
# 1 1 1 3
# - / - == - * -
# 4 3 4 1
$x->{_n} = $MBI->_mul( $x->{_n}, $y->{_d});
$x->{_d} = $MBI->_mul( $x->{_d}, $y->{_n});
# compute new sign
$x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-';
$x->bnorm()->round(@r);
$x;
}
sub bmod
{
# compute "remainder" (in Perl way) of $x / $y
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $self->_div_inf($x,$y)
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
return $x if $x->is_zero(); # 0 / 7 = 0, mod 0
# compute $x - $y * floor($x/$y), keeping the sign of $x
# copy x to u, make it positive and then do a normal division ($u/$y)
my $u = bless { sign => '+' }, $self;
$u->{_n} = $MBI->_mul( $MBI->_copy($x->{_n}), $y->{_d} );
$u->{_d} = $MBI->_mul( $MBI->_copy($x->{_d}), $y->{_n} );
# compute floor(u)
if (! $MBI->_is_one($u->{_d}))
{
$u->{_n} = $MBI->_div($u->{_n},$u->{_d}); # 22/7 => 3/1 w/ truncate
# no need to set $u->{_d} to 1, since below we set it to $y->{_d} anyway
}
# now compute $y * $u
$u->{_d} = $MBI->_copy($y->{_d}); # 1 * $y->{_d}, see floor above
$u->{_n} = $MBI->_mul($u->{_n},$y->{_n});
my $xsign = $x->{sign}; $x->{sign} = '+'; # remember sign and make x positive
# compute $x - $u
$x->bsub($u);
$x->{sign} = $xsign; # put sign back
$x->bnorm()->round(@r);
}
##############################################################################
# bdec/binc
sub bdec
{
# decrement value (subtract 1)
my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf
if ($x->{sign} eq '-')
{
$x->{_n} = $MBI->_add( $x->{_n}, $x->{_d}); # -5/2 => -7/2
}
else
{
if ($MBI->_acmp($x->{_n},$x->{_d}) < 0) # n < d?
{
# 1/3 -- => -2/3
$x->{_n} = $MBI->_sub( $MBI->_copy($x->{_d}), $x->{_n});
$x->{sign} = '-';
}
else
{
$x->{_n} = $MBI->_sub($x->{_n}, $x->{_d}); # 5/2 => 3/2
}
}
$x->bnorm()->round(@r);
}
sub binc
{
# increment value (add 1)
my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf
if ($x->{sign} eq '-')
{
if ($MBI->_acmp($x->{_n},$x->{_d}) < 0)
{
# -1/3 ++ => 2/3 (overflow at 0)
$x->{_n} = $MBI->_sub( $MBI->_copy($x->{_d}), $x->{_n});
$x->{sign} = '+';
}
else
{
$x->{_n} = $MBI->_sub($x->{_n}, $x->{_d}); # -5/2 => -3/2
}
}
else
{
$x->{_n} = $MBI->_add($x->{_n},$x->{_d}); # 5/2 => 7/2
}
$x->bnorm()->round(@r);
}
##############################################################################
# is_foo methods (the rest is inherited)
sub is_int
{
# return true if arg (BRAT or num_str) is an integer
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 1 if ($x->{sign} =~ /^[+-]$/) && # NaN and +-inf aren't
$MBI->_is_one($x->{_d}); # x/y && y != 1 => no integer
0;
}
sub is_zero
{
# return true if arg (BRAT or num_str) is zero
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 1 if $x->{sign} eq '+' && $MBI->_is_zero($x->{_n});
0;
}
sub is_one
{
# return true if arg (BRAT or num_str) is +1 or -1 if signis given
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
my $sign = $_[2] || ''; $sign = '+' if $sign ne '-';
return 1
if ($x->{sign} eq $sign && $MBI->_is_one($x->{_n}) && $MBI->_is_one($x->{_d}));
0;
}
sub is_odd
{
# return true if arg (BFLOAT or num_str) is odd or false if even
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 1 if ($x->{sign} =~ /^[+-]$/) && # NaN & +-inf aren't
($MBI->_is_one($x->{_d}) && $MBI->_is_odd($x->{_n})); # x/2 is not, but 3/1
0;
}
sub is_even
{
# return true if arg (BINT or num_str) is even or false if odd
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
return 1 if ($MBI->_is_one($x->{_d}) # x/3 is never
&& $MBI->_is_even($x->{_n})); # but 4/1 is
0;
}
##############################################################################
# parts() and friends
sub numerator
{
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
# NaN, inf, -inf
return Math::BigInt->new($x->{sign}) if ($x->{sign} !~ /^[+-]$/);
my $n = Math::BigInt->new($MBI->_str($x->{_n})); $n->{sign} = $x->{sign};
$n;
}
sub denominator
{
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
# NaN
return Math::BigInt->new($x->{sign}) if $x->{sign} eq 'NaN';
# inf, -inf
return Math::BigInt->bone() if $x->{sign} !~ /^[+-]$/;
Math::BigInt->new($MBI->_str($x->{_d}));
}
sub parts
{
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
my $c = 'Math::BigInt';
return ($c->bnan(),$c->bnan()) if $x->{sign} eq 'NaN';
return ($c->binf(),$c->binf()) if $x->{sign} eq '+inf';
return ($c->binf('-'),$c->binf()) if $x->{sign} eq '-inf';
my $n = $c->new( $MBI->_str($x->{_n}));
$n->{sign} = $x->{sign};
my $d = $c->new( $MBI->_str($x->{_d}));
($n,$d);
}
sub length
{
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return $nan unless $x->is_int();
$MBI->_len($x->{_n}); # length(-123/1) => length(123)
}
sub digit
{
my ($self,$x,$n) = ref($_[0]) ? (undef,$_[0],$_[1]) : objectify(1,@_);
return $nan unless $x->is_int();
$MBI->_digit($x->{_n},$n || 0); # digit(-123/1,2) => digit(123,2)
}
##############################################################################
# special calc routines
sub bceil
{
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
return $x if $x->{sign} !~ /^[+-]$/ || # not for NaN, inf
$MBI->_is_one($x->{_d}); # 22/1 => 22, 0/1 => 0
$x->{_n} = $MBI->_div($x->{_n},$x->{_d}); # 22/7 => 3/1 w/ truncate
$x->{_d} = $MBI->_one(); # d => 1
$x->{_n} = $MBI->_inc($x->{_n})
if $x->{sign} eq '+'; # +22/7 => 4/1
$x->{sign} = '+' if $MBI->_is_zero($x->{_n}); # -0 => 0
$x;
}
sub bfloor
{
my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
return $x if $x->{sign} !~ /^[+-]$/ || # not for NaN, inf
$MBI->_is_one($x->{_d}); # 22/1 => 22, 0/1 => 0
$x->{_n} = $MBI->_div($x->{_n},$x->{_d}); # 22/7 => 3/1 w/ truncate
$x->{_d} = $MBI->_one(); # d => 1
$x->{_n} = $MBI->_inc($x->{_n})
if $x->{sign} eq '-'; # -22/7 => -4/1
$x;
}
sub bfac
{
my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
# if $x is not an integer
if (($x->{sign} ne '+') || (!$MBI->_is_one($x->{_d})))
{
return $x->bnan();
}
$x->{_n} = $MBI->_fac($x->{_n});
# since _d is 1, we don't need to reduce/norm the result
$x->round(@r);
}
sub bpow
{
# power ($x ** $y)
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
return $x if $x->{sign} =~ /^[+-]inf$/; # -inf/+inf ** x
return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
return $x->bone(@r) if $y->is_zero();
return $x->round(@r) if $x->is_one() || $y->is_one();
if ($x->{sign} eq '-' && $MBI->_is_one($x->{_n}) && $MBI->_is_one($x->{_d}))
{
# if $x == -1 and odd/even y => +1/-1
return $y->is_odd() ? $x->round(@r) : $x->babs()->round(@r);
# my Casio FX-5500L has a bug here: -1 ** 2 is -1, but -1 * -1 is 1;
}
# 1 ** -y => 1 / (1 ** |y|)
# so do test for negative $y after above's clause
return $x->round(@r) if $x->is_zero(); # 0**y => 0 (if not y <= 0)
# shortcut if y == 1/N (is then sqrt() respective broot())
if ($MBI->_is_one($y->{_n}))
{
return $x->bsqrt(@r) if $MBI->_is_two($y->{_d}); # 1/2 => sqrt
return $x->broot($MBI->_str($y->{_d}),@r); # 1/N => root(N)
}
# shortcut y/1 (and/or x/1)
if ($MBI->_is_one($y->{_d}))
{
# shortcut for x/1 and y/1
if ($MBI->_is_one($x->{_d}))
{
$x->{_n} = $MBI->_pow($x->{_n},$y->{_n}); # x/1 ** y/1 => (x ** y)/1
if ($y->{sign} eq '-')
{
# 0.2 ** -3 => 1/(0.2 ** 3)
($x->{_n},$x->{_d}) = ($x->{_d},$x->{_n}); # swap
}
# correct sign; + ** + => +
if ($x->{sign} eq '-')
{
# - * - => +, - * - * - => -
$x->{sign} = '+' if $MBI->_is_even($y->{_n});
}
return $x->round(@r);
}
# x/z ** y/1
$x->{_n} = $MBI->_pow($x->{_n},$y->{_n}); # 5/2 ** y/1 => 5 ** y / 2 ** y
$x->{_d} = $MBI->_pow($x->{_d},$y->{_n});
if ($y->{sign} eq '-')
{
# 0.2 ** -3 => 1/(0.2 ** 3)
($x->{_n},$x->{_d}) = ($x->{_d},$x->{_n}); # swap
}
# correct sign; + ** + => +
if ($x->{sign} eq '-')
{
# - * - => +, - * - * - => -
$x->{sign} = '+' if $MBI->_is_even($y->{_n});
}
return $x->round(@r);
}
# print STDERR "# $x $y\n";
# otherwise:
# n/d n ______________
# a/b = -\/ (a/b) ** d
# (a/b) ** n == (a ** n) / (b ** n)
$MBI->_pow($x->{_n}, $y->{_n} );
$MBI->_pow($x->{_d}, $y->{_n} );
return $x->broot($MBI->_str($y->{_d}),@r); # n/d => root(n)
}
sub blog
{
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,$class,@_);
}
# blog(1,Y) => 0
return $x->bzero() if $x->is_one() && $y->{sign} eq '+';
# $x <= 0 => NaN
return $x->bnan() if $x->is_zero() || $x->{sign} ne '+' || $y->{sign} ne '+';
if ($x->is_int() && $y->is_int())
{
return $self->new($x->as_number()->blog($y->as_number(),@r));
}
# do it with floats
$x->_new_from_float( $x->_as_float()->blog(Math::BigFloat->new("$y"),@r) );
}
sub bexp
{
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,$class,@_);
}
return $x->binf(@r) if $x->{sign} eq '+inf';
return $x->bzero(@r) if $x->{sign} eq '-inf';
# we need to limit the accuracy to protect against overflow
my $fallback = 0;
my ($scale,@params);
($x,@params) = $x->_find_round_parameters(@r);
# also takes care of the "error in _find_round_parameters?" case
return $x if $x->{sign} eq 'NaN';
# no rounding at all, so must use fallback
if (scalar @params == 0)
{
# simulate old behaviour
$params[0] = $self->div_scale(); # and round to it as accuracy
$params[1] = undef; # P = undef
$scale = $params[0]+4; # at least four more for proper round
$params[2] = $r[2]; # round mode by caller or undef
$fallback = 1; # to clear a/p afterwards
}
else
{
# the 4 below is empirical, and there might be cases where it's not enough...
$scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
}
return $x->bone(@params) if $x->is_zero();
# See the comments in Math::BigFloat on how this algorithm works.
# Basically we calculate A and B (where B is faculty(N)) so that A/B = e
my $x_org = $x->copy();
if ($scale <= 75)
{
# set $x directly from a cached string form
$x->{_n} = $MBI->_new("90933395208605785401971970164779391644753259799242");
$x->{_d} = $MBI->_new("33452526613163807108170062053440751665152000000000");
$x->{sign} = '+';
}
else
{
# compute A and B so that e = A / B.
# After some terms we end up with this, so we use it as a starting point:
my $A = $MBI->_new("90933395208605785401971970164779391644753259799242");
my $F = $MBI->_new(42); my $step = 42;
# Compute how many steps we need to take to get $A and $B sufficiently big
my $steps = Math::BigFloat::_len_to_steps($scale - 4);
# print STDERR "# Doing $steps steps for ", $scale-4, " digits\n";
while ($step++ <= $steps)
{
# calculate $a * $f + 1
$A = $MBI->_mul($A, $F);
$A = $MBI->_inc($A);
# increment f
$F = $MBI->_inc($F);
}
# compute $B as factorial of $steps (this is faster than doing it manually)
my $B = $MBI->_fac($MBI->_new($steps));
# print "A ", $MBI->_str($A), "\nB ", $MBI->_str($B), "\n";
$x->{_n} = $A;
$x->{_d} = $B;
$x->{sign} = '+';
}
# $x contains now an estimate of e, with some surplus digits, so we can round
if (!$x_org->is_one())
{
# raise $x to the wanted power and round it in one step:
$x->bpow($x_org, @params);
}
else
{
# else just round the already computed result
delete $x->{_a}; delete $x->{_p};
# shortcut to not run through _find_round_parameters again
if (defined $params[0])
{
$x->bround($params[0],$params[2]); # then round accordingly
}
else
{
$x->bfround($params[1],$params[2]); # then round accordingly
}
}
if ($fallback)
{
# clear a/p after round, since user did not request it
delete $x->{_a}; delete $x->{_p};
}
$x;
}
sub bnok
{
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,$class,@_);
}
# do it with floats
$x->_new_from_float( $x->_as_float()->bnok(Math::BigFloat->new("$y"),@r) );
}
sub _float_from_part
{
my $x = shift;
my $f = Math::BigFloat->bzero();
$f->{_m} = $MBI->_copy($x);
$f->{_e} = $MBI->_zero();
$f;
}
sub _as_float
{
my $x = shift;
local $Math::BigFloat::upgrade = undef;
local $Math::BigFloat::accuracy = undef;
local $Math::BigFloat::precision = undef;
# 22/7 => 3.142857143..
my $a = $x->accuracy() || 0;
if ($a != 0 || !$MBI->_is_one($x->{_d}))
{
# n/d
return scalar Math::BigFloat->new($x->{sign} . $MBI->_str($x->{_n}))->bdiv( $MBI->_str($x->{_d}), $x->accuracy());
}
# just n
Math::BigFloat->new($x->{sign} . $MBI->_str($x->{_n}));
}
sub broot
{
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
if ($x->is_int() && $y->is_int())
{
return $self->new($x->as_number()->broot($y->as_number(),@r));
}
# do it with floats
$x->_new_from_float( $x->_as_float()->broot($y->_as_float(),@r) )->bnorm()->bround(@r);
}
sub bmodpow
{
# set up parameters
my ($self,$x,$y,$m,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,$m,@r) = objectify(3,@_);
}
# $x or $y or $m are NaN or +-inf => NaN
return $x->bnan()
if $x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/ ||
$m->{sign} !~ /^[+-]$/;
if ($x->is_int() && $y->is_int() && $m->is_int())
{
return $self->new($x->as_number()->bmodpow($y->as_number(),$m,@r));
}
warn ("bmodpow() not fully implemented");
$x->bnan();
}
sub bmodinv
{
# set up parameters
my ($self,$x,$y,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y,@r) = objectify(2,@_);
}
# $x or $y are NaN or +-inf => NaN
return $x->bnan()
if $x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/;
if ($x->is_int() && $y->is_int())
{
return $self->new($x->as_number()->bmodinv($y->as_number(),@r));
}
warn ("bmodinv() not fully implemented");
$x->bnan();
}
sub bsqrt
{
my ($self,$x,@r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
return $x->bnan() if $x->{sign} !~ /^[+]/; # NaN, -inf or < 0
return $x if $x->{sign} eq '+inf'; # sqrt(inf) == inf
return $x->round(@r) if $x->is_zero() || $x->is_one();
local $Math::BigFloat::upgrade = undef;
local $Math::BigFloat::downgrade = undef;
local $Math::BigFloat::precision = undef;
local $Math::BigFloat::accuracy = undef;
local $Math::BigInt::upgrade = undef;
local $Math::BigInt::precision = undef;
local $Math::BigInt::accuracy = undef;
$x->{_n} = _float_from_part( $x->{_n} )->bsqrt();
$x->{_d} = _float_from_part( $x->{_d} )->bsqrt();
# XXX TODO: we probably can optimze this:
# if sqrt(D) was not integer
if ($x->{_d}->{_es} ne '+')
{
$x->{_n}->blsft($x->{_d}->exponent()->babs(),10); # 7.1/4.51 => 7.1/45.1
$x->{_d} = $MBI->_copy( $x->{_d}->{_m} ); # 7.1/45.1 => 71/45.1
}
# if sqrt(N) was not integer
if ($x->{_n}->{_es} ne '+')
{
$x->{_d}->blsft($x->{_n}->exponent()->babs(),10); # 71/45.1 => 710/45.1
$x->{_n} = $MBI->_copy( $x->{_n}->{_m} ); # 710/45.1 => 710/451
}
# convert parts to $MBI again
$x->{_n} = $MBI->_lsft( $MBI->_copy( $x->{_n}->{_m} ), $x->{_n}->{_e}, 10)
if ref($x->{_n}) ne $MBI && ref($x->{_n}) ne 'ARRAY';
$x->{_d} = $MBI->_lsft( $MBI->_copy( $x->{_d}->{_m} ), $x->{_d}->{_e}, 10)
if ref($x->{_d}) ne $MBI && ref($x->{_d}) ne 'ARRAY';
$x->bnorm()->round(@r);
}
sub blsft
{
my ($self,$x,$y,$b,@r) = objectify(3,@_);
$b = 2 unless defined $b;
$b = $self->new($b) unless ref ($b);
$x->bmul( $b->copy()->bpow($y), @r);
$x;
}
sub brsft
{
my ($self,$x,$y,$b,@r) = objectify(3,@_);
$b = 2 unless defined $b;
$b = $self->new($b) unless ref ($b);
$x->bdiv( $b->copy()->bpow($y), @r);
$x;
}
##############################################################################
# round
sub round
{
$_[0];
}
sub bround
{
$_[0];
}
sub bfround
{
$_[0];
}
##############################################################################
# comparing
sub bcmp
{
# compare two signed numbers
# set up parameters
my ($self,$x,$y) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y) = objectify(2,@_);
}
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
# handle +-inf and NaN
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
return +1 if $x->{sign} eq '+inf';
return -1 if $x->{sign} eq '-inf';
return -1 if $y->{sign} eq '+inf';
return +1;
}
# check sign for speed first
return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0
# shortcut
my $xz = $MBI->_is_zero($x->{_n});
my $yz = $MBI->_is_zero($y->{_n});
return 0 if $xz && $yz; # 0 <=> 0
return -1 if $xz && $y->{sign} eq '+'; # 0 <=> +y
return 1 if $yz && $x->{sign} eq '+'; # +x <=> 0
my $t = $MBI->_mul( $MBI->_copy($x->{_n}), $y->{_d});
my $u = $MBI->_mul( $MBI->_copy($y->{_n}), $x->{_d});
my $cmp = $MBI->_acmp($t,$u); # signs are equal
$cmp = -$cmp if $x->{sign} eq '-'; # both are '-' => reverse
$cmp;
}
sub bacmp
{
# compare two numbers (as unsigned)
# set up parameters
my ($self,$x,$y) = (ref($_[0]),@_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
{
($self,$x,$y) = objectify(2,$class,@_);
}
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
{
# handle +-inf and NaN
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/;
return -1;
}
my $t = $MBI->_mul( $MBI->_copy($x->{_n}), $y->{_d});
my $u = $MBI->_mul( $MBI->_copy($y->{_n}), $x->{_d});
$MBI->_acmp($t,$u); # ignore signs
}
##############################################################################
# output conversation
sub numify
{
# convert 17/8 => float (aka 2.125)
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, NaN, etc
# N/1 => N
my $neg = ''; $neg = '-' if $x->{sign} eq '-';
return $neg . $MBI->_num($x->{_n}) if $MBI->_is_one($x->{_d});
$x->_as_float()->numify() + 0.0;
}
sub as_number
{
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
# NaN, inf etc
return Math::BigInt->new($x->{sign}) if $x->{sign} !~ /^[+-]$/;
my $u = Math::BigInt->bzero();
$u->{sign} = $x->{sign};
$u->{value} = $MBI->_div( $MBI->_copy($x->{_n}), $x->{_d}); # 22/7 => 3
$u;
}
sub as_float
{
# return N/D as Math::BigFloat
# set up parameters
my ($self,$x,@r) = (ref($_[0]),@_);
# objectify is costly, so avoid it
($self,$x,@r) = objectify(1,$class,@_) unless ref $_[0];
# NaN, inf etc
return Math::BigFloat->new($x->{sign}) if $x->{sign} !~ /^[+-]$/;
my $u = Math::BigFloat->bzero();
$u->{sign} = $x->{sign};
# n
$u->{_m} = $MBI->_copy($x->{_n});
$u->{_e} = $MBI->_zero();
$u->bdiv( $MBI->_str($x->{_d}), @r);
# return $u
$u;
}
sub as_bin
{
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return $x unless $x->is_int();
my $s = $x->{sign}; $s = '' if $s eq '+';
$s . $MBI->_as_bin($x->{_n});
}
sub as_hex
{
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return $x unless $x->is_int();
my $s = $x->{sign}; $s = '' if $s eq '+';
$s . $MBI->_as_hex($x->{_n});
}
sub as_oct
{
my ($self,$x) = ref($_[0]) ? (undef,$_[0]) : objectify(1,@_);
return $x unless $x->is_int();
my $s = $x->{sign}; $s = '' if $s eq '+';
$s . $MBI->_as_oct($x->{_n});
}
##############################################################################
sub from_hex
{
my $class = shift;
$class->new(@_);
}
sub from_bin
{
my $class = shift;
$class->new(@_);
}
sub from_oct
{
my $class = shift;
my @parts;
for my $c (@_)
{
push @parts, Math::BigInt->from_oct($c);
}
$class->new ( @parts );
}
##############################################################################
# import
sub import
{
my $self = shift;
my $l = scalar @_;
my $lib = ''; my @a;
my $try = 'try';
for ( my $i = 0; $i < $l ; $i++)
{
if ( $_[$i] eq ':constant' )
{
# this rest causes overlord er load to step in
overload::constant float => sub { $self->new(shift); };
}
# elsif ($_[$i] eq 'upgrade')
# {
# # this causes upgrading
# $upgrade = $_[$i+1]; # or undef to disable
# $i++;
# }
elsif ($_[$i] eq 'downgrade')
{
# this causes downgrading
$downgrade = $_[$i+1]; # or undef to disable
$i++;
}
elsif ($_[$i] =~ /^(lib|try|only)\z/)
{
$lib = $_[$i+1] || ''; # default Calc
$try = $1; # lib, try or only
$i++;
}
elsif ($_[$i] eq 'with')
{
# this argument is no longer used
#$MBI = $_[$i+1] || 'Math::BigInt::Calc'; # default Math::BigInt::Calc
$i++;
}
else
{
push @a, $_[$i];
}
}
require Math::BigInt;
# let use Math::BigInt lib => 'GMP'; use Math::BigRat; still have GMP
if ($lib ne '')
{
my @c = split /\s*,\s*/, $lib;
foreach (@c)
{
$_ =~ tr/a-zA-Z0-9://cd; # limit to sane characters
}
$lib = join(",", @c);
}
my @import = ('objectify');
push @import, $try => $lib if $lib ne '';
# MBI already loaded, so feed it our lib arguments
Math::BigInt->import( @import );
$MBI = Math::BigFloat->config()->{lib};
# register us with MBI to get notified of future lib changes
Math::BigInt::_register_callback( $self, sub { $MBI = $_[0]; } );
# any non :constant stuff is handled by our parent, Exporter (loaded
# by Math::BigFloat, even if @_ is empty, to give it a chance
$self->SUPER::import(@a); # for subclasses
$self->export_to_level(1,$self,@a); # need this, too
}
1;
__END__
=head1 NAME
Math::BigRat - Arbitrary big rational numbers
=head1 SYNOPSIS
use Math::BigRat;
my $x = Math::BigRat->new('3/7'); $x += '5/9';
print $x->bstr(),"\n";
print $x ** 2,"\n";
my $y = Math::BigRat->new('inf');
print "$y ", ($y->is_inf ? 'is' : 'is not') , " infinity\n";
my $z = Math::BigRat->new(144); $z->bsqrt();
=head1 DESCRIPTION
Math::BigRat complements Math::BigInt and Math::BigFloat by providing support
for arbitrary big rational numbers.
=head2 MATH LIBRARY
You can change the underlying module that does the low-level
math operations by using:
use Math::BigRat try => 'GMP';
Note: This needs Math::BigInt::GMP installed.
The following would first try to find Math::BigInt::Foo, then
Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
use Math::BigRat try => 'Foo,Math::BigInt::Bar';
If you want to get warned when the fallback occurs, replace "try" with
"lib":
use Math::BigRat lib => 'Foo,Math::BigInt::Bar';
If you want the code to die instead, replace "try" with
"only":
use Math::BigRat only => 'Foo,Math::BigInt::Bar';
=head1 METHODS
Any methods not listed here are derived from Math::BigFloat (or
Math::BigInt), so make sure you check these two modules for further
information.
=head2 new()
$x = Math::BigRat->new('1/3');
Create a new Math::BigRat object. Input can come in various forms:
$x = Math::BigRat->new(123); # scalars
$x = Math::BigRat->new('inf'); # infinity
$x = Math::BigRat->new('123.3'); # float
$x = Math::BigRat->new('1/3'); # simple string
$x = Math::BigRat->new('1 / 3'); # spaced
$x = Math::BigRat->new('1 / 0.1'); # w/ floats
$x = Math::BigRat->new(Math::BigInt->new(3)); # BigInt
$x = Math::BigRat->new(Math::BigFloat->new('3.1')); # BigFloat
$x = Math::BigRat->new(Math::BigInt::Lite->new('2')); # BigLite
# You can also give D and N as different objects:
$x = Math::BigRat->new(
Math::BigInt->new(-123),
Math::BigInt->new(7),
); # => -123/7
=head2 numerator()
$n = $x->numerator();
Returns a copy of the numerator (the part above the line) as signed BigInt.
=head2 denominator()
$d = $x->denominator();
Returns a copy of the denominator (the part under the line) as positive BigInt.
=head2 parts()
($n,$d) = $x->parts();
Return a list consisting of (signed) numerator and (unsigned) denominator as
BigInts.
=head2 numify()
my $y = $x->numify();
Returns the object as a scalar. This will lose some data if the object
cannot be represented by a normal Perl scalar (integer or float), so
use L<as_int()> or L<as_float()> instead.
This routine is automatically used whenever a scalar is required:
my $x = Math::BigRat->new('3/1');
@array = (0,1,2,3);
$y = $array[$x]; # set $y to 3
=head2 as_int()/as_number()
$x = Math::BigRat->new('13/7');
print $x->as_int(),"\n"; # '1'
Returns a copy of the object as BigInt, truncated to an integer.
C<as_number()> is an alias for C<as_int()>.
=head2 as_float()
$x = Math::BigRat->new('13/7');
print $x->as_float(),"\n"; # '1'
$x = Math::BigRat->new('2/3');
print $x->as_float(5),"\n"; # '0.66667'
Returns a copy of the object as BigFloat, preserving the
accuracy as wanted, or the default of 40 digits.
This method was added in v0.22 of Math::BigRat (April 2008).
=head2 as_hex()
$x = Math::BigRat->new('13');
print $x->as_hex(),"\n"; # '0xd'
Returns the BigRat as hexadecimal string. Works only for integers.
=head2 as_bin()
$x = Math::BigRat->new('13');
print $x->as_bin(),"\n"; # '0x1101'
Returns the BigRat as binary string. Works only for integers.
=head2 as_oct()
$x = Math::BigRat->new('13');
print $x->as_oct(),"\n"; # '015'
Returns the BigRat as octal string. Works only for integers.
=head2 from_hex()/from_bin()/from_oct()
my $h = Math::BigRat->from_hex('0x10');
my $b = Math::BigRat->from_bin('0b10000000');
my $o = Math::BigRat->from_oct('020');
Create a BigRat from an hexadecimal, binary or octal number
in string form.
=head2 length()
$len = $x->length();
Return the length of $x in digits for integer values.
=head2 digit()
print Math::BigRat->new('123/1')->digit(1); # 1
print Math::BigRat->new('123/1')->digit(-1); # 3
Return the N'ths digit from X when X is an integer value.
=head2 bnorm()
$x->bnorm();
Reduce the number to the shortest form. This routine is called
automatically whenever it is needed.
=head2 bfac()
$x->bfac();
Calculates the factorial of $x. For instance:
print Math::BigRat->new('3/1')->bfac(),"\n"; # 1*2*3
print Math::BigRat->new('5/1')->bfac(),"\n"; # 1*2*3*4*5
Works currently only for integers.
=head2 bround()/round()/bfround()
Are not yet implemented.
=head2 bmod()
use Math::BigRat;
my $x = Math::BigRat->new('7/4');
my $y = Math::BigRat->new('4/3');
print $x->bmod($y);
Set $x to the remainder of the division of $x by $y.
=head2 bneg()
$x->bneg();
Used to negate the object in-place.
=head2 is_one()
print "$x is 1\n" if $x->is_one();
Return true if $x is exactly one, otherwise false.
=head2 is_zero()
print "$x is 0\n" if $x->is_zero();
Return true if $x is exactly zero, otherwise false.
=head2 is_pos()/is_positive()
print "$x is >= 0\n" if $x->is_positive();
Return true if $x is positive (greater than or equal to zero), otherwise
false. Please note that '+inf' is also positive, while 'NaN' and '-inf' aren't.
C<is_positive()> is an alias for C<is_pos()>.
=head2 is_neg()/is_negative()
print "$x is < 0\n" if $x->is_negative();
Return true if $x is negative (smaller than zero), otherwise false. Please
note that '-inf' is also negative, while 'NaN' and '+inf' aren't.
C<is_negative()> is an alias for C<is_neg()>.
=head2 is_int()
print "$x is an integer\n" if $x->is_int();
Return true if $x has a denominator of 1 (e.g. no fraction parts), otherwise
false. Please note that '-inf', 'inf' and 'NaN' aren't integer.
=head2 is_odd()
print "$x is odd\n" if $x->is_odd();
Return true if $x is odd, otherwise false.
=head2 is_even()
print "$x is even\n" if $x->is_even();
Return true if $x is even, otherwise false.
=head2 bceil()
$x->bceil();
Set $x to the next bigger integer value (e.g. truncate the number to integer
and then increment it by one).
=head2 bfloor()
$x->bfloor();
Truncate $x to an integer value.
=head2 bsqrt()
$x->bsqrt();
Calculate the square root of $x.
=head2 broot()
$x->broot($n);
Calculate the N'th root of $x.
=head2 badd()/bmul()/bsub()/bdiv()/bdec()/binc()
Please see the documentation in L<Math::BigInt>.
=head2 copy()
my $z = $x->copy();
Makes a deep copy of the object.
Please see the documentation in L<Math::BigInt> for further details.
=head2 bstr()/bsstr()
my $x = Math::BigInt->new('8/4');
print $x->bstr(),"\n"; # prints 1/2
print $x->bsstr(),"\n"; # prints 1/2
Return a string representing this object.
=head2 bacmp()/bcmp()
Used to compare numbers.
Please see the documentation in L<Math::BigInt> for further details.
=head2 blsft()/brsft()
Used to shift numbers left/right.
Please see the documentation in L<Math::BigInt> for further details.
=head2 bpow()
$x->bpow($y);
Compute $x ** $y.
Please see the documentation in L<Math::BigInt> for further details.
=head2 bexp()
$x->bexp($accuracy); # calculate e ** X
Calculates two integers A and B so that A/B is equal to C<e ** $x>, where C<e> is
Euler's number.
This method was added in v0.20 of Math::BigRat (May 2007).
See also L<blog()>.
=head2 bnok()
$x->bnok($y); # x over y (binomial coefficient n over k)
Calculates the binomial coefficient n over k, also called the "choose"
function. The result is equivalent to:
( n ) n!
| - | = -------
( k ) k!(n-k)!
This method was added in v0.20 of Math::BigRat (May 2007).
=head2 config()
use Data::Dumper;
print Dumper ( Math::BigRat->config() );
print Math::BigRat->config()->{lib},"\n";
Returns a hash containing the configuration, e.g. the version number, lib
loaded etc. The following hash keys are currently filled in with the
appropriate information.
key RO/RW Description
Example
============================================================
lib RO Name of the Math library
Math::BigInt::Calc
lib_version RO Version of 'lib'
0.30
class RO The class of config you just called
Math::BigRat
version RO version number of the class you used
0.10
upgrade RW To which class numbers are upgraded
undef
downgrade RW To which class numbers are downgraded
undef
precision RW Global precision
undef
accuracy RW Global accuracy
undef
round_mode RW Global round mode
even
div_scale RW Fallback accuracy for div
40
trap_nan RW Trap creation of NaN (undef = no)
undef
trap_inf RW Trap creation of +inf/-inf (undef = no)
undef
By passing a reference to a hash you may set the configuration values. This
works only for values that a marked with a C<RW> above, anything else is
read-only.
=head2 objectify()
This is an internal routine that turns scalars into objects.
=head1 BUGS
Some things are not yet implemented, or only implemented half-way:
=over 2
=item inf handling (partial)
=item NaN handling (partial)
=item rounding (not implemented except for bceil/bfloor)
=item $x ** $y where $y is not an integer
=item bmod(), blog(), bmodinv() and bmodpow() (partial)
=back
=head1 LICENSE
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
=head1 SEE ALSO
L<Math::BigFloat> and L<Math::Big> as well as L<Math::BigInt::BitVect>,
L<Math::BigInt::Pari> and L<Math::BigInt::GMP>.
See L<http://search.cpan.org/search?dist=bignum> for a way to use
Math::BigRat.
The package at L<http://search.cpan.org/search?dist=Math%3A%3ABigRat>
may contain more documentation and examples as well as testcases.
=head1 AUTHORS
(C) by Tels L<http://bloodgate.com/> 2001 - 2009.
Currently maintained by Jonathan "Duke" Leto <jonathan@leto.net> L<http://leto.net>
=cut
|