1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
|
package Math::BigInt;
#
# "Mike had an infinite amount to do and a negative amount of time in which
# to do it." - Before and After
#
# The following hash values are used:
# value: unsigned int with actual value (as a Math::BigInt::Calc or similar)
# sign : +, -, NaN, +inf, -inf
# _a : accuracy
# _p : precision
# Remember not to take shortcuts ala $xs = $x->{value}; $CALC->foo($xs); since
# underlying lib might change the reference!
use 5.006001;
use strict;
use warnings;
use Carp ();
our $VERSION = '1.999811';
our @ISA = qw(Exporter);
our @EXPORT_OK = qw(objectify bgcd blcm);
my $class = "Math::BigInt";
# Inside overload, the first arg is always an object. If the original code had
# it reversed (like $x = 2 * $y), then the third parameter is true.
# In some cases (like add, $x = $x + 2 is the same as $x = 2 + $x) this makes
# no difference, but in some cases it does.
# For overloaded ops with only one argument we simple use $_[0]->copy() to
# preserve the argument.
# Thus inheritance of overload operators becomes possible and transparent for
# our subclasses without the need to repeat the entire overload section there.
use overload
# overload key: with_assign
'+' => sub { $_[0] -> copy() -> badd($_[1]); },
'-' => sub { my $c = $_[0] -> copy;
$_[2] ? $c -> bneg() -> badd($_[1])
: $c -> bsub($_[1]); },
'*' => sub { $_[0] -> copy() -> bmul($_[1]); },
'/' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bdiv($_[0])
: $_[0] -> copy -> bdiv($_[1]); },
'%' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bmod($_[0])
: $_[0] -> copy -> bmod($_[1]); },
'**' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bpow($_[0])
: $_[0] -> copy -> bpow($_[1]); },
'<<' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> blsft($_[0])
: $_[0] -> copy -> blsft($_[1]); },
'>>' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> brsft($_[0])
: $_[0] -> copy -> brsft($_[1]); },
# overload key: assign
'+=' => sub { $_[0]->badd($_[1]); },
'-=' => sub { $_[0]->bsub($_[1]); },
'*=' => sub { $_[0]->bmul($_[1]); },
'/=' => sub { scalar $_[0]->bdiv($_[1]); },
'%=' => sub { $_[0]->bmod($_[1]); },
'**=' => sub { $_[0]->bpow($_[1]); },
'<<=' => sub { $_[0]->blsft($_[1]); },
'>>=' => sub { $_[0]->brsft($_[1]); },
# 'x=' => sub { },
# '.=' => sub { },
# overload key: num_comparison
'<' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> blt($_[0])
: $_[0] -> blt($_[1]); },
'<=' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> ble($_[0])
: $_[0] -> ble($_[1]); },
'>' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bgt($_[0])
: $_[0] -> bgt($_[1]); },
'>=' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bge($_[0])
: $_[0] -> bge($_[1]); },
'==' => sub { $_[0] -> beq($_[1]); },
'!=' => sub { $_[0] -> bne($_[1]); },
# overload key: 3way_comparison
'<=>' => sub { my $cmp = $_[0] -> bcmp($_[1]);
defined($cmp) && $_[2] ? -$cmp : $cmp; },
'cmp' => sub { $_[2] ? "$_[1]" cmp $_[0] -> bstr()
: $_[0] -> bstr() cmp "$_[1]"; },
# overload key: str_comparison
# 'lt' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrlt($_[0])
# : $_[0] -> bstrlt($_[1]); },
#
# 'le' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrle($_[0])
# : $_[0] -> bstrle($_[1]); },
#
# 'gt' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrgt($_[0])
# : $_[0] -> bstrgt($_[1]); },
#
# 'ge' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bstrge($_[0])
# : $_[0] -> bstrge($_[1]); },
#
# 'eq' => sub { $_[0] -> bstreq($_[1]); },
#
# 'ne' => sub { $_[0] -> bstrne($_[1]); },
# overload key: binary
'&' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> band($_[0])
: $_[0] -> copy -> band($_[1]); },
'&=' => sub { $_[0] -> band($_[1]); },
'|' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bior($_[0])
: $_[0] -> copy -> bior($_[1]); },
'|=' => sub { $_[0] -> bior($_[1]); },
'^' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> bxor($_[0])
: $_[0] -> copy -> bxor($_[1]); },
'^=' => sub { $_[0] -> bxor($_[1]); },
# '&.' => sub { },
# '&.=' => sub { },
# '|.' => sub { },
# '|.=' => sub { },
# '^.' => sub { },
# '^.=' => sub { },
# overload key: unary
'neg' => sub { $_[0] -> copy() -> bneg(); },
# '!' => sub { },
'~' => sub { $_[0] -> copy() -> bnot(); },
# '~.' => sub { },
# overload key: mutators
'++' => sub { $_[0] -> binc() },
'--' => sub { $_[0] -> bdec() },
# overload key: func
'atan2' => sub { $_[2] ? ref($_[0]) -> new($_[1]) -> batan2($_[0])
: $_[0] -> copy() -> batan2($_[1]); },
'cos' => sub { $_[0] -> copy -> bcos(); },
'sin' => sub { $_[0] -> copy -> bsin(); },
'exp' => sub { $_[0] -> copy() -> bexp($_[1]); },
'abs' => sub { $_[0] -> copy() -> babs(); },
'log' => sub { $_[0] -> copy() -> blog(); },
'sqrt' => sub { $_[0] -> copy() -> bsqrt(); },
'int' => sub { $_[0] -> copy() -> bint(); },
# overload key: conversion
'bool' => sub { $_[0] -> is_zero() ? '' : 1; },
'""' => sub { $_[0] -> bstr(); },
'0+' => sub { $_[0] -> numify(); },
'=' => sub { $_[0]->copy(); },
;
##############################################################################
# global constants, flags and accessory
# These vars are public, but their direct usage is not recommended, use the
# accessor methods instead
our $round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'
our $accuracy = undef;
our $precision = undef;
our $div_scale = 40;
our $upgrade = undef; # default is no upgrade
our $downgrade = undef; # default is no downgrade
# These are internally, and not to be used from the outside at all
our $_trap_nan = 0; # are NaNs ok? set w/ config()
our $_trap_inf = 0; # are infs ok? set w/ config()
my $nan = 'NaN'; # constants for easier life
my $CALC = 'Math::BigInt::Calc'; # module to do the low level math
# default is Calc.pm
my $IMPORT = 0; # was import() called yet?
# used to make require work
my %WARN; # warn only once for low-level libs
my %CAN; # cache for $CALC->can(...)
my %CALLBACKS; # callbacks to notify on lib loads
my $EMU_LIB = 'Math/BigInt/CalcEmu.pm'; # emulate low-level math
##############################################################################
# the old code had $rnd_mode, so we need to support it, too
our $rnd_mode = 'even';
sub TIESCALAR {
my ($class) = @_;
bless \$round_mode, $class;
}
sub FETCH {
return $round_mode;
}
sub STORE {
$rnd_mode = $_[0]->round_mode($_[1]);
}
BEGIN {
# tie to enable $rnd_mode to work transparently
tie $rnd_mode, 'Math::BigInt';
# set up some handy alias names
*as_int = \&as_number;
*is_pos = \&is_positive;
*is_neg = \&is_negative;
}
###############################################################################
# Configuration methods
###############################################################################
sub round_mode {
no strict 'refs';
# make Class->round_mode() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
if (defined $_[0]) {
my $m = shift;
if ($m !~ /^(even|odd|\+inf|\-inf|zero|trunc|common)$/) {
Carp::croak("Unknown round mode '$m'");
}
return ${"${class}::round_mode"} = $m;
}
${"${class}::round_mode"};
}
sub upgrade {
no strict 'refs';
# make Class->upgrade() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
# need to set new value?
if (@_ > 0) {
return ${"${class}::upgrade"} = $_[0];
}
${"${class}::upgrade"};
}
sub downgrade {
no strict 'refs';
# make Class->downgrade() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
# need to set new value?
if (@_ > 0) {
return ${"${class}::downgrade"} = $_[0];
}
${"${class}::downgrade"};
}
sub div_scale {
no strict 'refs';
# make Class->div_scale() work
my $self = shift;
my $class = ref($self) || $self || __PACKAGE__;
if (defined $_[0]) {
if ($_[0] < 0) {
Carp::croak('div_scale must be greater than zero');
}
${"${class}::div_scale"} = $_[0];
}
${"${class}::div_scale"};
}
sub accuracy {
# $x->accuracy($a); ref($x) $a
# $x->accuracy(); ref($x)
# Class->accuracy(); class
# Class->accuracy($a); class $a
my $x = shift;
my $class = ref($x) || $x || __PACKAGE__;
no strict 'refs';
# need to set new value?
if (@_ > 0) {
my $a = shift;
# convert objects to scalars to avoid deep recursion. If object doesn't
# have numify(), then hopefully it will have overloading for int() and
# boolean test without wandering into a deep recursion path...
$a = $a->numify() if ref($a) && $a->can('numify');
if (defined $a) {
# also croak on non-numerical
if (!$a || $a <= 0) {
Carp::croak('Argument to accuracy must be greater than zero');
}
if (int($a) != $a) {
Carp::croak('Argument to accuracy must be an integer');
}
}
if (ref($x)) {
# $object->accuracy() or fallback to global
$x->bround($a) if $a; # not for undef, 0
$x->{_a} = $a; # set/overwrite, even if not rounded
delete $x->{_p}; # clear P
$a = ${"${class}::accuracy"} unless defined $a; # proper return value
} else {
${"${class}::accuracy"} = $a; # set global A
${"${class}::precision"} = undef; # clear global P
}
return $a; # shortcut
}
my $a;
# $object->accuracy() or fallback to global
$a = $x->{_a} if ref($x);
# but don't return global undef, when $x's accuracy is 0!
$a = ${"${class}::accuracy"} if !defined $a;
$a;
}
sub precision {
# $x->precision($p); ref($x) $p
# $x->precision(); ref($x)
# Class->precision(); class
# Class->precision($p); class $p
my $x = shift;
my $class = ref($x) || $x || __PACKAGE__;
no strict 'refs';
if (@_ > 0) {
my $p = shift;
# convert objects to scalars to avoid deep recursion. If object doesn't
# have numify(), then hopefully it will have overloading for int() and
# boolean test without wandering into a deep recursion path...
$p = $p->numify() if ref($p) && $p->can('numify');
if ((defined $p) && (int($p) != $p)) {
Carp::croak('Argument to precision must be an integer');
}
if (ref($x)) {
# $object->precision() or fallback to global
$x->bfround($p) if $p; # not for undef, 0
$x->{_p} = $p; # set/overwrite, even if not rounded
delete $x->{_a}; # clear A
$p = ${"${class}::precision"} unless defined $p; # proper return value
} else {
${"${class}::precision"} = $p; # set global P
${"${class}::accuracy"} = undef; # clear global A
}
return $p; # shortcut
}
my $p;
# $object->precision() or fallback to global
$p = $x->{_p} if ref($x);
# but don't return global undef, when $x's precision is 0!
$p = ${"${class}::precision"} if !defined $p;
$p;
}
sub config {
# return (or set) configuration data as hash ref
my $class = shift || __PACKAGE__;
no strict 'refs';
if (@_ > 1 || (@_ == 1 && (ref($_[0]) eq 'HASH'))) {
# try to set given options as arguments from hash
my $args = $_[0];
if (ref($args) ne 'HASH') {
$args = { @_ };
}
# these values can be "set"
my $set_args = {};
foreach my $key (qw/
accuracy precision
round_mode div_scale
upgrade downgrade
trap_inf trap_nan
/)
{
$set_args->{$key} = $args->{$key} if exists $args->{$key};
delete $args->{$key};
}
if (keys %$args > 0) {
Carp::croak("Illegal key(s) '", join("', '", keys %$args),
"' passed to $class\->config()");
}
foreach my $key (keys %$set_args) {
if ($key =~ /^trap_(inf|nan)\z/) {
${"${class}::_trap_$1"} = ($set_args->{"trap_$1"} ? 1 : 0);
next;
}
# use a call instead of just setting the $variable to check argument
$class->$key($set_args->{$key});
}
}
# now return actual configuration
my $cfg = {
lib => $CALC,
lib_version => ${"${CALC}::VERSION"},
class => $class,
trap_nan => ${"${class}::_trap_nan"},
trap_inf => ${"${class}::_trap_inf"},
version => ${"${class}::VERSION"},
};
foreach my $key (qw/
accuracy precision
round_mode div_scale
upgrade downgrade
/)
{
$cfg->{$key} = ${"${class}::$key"};
}
if (@_ == 1 && (ref($_[0]) ne 'HASH')) {
# calls of the style config('lib') return just this value
return $cfg->{$_[0]};
}
$cfg;
}
sub _scale_a {
# select accuracy parameter based on precedence,
# used by bround() and bfround(), may return undef for scale (means no op)
my ($x, $scale, $mode) = @_;
$scale = $x->{_a} unless defined $scale;
no strict 'refs';
my $class = ref($x);
$scale = ${ $class . '::accuracy' } unless defined $scale;
$mode = ${ $class . '::round_mode' } unless defined $mode;
if (defined $scale) {
$scale = $scale->can('numify') ? $scale->numify()
: "$scale" if ref($scale);
$scale = int($scale);
}
($scale, $mode);
}
sub _scale_p {
# select precision parameter based on precedence,
# used by bround() and bfround(), may return undef for scale (means no op)
my ($x, $scale, $mode) = @_;
$scale = $x->{_p} unless defined $scale;
no strict 'refs';
my $class = ref($x);
$scale = ${ $class . '::precision' } unless defined $scale;
$mode = ${ $class . '::round_mode' } unless defined $mode;
if (defined $scale) {
$scale = $scale->can('numify') ? $scale->numify()
: "$scale" if ref($scale);
$scale = int($scale);
}
($scale, $mode);
}
###############################################################################
# Constructor methods
###############################################################################
sub new {
# Create a new Math::BigInt object from a string or another Math::BigInt
# object. See hash keys documented at top.
# The argument could be an object, so avoid ||, && etc. on it. This would
# cause costly overloaded code to be called. The only allowed ops are ref()
# and defined.
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
# The POD says:
#
# "Currently, Math::BigInt->new() defaults to 0, while Math::BigInt->new('')
# results in 'NaN'. This might change in the future, so use always the
# following explicit forms to get a zero or NaN:
# $zero = Math::BigInt->bzero();
# $nan = Math::BigInt->bnan();
#
# But although this use has been discouraged for more than 10 years, people
# apparently still use it, so we still support it.
return $self->bzero() unless @_;
my ($wanted, $a, $p, $r) = @_;
# Always return a new object, so it called as an instance method, copy the
# invocand, and if called as a class method, initialize a new object.
$self = $selfref ? $self -> copy()
: bless {}, $class;
unless (defined $wanted) {
#Carp::carp("Use of uninitialized value in new()");
return $self->bzero($a, $p, $r);
}
if (ref($wanted) && $wanted->isa($class)) { # MBI or subclass
# Using "$copy = $wanted -> copy()" here fails some tests. Fixme!
my $copy = $class -> copy($wanted);
if ($selfref) {
%$self = %$copy;
} else {
$self = $copy;
}
return $self;
}
$class->import() if $IMPORT == 0; # make require work
# Shortcut for non-zero scalar integers with no non-zero exponent.
if (!ref($wanted) &&
$wanted =~ / ^
([+-]?) # optional sign
([1-9][0-9]*) # non-zero significand
(\.0*)? # ... with optional zero fraction
([Ee][+-]?0+)? # optional zero exponent
\z
/x)
{
my $sgn = $1;
my $abs = $2;
$self->{sign} = $sgn || '+';
$self->{value} = $CALC->_new($abs);
no strict 'refs';
if (defined($a) || defined($p)
|| defined(${"${class}::precision"})
|| defined(${"${class}::accuracy"}))
{
$self->round($a, $p, $r)
unless @_ >= 3 && !defined $a && !defined $p;
}
return $self;
}
# Handle Infs.
if ($wanted =~ /^\s*([+-]?)inf(inity)?\s*\z/i) {
my $sgn = $1 || '+';
$self->{sign} = $sgn . 'inf'; # set a default sign for bstr()
return $class->binf($sgn);
}
# Handle explicit NaNs (not the ones returned due to invalid input).
if ($wanted =~ /^\s*([+-]?)nan\s*\z/i) {
$self = $class -> bnan();
$self->round($a, $p, $r) unless @_ >= 3 && !defined $a && !defined $p;
return $self;
}
# Handle hexadecimal numbers.
if ($wanted =~ /^\s*[+-]?0[Xx]/) {
$self = $class -> from_hex($wanted);
$self->round($a, $p, $r) unless @_ >= 3 && !defined $a && !defined $p;
return $self;
}
# Handle binary numbers.
if ($wanted =~ /^\s*[+-]?0[Bb]/) {
$self = $class -> from_bin($wanted);
$self->round($a, $p, $r) unless @_ >= 3 && !defined $a && !defined $p;
return $self;
}
# Split string into mantissa, exponent, integer, fraction, value, and sign.
my ($mis, $miv, $mfv, $es, $ev) = _split($wanted);
if (!ref $mis) {
if ($_trap_nan) {
Carp::croak("$wanted is not a number in $class");
}
$self->{value} = $CALC->_zero();
$self->{sign} = $nan;
return $self;
}
if (!ref $miv) {
# _from_hex or _from_bin
$self->{value} = $mis->{value};
$self->{sign} = $mis->{sign};
return $self; # throw away $mis
}
# Make integer from mantissa by adjusting exponent, then convert to a
# Math::BigInt.
$self->{sign} = $$mis; # store sign
$self->{value} = $CALC->_zero(); # for all the NaN cases
my $e = int("$$es$$ev"); # exponent (avoid recursion)
if ($e > 0) {
my $diff = $e - CORE::length($$mfv);
if ($diff < 0) { # Not integer
if ($_trap_nan) {
Carp::croak("$wanted not an integer in $class");
}
#print "NOI 1\n";
return $upgrade->new($wanted, $a, $p, $r) if defined $upgrade;
$self->{sign} = $nan;
} else { # diff >= 0
# adjust fraction and add it to value
#print "diff > 0 $$miv\n";
$$miv = $$miv . ($$mfv . '0' x $diff);
}
}
else {
if ($$mfv ne '') { # e <= 0
# fraction and negative/zero E => NOI
if ($_trap_nan) {
Carp::croak("$wanted not an integer in $class");
}
#print "NOI 2 \$\$mfv '$$mfv'\n";
return $upgrade->new($wanted, $a, $p, $r) if defined $upgrade;
$self->{sign} = $nan;
} elsif ($e < 0) {
# xE-y, and empty mfv
# Split the mantissa at the decimal point. E.g., if
# $$miv = 12345 and $e = -2, then $frac = 45 and $$miv = 123.
my $frac = substr($$miv, $e); # $frac is fraction part
substr($$miv, $e) = ""; # $$miv is now integer part
if ($frac =~ /[^0]/) {
if ($_trap_nan) {
Carp::croak("$wanted not an integer in $class");
}
#print "NOI 3\n";
return $upgrade->new($wanted, $a, $p, $r) if defined $upgrade;
$self->{sign} = $nan;
}
}
}
unless ($self->{sign} eq $nan) {
$self->{sign} = '+' if $$miv eq '0'; # normalize -0 => +0
$self->{value} = $CALC->_new($$miv) if $self->{sign} =~ /^[+-]$/;
}
# If any of the globals are set, use them to round, and store them inside
# $self. Do not round for new($x, undef, undef) since that is used by MBF
# to signal no rounding.
$self->round($a, $p, $r) unless @_ >= 3 && !defined $a && !defined $p;
$self;
}
# Create a Math::BigInt from a hexadecimal string.
sub from_hex {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('from_hex');
my $str = shift;
# If called as a class method, initialize a new object.
$self = $class -> bzero() unless $selfref;
if ($str =~ s/
^
\s*
( [+-]? )
(0?x)?
(
[0-9a-fA-F]*
( _ [0-9a-fA-F]+ )*
)
\s*
$
//x)
{
# Get a "clean" version of the string, i.e., non-emtpy and with no
# underscores or invalid characters.
my $sign = $1;
my $chrs = $3;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
# The library method requires a prefix.
$self->{value} = $CALC->_from_hex('0x' . $chrs);
# Place the sign.
$self->{sign} = $sign eq '-' && ! $CALC->_is_zero($self->{value})
? '-' : '+';
return $self;
}
# CORE::hex() parses as much as it can, and ignores any trailing garbage.
# For backwards compatibility, we return NaN.
return $self->bnan();
}
# Create a Math::BigInt from an octal string.
sub from_oct {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('from_oct');
my $str = shift;
# If called as a class method, initialize a new object.
$self = $class -> bzero() unless $selfref;
if ($str =~ s/
^
\s*
( [+-]? )
(
[0-7]*
( _ [0-7]+ )*
)
\s*
$
//x)
{
# Get a "clean" version of the string, i.e., non-emtpy and with no
# underscores or invalid characters.
my $sign = $1;
my $chrs = $2;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
# The library method requires a prefix.
$self->{value} = $CALC->_from_oct('0' . $chrs);
# Place the sign.
$self->{sign} = $sign eq '-' && ! $CALC->_is_zero($self->{value})
? '-' : '+';
return $self;
}
# CORE::oct() parses as much as it can, and ignores any trailing garbage.
# For backwards compatibility, we return NaN.
return $self->bnan();
}
# Create a Math::BigInt from a binary string.
sub from_bin {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('from_bin');
my $str = shift;
# If called as a class method, initialize a new object.
$self = $class -> bzero() unless $selfref;
if ($str =~ s/
^
\s*
( [+-]? )
(0?b)?
(
[01]*
( _ [01]+ )*
)
\s*
$
//x)
{
# Get a "clean" version of the string, i.e., non-emtpy and with no
# underscores or invalid characters.
my $sign = $1;
my $chrs = $3;
$chrs =~ tr/_//d;
$chrs = '0' unless CORE::length $chrs;
# The library method requires a prefix.
$self->{value} = $CALC->_from_bin('0b' . $chrs);
# Place the sign.
$self->{sign} = $sign eq '-' && ! $CALC->_is_zero($self->{value})
? '-' : '+';
return $self;
}
# For consistency with from_hex() and from_oct(), we return NaN when the
# input is invalid.
return $self->bnan();
}
# Create a Math::BigInt from a byte string.
sub from_bytes {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('from_bytes');
Carp::croak("from_bytes() requires a newer version of the $CALC library.")
unless $CALC->can('_from_bytes');
my $str = shift;
# If called as a class method, initialize a new object.
$self = $class -> bzero() unless $selfref;
$self -> {sign} = '+';
$self -> {value} = $CALC -> _from_bytes($str);
return $self;
}
sub bzero {
# create/assign '+0'
if (@_ == 0) {
#Carp::carp("Using bzero() as a function is deprecated;",
# " use bzero() as a method instead");
unshift @_, __PACKAGE__;
}
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
$self->import() if $IMPORT == 0; # make require work
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('bzero');
$self = bless {}, $class unless $selfref;
$self->{sign} = '+';
$self->{value} = $CALC->_zero();
if (@_ > 0) {
if (@_ > 3) {
# call like: $x->bzero($a, $p, $r, $y, ...);
($self, $self->{_a}, $self->{_p}) = $self->_find_round_parameters(@_);
} else {
# call like: $x->bzero($a, $p, $r);
$self->{_a} = $_[0]
if !defined $self->{_a} || (defined $_[0] && $_[0] > $self->{_a});
$self->{_p} = $_[1]
if !defined $self->{_p} || (defined $_[1] && $_[1] > $self->{_p});
}
}
return $self;
}
sub bone {
# Create or assign '+1' (or -1 if given sign '-').
if (@_ == 0 || (defined($_[0]) && ($_[0] eq '+' || $_[0] eq '-'))) {
#Carp::carp("Using bone() as a function is deprecated;",
# " use bone() as a method instead");
unshift @_, __PACKAGE__;
}
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
$self->import() if $IMPORT == 0; # make require work
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('bone');
my $sign = shift;
$sign = defined $sign && $sign =~ /^\s*-/ ? "-" : "+";
$self = bless {}, $class unless $selfref;
$self->{sign} = $sign;
$self->{value} = $CALC->_one();
if (@_ > 0) {
if (@_ > 3) {
# call like: $x->bone($sign, $a, $p, $r, $y, ...);
($self, $self->{_a}, $self->{_p}) = $self->_find_round_parameters(@_);
} else {
# call like: $x->bone($sign, $a, $p, $r);
$self->{_a} = $_[0]
if !defined $self->{_a} || (defined $_[0] && $_[0] > $self->{_a});
$self->{_p} = $_[1]
if !defined $self->{_p} || (defined $_[1] && $_[1] > $self->{_p});
}
}
return $self;
}
sub binf {
# create/assign a '+inf' or '-inf'
if (@_ == 0 || (defined($_[0]) && !ref($_[0]) &&
$_[0] =~ /^\s*[+-](inf(inity)?)?\s*$/))
{
#Carp::carp("Using binf() as a function is deprecated;",
# " use binf() as a method instead");
unshift @_, __PACKAGE__;
}
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
{
no strict 'refs';
if (${"${class}::_trap_inf"}) {
Carp::croak("Tried to create +-inf in $class->binf()");
}
}
$self->import() if $IMPORT == 0; # make require work
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('binf');
my $sign = shift;
$sign = defined $sign && $sign =~ /^\s*-/ ? "-" : "+";
$self = bless {}, $class unless $selfref;
$self -> {sign} = $sign . 'inf';
$self -> {value} = $CALC -> _zero();
return $self;
}
sub bnan {
# create/assign a 'NaN'
if (@_ == 0) {
#Carp::carp("Using bnan() as a function is deprecated;",
# " use bnan() as a method instead");
unshift @_, __PACKAGE__;
}
my $self = shift;
my $selfref = ref($self);
my $class = $selfref || $self;
{
no strict 'refs';
if (${"${class}::_trap_nan"}) {
Carp::croak("Tried to create NaN in $class->bnan()");
}
}
$self->import() if $IMPORT == 0; # make require work
# Don't modify constant (read-only) objects.
return if $selfref && $self->modify('bnan');
$self = bless {}, $class unless $selfref;
$self -> {sign} = $nan;
$self -> {value} = $CALC -> _zero();
return $self;
}
sub bpi {
# Calculate PI to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer, that is, always returns '3'.
my ($self, $n) = @_;
if (@_ == 1) {
# called like Math::BigInt::bpi(10);
$n = $self;
$self = $class;
}
$self = ref($self) if ref($self);
return $upgrade->new($n) if defined $upgrade;
# hard-wired to "3"
$self->new(3);
}
sub copy {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
# If called as a class method, the object to copy is the next argument.
$self = shift() unless $selfref;
my $copy = bless {}, $class;
$copy->{sign} = $self->{sign};
$copy->{value} = $CALC->_copy($self->{value});
$copy->{_a} = $self->{_a} if exists $self->{_a};
$copy->{_p} = $self->{_p} if exists $self->{_p};
return $copy;
}
sub as_number {
# An object might be asked to return itself as bigint on certain overloaded
# operations. This does exactly this, so that sub classes can simple inherit
# it or override with their own integer conversion routine.
$_[0]->copy();
}
###############################################################################
# Boolean methods
###############################################################################
sub is_zero {
# return true if arg (BINT or num_str) is zero (array '+', '0')
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
return 0 if $x->{sign} !~ /^\+$/; # -, NaN & +-inf aren't
$CALC->_is_zero($x->{value});
}
sub is_one {
# return true if arg (BINT or num_str) is +1, or -1 if sign is given
my ($class, $x, $sign) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
$sign = '+' if !defined $sign || $sign ne '-';
return 0 if $x->{sign} ne $sign; # -1 != +1, NaN, +-inf aren't either
$CALC->_is_one($x->{value});
}
sub is_finite {
my $x = shift;
return $x->{sign} eq '+' || $x->{sign} eq '-';
}
sub is_inf {
# return true if arg (BINT or num_str) is +-inf
my ($class, $x, $sign) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
if (defined $sign) {
$sign = '[+-]inf' if $sign eq ''; # +- doesn't matter, only that's inf
$sign = "[$1]inf" if $sign =~ /^([+-])(inf)?$/; # extract '+' or '-'
return $x->{sign} =~ /^$sign$/ ? 1 : 0;
}
$x->{sign} =~ /^[+-]inf$/ ? 1 : 0; # only +-inf is infinity
}
sub is_nan {
# return true if arg (BINT or num_str) is NaN
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
$x->{sign} eq $nan ? 1 : 0;
}
sub is_positive {
# return true when arg (BINT or num_str) is positive (> 0)
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
return 1 if $x->{sign} eq '+inf'; # +inf is positive
# 0+ is neither positive nor negative
($x->{sign} eq '+' && !$x->is_zero()) ? 1 : 0;
}
sub is_negative {
# return true when arg (BINT or num_str) is negative (< 0)
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
$x->{sign} =~ /^-/ ? 1 : 0; # -inf is negative, but NaN is not
}
sub is_odd {
# return true when arg (BINT or num_str) is odd, false for even
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
$CALC->_is_odd($x->{value});
}
sub is_even {
# return true when arg (BINT or num_str) is even, false for odd
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
$CALC->_is_even($x->{value});
}
sub is_int {
# return true when arg (BINT or num_str) is an integer
# always true for Math::BigInt, but different for Math::BigFloat objects
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
$x->{sign} =~ /^[+-]$/ ? 1 : 0; # inf/-inf/NaN aren't
}
###############################################################################
# Comparison methods
###############################################################################
sub bcmp {
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
# (BINT or num_str, BINT or num_str) return cond_code
# set up parameters
my ($class, $x, $y) = ref($_[0]) && ref($_[0]) eq ref($_[1])
? (ref($_[0]), @_)
: objectify(2, @_);
return $upgrade->bcmp($x, $y) if defined $upgrade &&
((!$x->isa($class)) || (!$y->isa($class)));
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) {
# handle +-inf and NaN
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if $x->{sign} eq $y->{sign} && $x->{sign} =~ /^[+-]inf$/;
return +1 if $x->{sign} eq '+inf';
return -1 if $x->{sign} eq '-inf';
return -1 if $y->{sign} eq '+inf';
return +1;
}
# check sign for speed first
return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0
# have same sign, so compare absolute values. Don't make tests for zero
# here because it's actually slower than testing in Calc (especially w/ Pari
# et al)
# post-normalized compare for internal use (honors signs)
if ($x->{sign} eq '+') {
# $x and $y both > 0
return $CALC->_acmp($x->{value}, $y->{value});
}
# $x && $y both < 0
$CALC->_acmp($y->{value}, $x->{value}); # swapped acmp (lib returns 0, 1, -1)
}
sub bacmp {
# Compares 2 values, ignoring their signs.
# Returns one of undef, <0, =0, >0. (suitable for sort)
# (BINT, BINT) return cond_code
# set up parameters
my ($class, $x, $y) = ref($_[0]) && ref($_[0]) eq ref($_[1])
? (ref($_[0]), @_)
: objectify(2, @_);
return $upgrade->bacmp($x, $y) if defined $upgrade &&
((!$x->isa($class)) || (!$y->isa($class)));
if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/)) {
# handle +-inf and NaN
return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
return 0 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} =~ /^[+-]inf$/;
return 1 if $x->{sign} =~ /^[+-]inf$/ && $y->{sign} !~ /^[+-]inf$/;
return -1;
}
$CALC->_acmp($x->{value}, $y->{value}); # lib does only 0, 1, -1
}
sub beq {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
Carp::croak 'beq() is an instance method, not a class method' unless $selfref;
Carp::croak 'Wrong number of arguments for beq()' unless @_ == 1;
my $cmp = $self -> bcmp(shift);
return defined($cmp) && ! $cmp;
}
sub bne {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
Carp::croak 'bne() is an instance method, not a class method' unless $selfref;
Carp::croak 'Wrong number of arguments for bne()' unless @_ == 1;
my $cmp = $self -> bcmp(shift);
return defined($cmp) && ! $cmp ? '' : 1;
}
sub blt {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
Carp::croak 'blt() is an instance method, not a class method' unless $selfref;
Carp::croak 'Wrong number of arguments for blt()' unless @_ == 1;
my $cmp = $self -> bcmp(shift);
return defined($cmp) && $cmp < 0;
}
sub ble {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
Carp::croak 'ble() is an instance method, not a class method' unless $selfref;
Carp::croak 'Wrong number of arguments for ble()' unless @_ == 1;
my $cmp = $self -> bcmp(shift);
return defined($cmp) && $cmp <= 0;
}
sub bgt {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
Carp::croak 'bgt() is an instance method, not a class method' unless $selfref;
Carp::croak 'Wrong number of arguments for bgt()' unless @_ == 1;
my $cmp = $self -> bcmp(shift);
return defined($cmp) && $cmp > 0;
}
sub bge {
my $self = shift;
my $selfref = ref $self;
my $class = $selfref || $self;
Carp::croak 'bge() is an instance method, not a class method'
unless $selfref;
Carp::croak 'Wrong number of arguments for bge()' unless @_ == 1;
my $cmp = $self -> bcmp(shift);
return defined($cmp) && $cmp >= 0;
}
###############################################################################
# Arithmetic methods
###############################################################################
sub bneg {
# (BINT or num_str) return BINT
# negate number or make a negated number from string
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
return $x if $x->modify('bneg');
# for +0 do not negate (to have always normalized +0). Does nothing for 'NaN'
$x->{sign} =~ tr/+-/-+/ unless ($x->{sign} eq '+' && $CALC->_is_zero($x->{value}));
$x;
}
sub babs {
# (BINT or num_str) return BINT
# make number absolute, or return absolute BINT from string
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
return $x if $x->modify('babs');
# post-normalized abs for internal use (does nothing for NaN)
$x->{sign} =~ s/^-/+/;
$x;
}
sub bsgn {
# Signum function.
my $self = shift;
return $self if $self->modify('bsgn');
return $self -> bone("+") if $self -> is_pos();
return $self -> bone("-") if $self -> is_neg();
return $self; # zero or NaN
}
sub bnorm {
# (numstr or BINT) return BINT
# Normalize number -- no-op here
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
$x;
}
sub binc {
# increment arg by one
my ($class, $x, $a, $p, $r) = ref($_[0]) ? (ref($_[0]), @_) : objectify(1, @_);
return $x if $x->modify('binc');
if ($x->{sign} eq '+') {
$x->{value} = $CALC->_inc($x->{value});
return $x->round($a, $p, $r);
} elsif ($x->{sign} eq '-') {
$x->{value} = $CALC->_dec($x->{value});
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # -1 +1 => -0 => +0
return $x->round($a, $p, $r);
}
# inf, nan handling etc
$x->badd($class->bone(), $a, $p, $r); # badd does round
}
sub bdec {
# decrement arg by one
my ($class, $x, @r) = ref($_[0]) ? (ref($_[0]), @_) : objectify(1, @_);
return $x if $x->modify('bdec');
if ($x->{sign} eq '-') {
# x already < 0
$x->{value} = $CALC->_inc($x->{value});
} else {
return $x->badd($class->bone('-'), @r)
unless $x->{sign} eq '+'; # inf or NaN
# >= 0
if ($CALC->_is_zero($x->{value})) {
# == 0
$x->{value} = $CALC->_one();
$x->{sign} = '-'; # 0 => -1
} else {
# > 0
$x->{value} = $CALC->_dec($x->{value});
}
}
$x->round(@r);
}
#sub bstrcmp {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstrcmp() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstrcmp()' unless @_ == 1;
#
# return $self -> bstr() CORE::cmp shift;
#}
#
#sub bstreq {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstreq() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstreq()' unless @_ == 1;
#
# my $cmp = $self -> bstrcmp(shift);
# return defined($cmp) && ! $cmp;
#}
#
#sub bstrne {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstrne() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstrne()' unless @_ == 1;
#
# my $cmp = $self -> bstrcmp(shift);
# return defined($cmp) && ! $cmp ? '' : 1;
#}
#
#sub bstrlt {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstrlt() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstrlt()' unless @_ == 1;
#
# my $cmp = $self -> bstrcmp(shift);
# return defined($cmp) && $cmp < 0;
#}
#
#sub bstrle {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstrle() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstrle()' unless @_ == 1;
#
# my $cmp = $self -> bstrcmp(shift);
# return defined($cmp) && $cmp <= 0;
#}
#
#sub bstrgt {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstrgt() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstrgt()' unless @_ == 1;
#
# my $cmp = $self -> bstrcmp(shift);
# return defined($cmp) && $cmp > 0;
#}
#
#sub bstrge {
# my $self = shift;
# my $selfref = ref $self;
# my $class = $selfref || $self;
#
# Carp::croak 'bstrge() is an instance method, not a class method'
# unless $selfref;
# Carp::croak 'Wrong number of arguments for bstrge()' unless @_ == 1;
#
# my $cmp = $self -> bstrcmp(shift);
# return defined($cmp) && $cmp >= 0;
#}
sub badd {
# add second arg (BINT or string) to first (BINT) (modifies first)
# return result as BINT
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('badd');
return $upgrade->badd($upgrade->new($x), $upgrade->new($y), @r) if defined $upgrade &&
((!$x->isa($class)) || (!$y->isa($class)));
$r[3] = $y; # no push!
# inf and NaN handling
if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/) {
# NaN first
return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/)) {
# +inf++inf or -inf+-inf => same, rest is NaN
return $x if $x->{sign} eq $y->{sign};
return $x->bnan();
}
# +-inf + something => +inf
# something +-inf => +-inf
$x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
return $x;
}
my ($sx, $sy) = ($x->{sign}, $y->{sign}); # get signs
if ($sx eq $sy) {
$x->{value} = $CALC->_add($x->{value}, $y->{value}); # same sign, abs add
} else {
my $a = $CALC->_acmp ($y->{value}, $x->{value}); # absolute compare
if ($a > 0) {
$x->{value} = $CALC->_sub($y->{value}, $x->{value}, 1); # abs sub w/ swap
$x->{sign} = $sy;
} elsif ($a == 0) {
# speedup, if equal, set result to 0
$x->{value} = $CALC->_zero();
$x->{sign} = '+';
} else # a < 0
{
$x->{value} = $CALC->_sub($x->{value}, $y->{value}); # abs sub
}
}
$x->round(@r);
}
sub bsub {
# (BINT or num_str, BINT or num_str) return BINT
# subtract second arg from first, modify first
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x -> modify('bsub');
return $upgrade -> new($x) -> bsub($upgrade -> new($y), @r)
if defined $upgrade && (!$x -> isa($class) || !$y -> isa($class));
return $x -> round(@r) if $y -> is_zero();
# To correctly handle the lone special case $x -> bsub($x), we note the
# sign of $x, then flip the sign from $y, and if the sign of $x did change,
# too, then we caught the special case:
my $xsign = $x -> {sign};
$y -> {sign} =~ tr/+-/-+/; # does nothing for NaN
if ($xsign ne $x -> {sign}) {
# special case of $x -> bsub($x) results in 0
return $x -> bzero(@r) if $xsign =~ /^[+-]$/;
return $x -> bnan(); # NaN, -inf, +inf
}
$x -> badd($y, @r); # badd does not leave internal zeros
$y -> {sign} =~ tr/+-/-+/; # refix $y (does nothing for NaN)
$x; # already rounded by badd() or no rounding
}
sub bmul {
# multiply the first number by the second number
# (BINT or num_str, BINT or num_str) return BINT
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('bmul');
return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) {
return $x->bnan() if $x->is_zero() || $y->is_zero();
# result will always be +-inf:
# +inf * +/+inf => +inf, -inf * -/-inf => +inf
# +inf * -/-inf => -inf, -inf * +/+inf => -inf
return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
return $x->binf('-');
}
return $upgrade->bmul($x, $upgrade->new($y), @r)
if defined $upgrade && !$y->isa($class);
$r[3] = $y; # no push here
$x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
$x->{value} = $CALC->_mul($x->{value}, $y->{value}); # do actual math
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0
$x->round(@r);
}
sub bmuladd {
# multiply two numbers and then add the third to the result
# (BINT or num_str, BINT or num_str, BINT or num_str) return BINT
# set up parameters
my ($class, $x, $y, $z, @r) = objectify(3, @_);
return $x if $x->modify('bmuladd');
return $x->bnan() if (($x->{sign} eq $nan) ||
($y->{sign} eq $nan) ||
($z->{sign} eq $nan));
# inf handling of x and y
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) {
return $x->bnan() if $x->is_zero() || $y->is_zero();
# result will always be +-inf:
# +inf * +/+inf => +inf, -inf * -/-inf => +inf
# +inf * -/-inf => -inf, -inf * +/+inf => -inf
return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
return $x->binf('-');
}
# inf handling x*y and z
if (($z->{sign} =~ /^[+-]inf$/)) {
# something +-inf => +-inf
$x->{sign} = $z->{sign}, return $x if $z->{sign} =~ /^[+-]inf$/;
}
return $upgrade->bmuladd($x, $upgrade->new($y), $upgrade->new($z), @r)
if defined $upgrade && (!$y->isa($class) || !$z->isa($class) || !$x->isa($class));
# TODO: what if $y and $z have A or P set?
$r[3] = $z; # no push here
$x->{sign} = $x->{sign} eq $y->{sign} ? '+' : '-'; # +1 * +1 or -1 * -1 => +
$x->{value} = $CALC->_mul($x->{value}, $y->{value}); # do actual math
$x->{sign} = '+' if $CALC->_is_zero($x->{value}); # no -0
my ($sx, $sz) = ( $x->{sign}, $z->{sign} ); # get signs
if ($sx eq $sz) {
$x->{value} = $CALC->_add($x->{value}, $z->{value}); # same sign, abs add
} else {
my $a = $CALC->_acmp ($z->{value}, $x->{value}); # absolute compare
if ($a > 0) {
$x->{value} = $CALC->_sub($z->{value}, $x->{value}, 1); # abs sub w/ swap
$x->{sign} = $sz;
} elsif ($a == 0) {
# speedup, if equal, set result to 0
$x->{value} = $CALC->_zero();
$x->{sign} = '+';
} else # a < 0
{
$x->{value} = $CALC->_sub($x->{value}, $z->{value}); # abs sub
}
}
$x->round(@r);
}
sub bdiv {
# This does floored division, where the quotient is floored, i.e., rounded
# towards negative infinity. As a consequence, the remainder has the same
# sign as the divisor.
# Set up parameters.
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify() is costly, so avoid it if we can.
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x -> modify('bdiv');
my $wantarray = wantarray; # call only once
# At least one argument is NaN. Return NaN for both quotient and the
# modulo/remainder.
if ($x -> is_nan() || $y -> is_nan()) {
return $wantarray ? ($x -> bnan(), $class -> bnan()) : $x -> bnan();
}
# Divide by zero and modulo zero.
#
# Division: Use the common convention that x / 0 is inf with the same sign
# as x, except when x = 0, where we return NaN. This is also what earlier
# versions did.
#
# Modulo: In modular arithmetic, the congruence relation z = x (mod y)
# means that there is some integer k such that z - x = k y. If y = 0, we
# get z - x = 0 or z = x. This is also what earlier versions did, except
# that 0 % 0 returned NaN.
#
# inf / 0 = inf inf % 0 = inf
# 5 / 0 = inf 5 % 0 = 5
# 0 / 0 = NaN 0 % 0 = 0
# -5 / 0 = -inf -5 % 0 = -5
# -inf / 0 = -inf -inf % 0 = -inf
if ($y -> is_zero()) {
my $rem;
if ($wantarray) {
$rem = $x -> copy();
}
if ($x -> is_zero()) {
$x -> bnan();
} else {
$x -> binf($x -> {sign});
}
return $wantarray ? ($x, $rem) : $x;
}
# Numerator (dividend) is +/-inf, and denominator is finite and non-zero.
# The divide by zero cases are covered above. In all of the cases listed
# below we return the same as core Perl.
#
# inf / -inf = NaN inf % -inf = NaN
# inf / -5 = -inf inf % -5 = NaN
# inf / 5 = inf inf % 5 = NaN
# inf / inf = NaN inf % inf = NaN
#
# -inf / -inf = NaN -inf % -inf = NaN
# -inf / -5 = inf -inf % -5 = NaN
# -inf / 5 = -inf -inf % 5 = NaN
# -inf / inf = NaN -inf % inf = NaN
if ($x -> is_inf()) {
my $rem;
$rem = $class -> bnan() if $wantarray;
if ($y -> is_inf()) {
$x -> bnan();
} else {
my $sign = $x -> bcmp(0) == $y -> bcmp(0) ? '+' : '-';
$x -> binf($sign);
}
return $wantarray ? ($x, $rem) : $x;
}
# Denominator (divisor) is +/-inf. The cases when the numerator is +/-inf
# are covered above. In the modulo cases (in the right column) we return
# the same as core Perl, which does floored division, so for consistency we
# also do floored division in the division cases (in the left column).
#
# -5 / inf = -1 -5 % inf = inf
# 0 / inf = 0 0 % inf = 0
# 5 / inf = 0 5 % inf = 5
#
# -5 / -inf = 0 -5 % -inf = -5
# 0 / -inf = 0 0 % -inf = 0
# 5 / -inf = -1 5 % -inf = -inf
if ($y -> is_inf()) {
my $rem;
if ($x -> is_zero() || $x -> bcmp(0) == $y -> bcmp(0)) {
$rem = $x -> copy() if $wantarray;
$x -> bzero();
} else {
$rem = $class -> binf($y -> {sign}) if $wantarray;
$x -> bone('-');
}
return $wantarray ? ($x, $rem) : $x;
}
# At this point, both the numerator and denominator are finite numbers, and
# the denominator (divisor) is non-zero.
return $upgrade -> bdiv($upgrade -> new($x), $upgrade -> new($y), @r)
if defined $upgrade;
$r[3] = $y; # no push!
# Inialize remainder.
my $rem = $class -> bzero();
# Are both operands the same object, i.e., like $x -> bdiv($x)? If so,
# flipping the sign of $y also flips the sign of $x.
my $xsign = $x -> {sign};
my $ysign = $y -> {sign};
$y -> {sign} =~ tr/+-/-+/; # Flip the sign of $y, and see ...
my $same = $xsign ne $x -> {sign}; # ... if that changed the sign of $x.
$y -> {sign} = $ysign; # Re-insert the original sign.
if ($same) {
$x -> bone();
} else {
($x -> {value}, $rem -> {value}) =
$CALC -> _div($x -> {value}, $y -> {value});
if ($CALC -> _is_zero($rem -> {value})) {
if ($xsign eq $ysign || $CALC -> _is_zero($x -> {value})) {
$x -> {sign} = '+';
} else {
$x -> {sign} = '-';
}
} else {
if ($xsign eq $ysign) {
$x -> {sign} = '+';
} else {
if ($xsign eq '+') {
$x -> badd(1);
} else {
$x -> bsub(1);
}
$x -> {sign} = '-';
}
}
}
$x -> round(@r);
if ($wantarray) {
unless ($CALC -> _is_zero($rem -> {value})) {
if ($xsign ne $ysign) {
$rem = $y -> copy() -> babs() -> bsub($rem);
}
$rem -> {sign} = $ysign;
}
$rem -> {_a} = $x -> {_a};
$rem -> {_p} = $x -> {_p};
$rem -> round(@r);
return ($x, $rem);
}
return $x;
}
sub btdiv {
# This does truncated division, where the quotient is truncted, i.e.,
# rounded towards zero.
#
# ($q, $r) = $x -> btdiv($y) returns $q and $r so that $q is int($x / $y)
# and $q * $y + $r = $x.
# Set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it if we can.
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x -> modify('btdiv');
my $wantarray = wantarray; # call only once
# At least one argument is NaN. Return NaN for both quotient and the
# modulo/remainder.
if ($x -> is_nan() || $y -> is_nan()) {
return $wantarray ? ($x -> bnan(), $class -> bnan()) : $x -> bnan();
}
# Divide by zero and modulo zero.
#
# Division: Use the common convention that x / 0 is inf with the same sign
# as x, except when x = 0, where we return NaN. This is also what earlier
# versions did.
#
# Modulo: In modular arithmetic, the congruence relation z = x (mod y)
# means that there is some integer k such that z - x = k y. If y = 0, we
# get z - x = 0 or z = x. This is also what earlier versions did, except
# that 0 % 0 returned NaN.
#
# inf / 0 = inf inf % 0 = inf
# 5 / 0 = inf 5 % 0 = 5
# 0 / 0 = NaN 0 % 0 = 0
# -5 / 0 = -inf -5 % 0 = -5
# -inf / 0 = -inf -inf % 0 = -inf
if ($y -> is_zero()) {
my $rem;
if ($wantarray) {
$rem = $x -> copy();
}
if ($x -> is_zero()) {
$x -> bnan();
} else {
$x -> binf($x -> {sign});
}
return $wantarray ? ($x, $rem) : $x;
}
# Numerator (dividend) is +/-inf, and denominator is finite and non-zero.
# The divide by zero cases are covered above. In all of the cases listed
# below we return the same as core Perl.
#
# inf / -inf = NaN inf % -inf = NaN
# inf / -5 = -inf inf % -5 = NaN
# inf / 5 = inf inf % 5 = NaN
# inf / inf = NaN inf % inf = NaN
#
# -inf / -inf = NaN -inf % -inf = NaN
# -inf / -5 = inf -inf % -5 = NaN
# -inf / 5 = -inf -inf % 5 = NaN
# -inf / inf = NaN -inf % inf = NaN
if ($x -> is_inf()) {
my $rem;
$rem = $class -> bnan() if $wantarray;
if ($y -> is_inf()) {
$x -> bnan();
} else {
my $sign = $x -> bcmp(0) == $y -> bcmp(0) ? '+' : '-';
$x -> binf($sign);
}
return $wantarray ? ($x, $rem) : $x;
}
# Denominator (divisor) is +/-inf. The cases when the numerator is +/-inf
# are covered above. In the modulo cases (in the right column) we return
# the same as core Perl, which does floored division, so for consistency we
# also do floored division in the division cases (in the left column).
#
# -5 / inf = 0 -5 % inf = -5
# 0 / inf = 0 0 % inf = 0
# 5 / inf = 0 5 % inf = 5
#
# -5 / -inf = 0 -5 % -inf = -5
# 0 / -inf = 0 0 % -inf = 0
# 5 / -inf = 0 5 % -inf = 5
if ($y -> is_inf()) {
my $rem;
$rem = $x -> copy() if $wantarray;
$x -> bzero();
return $wantarray ? ($x, $rem) : $x;
}
return $upgrade -> btdiv($upgrade -> new($x), $upgrade -> new($y), @r)
if defined $upgrade;
$r[3] = $y; # no push!
# Inialize remainder.
my $rem = $class -> bzero();
# Are both operands the same object, i.e., like $x -> bdiv($x)? If so,
# flipping the sign of $y also flips the sign of $x.
my $xsign = $x -> {sign};
my $ysign = $y -> {sign};
$y -> {sign} =~ tr/+-/-+/; # Flip the sign of $y, and see ...
my $same = $xsign ne $x -> {sign}; # ... if that changed the sign of $x.
$y -> {sign} = $ysign; # Re-insert the original sign.
if ($same) {
$x -> bone();
} else {
($x -> {value}, $rem -> {value}) =
$CALC -> _div($x -> {value}, $y -> {value});
$x -> {sign} = $xsign eq $ysign ? '+' : '-';
$x -> {sign} = '+' if $CALC -> _is_zero($x -> {value});
$x -> round(@r);
}
if (wantarray) {
$rem -> {sign} = $xsign;
$rem -> {sign} = '+' if $CALC -> _is_zero($rem -> {value});
$rem -> {_a} = $x -> {_a};
$rem -> {_p} = $x -> {_p};
$rem -> round(@r);
return ($x, $rem);
}
return $x;
}
sub bmod {
# This is the remainder after floored division.
# Set up parameters.
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x -> modify('bmod');
$r[3] = $y; # no push!
# At least one argument is NaN.
if ($x -> is_nan() || $y -> is_nan()) {
return $x -> bnan();
}
# Modulo zero. See documentation for bdiv().
if ($y -> is_zero()) {
return $x;
}
# Numerator (dividend) is +/-inf.
if ($x -> is_inf()) {
return $x -> bnan();
}
# Denominator (divisor) is +/-inf.
if ($y -> is_inf()) {
if ($x -> is_zero() || $x -> bcmp(0) == $y -> bcmp(0)) {
return $x;
} else {
return $x -> binf($y -> sign());
}
}
# Calc new sign and in case $y == +/- 1, return $x.
$x -> {value} = $CALC -> _mod($x -> {value}, $y -> {value});
if ($CALC -> _is_zero($x -> {value})) {
$x -> {sign} = '+'; # do not leave -0
} else {
$x -> {value} = $CALC -> _sub($y -> {value}, $x -> {value}, 1) # $y-$x
if ($x -> {sign} ne $y -> {sign});
$x -> {sign} = $y -> {sign};
}
$x -> round(@r);
}
sub btmod {
# Remainder after truncated division.
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x -> modify('btmod');
# At least one argument is NaN.
if ($x -> is_nan() || $y -> is_nan()) {
return $x -> bnan();
}
# Modulo zero. See documentation for btdiv().
if ($y -> is_zero()) {
return $x;
}
# Numerator (dividend) is +/-inf.
if ($x -> is_inf()) {
return $x -> bnan();
}
# Denominator (divisor) is +/-inf.
if ($y -> is_inf()) {
return $x;
}
return $upgrade -> btmod($upgrade -> new($x), $upgrade -> new($y), @r)
if defined $upgrade;
$r[3] = $y; # no push!
my $xsign = $x -> {sign};
my $ysign = $y -> {sign};
$x -> {value} = $CALC -> _mod($x -> {value}, $y -> {value});
$x -> {sign} = $xsign;
$x -> {sign} = '+' if $CALC -> _is_zero($x -> {value});
$x -> round(@r);
return $x;
}
sub bmodinv {
# Return modular multiplicative inverse:
#
# z is the modular inverse of x (mod y) if and only if
#
# x*z ≡ 1 (mod y)
#
# If the modulus y is larger than one, x and z are relative primes (i.e.,
# their greatest common divisor is one).
#
# If no modular multiplicative inverse exists, NaN is returned.
# set up parameters
my ($class, $x, $y, @r) = (undef, @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('bmodinv');
# Return NaN if one or both arguments is +inf, -inf, or nan.
return $x->bnan() if ($y->{sign} !~ /^[+-]$/ ||
$x->{sign} !~ /^[+-]$/);
# Return NaN if $y is zero; 1 % 0 makes no sense.
return $x->bnan() if $y->is_zero();
# Return 0 in the trivial case. $x % 1 or $x % -1 is zero for all finite
# integers $x.
return $x->bzero() if ($y->is_one() ||
$y->is_one('-'));
# Return NaN if $x = 0, or $x modulo $y is zero. The only valid case when
# $x = 0 is when $y = 1 or $y = -1, but that was covered above.
#
# Note that computing $x modulo $y here affects the value we'll feed to
# $CALC->_modinv() below when $x and $y have opposite signs. E.g., if $x =
# 5 and $y = 7, those two values are fed to _modinv(), but if $x = -5 and
# $y = 7, the values fed to _modinv() are $x = 2 (= -5 % 7) and $y = 7.
# The value if $x is affected only when $x and $y have opposite signs.
$x->bmod($y);
return $x->bnan() if $x->is_zero();
# Compute the modular multiplicative inverse of the absolute values. We'll
# correct for the signs of $x and $y later. Return NaN if no GCD is found.
($x->{value}, $x->{sign}) = $CALC->_modinv($x->{value}, $y->{value});
return $x->bnan() if !defined $x->{value};
# Library inconsistency workaround: _modinv() in Math::BigInt::GMP versions
# <= 1.32 return undef rather than a "+" for the sign.
$x->{sign} = '+' unless defined $x->{sign};
# When one or both arguments are negative, we have the following
# relations. If x and y are positive:
#
# modinv(-x, -y) = -modinv(x, y)
# modinv(-x, y) = y - modinv(x, y) = -modinv(x, y) (mod y)
# modinv( x, -y) = modinv(x, y) - y = modinv(x, y) (mod -y)
# We must swap the sign of the result if the original $x is negative.
# However, we must compensate for ignoring the signs when computing the
# inverse modulo. The net effect is that we must swap the sign of the
# result if $y is negative.
$x -> bneg() if $y->{sign} eq '-';
# Compute $x modulo $y again after correcting the sign.
$x -> bmod($y) if $x->{sign} ne $y->{sign};
return $x;
}
sub bmodpow {
# Modular exponentiation. Raises a very large number to a very large exponent
# in a given very large modulus quickly, thanks to binary exponentiation.
# Supports negative exponents.
my ($class, $num, $exp, $mod, @r) = objectify(3, @_);
return $num if $num->modify('bmodpow');
# When the exponent 'e' is negative, use the following relation, which is
# based on finding the multiplicative inverse 'd' of 'b' modulo 'm':
#
# b^(-e) (mod m) = d^e (mod m) where b*d = 1 (mod m)
$num->bmodinv($mod) if ($exp->{sign} eq '-');
# Check for valid input. All operands must be finite, and the modulus must be
# non-zero.
return $num->bnan() if ($num->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf
$exp->{sign} =~ /NaN|inf/ || # NaN, -inf, +inf
$mod->{sign} =~ /NaN|inf/); # NaN, -inf, +inf
# Modulo zero. See documentation for Math::BigInt's bmod() method.
if ($mod -> is_zero()) {
if ($num -> is_zero()) {
return $class -> bnan();
} else {
return $num -> copy();
}
}
# Compute 'a (mod m)', ignoring the signs on 'a' and 'm'. If the resulting
# value is zero, the output is also zero, regardless of the signs on 'a' and
# 'm'.
my $value = $CALC->_modpow($num->{value}, $exp->{value}, $mod->{value});
my $sign = '+';
# If the resulting value is non-zero, we have four special cases, depending
# on the signs on 'a' and 'm'.
unless ($CALC->_is_zero($value)) {
# There is a negative sign on 'a' (= $num**$exp) only if the number we
# are exponentiating ($num) is negative and the exponent ($exp) is odd.
if ($num->{sign} eq '-' && $exp->is_odd()) {
# When both the number 'a' and the modulus 'm' have a negative sign,
# use this relation:
#
# -a (mod -m) = -(a (mod m))
if ($mod->{sign} eq '-') {
$sign = '-';
}
# When only the number 'a' has a negative sign, use this relation:
#
# -a (mod m) = m - (a (mod m))
else {
# Use copy of $mod since _sub() modifies the first argument.
my $mod = $CALC->_copy($mod->{value});
$value = $CALC->_sub($mod, $value);
$sign = '+';
}
} else {
# When only the modulus 'm' has a negative sign, use this relation:
#
# a (mod -m) = (a (mod m)) - m
# = -(m - (a (mod m)))
if ($mod->{sign} eq '-') {
# Use copy of $mod since _sub() modifies the first argument.
my $mod = $CALC->_copy($mod->{value});
$value = $CALC->_sub($mod, $value);
$sign = '-';
}
# When neither the number 'a' nor the modulus 'm' have a negative
# sign, directly return the already computed value.
#
# (a (mod m))
}
}
$num->{value} = $value;
$num->{sign} = $sign;
return $num;
}
sub bpow {
# (BINT or num_str, BINT or num_str) return BINT
# compute power of two numbers -- stolen from Knuth Vol 2 pg 233
# modifies first argument
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('bpow');
return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
# inf handling
if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/)) {
if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/)) {
# +-inf ** +-inf
return $x->bnan();
}
# +-inf ** Y
if ($x->{sign} =~ /^[+-]inf/) {
# +inf ** 0 => NaN
return $x->bnan() if $y->is_zero();
# -inf ** -1 => 1/inf => 0
return $x->bzero() if $y->is_one('-') && $x->is_negative();
# +inf ** Y => inf
return $x if $x->{sign} eq '+inf';
# -inf ** Y => -inf if Y is odd
return $x if $y->is_odd();
return $x->babs();
}
# X ** +-inf
# 1 ** +inf => 1
return $x if $x->is_one();
# 0 ** inf => 0
return $x if $x->is_zero() && $y->{sign} =~ /^[+]/;
# 0 ** -inf => inf
return $x->binf() if $x->is_zero();
# -1 ** -inf => NaN
return $x->bnan() if $x->is_one('-') && $y->{sign} =~ /^[-]/;
# -X ** -inf => 0
return $x->bzero() if $x->{sign} eq '-' && $y->{sign} =~ /^[-]/;
# -1 ** inf => NaN
return $x->bnan() if $x->{sign} eq '-';
# X ** inf => inf
return $x->binf() if $y->{sign} =~ /^[+]/;
# X ** -inf => 0
return $x->bzero();
}
return $upgrade->bpow($upgrade->new($x), $y, @r)
if defined $upgrade && (!$y->isa($class) || $y->{sign} eq '-');
$r[3] = $y; # no push!
# cases 0 ** Y, X ** 0, X ** 1, 1 ** Y are handled by Calc or Emu
my $new_sign = '+';
$new_sign = $y->is_odd() ? '-' : '+' if ($x->{sign} ne '+');
# 0 ** -7 => ( 1 / (0 ** 7)) => 1 / 0 => +inf
return $x->binf()
if $y->{sign} eq '-' && $x->{sign} eq '+' && $CALC->_is_zero($x->{value});
# 1 ** -y => 1 / (1 ** |y|)
# so do test for negative $y after above's clause
return $x->bnan() if $y->{sign} eq '-' && !$CALC->_is_one($x->{value});
$x->{value} = $CALC->_pow($x->{value}, $y->{value});
$x->{sign} = $new_sign;
$x->{sign} = '+' if $CALC->_is_zero($y->{value});
$x->round(@r);
}
sub blog {
# Return the logarithm of the operand. If a second operand is defined, that
# value is used as the base, otherwise the base is assumed to be Euler's
# constant.
my ($class, $x, $base, @r);
# Don't objectify the base, since an undefined base, as in $x->blog() or
# $x->blog(undef) signals that the base is Euler's number.
if (!ref($_[0]) && $_[0] =~ /^[A-Za-z]|::/) {
# E.g., Math::BigInt->blog(256, 2)
($class, $x, $base, @r) =
defined $_[2] ? objectify(2, @_) : objectify(1, @_);
} else {
# E.g., Math::BigInt::blog(256, 2) or $x->blog(2)
($class, $x, $base, @r) =
defined $_[1] ? objectify(2, @_) : objectify(1, @_);
}
return $x if $x->modify('blog');
# Handle all exception cases and all trivial cases. I have used Wolfram
# Alpha (http://www.wolframalpha.com) as the reference for these cases.
return $x -> bnan() if $x -> is_nan();
if (defined $base) {
$base = $class -> new($base) unless ref $base;
if ($base -> is_nan() || $base -> is_one()) {
return $x -> bnan();
} elsif ($base -> is_inf() || $base -> is_zero()) {
return $x -> bnan() if $x -> is_inf() || $x -> is_zero();
return $x -> bzero();
} elsif ($base -> is_negative()) { # -inf < base < 0
return $x -> bzero() if $x -> is_one(); # x = 1
return $x -> bone() if $x == $base; # x = base
return $x -> bnan(); # otherwise
}
return $x -> bone() if $x == $base; # 0 < base && 0 < x < inf
}
# We now know that the base is either undefined or >= 2 and finite.
return $x -> binf('+') if $x -> is_inf(); # x = +/-inf
return $x -> bnan() if $x -> is_neg(); # -inf < x < 0
return $x -> bzero() if $x -> is_one(); # x = 1
return $x -> binf('-') if $x -> is_zero(); # x = 0
# At this point we are done handling all exception cases and trivial cases.
return $upgrade -> blog($upgrade -> new($x), $base, @r) if defined $upgrade;
# fix for bug #24969:
# the default base is e (Euler's number) which is not an integer
if (!defined $base) {
require Math::BigFloat;
my $u = Math::BigFloat->blog(Math::BigFloat->new($x))->as_int();
# modify $x in place
$x->{value} = $u->{value};
$x->{sign} = $u->{sign};
return $x;
}
my ($rc, $exact) = $CALC->_log_int($x->{value}, $base->{value});
return $x->bnan() unless defined $rc; # not possible to take log?
$x->{value} = $rc;
$x->round(@r);
}
sub bexp {
# Calculate e ** $x (Euler's number to the power of X), truncated to
# an integer value.
my ($class, $x, @r) = ref($_[0]) ? (ref($_[0]), @_) : objectify(1, @_);
return $x if $x->modify('bexp');
# inf, -inf, NaN, <0 => NaN
return $x->bnan() if $x->{sign} eq 'NaN';
return $x->bone() if $x->is_zero();
return $x if $x->{sign} eq '+inf';
return $x->bzero() if $x->{sign} eq '-inf';
my $u;
{
# run through Math::BigFloat unless told otherwise
require Math::BigFloat unless defined $upgrade;
local $upgrade = 'Math::BigFloat' unless defined $upgrade;
# calculate result, truncate it to integer
$u = $upgrade->bexp($upgrade->new($x), @r);
}
if (defined $upgrade) {
$x = $u;
} else {
$u = $u->as_int();
# modify $x in place
$x->{value} = $u->{value};
$x->round(@r);
}
}
sub bnok {
# Calculate n over k (binomial coefficient or "choose" function) as integer.
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('bnok');
return $x->bnan() if $x->{sign} eq 'NaN' || $y->{sign} eq 'NaN';
return $x->binf() if $x->{sign} eq '+inf';
# k > n or k < 0 => 0
my $cmp = $x->bacmp($y);
return $x->bzero() if $cmp < 0 || substr($y->{sign}, 0, 1) eq "-";
if ($CALC->can('_nok')) {
$x->{value} = $CALC->_nok($x->{value}, $y->{value});
} else {
# ( 7 ) 7! 1*2*3*4 * 5*6*7 5 * 6 * 7 6 7
# ( - ) = --------- = --------------- = --------- = 5 * - * -
# ( 3 ) (7-3)! 3! 1*2*3*4 * 1*2*3 1 * 2 * 3 2 3
my $n = $x -> {value};
my $k = $y -> {value};
# If k > n/2, or, equivalently, 2*k > n, compute nok(n, k) as
# nok(n, n-k) to minimize the number if iterations in the loop.
{
my $twok = $CALC->_mul($CALC->_two(), $CALC->_copy($k));
if ($CALC->_acmp($twok, $n) > 0) {
$k = $CALC->_sub($CALC->_copy($n), $k);
}
}
if ($CALC->_is_zero($k)) {
$n = $CALC->_one();
} else {
# Make a copy of the original n, since we'll be modifying n
# in-place.
my $n_orig = $CALC->_copy($n);
$CALC->_sub($n, $k);
$CALC->_inc($n);
my $f = $CALC->_copy($n);
$CALC->_inc($f);
my $d = $CALC->_two();
# while f <= n (the original n, that is) ...
while ($CALC->_acmp($f, $n_orig) <= 0) {
$CALC->_mul($n, $f);
$CALC->_div($n, $d);
$CALC->_inc($f);
$CALC->_inc($d);
}
}
$x -> {value} = $n;
}
$x->round(@r);
}
sub bsin {
# Calculate sinus(x) to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer.
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('bsin');
return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
return $upgrade->new($x)->bsin(@r) if defined $upgrade;
require Math::BigFloat;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->bsin(@r)->as_int();
$x->bone() if $t->is_one();
$x->bzero() if $t->is_zero();
$x->round(@r);
}
sub bcos {
# Calculate cosinus(x) to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer.
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('bcos');
return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
return $upgrade->new($x)->bcos(@r) if defined $upgrade;
require Math::BigFloat;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->bcos(@r)->as_int();
$x->bone() if $t->is_one();
$x->bzero() if $t->is_zero();
$x->round(@r);
}
sub batan {
# Calculate arcus tangens of x to N digits. Unless upgrading is in effect, returns the
# result truncated to an integer.
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('batan');
return $x->bnan() if $x->{sign} !~ /^[+-]\z/; # -inf +inf or NaN => NaN
return $upgrade->new($x)->batan(@r) if defined $upgrade;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->batan(@r);
$x->{value} = $CALC->_new($x->as_int()->bstr());
$x->round(@r);
}
sub batan2 {
# calculate arcus tangens of ($y/$x)
# set up parameters
my ($class, $y, $x, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $y, $x, @r) = objectify(2, @_);
}
return $y if $y->modify('batan2');
return $y->bnan() if ($y->{sign} eq $nan) || ($x->{sign} eq $nan);
# Y X
# != 0 -inf result is +- pi
if ($x->is_inf() || $y->is_inf()) {
# upgrade to Math::BigFloat etc.
return $upgrade->new($y)->batan2($upgrade->new($x), @r) if defined $upgrade;
if ($y->is_inf()) {
if ($x->{sign} eq '-inf') {
# calculate 3 pi/4 => 2.3.. => 2
$y->bone(substr($y->{sign}, 0, 1));
$y->bmul($class->new(2));
} elsif ($x->{sign} eq '+inf') {
# calculate pi/4 => 0.7 => 0
$y->bzero();
} else {
# calculate pi/2 => 1.5 => 1
$y->bone(substr($y->{sign}, 0, 1));
}
} else {
if ($x->{sign} eq '+inf') {
# calculate pi/4 => 0.7 => 0
$y->bzero();
} else {
# PI => 3.1415.. => 3
$y->bone(substr($y->{sign}, 0, 1));
$y->bmul($class->new(3));
}
}
return $y;
}
return $upgrade->new($y)->batan2($upgrade->new($x), @r) if defined $upgrade;
require Math::BigFloat;
my $r = Math::BigFloat->new($y)
->batan2(Math::BigFloat->new($x), @r)
->as_int();
$x->{value} = $r->{value};
$x->{sign} = $r->{sign};
$x;
}
sub bsqrt {
# calculate square root of $x
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('bsqrt');
return $x->bnan() if $x->{sign} !~ /^\+/; # -x or -inf or NaN => NaN
return $x if $x->{sign} eq '+inf'; # sqrt(+inf) == inf
return $upgrade->bsqrt($x, @r) if defined $upgrade;
$x->{value} = $CALC->_sqrt($x->{value});
$x->round(@r);
}
sub broot {
# calculate $y'th root of $x
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
$y = $class->new(2) unless defined $y;
# objectify is costly, so avoid it
if ((!ref($x)) || (ref($x) ne ref($y))) {
($class, $x, $y, @r) = objectify(2, $class || $class, @_);
}
return $x if $x->modify('broot');
# NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
$y->{sign} !~ /^\+$/;
return $x->round(@r)
if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();
return $upgrade->new($x)->broot($upgrade->new($y), @r) if defined $upgrade;
$x->{value} = $CALC->_root($x->{value}, $y->{value});
$x->round(@r);
}
sub bfac {
# (BINT or num_str, BINT or num_str) return BINT
# compute factorial number from $x, modify $x in place
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('bfac') || $x->{sign} eq '+inf'; # inf => inf
return $x->bnan() if $x->{sign} ne '+'; # NaN, <0 etc => NaN
$x->{value} = $CALC->_fac($x->{value});
$x->round(@r);
}
sub bdfac {
# compute double factorial, modify $x in place
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('bdfac') || $x->{sign} eq '+inf'; # inf => inf
return $x->bnan() if $x->{sign} ne '+'; # NaN, <0 etc => NaN
Carp::croak("bdfac() requires a newer version of the $CALC library.")
unless $CALC->can('_dfac');
$x->{value} = $CALC->_dfac($x->{value});
$x->round(@r);
}
sub bfib {
# compute Fibonacci number(s)
my ($class, $x, @r) = objectify(1, @_);
Carp::croak("bfib() requires a newer version of the $CALC library.")
unless $CALC->can('_fib');
return $x if $x->modify('bfib');
# List context.
if (wantarray) {
return () if $x -> is_nan();
Carp::croak("bfib() can't return an infinitely long list of numbers")
if $x -> is_inf();
# Use the backend library to compute the first $x Fibonacci numbers.
my @values = $CALC->_fib($x->{value});
# Make objects out of them. The last element in the array is the
# invocand.
for (my $i = 0 ; $i < $#values ; ++ $i) {
my $fib = $class -> bzero();
$fib -> {value} = $values[$i];
$values[$i] = $fib;
}
$x -> {value} = $values[-1];
$values[-1] = $x;
# If negative, insert sign as appropriate.
if ($x -> is_neg()) {
for (my $i = 2 ; $i <= $#values ; $i += 2) {
$values[$i]{sign} = '-';
}
}
@values = map { $_ -> round(@r) } @values;
return @values;
}
# Scalar context.
else {
return $x if $x->modify('bdfac') || $x -> is_inf('+');
return $x->bnan() if $x -> is_nan() || $x -> is_inf('-');
$x->{sign} = $x -> is_neg() && $x -> is_even() ? '-' : '+';
$x->{value} = $CALC->_fib($x->{value});
return $x->round(@r);
}
}
sub blucas {
# compute Lucas number(s)
my ($class, $x, @r) = objectify(1, @_);
Carp::croak("blucas() requires a newer version of the $CALC library.")
unless $CALC->can('_lucas');
return $x if $x->modify('blucas');
# List context.
if (wantarray) {
return () if $x -> is_nan();
Carp::croak("blucas() can't return an infinitely long list of numbers")
if $x -> is_inf();
# Use the backend library to compute the first $x Lucas numbers.
my @values = $CALC->_lucas($x->{value});
# Make objects out of them. The last element in the array is the
# invocand.
for (my $i = 0 ; $i < $#values ; ++ $i) {
my $lucas = $class -> bzero();
$lucas -> {value} = $values[$i];
$values[$i] = $lucas;
}
$x -> {value} = $values[-1];
$values[-1] = $x;
# If negative, insert sign as appropriate.
if ($x -> is_neg()) {
for (my $i = 2 ; $i <= $#values ; $i += 2) {
$values[$i]{sign} = '-';
}
}
@values = map { $_ -> round(@r) } @values;
return @values;
}
# Scalar context.
else {
return $x if $x -> is_inf('+');
return $x->bnan() if $x -> is_nan() || $x -> is_inf('-');
$x->{sign} = $x -> is_neg() && $x -> is_even() ? '-' : '+';
$x->{value} = $CALC->_lucas($x->{value});
return $x->round(@r);
}
}
sub blsft {
# (BINT or num_str, BINT or num_str) return BINT
# compute x << y, base n, y >= 0
# set up parameters
my ($class, $x, $y, $b, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, $b, @r) = objectify(2, @_);
}
return $x if $x -> modify('blsft');
return $x -> bnan() if ($x -> {sign} !~ /^[+-]$/ ||
$y -> {sign} !~ /^[+-]$/);
return $x -> round(@r) if $y -> is_zero();
$b = 2 if !defined $b;
return $x -> bnan() if $b <= 0 || $y -> {sign} eq '-';
$x -> {value} = $CALC -> _lsft($x -> {value}, $y -> {value}, $b);
$x -> round(@r);
}
sub brsft {
# (BINT or num_str, BINT or num_str) return BINT
# compute x >> y, base n, y >= 0
# set up parameters
my ($class, $x, $y, $b, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, $b, @r) = objectify(2, @_);
}
return $x if $x -> modify('brsft');
return $x -> bnan() if ($x -> {sign} !~ /^[+-]$/ || $y -> {sign} !~ /^[+-]$/);
return $x -> round(@r) if $y -> is_zero();
return $x -> bzero(@r) if $x -> is_zero(); # 0 => 0
$b = 2 if !defined $b;
return $x -> bnan() if $b <= 0 || $y -> {sign} eq '-';
# this only works for negative numbers when shifting in base 2
if (($x -> {sign} eq '-') && ($b == 2)) {
return $x -> round(@r) if $x -> is_one('-'); # -1 => -1
if (!$y -> is_one()) {
# although this is O(N*N) in calc (as_bin!) it is O(N) in Pari et
# al but perhaps there is a better emulation for two's complement
# shift...
# if $y != 1, we must simulate it by doing:
# convert to bin, flip all bits, shift, and be done
$x -> binc(); # -3 => -2
my $bin = $x -> as_bin();
$bin =~ s/^-0b//; # strip '-0b' prefix
$bin =~ tr/10/01/; # flip bits
# now shift
if ($y >= CORE::length($bin)) {
$bin = '0'; # shifting to far right creates -1
# 0, because later increment makes
# that 1, attached '-' makes it '-1'
# because -1 >> x == -1 !
} else {
$bin =~ s/.{$y}$//; # cut off at the right side
$bin = '1' . $bin; # extend left side by one dummy '1'
$bin =~ tr/10/01/; # flip bits back
}
my $res = $class -> new('0b' . $bin); # add prefix and convert back
$res -> binc(); # remember to increment
$x -> {value} = $res -> {value}; # take over value
return $x -> round(@r); # we are done now, magic, isn't?
}
# x < 0, n == 2, y == 1
$x -> bdec(); # n == 2, but $y == 1: this fixes it
}
$x -> {value} = $CALC -> _rsft($x -> {value}, $y -> {value}, $b);
$x -> round(@r);
}
###############################################################################
# Bitwise methods
###############################################################################
sub band {
#(BINT or num_str, BINT or num_str) return BINT
# compute x & y
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('band');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
if ($sx == 1 && $sy == 1) {
$x->{value} = $CALC->_and($x->{value}, $y->{value});
return $x->round(@r);
}
if ($CAN{signed_and}) {
$x->{value} = $CALC->_signed_and($x->{value}, $y->{value}, $sx, $sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_band($class, $x, $y, $sx, $sy, @r);
}
sub bior {
#(BINT or num_str, BINT or num_str) return BINT
# compute x | y
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('bior');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
# the sign of X follows the sign of X, e.g. sign of Y irrelevant for bior()
# don't use lib for negative values
if ($sx == 1 && $sy == 1) {
$x->{value} = $CALC->_or($x->{value}, $y->{value});
return $x->round(@r);
}
# if lib can do negative values, let it handle this
if ($CAN{signed_or}) {
$x->{value} = $CALC->_signed_or($x->{value}, $y->{value}, $sx, $sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_bior($class, $x, $y, $sx, $sy, @r);
}
sub bxor {
#(BINT or num_str, BINT or num_str) return BINT
# compute x ^ y
# set up parameters
my ($class, $x, $y, @r) = (ref($_[0]), @_);
# objectify is costly, so avoid it
if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1]))) {
($class, $x, $y, @r) = objectify(2, @_);
}
return $x if $x->modify('bxor');
$r[3] = $y; # no push!
return $x->bnan() if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/);
my $sx = $x->{sign} eq '+' ? 1 : -1;
my $sy = $y->{sign} eq '+' ? 1 : -1;
# don't use lib for negative values
if ($sx == 1 && $sy == 1) {
$x->{value} = $CALC->_xor($x->{value}, $y->{value});
return $x->round(@r);
}
# if lib can do negative values, let it handle this
if ($CAN{signed_xor}) {
$x->{value} = $CALC->_signed_xor($x->{value}, $y->{value}, $sx, $sy);
return $x->round(@r);
}
require $EMU_LIB;
__emu_bxor($class, $x, $y, $sx, $sy, @r);
}
sub bnot {
# (num_str or BINT) return BINT
# represent ~x as twos-complement number
# we don't need $class, so undef instead of ref($_[0]) make it slightly faster
my ($class, $x, $a, $p, $r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
return $x if $x->modify('bnot');
$x->binc()->bneg(); # binc already does round
}
###############################################################################
# Rounding methods
###############################################################################
sub round {
# Round $self according to given parameters, or given second argument's
# parameters or global defaults
# for speed reasons, _find_round_parameters is embedded here:
my ($self, $a, $p, $r, @args) = @_;
# $a accuracy, if given by caller
# $p precision, if given by caller
# $r round_mode, if given by caller
# @args all 'other' arguments (0 for unary, 1 for binary ops)
my $class = ref($self); # find out class of argument(s)
no strict 'refs';
# now pick $a or $p, but only if we have got "arguments"
if (!defined $a) {
foreach ($self, @args) {
# take the defined one, or if both defined, the one that is smaller
$a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
}
}
if (!defined $p) {
# even if $a is defined, take $p, to signal error for both defined
foreach ($self, @args) {
# take the defined one, or if both defined, the one that is bigger
# -2 > -3, and 3 > 2
$p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
}
}
# if still none defined, use globals (#2)
$a = ${"$class\::accuracy"} unless defined $a;
$p = ${"$class\::precision"} unless defined $p;
# A == 0 is useless, so undef it to signal no rounding
$a = undef if defined $a && $a == 0;
# no rounding today?
return $self unless defined $a || defined $p; # early out
# set A and set P is an fatal error
return $self->bnan() if defined $a && defined $p;
$r = ${"$class\::round_mode"} unless defined $r;
if ($r !~ /^(even|odd|[+-]inf|zero|trunc|common)$/) {
Carp::croak("Unknown round mode '$r'");
}
# now round, by calling either bround or bfround:
if (defined $a) {
$self->bround(int($a), $r) if !defined $self->{_a} || $self->{_a} >= $a;
} else { # both can't be undefined due to early out
$self->bfround(int($p), $r) if !defined $self->{_p} || $self->{_p} <= $p;
}
# bround() or bfround() already called bnorm() if nec.
$self;
}
sub bround {
# accuracy: +$n preserve $n digits from left,
# -$n preserve $n digits from right (f.i. for 0.1234 style in MBF)
# no-op for $n == 0
# and overwrite the rest with 0's, return normalized number
# do not return $x->bnorm(), but $x
my $x = shift;
$x = $class->new($x) unless ref $x;
my ($scale, $mode) = $x->_scale_a(@_);
return $x if !defined $scale || $x->modify('bround'); # no-op
if ($x->is_zero() || $scale == 0) {
$x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
return $x;
}
return $x if $x->{sign} !~ /^[+-]$/; # inf, NaN
# we have fewer digits than we want to scale to
my $len = $x->length();
# convert $scale to a scalar in case it is an object (put's a limit on the
# number length, but this would already limited by memory constraints), makes
# it faster
$scale = $scale->numify() if ref ($scale);
# scale < 0, but > -len (not >=!)
if (($scale < 0 && $scale < -$len-1) || ($scale >= $len)) {
$x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale; # 3 > 2
return $x;
}
# count of 0's to pad, from left (+) or right (-): 9 - +6 => 3, or |-6| => 6
my ($pad, $digit_round, $digit_after);
$pad = $len - $scale;
$pad = abs($scale-1) if $scale < 0;
# do not use digit(), it is very costly for binary => decimal
# getting the entire string is also costly, but we need to do it only once
my $xs = $CALC->_str($x->{value});
my $pl = -$pad-1;
# pad: 123: 0 => -1, at 1 => -2, at 2 => -3, at 3 => -4
# pad+1: 123: 0 => 0, at 1 => -1, at 2 => -2, at 3 => -3
$digit_round = '0';
$digit_round = substr($xs, $pl, 1) if $pad <= $len;
$pl++;
$pl ++ if $pad >= $len;
$digit_after = '0';
$digit_after = substr($xs, $pl, 1) if $pad > 0;
# in case of 01234 we round down, for 6789 up, and only in case 5 we look
# closer at the remaining digits of the original $x, remember decision
my $round_up = 1; # default round up
$round_up -- if
($mode eq 'trunc') || # trunc by round down
($digit_after =~ /[01234]/) || # round down anyway,
# 6789 => round up
($digit_after eq '5') && # not 5000...0000
($x->_scan_for_nonzero($pad, $xs, $len) == 0) &&
(
($mode eq 'even') && ($digit_round =~ /[24680]/) ||
($mode eq 'odd') && ($digit_round =~ /[13579]/) ||
($mode eq '+inf') && ($x->{sign} eq '-') ||
($mode eq '-inf') && ($x->{sign} eq '+') ||
($mode eq 'zero') # round down if zero, sign adjusted below
);
my $put_back = 0; # not yet modified
if (($pad > 0) && ($pad <= $len)) {
substr($xs, -$pad, $pad) = '0' x $pad; # replace with '00...'
$put_back = 1; # need to put back
} elsif ($pad > $len) {
$x->bzero(); # round to '0'
}
if ($round_up) { # what gave test above?
$put_back = 1; # need to put back
$pad = $len, $xs = '0' x $pad if $scale < 0; # tlr: whack 0.51=>1.0
# we modify directly the string variant instead of creating a number and
# adding it, since that is faster (we already have the string)
my $c = 0;
$pad ++; # for $pad == $len case
while ($pad <= $len) {
$c = substr($xs, -$pad, 1) + 1;
$c = '0' if $c eq '10';
substr($xs, -$pad, 1) = $c;
$pad++;
last if $c != 0; # no overflow => early out
}
$xs = '1'.$xs if $c == 0;
}
$x->{value} = $CALC->_new($xs) if $put_back == 1; # put back, if needed
$x->{_a} = $scale if $scale >= 0;
if ($scale < 0) {
$x->{_a} = $len+$scale;
$x->{_a} = 0 if $scale < -$len;
}
$x;
}
sub bfround {
# precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
# $n == 0 || $n == 1 => round to integer
my $x = shift;
my $class = ref($x) || $x;
$x = $class->new($x) unless ref $x;
my ($scale, $mode) = $x->_scale_p(@_);
return $x if !defined $scale || $x->modify('bfround'); # no-op
# no-op for Math::BigInt objects if $n <= 0
$x->bround($x->length()-$scale, $mode) if $scale > 0;
delete $x->{_a}; # delete to save memory
$x->{_p} = $scale; # store new _p
$x;
}
sub fround {
# Exists to make life easier for switch between MBF and MBI (should we
# autoload fxxx() like MBF does for bxxx()?)
my $x = shift;
$x = $class->new($x) unless ref $x;
$x->bround(@_);
}
sub bfloor {
# round towards minus infinity; no-op since it's already integer
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
$x->round(@r);
}
sub bceil {
# round towards plus infinity; no-op since it's already int
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
$x->round(@r);
}
sub bint {
# round towards zero; no-op since it's already integer
my ($class, $x, @r) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
$x->round(@r);
}
###############################################################################
# Other mathematical methods
###############################################################################
sub bgcd {
# (BINT or num_str, BINT or num_str) return BINT
# does not modify arguments, but returns new object
# GCD -- Euclid's algorithm, variant C (Knuth Vol 3, pg 341 ff)
my ($class, @args) = objectify(0, @_);
my $x = shift @args;
$x = ref($x) && $x -> isa($class) ? $x -> copy() : $class -> new($x);
return $class->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN?
while (@args) {
my $y = shift @args;
$y = $class->new($y) unless ref($y) && $y -> isa($class);
return $class->bnan() if $y->{sign} !~ /^[+-]$/; # y NaN?
$x->{value} = $CALC->_gcd($x->{value}, $y->{value});
last if $CALC->_is_one($x->{value});
}
return $x -> babs();
}
sub blcm {
# (BINT or num_str, BINT or num_str) return BINT
# does not modify arguments, but returns new object
# Least Common Multiple
my ($class, @args) = objectify(0, @_);
my $x = shift @args;
$x = ref($x) && $x -> isa($class) ? $x -> copy() : $class -> new($x);
return $class->bnan() if $x->{sign} !~ /^[+-]$/; # x NaN?
while (@args) {
my $y = shift @args;
$y = $class -> new($y) unless ref($y) && $y -> isa($class);
return $x->bnan() if $y->{sign} !~ /^[+-]$/; # y not integer
$x -> {value} = $CALC->_lcm($x -> {value}, $y -> {value});
}
return $x -> babs();
}
###############################################################################
# Object property methods
###############################################################################
sub sign {
# return the sign of the number: +/-/-inf/+inf/NaN
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
$x->{sign};
}
sub digit {
# return the nth decimal digit, negative values count backward, 0 is right
my ($class, $x, $n) = ref($_[0]) ? (undef, @_) : objectify(1, @_);
$n = $n->numify() if ref($n);
$CALC->_digit($x->{value}, $n || 0);
}
sub length {
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
my $e = $CALC->_len($x->{value});
wantarray ? ($e, 0) : $e;
}
sub exponent {
# return a copy of the exponent (here always 0, NaN or 1 for $m == 0)
my ($class, $x) = ref($_[0]) ? (ref($_[0]), $_[0]) : objectify(1, @_);
if ($x->{sign} !~ /^[+-]$/) {
my $s = $x->{sign};
$s =~ s/^[+-]//; # NaN, -inf, +inf => NaN or inf
return $class->new($s);
}
return $class->bzero() if $x->is_zero();
# 12300 => 2 trailing zeros => exponent is 2
$class->new($CALC->_zeros($x->{value}));
}
sub mantissa {
# return the mantissa (compatible to Math::BigFloat, e.g. reduced)
my ($class, $x) = ref($_[0]) ? (ref($_[0]), $_[0]) : objectify(1, @_);
if ($x->{sign} !~ /^[+-]$/) {
# for NaN, +inf, -inf: keep the sign
return $class->new($x->{sign});
}
my $m = $x->copy();
delete $m->{_p};
delete $m->{_a};
# that's a bit inefficient:
my $zeros = $CALC->_zeros($m->{value});
$m->brsft($zeros, 10) if $zeros != 0;
$m;
}
sub parts {
# return a copy of both the exponent and the mantissa
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
($x->mantissa(), $x->exponent());
}
sub sparts {
my $self = shift;
my $class = ref $self;
Carp::croak("sparts() is an instance method, not a class method")
unless $class;
# Not-a-number.
if ($self -> is_nan()) {
my $mant = $self -> copy(); # mantissa
return $mant unless wantarray; # scalar context
my $expo = $class -> bnan(); # exponent
return ($mant, $expo); # list context
}
# Infinity.
if ($self -> is_inf()) {
my $mant = $self -> copy(); # mantissa
return $mant unless wantarray; # scalar context
my $expo = $class -> binf('+'); # exponent
return ($mant, $expo); # list context
}
# Finite number.
my $mant = $self -> copy();
my $nzeros = $CALC -> _zeros($mant -> {value});
$mant -> brsft($nzeros, 10) if $nzeros != 0;
return $mant unless wantarray;
my $expo = $class -> new($nzeros);
return ($mant, $expo);
}
sub nparts {
my $self = shift;
my $class = ref $self;
Carp::croak("nparts() is an instance method, not a class method")
unless $class;
# Not-a-number.
if ($self -> is_nan()) {
my $mant = $self -> copy(); # mantissa
return $mant unless wantarray; # scalar context
my $expo = $class -> bnan(); # exponent
return ($mant, $expo); # list context
}
# Infinity.
if ($self -> is_inf()) {
my $mant = $self -> copy(); # mantissa
return $mant unless wantarray; # scalar context
my $expo = $class -> binf('+'); # exponent
return ($mant, $expo); # list context
}
# Finite number.
my ($mant, $expo) = $self -> sparts();
if ($mant -> bcmp(0)) {
my ($ndigtot, $ndigfrac) = $mant -> length();
my $expo10adj = $ndigtot - $ndigfrac - 1;
if ($expo10adj != 0) {
return $upgrade -> new($self) -> nparts() if $upgrade;
$mant -> bnan();
return $mant unless wantarray;
$expo -> badd($expo10adj);
return ($mant, $expo);
}
}
return $mant unless wantarray;
return ($mant, $expo);
}
sub eparts {
my $self = shift;
my $class = ref $self;
Carp::croak("eparts() is an instance method, not a class method")
unless $class;
# Not-a-number and Infinity.
return $self -> sparts() if $self -> is_nan() || $self -> is_inf();
# Finite number.
my ($mant, $expo) = $self -> sparts();
if ($mant -> bcmp(0)) {
my $ndigmant = $mant -> length();
$expo -> badd($ndigmant);
# $c is the number of digits that will be in the integer part of the
# final mantissa.
my $c = $expo -> copy() -> bdec() -> bmod(3) -> binc();
$expo -> bsub($c);
if ($ndigmant > $c) {
return $upgrade -> new($self) -> eparts() if $upgrade;
$mant -> bnan();
return $mant unless wantarray;
return ($mant, $expo);
}
$mant -> blsft($c - $ndigmant, 10);
}
return $mant unless wantarray;
return ($mant, $expo);
}
sub dparts {
my $self = shift;
my $class = ref $self;
Carp::croak("dparts() is an instance method, not a class method")
unless $class;
my $int = $self -> copy();
return $int unless wantarray;
my $frc = $class -> bzero();
return ($int, $frc);
}
###############################################################################
# String conversion methods
###############################################################################
sub bstr {
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
if ($x->{sign} ne '+' && $x->{sign} ne '-') {
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my $str = $CALC->_str($x->{value});
return $x->{sign} eq '-' ? "-$str" : $str;
}
# Scientific notation with significand/mantissa as an integer, e.g., "12345" is
# written as "1.2345e+4".
sub bsstr {
my ($class, $x) = ref($_[0]) ? (undef, $_[0]) : objectify(1, @_);
if ($x->{sign} ne '+' && $x->{sign} ne '-') {
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my ($m, $e) = $x -> parts();
my $str = $CALC->_str($m->{value}) . 'e+' . $CALC->_str($e->{value});
return $x->{sign} eq '-' ? "-$str" : $str;
}
# Normalized notation, e.g., "12345" is written as "12345e+0".
sub bnstr {
my $x = shift;
if ($x->{sign} ne '+' && $x->{sign} ne '-') {
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
return $x -> bstr() if $x -> is_nan() || $x -> is_inf();
my ($mant, $expo) = $x -> parts();
# The "fraction posision" is the position (offset) for the decimal point
# relative to the end of the digit string.
my $fracpos = $mant -> length() - 1;
if ($fracpos == 0) {
my $str = $CALC->_str($mant->{value}) . "e+" . $CALC->_str($expo->{value});
return $x->{sign} eq '-' ? "-$str" : $str;
}
$expo += $fracpos;
my $mantstr = $CALC->_str($mant -> {value});
substr($mantstr, -$fracpos, 0) = '.';
my $str = $mantstr . 'e+' . $CALC->_str($expo -> {value});
return $x->{sign} eq '-' ? "-$str" : $str;
}
# Engineering notation, e.g., "12345" is written as "12.345e+3".
sub bestr {
my $x = shift;
if ($x->{sign} ne '+' && $x->{sign} ne '-') {
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my ($mant, $expo) = $x -> parts();
my $sign = $mant -> sign();
$mant -> babs();
my $mantstr = $CALC->_str($mant -> {value});
my $mantlen = CORE::length($mantstr);
my $dotidx = 1;
$expo += $mantlen - 1;
my $c = $expo -> copy() -> bmod(3);
$expo -= $c;
$dotidx += $c;
if ($mantlen < $dotidx) {
$mantstr .= "0" x ($dotidx - $mantlen);
} elsif ($mantlen > $dotidx) {
substr($mantstr, $dotidx, 0) = ".";
}
my $str = $mantstr . 'e+' . $CALC->_str($expo -> {value});
return $sign eq "-" ? "-$str" : $str;
}
# Decimal notation, e.g., "12345".
sub bdstr {
my $x = shift;
if ($x->{sign} ne '+' && $x->{sign} ne '-') {
return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
return 'inf'; # +inf
}
my $str = $CALC->_str($x->{value});
return $x->{sign} eq '-' ? "-$str" : $str;
}
sub to_hex {
# return as hex string, with prefixed 0x
my $x = shift;
$x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $hex = $CALC->_to_hex($x->{value});
return $x->{sign} eq '-' ? "-$hex" : $hex;
}
sub to_oct {
# return as octal string, with prefixed 0
my $x = shift;
$x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $oct = $CALC->_to_oct($x->{value});
return $x->{sign} eq '-' ? "-$oct" : $oct;
}
sub to_bin {
# return as binary string, with prefixed 0b
my $x = shift;
$x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $bin = $CALC->_to_bin($x->{value});
return $x->{sign} eq '-' ? "-$bin" : $bin;
}
sub to_bytes {
# return a byte string
my $x = shift;
$x = $class->new($x) if !ref($x);
Carp::croak("to_bytes() requires a finite, non-negative integer")
if $x -> is_neg() || ! $x -> is_int();
Carp::croak("to_bytes() requires a newer version of the $CALC library.")
unless $CALC->can('_to_bytes');
return $CALC->_to_bytes($x->{value});
}
sub as_hex {
# return as hex string, with prefixed 0x
my $x = shift;
$x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $hex = $CALC->_as_hex($x->{value});
return $x->{sign} eq '-' ? "-$hex" : $hex;
}
sub as_oct {
# return as octal string, with prefixed 0
my $x = shift;
$x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $oct = $CALC->_as_oct($x->{value});
return $x->{sign} eq '-' ? "-$oct" : $oct;
}
sub as_bin {
# return as binary string, with prefixed 0b
my $x = shift;
$x = $class->new($x) if !ref($x);
return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
my $bin = $CALC->_as_bin($x->{value});
return $x->{sign} eq '-' ? "-$bin" : $bin;
}
*as_bytes = \&to_bytes;
###############################################################################
# Other conversion methods
###############################################################################
sub numify {
# Make a Perl scalar number from a Math::BigInt object.
my $x = shift;
$x = $class->new($x) unless ref $x;
if ($x -> is_nan()) {
require Math::Complex;
my $inf = Math::Complex::Inf();
return $inf - $inf;
}
if ($x -> is_inf()) {
require Math::Complex;
my $inf = Math::Complex::Inf();
return $x -> is_negative() ? -$inf : $inf;
}
my $num = 0 + $CALC->_num($x->{value});
return $x->{sign} eq '-' ? -$num : $num;
}
###############################################################################
# Private methods and functions.
###############################################################################
sub objectify {
# Convert strings and "foreign objects" to the objects we want.
# The first argument, $count, is the number of following arguments that
# objectify() looks at and converts to objects. The first is a classname.
# If the given count is 0, all arguments will be used.
# After the count is read, objectify obtains the name of the class to which
# the following arguments are converted. If the second argument is a
# reference, use the reference type as the class name. Otherwise, if it is
# a string that looks like a class name, use that. Otherwise, use $class.
# Caller: Gives us:
#
# $x->badd(1); => ref x, scalar y
# Class->badd(1, 2); => classname x (scalar), scalar x, scalar y
# Class->badd(Class->(1), 2); => classname x (scalar), ref x, scalar y
# Math::BigInt::badd(1, 2); => scalar x, scalar y
# A shortcut for the common case $x->unary_op(), in which case the argument
# list is (0, $x) or (1, $x).
return (ref($_[1]), $_[1]) if @_ == 2 && ($_[0] || 0) == 1 && ref($_[1]);
# Check the context.
unless (wantarray) {
Carp::croak("${class}::objectify() needs list context");
}
# Get the number of arguments to objectify.
my $count = shift;
# Initialize the output array.
my @a = @_;
# If the first argument is a reference, use that reference type as our
# class name. Otherwise, if the first argument looks like a class name,
# then use that as our class name. Otherwise, use the default class name.
my $class;
if (ref($a[0])) { # reference?
$class = ref($a[0]);
} elsif ($a[0] =~ /^[A-Z].*::/) { # string with class name?
$class = shift @a;
} else {
$class = __PACKAGE__; # default class name
}
$count ||= @a;
unshift @a, $class;
no strict 'refs';
# What we upgrade to, if anything.
my $up = ${"$a[0]::upgrade"};
# Disable downgrading, because Math::BigFloat -> foo('1.0', '2.0') needs
# floats.
my $down;
if (defined ${"$a[0]::downgrade"}) {
$down = ${"$a[0]::downgrade"};
${"$a[0]::downgrade"} = undef;
}
for my $i (1 .. $count) {
my $ref = ref $a[$i];
# Perl scalars are fed to the appropriate constructor.
unless ($ref) {
$a[$i] = $a[0] -> new($a[$i]);
next;
}
# If it is an object of the right class, all is fine.
next if $ref -> isa($a[0]);
# Upgrading is OK, so skip further tests if the argument is upgraded.
if (defined $up && $ref -> isa($up)) {
next;
}
# See if we can call one of the as_xxx() methods. We don't know whether
# the as_xxx() method returns an object or a scalar, so re-check
# afterwards.
my $recheck = 0;
if ($a[0] -> isa('Math::BigInt')) {
if ($a[$i] -> can('as_int')) {
$a[$i] = $a[$i] -> as_int();
$recheck = 1;
} elsif ($a[$i] -> can('as_number')) {
$a[$i] = $a[$i] -> as_number();
$recheck = 1;
}
}
elsif ($a[0] -> isa('Math::BigFloat')) {
if ($a[$i] -> can('as_float')) {
$a[$i] = $a[$i] -> as_float();
$recheck = $1;
}
}
# If we called one of the as_xxx() methods, recheck.
if ($recheck) {
$ref = ref($a[$i]);
# Perl scalars are fed to the appropriate constructor.
unless ($ref) {
$a[$i] = $a[0] -> new($a[$i]);
next;
}
# If it is an object of the right class, all is fine.
next if $ref -> isa($a[0]);
}
# Last resort.
$a[$i] = $a[0] -> new($a[$i]);
}
# Reset the downgrading.
${"$a[0]::downgrade"} = $down;
return @a;
}
sub import {
my $class = shift;
$IMPORT++; # remember we did import()
my @a;
my $l = scalar @_;
my $warn_or_die = 0; # 0 - no warn, 1 - warn, 2 - die
for (my $i = 0; $i < $l ; $i++) {
if ($_[$i] eq ':constant') {
# this causes overlord er load to step in
overload::constant
integer => sub { $class->new(shift) },
binary => sub { $class->new(shift) };
} elsif ($_[$i] eq 'upgrade') {
# this causes upgrading
$upgrade = $_[$i+1]; # or undef to disable
$i++;
} elsif ($_[$i] =~ /^(lib|try|only)\z/) {
# this causes a different low lib to take care...
$CALC = $_[$i+1] || '';
# lib => 1 (warn on fallback), try => 0 (no warn), only => 2 (die on fallback)
$warn_or_die = 1 if $_[$i] eq 'lib';
$warn_or_die = 2 if $_[$i] eq 'only';
$i++;
} else {
push @a, $_[$i];
}
}
# any non :constant stuff is handled by our parent, Exporter
if (@a > 0) {
require Exporter;
$class->SUPER::import(@a); # need it for subclasses
$class->export_to_level(1, $class, @a); # need it for MBF
}
# try to load core math lib
my @c = split /\s*,\s*/, $CALC;
foreach (@c) {
$_ =~ tr/a-zA-Z0-9://cd; # limit to sane characters
}
push @c, \'Calc' # if all fail, try these
if $warn_or_die < 2; # but not for "only"
$CALC = ''; # signal error
foreach my $l (@c) {
# fallback libraries are "marked" as \'string', extract string if nec.
my $lib = $l;
$lib = $$l if ref($l);
next if ($lib || '') eq '';
$lib = 'Math::BigInt::'.$lib if $lib !~ /^Math::BigInt/i;
$lib =~ s/\.pm$//;
if ($] < 5.006) {
# Perl < 5.6.0 dies with "out of memory!" when eval("") and ':constant' is
# used in the same script, or eval("") inside import().
my @parts = split /::/, $lib; # Math::BigInt => Math BigInt
my $file = pop @parts;
$file .= '.pm'; # BigInt => BigInt.pm
require File::Spec;
$file = File::Spec->catfile (@parts, $file);
eval {
require "$file";
$lib->import(@c);
}
} else {
eval "use $lib qw/@c/;";
}
if ($@ eq '') {
my $ok = 1;
# loaded it ok, see if the api_version() is high enough
if ($lib->can('api_version') && $lib->api_version() >= 1.0) {
$ok = 0;
# api_version matches, check if it really provides anything we need
for my $method (qw/
one two ten
str num
add mul div sub dec inc
acmp len digit is_one is_zero is_even is_odd
is_two is_ten
zeros new copy check
from_hex from_oct from_bin as_hex as_bin as_oct
rsft lsft xor and or
mod sqrt root fac pow modinv modpow log_int gcd
/) {
if (!$lib->can("_$method")) {
if (($WARN{$lib} || 0) < 2) {
Carp::carp("$lib is missing method '_$method'");
$WARN{$lib} = 1; # still warn about the lib
}
$ok++;
last;
}
}
}
if ($ok == 0) {
$CALC = $lib;
if ($warn_or_die > 0 && ref($l)) {
my $msg = "Math::BigInt: couldn't load specified"
. " math lib(s), fallback to $lib";
Carp::carp($msg) if $warn_or_die == 1;
Carp::croak($msg) if $warn_or_die == 2;
}
last; # found a usable one, break
} else {
if (($WARN{$lib} || 0) < 2) {
my $ver = eval "\$$lib\::VERSION" || 'unknown';
Carp::carp("Cannot load outdated $lib v$ver, please upgrade");
$WARN{$lib} = 2; # never warn again
}
}
}
}
if ($CALC eq '') {
if ($warn_or_die == 2) {
Carp::croak("Couldn't load specified math lib(s)" .
" and fallback disallowed");
} else {
Carp::croak("Couldn't load any math lib(s), not even fallback to Calc.pm");
}
}
# notify callbacks
foreach my $class (keys %CALLBACKS) {
&{$CALLBACKS{$class}}($CALC);
}
# Fill $CAN with the results of $CALC->can(...) for emulating lower math lib
# functions
%CAN = ();
for my $method (qw/ signed_and signed_or signed_xor /) {
$CAN{$method} = $CALC->can("_$method") ? 1 : 0;
}
# import done
}
sub _register_callback {
my ($class, $callback) = @_;
if (ref($callback) ne 'CODE') {
Carp::croak("$callback is not a coderef");
}
$CALLBACKS{$class} = $callback;
}
sub _split_dec_string {
my $str = shift;
if ($str =~ s/
^
# leading whitespace
( \s* )
# optional sign
( [+-]? )
# significand
(
\d+ (?: _ \d+ )*
(?:
\.
(?: \d+ (?: _ \d+ )* )?
)?
|
\.
\d+ (?: _ \d+ )*
)
# optional exponent
(?:
[Ee]
( [+-]? )
( \d+ (?: _ \d+ )* )
)?
# trailing stuff
( \D .*? )?
\z
//x) {
my $leading = $1;
my $significand_sgn = $2 || '+';
my $significand_abs = $3;
my $exponent_sgn = $4 || '+';
my $exponent_abs = $5 || '0';
my $trailing = $6;
# Remove underscores and leading zeros.
$significand_abs =~ tr/_//d;
$exponent_abs =~ tr/_//d;
$significand_abs =~ s/^0+(.)/$1/;
$exponent_abs =~ s/^0+(.)/$1/;
# If the significand contains a dot, remove it and adjust the exponent
# accordingly. E.g., "1234.56789e+3" -> "123456789e-2"
my $idx = index $significand_abs, '.';
if ($idx > -1) {
$significand_abs =~ s/0+\z//;
substr($significand_abs, $idx, 1) = '';
my $exponent = $exponent_sgn . $exponent_abs;
$exponent .= $idx - CORE::length($significand_abs);
$exponent_abs = abs $exponent;
$exponent_sgn = $exponent < 0 ? '-' : '+';
}
return($leading,
$significand_sgn, $significand_abs,
$exponent_sgn, $exponent_abs,
$trailing);
}
return undef;
}
sub _split {
# input: num_str; output: undef for invalid or
# (\$mantissa_sign, \$mantissa_value, \$mantissa_fraction,
# \$exp_sign, \$exp_value)
# Internal, take apart a string and return the pieces.
# Strip leading/trailing whitespace, leading zeros, underscore and reject
# invalid input.
my $x = shift;
# strip white space at front, also extraneous leading zeros
$x =~ s/^\s*([-]?)0*([0-9])/$1$2/g; # will not strip ' .2'
$x =~ s/^\s+//; # but this will
$x =~ s/\s+$//g; # strip white space at end
# shortcut, if nothing to split, return early
if ($x =~ /^[+-]?[0-9]+\z/) {
$x =~ s/^([+-])0*([0-9])/$2/;
my $sign = $1 || '+';
return (\$sign, \$x, \'', \'', \0);
}
# invalid starting char?
return if $x !~ /^[+-]?(\.?[0-9]|0b[0-1]|0x[0-9a-fA-F])/;
return Math::BigInt->from_hex($x) if $x =~ /^[+-]?0x/; # hex string
return Math::BigInt->from_bin($x) if $x =~ /^[+-]?0b/; # binary string
# strip underscores between digits
$x =~ s/([0-9])_([0-9])/$1$2/g;
$x =~ s/([0-9])_([0-9])/$1$2/g; # do twice for 1_2_3
# some possible inputs:
# 2.1234 # 0.12 # 1 # 1E1 # 2.134E1 # 434E-10 # 1.02009E-2
# .2 # 1_2_3.4_5_6 # 1.4E1_2_3 # 1e3 # +.2 # 0e999
my ($m, $e, $last) = split /[Ee]/, $x;
return if defined $last; # last defined => 1e2E3 or others
$e = '0' if !defined $e || $e eq "";
# sign, value for exponent, mantint, mantfrac
my ($es, $ev, $mis, $miv, $mfv);
# valid exponent?
if ($e =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros
{
$es = $1;
$ev = $2;
# valid mantissa?
return if $m eq '.' || $m eq '';
my ($mi, $mf, $lastf) = split /\./, $m;
return if defined $lastf; # lastf defined => 1.2.3 or others
$mi = '0' if !defined $mi;
$mi .= '0' if $mi =~ /^[\-\+]?$/;
$mf = '0' if !defined $mf || $mf eq '';
if ($mi =~ /^([+-]?)0*([0-9]+)$/) # strip leading zeros
{
$mis = $1 || '+';
$miv = $2;
return unless ($mf =~ /^([0-9]*?)0*$/); # strip trailing zeros
$mfv = $1;
# handle the 0e999 case here
$ev = 0 if $miv eq '0' && $mfv eq '';
return (\$mis, \$miv, \$mfv, \$es, \$ev);
}
}
return; # NaN, not a number
}
sub _trailing_zeros {
# return the amount of trailing zeros in $x (as scalar)
my $x = shift;
$x = $class->new($x) unless ref $x;
return 0 if $x->{sign} !~ /^[+-]$/; # NaN, inf, -inf etc
$CALC->_zeros($x->{value}); # must handle odd values, 0 etc
}
sub _scan_for_nonzero {
# internal, used by bround() to scan for non-zeros after a '5'
my ($x, $pad, $xs, $len) = @_;
return 0 if $len == 1; # "5" is trailed by invisible zeros
my $follow = $pad - 1;
return 0 if $follow > $len || $follow < 1;
# use the string form to check whether only '0's follow or not
substr ($xs, -$follow) =~ /[^0]/ ? 1 : 0;
}
sub _find_round_parameters {
# After any operation or when calling round(), the result is rounded by
# regarding the A & P from arguments, local parameters, or globals.
# !!!!!!! If you change this, remember to change round(), too! !!!!!!!!!!
# This procedure finds the round parameters, but it is for speed reasons
# duplicated in round. Otherwise, it is tested by the testsuite and used
# by bdiv().
# returns ($self) or ($self, $a, $p, $r) - sets $self to NaN of both A and P
# were requested/defined (locally or globally or both)
my ($self, $a, $p, $r, @args) = @_;
# $a accuracy, if given by caller
# $p precision, if given by caller
# $r round_mode, if given by caller
# @args all 'other' arguments (0 for unary, 1 for binary ops)
my $class = ref($self); # find out class of argument(s)
no strict 'refs';
# convert to normal scalar for speed and correctness in inner parts
$a = $a->can('numify') ? $a->numify() : "$a" if defined $a && ref($a);
$p = $p->can('numify') ? $p->numify() : "$p" if defined $p && ref($p);
# now pick $a or $p, but only if we have got "arguments"
if (!defined $a) {
foreach ($self, @args) {
# take the defined one, or if both defined, the one that is smaller
$a = $_->{_a} if (defined $_->{_a}) && (!defined $a || $_->{_a} < $a);
}
}
if (!defined $p) {
# even if $a is defined, take $p, to signal error for both defined
foreach ($self, @args) {
# take the defined one, or if both defined, the one that is bigger
# -2 > -3, and 3 > 2
$p = $_->{_p} if (defined $_->{_p}) && (!defined $p || $_->{_p} > $p);
}
}
# if still none defined, use globals (#2)
$a = ${"$class\::accuracy"} unless defined $a;
$p = ${"$class\::precision"} unless defined $p;
# A == 0 is useless, so undef it to signal no rounding
$a = undef if defined $a && $a == 0;
# no rounding today?
return ($self) unless defined $a || defined $p; # early out
# set A and set P is an fatal error
return ($self->bnan()) if defined $a && defined $p; # error
$r = ${"$class\::round_mode"} unless defined $r;
if ($r !~ /^(even|odd|[+-]inf|zero|trunc|common)$/) {
Carp::croak("Unknown round mode '$r'");
}
$a = int($a) if defined $a;
$p = int($p) if defined $p;
($self, $a, $p, $r);
}
###############################################################################
# this method returns 0 if the object can be modified, or 1 if not.
# We use a fast constant sub() here, to avoid costly calls. Subclasses
# may override it with special code (f.i. Math::BigInt::Constant does so)
sub modify () { 0; }
1;
__END__
=pod
=head1 NAME
Math::BigInt - Arbitrary size integer/float math package
=head1 SYNOPSIS
use Math::BigInt;
# or make it faster with huge numbers: install (optional)
# Math::BigInt::GMP and always use (it falls back to
# pure Perl if the GMP library is not installed):
# (See also the L<MATH LIBRARY> section!)
# warns if Math::BigInt::GMP cannot be found
use Math::BigInt lib => 'GMP';
# to suppress the warning use this:
# use Math::BigInt try => 'GMP';
# dies if GMP cannot be loaded:
# use Math::BigInt only => 'GMP';
my $str = '1234567890';
my @values = (64, 74, 18);
my $n = 1; my $sign = '-';
# Configuration methods (may be used as class methods and instance methods)
Math::BigInt->accuracy(); # get class accuracy
Math::BigInt->accuracy($n); # set class accuracy
Math::BigInt->precision(); # get class precision
Math::BigInt->precision($n); # set class precision
Math::BigInt->round_mode(); # get class rounding mode
Math::BigInt->round_mode($m); # set global round mode, must be one of
# 'even', 'odd', '+inf', '-inf', 'zero',
# 'trunc', or 'common'
Math::BigInt->config(); # return hash with configuration
# Constructor methods (when the class methods below are used as instance
# methods, the value is assigned the invocand)
$x = Math::BigInt->new($str); # defaults to 0
$x = Math::BigInt->new('0x123'); # from hexadecimal
$x = Math::BigInt->new('0b101'); # from binary
$x = Math::BigInt->from_hex('cafe'); # from hexadecimal
$x = Math::BigInt->from_oct('377'); # from octal
$x = Math::BigInt->from_bin('1101'); # from binary
$x = Math::BigInt->bzero(); # create a +0
$x = Math::BigInt->bone(); # create a +1
$x = Math::BigInt->bone('-'); # create a -1
$x = Math::BigInt->binf(); # create a +inf
$x = Math::BigInt->binf('-'); # create a -inf
$x = Math::BigInt->bnan(); # create a Not-A-Number
$x = Math::BigInt->bpi(); # returns pi
$y = $x->copy(); # make a copy (unlike $y = $x)
$y = $x->as_int(); # return as a Math::BigInt
# Boolean methods (these don't modify the invocand)
$x->is_zero(); # if $x is 0
$x->is_one(); # if $x is +1
$x->is_one("+"); # ditto
$x->is_one("-"); # if $x is -1
$x->is_inf(); # if $x is +inf or -inf
$x->is_inf("+"); # if $x is +inf
$x->is_inf("-"); # if $x is -inf
$x->is_nan(); # if $x is NaN
$x->is_positive(); # if $x > 0
$x->is_pos(); # ditto
$x->is_negative(); # if $x < 0
$x->is_neg(); # ditto
$x->is_odd(); # if $x is odd
$x->is_even(); # if $x is even
$x->is_int(); # if $x is an integer
# Comparison methods
$x->bcmp($y); # compare numbers (undef, < 0, == 0, > 0)
$x->bacmp($y); # compare absolutely (undef, < 0, == 0, > 0)
$x->beq($y); # true if and only if $x == $y
$x->bne($y); # true if and only if $x != $y
$x->blt($y); # true if and only if $x < $y
$x->ble($y); # true if and only if $x <= $y
$x->bgt($y); # true if and only if $x > $y
$x->bge($y); # true if and only if $x >= $y
# Arithmetic methods
$x->bneg(); # negation
$x->babs(); # absolute value
$x->bsgn(); # sign function (-1, 0, 1, or NaN)
$x->bnorm(); # normalize (no-op)
$x->binc(); # increment $x by 1
$x->bdec(); # decrement $x by 1
$x->badd($y); # addition (add $y to $x)
$x->bsub($y); # subtraction (subtract $y from $x)
$x->bmul($y); # multiplication (multiply $x by $y)
$x->bmuladd($y,$z); # $x = $x * $y + $z
$x->bdiv($y); # division (floored), set $x to quotient
# return (quo,rem) or quo if scalar
$x->btdiv($y); # division (truncated), set $x to quotient
# return (quo,rem) or quo if scalar
$x->bmod($y); # modulus (x % y)
$x->btmod($y); # modulus (truncated)
$x->bmodinv($mod); # modular multiplicative inverse
$x->bmodpow($y,$mod); # modular exponentiation (($x ** $y) % $mod)
$x->bpow($y); # power of arguments (x ** y)
$x->blog(); # logarithm of $x to base e (Euler's number)
$x->blog($base); # logarithm of $x to base $base (e.g., base 2)
$x->bexp(); # calculate e ** $x where e is Euler's number
$x->bnok($y); # x over y (binomial coefficient n over k)
$x->bsin(); # sine
$x->bcos(); # cosine
$x->batan(); # inverse tangent
$x->batan2($y); # two-argument inverse tangent
$x->bsqrt(); # calculate square-root
$x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
$x->bfac(); # factorial of $x (1*2*3*4*..$x)
$x->blsft($n); # left shift $n places in base 2
$x->blsft($n,$b); # left shift $n places in base $b
# returns (quo,rem) or quo (scalar context)
$x->brsft($n); # right shift $n places in base 2
$x->brsft($n,$b); # right shift $n places in base $b
# returns (quo,rem) or quo (scalar context)
# Bitwise methods
$x->band($y); # bitwise and
$x->bior($y); # bitwise inclusive or
$x->bxor($y); # bitwise exclusive or
$x->bnot(); # bitwise not (two's complement)
# Rounding methods
$x->round($A,$P,$mode); # round to accuracy or precision using
# rounding mode $mode
$x->bround($n); # accuracy: preserve $n digits
$x->bfround($n); # $n > 0: round to $nth digit left of dec. point
# $n < 0: round to $nth digit right of dec. point
$x->bfloor(); # round towards minus infinity
$x->bceil(); # round towards plus infinity
$x->bint(); # round towards zero
# Other mathematical methods
$x->bgcd($y); # greatest common divisor
$x->blcm($y); # least common multiple
# Object property methods (do not modify the invocand)
$x->sign(); # the sign, either +, - or NaN
$x->digit($n); # the nth digit, counting from the right
$x->digit(-$n); # the nth digit, counting from the left
$x->length(); # return number of digits in number
($xl,$f) = $x->length(); # length of number and length of fraction
# part, latter is always 0 digits long
# for Math::BigInt objects
$x->mantissa(); # return (signed) mantissa as a Math::BigInt
$x->exponent(); # return exponent as a Math::BigInt
$x->parts(); # return (mantissa,exponent) as a Math::BigInt
$x->sparts(); # mantissa and exponent (as integers)
$x->nparts(); # mantissa and exponent (normalised)
$x->eparts(); # mantissa and exponent (engineering notation)
$x->dparts(); # integer and fraction part
# Conversion methods (do not modify the invocand)
$x->bstr(); # decimal notation, possibly zero padded
$x->bsstr(); # string in scientific notation with integers
$x->bnstr(); # string in normalized notation
$x->bestr(); # string in engineering notation
$x->bdstr(); # string in decimal notation
$x->to_hex(); # as signed hexadecimal string
$x->to_bin(); # as signed binary string
$x->to_oct(); # as signed octal string
$x->to_bytes(); # as byte string
$x->as_hex(); # as signed hexadecimal string with prefixed 0x
$x->as_bin(); # as signed binary string with prefixed 0b
$x->as_oct(); # as signed octal string with prefixed 0
# Other conversion methods
$x->numify(); # return as scalar (might overflow or underflow)
=head1 DESCRIPTION
Math::BigInt provides support for arbitrary precision integers. Overloading is
also provided for Perl operators.
=head2 Input
Input values to these routines may be any scalar number or string that looks
like a number and represents an integer.
=over
=item *
Leading and trailing whitespace is ignored.
=item *
Leading and trailing zeros are ignored.
=item *
If the string has a "0x" prefix, it is interpreted as a hexadecimal number.
=item *
If the string has a "0b" prefix, it is interpreted as a binary number.
=item *
One underline is allowed between any two digits.
=item *
If the string can not be interpreted, NaN is returned.
=back
Octal numbers are typically prefixed by "0", but since leading zeros are
stripped, these methods can not automatically recognize octal numbers, so use
the constructor from_oct() to interpret octal strings.
Some examples of valid string input
Input string Resulting value
123 123
1.23e2 123
12300e-2 123
0xcafe 51966
0b1101 13
67_538_754 67538754
-4_5_6.7_8_9e+0_1_0 -4567890000000
Input given as scalar numbers might lose precision. Quote your input to ensure
that no digits are lost:
$x = Math::BigInt->new( 56789012345678901234 ); # bad
$x = Math::BigInt->new('56789012345678901234'); # good
Currently, Math::BigInt->new() defaults to 0, while Math::BigInt->new('')
results in 'NaN'. This might change in the future, so use always the following
explicit forms to get a zero or NaN:
$zero = Math::BigInt->bzero();
$nan = Math::BigInt->bnan();
=head2 Output
Output values are usually Math::BigInt objects.
Boolean operators C<is_zero()>, C<is_one()>, C<is_inf()>, etc. return true or
false.
Comparison operators C<bcmp()> and C<bacmp()>) return -1, 0, 1, or
undef.
=head1 METHODS
=head2 Configuration methods
Each of the methods below (except config(), accuracy() and precision()) accepts
three additional parameters. These arguments C<$A>, C<$P> and C<$R> are
C<accuracy>, C<precision> and C<round_mode>. Please see the section about
L</ACCURACY and PRECISION> for more information.
Setting a class variable effects all object instance that are created
afterwards.
=over
=item accuracy()
Math::BigInt->accuracy(5); # set class accuracy
$x->accuracy(5); # set instance accuracy
$A = Math::BigInt->accuracy(); # get class accuracy
$A = $x->accuracy(); # get instance accuracy
Set or get the accuracy, i.e., the number of significant digits. The accuracy
must be an integer. If the accuracy is set to C<undef>, no rounding is done.
Alternatively, one can round the results explicitly using one of L</round()>,
L</bround()> or L</bfround()> or by passing the desired accuracy to the method
as an additional parameter:
my $x = Math::BigInt->new(30000);
my $y = Math::BigInt->new(7);
print scalar $x->copy()->bdiv($y, 2); # prints 4300
print scalar $x->copy()->bdiv($y)->bround(2); # prints 4300
Please see the section about L</ACCURACY and PRECISION> for further details.
$y = Math::BigInt->new(1234567); # $y is not rounded
Math::BigInt->accuracy(4); # set class accuracy to 4
$x = Math::BigInt->new(1234567); # $x is rounded automatically
print "$x $y"; # prints "1235000 1234567"
print $x->accuracy(); # prints "4"
print $y->accuracy(); # also prints "4", since
# class accuracy is 4
Math::BigInt->accuracy(5); # set class accuracy to 5
print $x->accuracy(); # prints "4", since instance
# accuracy is 4
print $y->accuracy(); # prints "5", since no instance
# accuracy, and class accuracy is 5
Note: Each class has it's own globals separated from Math::BigInt, but it is
possible to subclass Math::BigInt and make the globals of the subclass aliases
to the ones from Math::BigInt.
=item precision()
Math::BigInt->precision(-2); # set class precision
$x->precision(-2); # set instance precision
$P = Math::BigInt->precision(); # get class precision
$P = $x->precision(); # get instance precision
Set or get the precision, i.e., the place to round relative to the decimal
point. The precision must be a integer. Setting the precision to $P means that
each number is rounded up or down, depending on the rounding mode, to the
nearest multiple of 10**$P. If the precision is set to C<undef>, no rounding is
done.
You might want to use L</accuracy()> instead. With L</accuracy()> you set the
number of digits each result should have, with L</precision()> you set the
place where to round.
Please see the section about L</ACCURACY and PRECISION> for further details.
$y = Math::BigInt->new(1234567); # $y is not rounded
Math::BigInt->precision(4); # set class precision to 4
$x = Math::BigInt->new(1234567); # $x is rounded automatically
print $x; # prints "1230000"
Note: Each class has its own globals separated from Math::BigInt, but it is
possible to subclass Math::BigInt and make the globals of the subclass aliases
to the ones from Math::BigInt.
=item div_scale()
Set/get the fallback accuracy. This is the accuracy used when neither accuracy
nor precision is set explicitly. It is used when a computation might otherwise
attempt to return an infinite number of digits.
=item round_mode()
Set/get the rounding mode.
=item upgrade()
Set/get the class for upgrading. When a computation might result in a
non-integer, the operands are upgraded to this class. This is used for instance
by L<bignum>. The default is C<undef>, thus the following operation creates
a Math::BigInt, not a Math::BigFloat:
my $i = Math::BigInt->new(123);
my $f = Math::BigFloat->new('123.1');
print $i + $f, "\n"; # prints 246
=item downgrade()
Set/get the class for downgrading. The default is C<undef>. Downgrading is not
done by Math::BigInt.
=item modify()
$x->modify('bpowd');
This method returns 0 if the object can be modified with the given operation,
or 1 if not.
This is used for instance by L<Math::BigInt::Constant>.
=item config()
use Data::Dumper;
print Dumper ( Math::BigInt->config() );
print Math::BigInt->config()->{lib},"\n";
print Math::BigInt->config('lib')},"\n";
Returns a hash containing the configuration, e.g. the version number, lib
loaded etc. The following hash keys are currently filled in with the
appropriate information.
key Description
Example
============================================================
lib Name of the low-level math library
Math::BigInt::Calc
lib_version Version of low-level math library (see 'lib')
0.30
class The class name of config() you just called
Math::BigInt
upgrade To which class math operations might be
upgraded Math::BigFloat
downgrade To which class math operations might be
downgraded undef
precision Global precision
undef
accuracy Global accuracy
undef
round_mode Global round mode
even
version version number of the class you used
1.61
div_scale Fallback accuracy for div
40
trap_nan If true, traps creation of NaN via croak()
1
trap_inf If true, traps creation of +inf/-inf via croak()
1
The following values can be set by passing C<config()> a reference to a hash:
accuracy precision round_mode div_scale
upgrade downgrade trap_inf trap_nan
Example:
$new_cfg = Math::BigInt->config(
{ trap_inf => 1, precision => 5 }
);
=back
=head2 Constructor methods
=over
=item new()
$x = Math::BigInt->new($str,$A,$P,$R);
Creates a new Math::BigInt object from a scalar or another Math::BigInt object.
The input is accepted as decimal, hexadecimal (with leading '0x') or binary
(with leading '0b').
See L</Input> for more info on accepted input formats.
=item from_hex()
$x = Math::BigInt->from_hex("0xcafe"); # input is hexadecimal
Interpret input as a hexadecimal string. A "0x" or "x" prefix is optional. A
single underscore character may be placed right after the prefix, if present,
or between any two digits. If the input is invalid, a NaN is returned.
=item from_oct()
$x = Math::BigInt->from_oct("0775"); # input is octal
Interpret the input as an octal string and return the corresponding value. A
"0" (zero) prefix is optional. A single underscore character may be placed
right after the prefix, if present, or between any two digits. If the input is
invalid, a NaN is returned.
=item from_bin()
$x = Math::BigInt->from_bin("0b10011"); # input is binary
Interpret the input as a binary string. A "0b" or "b" prefix is optional. A
single underscore character may be placed right after the prefix, if present,
or between any two digits. If the input is invalid, a NaN is returned.
=item from_bytes()
$x = Math::BigInt->from_bytes("\xf3\x6b"); # $x = 62315
Interpret the input as a byte string, assuming big endian byte order. The
output is always a non-negative, finite integer.
In some special cases, from_bytes() matches the conversion done by unpack():
$b = "\x4e"; # one char byte string
$x = Math::BigInt->from_bytes($b); # = 78
$y = unpack "C", $b; # ditto, but scalar
$b = "\xf3\x6b"; # two char byte string
$x = Math::BigInt->from_bytes($b); # = 62315
$y = unpack "S>", $b; # ditto, but scalar
$b = "\x2d\xe0\x49\xad"; # four char byte string
$x = Math::BigInt->from_bytes($b); # = 769673645
$y = unpack "L>", $b; # ditto, but scalar
$b = "\x2d\xe0\x49\xad\x2d\xe0\x49\xad"; # eight char byte string
$x = Math::BigInt->from_bytes($b); # = 3305723134637787565
$y = unpack "Q>", $b; # ditto, but scalar
=item bzero()
$x = Math::BigInt->bzero();
$x->bzero();
Returns a new Math::BigInt object representing zero. If used as an instance
method, assigns the value to the invocand.
=item bone()
$x = Math::BigInt->bone(); # +1
$x = Math::BigInt->bone("+"); # +1
$x = Math::BigInt->bone("-"); # -1
$x->bone(); # +1
$x->bone("+"); # +1
$x->bone('-'); # -1
Creates a new Math::BigInt object representing one. The optional argument is
either '-' or '+', indicating whether you want plus one or minus one. If used
as an instance method, assigns the value to the invocand.
=item binf()
$x = Math::BigInt->binf($sign);
Creates a new Math::BigInt object representing infinity. The optional argument
is either '-' or '+', indicating whether you want infinity or minus infinity.
If used as an instance method, assigns the value to the invocand.
$x->binf();
$x->binf('-');
=item bnan()
$x = Math::BigInt->bnan();
Creates a new Math::BigInt object representing NaN (Not A Number). If used as
an instance method, assigns the value to the invocand.
$x->bnan();
=item bpi()
$x = Math::BigInt->bpi(100); # 3
$x->bpi(100); # 3
Creates a new Math::BigInt object representing PI. If used as an instance
method, assigns the value to the invocand. With Math::BigInt this always
returns 3.
If upgrading is in effect, returns PI, rounded to N digits with the current
rounding mode:
use Math::BigFloat;
use Math::BigInt upgrade => "Math::BigFloat";
print Math::BigInt->bpi(3), "\n"; # 3.14
print Math::BigInt->bpi(100), "\n"; # 3.1415....
=item copy()
$x->copy(); # make a true copy of $x (unlike $y = $x)
=item as_int()
=item as_number()
These methods are called when Math::BigInt encounters an object it doesn't know
how to handle. For instance, assume $x is a Math::BigInt, or subclass thereof,
and $y is defined, but not a Math::BigInt, or subclass thereof. If you do
$x -> badd($y);
$y needs to be converted into an object that $x can deal with. This is done by
first checking if $y is something that $x might be upgraded to. If that is the
case, no further attempts are made. The next is to see if $y supports the
method C<as_int()>. If it does, C<as_int()> is called, but if it doesn't, the
next thing is to see if $y supports the method C<as_number()>. If it does,
C<as_number()> is called. The method C<as_int()> (and C<as_number()>) is
expected to return either an object that has the same class as $x, a subclass
thereof, or a string that C<ref($x)-E<gt>new()> can parse to create an object.
C<as_number()> is an alias to C<as_int()>. C<as_number> was introduced in
v1.22, while C<as_int()> was introduced in v1.68.
In Math::BigInt, C<as_int()> has the same effect as C<copy()>.
=back
=head2 Boolean methods
None of these methods modify the invocand object.
=over
=item is_zero()
$x->is_zero(); # true if $x is 0
Returns true if the invocand is zero and false otherwise.
=item is_one( [ SIGN ])
$x->is_one(); # true if $x is +1
$x->is_one("+"); # ditto
$x->is_one("-"); # true if $x is -1
Returns true if the invocand is one and false otherwise.
=item is_finite()
$x->is_finite(); # true if $x is not +inf, -inf or NaN
Returns true if the invocand is a finite number, i.e., it is neither +inf,
-inf, nor NaN.
=item is_inf( [ SIGN ] )
$x->is_inf(); # true if $x is +inf
$x->is_inf("+"); # ditto
$x->is_inf("-"); # true if $x is -inf
Returns true if the invocand is infinite and false otherwise.
=item is_nan()
$x->is_nan(); # true if $x is NaN
=item is_positive()
=item is_pos()
$x->is_positive(); # true if > 0
$x->is_pos(); # ditto
Returns true if the invocand is positive and false otherwise. A C<NaN> is
neither positive nor negative.
=item is_negative()
=item is_neg()
$x->is_negative(); # true if < 0
$x->is_neg(); # ditto
Returns true if the invocand is negative and false otherwise. A C<NaN> is
neither positive nor negative.
=item is_odd()
$x->is_odd(); # true if odd, false for even
Returns true if the invocand is odd and false otherwise. C<NaN>, C<+inf>, and
C<-inf> are neither odd nor even.
=item is_even()
$x->is_even(); # true if $x is even
Returns true if the invocand is even and false otherwise. C<NaN>, C<+inf>,
C<-inf> are not integers and are neither odd nor even.
=item is_int()
$x->is_int(); # true if $x is an integer
Returns true if the invocand is an integer and false otherwise. C<NaN>,
C<+inf>, C<-inf> are not integers.
=back
=head2 Comparison methods
None of these methods modify the invocand object. Note that a C<NaN> is neither
less than, greater than, or equal to anything else, even a C<NaN>.
=over
=item bcmp()
$x->bcmp($y);
Returns -1, 0, 1 depending on whether $x is less than, equal to, or grater than
$y. Returns undef if any operand is a NaN.
=item bacmp()
$x->bacmp($y);
Returns -1, 0, 1 depending on whether the absolute value of $x is less than,
equal to, or grater than the absolute value of $y. Returns undef if any operand
is a NaN.
=item beq()
$x -> beq($y);
Returns true if and only if $x is equal to $y, and false otherwise.
=item bne()
$x -> bne($y);
Returns true if and only if $x is not equal to $y, and false otherwise.
=item blt()
$x -> blt($y);
Returns true if and only if $x is equal to $y, and false otherwise.
=item ble()
$x -> ble($y);
Returns true if and only if $x is less than or equal to $y, and false
otherwise.
=item bgt()
$x -> bgt($y);
Returns true if and only if $x is greater than $y, and false otherwise.
=item bge()
$x -> bge($y);
Returns true if and only if $x is greater than or equal to $y, and false
otherwise.
=back
=head2 Arithmetic methods
These methods modify the invocand object and returns it.
=over
=item bneg()
$x->bneg();
Negate the number, e.g. change the sign between '+' and '-', or between '+inf'
and '-inf', respectively. Does nothing for NaN or zero.
=item babs()
$x->babs();
Set the number to its absolute value, e.g. change the sign from '-' to '+'
and from '-inf' to '+inf', respectively. Does nothing for NaN or positive
numbers.
=item bsgn()
$x->bsgn();
Signum function. Set the number to -1, 0, or 1, depending on whether the
number is negative, zero, or positive, respectively. Does not modify NaNs.
=item bnorm()
$x->bnorm(); # normalize (no-op)
Normalize the number. This is a no-op and is provided only for backwards
compatibility.
=item binc()
$x->binc(); # increment x by 1
=item bdec()
$x->bdec(); # decrement x by 1
=item badd()
$x->badd($y); # addition (add $y to $x)
=item bsub()
$x->bsub($y); # subtraction (subtract $y from $x)
=item bmul()
$x->bmul($y); # multiplication (multiply $x by $y)
=item bmuladd()
$x->bmuladd($y,$z);
Multiply $x by $y, and then add $z to the result,
This method was added in v1.87 of Math::BigInt (June 2007).
=item bdiv()
$x->bdiv($y); # divide, set $x to quotient
Divides $x by $y by doing floored division (F-division), where the quotient is
the floored (rounded towards negative infinity) quotient of the two operands.
In list context, returns the quotient and the remainder. The remainder is
either zero or has the same sign as the second operand. In scalar context, only
the quotient is returned.
The quotient is always the greatest integer less than or equal to the
real-valued quotient of the two operands, and the remainder (when it is
non-zero) always has the same sign as the second operand; so, for example,
1 / 4 => ( 0, 1)
1 / -4 => (-1, -3)
-3 / 4 => (-1, 1)
-3 / -4 => ( 0, -3)
-11 / 2 => (-5, 1)
11 / -2 => (-5, -1)
The behavior of the overloaded operator % agrees with the behavior of Perl's
built-in % operator (as documented in the perlop manpage), and the equation
$x == ($x / $y) * $y + ($x % $y)
holds true for any finite $x and finite, non-zero $y.
Perl's "use integer" might change the behaviour of % and / for scalars. This is
because under 'use integer' Perl does what the underlying C library thinks is
right, and this varies. However, "use integer" does not change the way things
are done with Math::BigInt objects.
=item btdiv()
$x->btdiv($y); # divide, set $x to quotient
Divides $x by $y by doing truncated division (T-division), where quotient is
the truncated (rouneded towards zero) quotient of the two operands. In list
context, returns the quotient and the remainder. The remainder is either zero
or has the same sign as the first operand. In scalar context, only the quotient
is returned.
=item bmod()
$x->bmod($y); # modulus (x % y)
Returns $x modulo $y, i.e., the remainder after floored division (F-division).
This method is like Perl's % operator. See L</bdiv()>.
=item btmod()
$x->btmod($y); # modulus
Returns the remainer after truncated division (T-division). See L</btdiv()>.
=item bmodinv()
$x->bmodinv($mod); # modular multiplicative inverse
Returns the multiplicative inverse of C<$x> modulo C<$mod>. If
$y = $x -> copy() -> bmodinv($mod)
then C<$y> is the number closest to zero, and with the same sign as C<$mod>,
satisfying
($x * $y) % $mod = 1 % $mod
If C<$x> and C<$y> are non-zero, they must be relative primes, i.e.,
C<bgcd($y, $mod)==1>. 'C<NaN>' is returned when no modular multiplicative
inverse exists.
=item bmodpow()
$num->bmodpow($exp,$mod); # modular exponentiation
# ($num**$exp % $mod)
Returns the value of C<$num> taken to the power C<$exp> in the modulus
C<$mod> using binary exponentiation. C<bmodpow> is far superior to
writing
$num ** $exp % $mod
because it is much faster - it reduces internal variables into
the modulus whenever possible, so it operates on smaller numbers.
C<bmodpow> also supports negative exponents.
bmodpow($num, -1, $mod)
is exactly equivalent to
bmodinv($num, $mod)
=item bpow()
$x->bpow($y); # power of arguments (x ** y)
C<bpow()> (and the rounding functions) now modifies the first argument and
returns it, unlike the old code which left it alone and only returned the
result. This is to be consistent with C<badd()> etc. The first three modifies
$x, the last one won't:
print bpow($x,$i),"\n"; # modify $x
print $x->bpow($i),"\n"; # ditto
print $x **= $i,"\n"; # the same
print $x ** $i,"\n"; # leave $x alone
The form C<$x **= $y> is faster than C<$x = $x ** $y;>, though.
=item blog()
$x->blog($base, $accuracy); # logarithm of x to the base $base
If C<$base> is not defined, Euler's number (e) is used:
print $x->blog(undef, 100); # log(x) to 100 digits
=item bexp()
$x->bexp($accuracy); # calculate e ** X
Calculates the expression C<e ** $x> where C<e> is Euler's number.
This method was added in v1.82 of Math::BigInt (April 2007).
See also L</blog()>.
=item bnok()
$x->bnok($y); # x over y (binomial coefficient n over k)
Calculates the binomial coefficient n over k, also called the "choose"
function. The result is equivalent to:
( n ) n!
| - | = -------
( k ) k!(n-k)!
This method was added in v1.84 of Math::BigInt (April 2007).
=item bsin()
my $x = Math::BigInt->new(1);
print $x->bsin(100), "\n";
Calculate the sine of $x, modifying $x in place.
In Math::BigInt, unless upgrading is in effect, the result is truncated to an
integer.
This method was added in v1.87 of Math::BigInt (June 2007).
=item bcos()
my $x = Math::BigInt->new(1);
print $x->bcos(100), "\n";
Calculate the cosine of $x, modifying $x in place.
In Math::BigInt, unless upgrading is in effect, the result is truncated to an
integer.
This method was added in v1.87 of Math::BigInt (June 2007).
=item batan()
my $x = Math::BigFloat->new(0.5);
print $x->batan(100), "\n";
Calculate the arcus tangens of $x, modifying $x in place.
In Math::BigInt, unless upgrading is in effect, the result is truncated to an
integer.
This method was added in v1.87 of Math::BigInt (June 2007).
=item batan2()
my $x = Math::BigInt->new(1);
my $y = Math::BigInt->new(1);
print $y->batan2($x), "\n";
Calculate the arcus tangens of C<$y> divided by C<$x>, modifying $y in place.
In Math::BigInt, unless upgrading is in effect, the result is truncated to an
integer.
This method was added in v1.87 of Math::BigInt (June 2007).
=item bsqrt()
$x->bsqrt(); # calculate square-root
C<bsqrt()> returns the square root truncated to an integer.
If you want a better approximation of the square root, then use:
$x = Math::BigFloat->new(12);
Math::BigFloat->precision(0);
Math::BigFloat->round_mode('even');
print $x->copy->bsqrt(),"\n"; # 4
Math::BigFloat->precision(2);
print $x->bsqrt(),"\n"; # 3.46
print $x->bsqrt(3),"\n"; # 3.464
=item broot()
$x->broot($N);
Calculates the N'th root of C<$x>.
=item bfac()
$x->bfac(); # factorial of $x (1*2*3*4*..*$x)
Returns the factorial of C<$x>, i.e., the product of all positive integers up
to and including C<$x>.
=item bdfac()
$x->bdfac(); # double factorial of $x (1*2*3*4*..*$x)
Returns the double factorial of C<$x>. If C<$x> is an even integer, returns the
product of all positive, even integers up to and including C<$x>, i.e.,
2*4*6*...*$x. If C<$x> is an odd integer, returns the product of all positive,
odd integers, i.e., 1*3*5*...*$x.
=item bfib()
$F = $n->bfib(); # a single Fibonacci number
@F = $n->bfib(); # a list of Fibonacci numbers
In scalar context, returns a single Fibonacci number. In list context, returns
a list of Fibonacci numbers. The invocand is the last element in the output.
The Fibonacci sequence is defined by
F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2)
In list context, F(0) and F(n) is the first and last number in the output,
respectively. For example, if $n is 12, then C<< @F = $n->bfib() >> returns the
following values, F(0) to F(12):
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144
The sequence can also be extended to negative index n using the re-arranged
recurrence relation
F(n-2) = F(n) - F(n-1)
giving the bidirectional sequence
n -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
F(n) 13 -8 5 -3 2 -1 1 0 1 1 2 3 5 8 13
If $n is -12, the following values, F(0) to F(12), are returned:
0, 1, -1, 2, -3, 5, -8, 13, -21, 34, -55, 89, -144
=item blucas()
$F = $n->blucas(); # a single Lucas number
@F = $n->blucas(); # a list of Lucas numbers
In scalar context, returns a single Lucas number. In list context, returns a
list of Lucas numbers. The invocand is the last element in the output.
The Lucas sequence is defined by
L(0) = 2
L(1) = 1
L(n) = L(n-1) + L(n-2)
In list context, L(0) and L(n) is the first and last number in the output,
respectively. For example, if $n is 12, then C<< @L = $n->blucas() >> returns
the following values, L(0) to L(12):
2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322
The sequence can also be extended to negative index n using the re-arranged
recurrence relation
L(n-2) = L(n) - L(n-1)
giving the bidirectional sequence
n -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
L(n) 29 -18 11 -7 4 -3 1 2 1 3 4 7 11 18 29
If $n is -12, the following values, L(0) to L(-12), are returned:
2, 1, -3, 4, -7, 11, -18, 29, -47, 76, -123, 199, -322
=item brsft()
$x->brsft($n); # right shift $n places in base 2
$x->brsft($n, $b); # right shift $n places in base $b
The latter is equivalent to
$x -> bdiv($b -> copy() -> bpow($n))
=item blsft()
$x->blsft($n); # left shift $n places in base 2
$x->blsft($n, $b); # left shift $n places in base $b
The latter is equivalent to
$x -> bmul($b -> copy() -> bpow($n))
=back
=head2 Bitwise methods
=over
=item band()
$x->band($y); # bitwise and
=item bior()
$x->bior($y); # bitwise inclusive or
=item bxor()
$x->bxor($y); # bitwise exclusive or
=item bnot()
$x->bnot(); # bitwise not (two's complement)
Two's complement (bitwise not). This is equivalent to, but faster than,
$x->binc()->bneg();
=back
=head2 Rounding methods
=over
=item round()
$x->round($A,$P,$round_mode);
Round $x to accuracy C<$A> or precision C<$P> using the round mode
C<$round_mode>.
=item bround()
$x->bround($N); # accuracy: preserve $N digits
Rounds $x to an accuracy of $N digits.
=item bfround()
$x->bfround($N);
Rounds to a multiple of 10**$N. Examples:
Input N Result
123456.123456 3 123500
123456.123456 2 123450
123456.123456 -2 123456.12
123456.123456 -3 123456.123
=item bfloor()
$x->bfloor();
Round $x towards minus infinity, i.e., set $x to the largest integer less than
or equal to $x.
=item bceil()
$x->bceil();
Round $x towards plus infinity, i.e., set $x to the smallest integer greater
than or equal to $x).
=item bint()
$x->bint();
Round $x towards zero.
=back
=head2 Other mathematical methods
=over
=item bgcd()
$x -> bgcd($y); # GCD of $x and $y
$x -> bgcd($y, $z, ...); # GCD of $x, $y, $z, ...
Returns the greatest common divisor (GCD).
=item blcm()
$x -> blcm($y); # LCM of $x and $y
$x -> blcm($y, $z, ...); # LCM of $x, $y, $z, ...
Returns the least common multiple (LCM).
=back
=head2 Object property methods
=over
=item sign()
$x->sign();
Return the sign, of $x, meaning either C<+>, C<->, C<-inf>, C<+inf> or NaN.
If you want $x to have a certain sign, use one of the following methods:
$x->babs(); # '+'
$x->babs()->bneg(); # '-'
$x->bnan(); # 'NaN'
$x->binf(); # '+inf'
$x->binf('-'); # '-inf'
=item digit()
$x->digit($n); # return the nth digit, counting from right
If C<$n> is negative, returns the digit counting from left.
=item length()
$x->length();
($xl, $fl) = $x->length();
Returns the number of digits in the decimal representation of the number. In
list context, returns the length of the integer and fraction part. For
Math::BigInt objects, the length of the fraction part is always 0.
The following probably doesn't do what you expect:
$c = Math::BigInt->new(123);
print $c->length(),"\n"; # prints 30
It prints both the number of digits in the number and in the fraction part
since print calls C<length()> in list context. Use something like:
print scalar $c->length(),"\n"; # prints 3
=item mantissa()
$x->mantissa();
Return the signed mantissa of $x as a Math::BigInt.
=item exponent()
$x->exponent();
Return the exponent of $x as a Math::BigInt.
=item parts()
$x->parts();
Returns the significand (mantissa) and the exponent as integers. In
Math::BigFloat, both are returned as Math::BigInt objects.
=item sparts()
Returns the significand (mantissa) and the exponent as integers. In scalar
context, only the significand is returned. The significand is the integer with
the smallest absolute value. The output of C<sparts()> corresponds to the
output from C<bsstr()>.
In Math::BigInt, this method is identical to C<parts()>.
=item nparts()
Returns the significand (mantissa) and exponent corresponding to normalized
notation. In scalar context, only the significand is returned. For finite
non-zero numbers, the significand's absolute value is greater than or equal to
1 and less than 10. The output of C<nparts()> corresponds to the output from
C<bnstr()>. In Math::BigInt, if the significand can not be represented as an
integer, upgrading is performed or NaN is returned.
=item eparts()
Returns the significand (mantissa) and exponent corresponding to engineering
notation. In scalar context, only the significand is returned. For finite
non-zero numbers, the significand's absolute value is greater than or equal to
1 and less than 1000, and the exponent is a multiple of 3. The output of
C<eparts()> corresponds to the output from C<bestr()>. In Math::BigInt, if the
significand can not be represented as an integer, upgrading is performed or NaN
is returned.
=item dparts()
Returns the integer part and the fraction part. If the fraction part can not be
represented as an integer, upgrading is performed or NaN is returned. The
output of C<dparts()> corresponds to the output from C<bdstr()>.
=back
=head2 String conversion methods
=over
=item bstr()
Returns a string representing the number using decimal notation. In
Math::BigFloat, the output is zero padded according to the current accuracy or
precision, if any of those are defined.
=item bsstr()
Returns a string representing the number using scientific notation where both
the significand (mantissa) and the exponent are integers. The output
corresponds to the output from C<sparts()>.
123 is returned as "123e+0"
1230 is returned as "123e+1"
12300 is returned as "123e+2"
12000 is returned as "12e+3"
10000 is returned as "1e+4"
=item bnstr()
Returns a string representing the number using normalized notation, the most
common variant of scientific notation. For finite non-zero numbers, the
absolute value of the significand is less than or equal to 1 and less than 10.
The output corresponds to the output from C<nparts()>.
123 is returned as "1.23e+2"
1230 is returned as "1.23e+3"
12300 is returned as "1.23e+4"
12000 is returned as "1.2e+4"
10000 is returned as "1e+4"
=item bestr()
Returns a string representing the number using engineering notation. For finite
non-zero numbers, the absolute value of the significand is less than or equal
to 1 and less than 1000, and the exponent is a multiple of 3. The output
corresponds to the output from C<eparts()>.
123 is returned as "123e+0"
1230 is returned as "1.23e+3"
12300 is returned as "12.3e+3"
12000 is returned as "12e+3"
10000 is returned as "10e+3"
=item bdstr()
Returns a string representing the number using decimal notation. The output
corresponds to the output from C<dparts()>.
123 is returned as "123"
1230 is returned as "1230"
12300 is returned as "12300"
12000 is returned as "12000"
10000 is returned as "10000"
=item to_hex()
$x->to_hex();
Returns a hexadecimal string representation of the number.
=item to_bin()
$x->to_bin();
Returns a binary string representation of the number.
=item to_oct()
$x->to_oct();
Returns an octal string representation of the number.
=item to_bytes()
$x = Math::BigInt->new("1667327589");
$s = $x->to_bytes(); # $s = "cafe"
Returns a byte string representation of the number using big endian byte
order. The invocand must be a non-negative, finite integer.
=item as_hex()
$x->as_hex();
As, C<to_hex()>, but with a "0x" prefix.
=item as_bin()
$x->as_bin();
As, C<to_bin()>, but with a "0b" prefix.
=item as_oct()
$x->as_oct();
As, C<to_oct()>, but with a "0" prefix.
=item as_bytes()
This is just an alias for C<to_bytes()>.
=back
=head2 Other conversion methods
=over
=item numify()
print $x->numify();
Returns a Perl scalar from $x. It is used automatically whenever a scalar is
needed, for instance in array index operations.
=back
=head1 ACCURACY and PRECISION
Math::BigInt and Math::BigFloat have full support for accuracy and precision
based rounding, both automatically after every operation, as well as manually.
This section describes the accuracy/precision handling in Math::BigInt and
Math::BigFloat as it used to be and as it is now, complete with an explanation
of all terms and abbreviations.
Not yet implemented things (but with correct description) are marked with '!',
things that need to be answered are marked with '?'.
In the next paragraph follows a short description of terms used here (because
these may differ from terms used by others people or documentation).
During the rest of this document, the shortcuts A (for accuracy), P (for
precision), F (fallback) and R (rounding mode) are be used.
=head2 Precision P
Precision is a fixed number of digits before (positive) or after (negative) the
decimal point. For example, 123.45 has a precision of -2. 0 means an integer
like 123 (or 120). A precision of 2 means at least two digits to the left of
the decimal point are zero, so 123 with P = 1 becomes 120. Note that numbers
with zeros before the decimal point may have different precisions, because 1200
can have P = 0, 1 or 2 (depending on what the initial value was). It could also
have p < 0, when the digits after the decimal point are zero.
The string output (of floating point numbers) is padded with zeros:
Initial value P A Result String
------------------------------------------------------------
1234.01 -3 1000 1000
1234 -2 1200 1200
1234.5 -1 1230 1230
1234.001 1 1234 1234.0
1234.01 0 1234 1234
1234.01 2 1234.01 1234.01
1234.01 5 1234.01 1234.01000
For Math::BigInt objects, no padding occurs.
=head2 Accuracy A
Number of significant digits. Leading zeros are not counted. A number may have
an accuracy greater than the non-zero digits when there are zeros in it or
trailing zeros. For example, 123.456 has A of 6, 10203 has 5, 123.0506 has 7,
123.45000 has 8 and 0.000123 has 3.
The string output (of floating point numbers) is padded with zeros:
Initial value P A Result String
------------------------------------------------------------
1234.01 3 1230 1230
1234.01 6 1234.01 1234.01
1234.1 8 1234.1 1234.1000
For Math::BigInt objects, no padding occurs.
=head2 Fallback F
When both A and P are undefined, this is used as a fallback accuracy when
dividing numbers.
=head2 Rounding mode R
When rounding a number, different 'styles' or 'kinds' of rounding are possible.
(Note that random rounding, as in Math::Round, is not implemented.)
=over
=item 'trunc'
truncation invariably removes all digits following the rounding place,
replacing them with zeros. Thus, 987.65 rounded to tens (P = 1) becomes 980,
and rounded to the fourth sigdig becomes 987.6 (A = 4). 123.456 rounded to the
second place after the decimal point (P = -2) becomes 123.46.
All other implemented styles of rounding attempt to round to the "nearest
digit." If the digit D immediately to the right of the rounding place (skipping
the decimal point) is greater than 5, the number is incremented at the rounding
place (possibly causing a cascade of incrementation): e.g. when rounding to
units, 0.9 rounds to 1, and -19.9 rounds to -20. If D < 5, the number is
similarly truncated at the rounding place: e.g. when rounding to units, 0.4
rounds to 0, and -19.4 rounds to -19.
However the results of other styles of rounding differ if the digit immediately
to the right of the rounding place (skipping the decimal point) is 5 and if
there are no digits, or no digits other than 0, after that 5. In such cases:
=item 'even'
rounds the digit at the rounding place to 0, 2, 4, 6, or 8 if it is not
already. E.g., when rounding to the first sigdig, 0.45 becomes 0.4, -0.55
becomes -0.6, but 0.4501 becomes 0.5.
=item 'odd'
rounds the digit at the rounding place to 1, 3, 5, 7, or 9 if it is not
already. E.g., when rounding to the first sigdig, 0.45 becomes 0.5, -0.55
becomes -0.5, but 0.5501 becomes 0.6.
=item '+inf'
round to plus infinity, i.e. always round up. E.g., when rounding to the first
sigdig, 0.45 becomes 0.5, -0.55 becomes -0.5, and 0.4501 also becomes 0.5.
=item '-inf'
round to minus infinity, i.e. always round down. E.g., when rounding to the
first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.6, but 0.4501 becomes 0.5.
=item 'zero'
round to zero, i.e. positive numbers down, negative ones up. E.g., when
rounding to the first sigdig, 0.45 becomes 0.4, -0.55 becomes -0.5, but 0.4501
becomes 0.5.
=item 'common'
round up if the digit immediately to the right of the rounding place is 5 or
greater, otherwise round down. E.g., 0.15 becomes 0.2 and 0.149 becomes 0.1.
=back
The handling of A & P in MBI/MBF (the old core code shipped with Perl versions
<= 5.7.2) is like this:
=over
=item Precision
* bfround($p) is able to round to $p number of digits after the decimal
point
* otherwise P is unused
=item Accuracy (significant digits)
* bround($a) rounds to $a significant digits
* only bdiv() and bsqrt() take A as (optional) parameter
+ other operations simply create the same number (bneg etc), or
more (bmul) of digits
+ rounding/truncating is only done when explicitly calling one
of bround or bfround, and never for Math::BigInt (not implemented)
* bsqrt() simply hands its accuracy argument over to bdiv.
* the documentation and the comment in the code indicate two
different ways on how bdiv() determines the maximum number
of digits it should calculate, and the actual code does yet
another thing
POD:
max($Math::BigFloat::div_scale,length(dividend)+length(divisor))
Comment:
result has at most max(scale, length(dividend), length(divisor)) digits
Actual code:
scale = max(scale, length(dividend)-1,length(divisor)-1);
scale += length(divisor) - length(dividend);
So for lx = 3, ly = 9, scale = 10, scale will actually be 16 (10
So for lx = 3, ly = 9, scale = 10, scale will actually be 16
(10+9-3). Actually, the 'difference' added to the scale is cal-
culated from the number of "significant digits" in dividend and
divisor, which is derived by looking at the length of the man-
tissa. Which is wrong, since it includes the + sign (oops) and
actually gets 2 for '+100' and 4 for '+101'. Oops again. Thus
124/3 with div_scale=1 will get you '41.3' based on the strange
assumption that 124 has 3 significant digits, while 120/7 will
get you '17', not '17.1' since 120 is thought to have 2 signif-
icant digits. The rounding after the division then uses the
remainder and $y to determine whether it must round up or down.
? I have no idea which is the right way. That's why I used a slightly more
? simple scheme and tweaked the few failing testcases to match it.
=back
This is how it works now:
=over
=item Setting/Accessing
* You can set the A global via Math::BigInt->accuracy() or
Math::BigFloat->accuracy() or whatever class you are using.
* You can also set P globally by using Math::SomeClass->precision()
likewise.
* Globals are classwide, and not inherited by subclasses.
* to undefine A, use Math::SomeCLass->accuracy(undef);
* to undefine P, use Math::SomeClass->precision(undef);
* Setting Math::SomeClass->accuracy() clears automatically
Math::SomeClass->precision(), and vice versa.
* To be valid, A must be > 0, P can have any value.
* If P is negative, this means round to the P'th place to the right of the
decimal point; positive values mean to the left of the decimal point.
P of 0 means round to integer.
* to find out the current global A, use Math::SomeClass->accuracy()
* to find out the current global P, use Math::SomeClass->precision()
* use $x->accuracy() respective $x->precision() for the local
setting of $x.
* Please note that $x->accuracy() respective $x->precision()
return eventually defined global A or P, when $x's A or P is not
set.
=item Creating numbers
* When you create a number, you can give the desired A or P via:
$x = Math::BigInt->new($number,$A,$P);
* Only one of A or P can be defined, otherwise the result is NaN
* If no A or P is give ($x = Math::BigInt->new($number) form), then the
globals (if set) will be used. Thus changing the global defaults later on
will not change the A or P of previously created numbers (i.e., A and P of
$x will be what was in effect when $x was created)
* If given undef for A and P, NO rounding will occur, and the globals will
NOT be used. This is used by subclasses to create numbers without
suffering rounding in the parent. Thus a subclass is able to have its own
globals enforced upon creation of a number by using
$x = Math::BigInt->new($number,undef,undef):
use Math::BigInt::SomeSubclass;
use Math::BigInt;
Math::BigInt->accuracy(2);
Math::BigInt::SomeSubClass->accuracy(3);
$x = Math::BigInt::SomeSubClass->new(1234);
$x is now 1230, and not 1200. A subclass might choose to implement
this otherwise, e.g. falling back to the parent's A and P.
=item Usage
* If A or P are enabled/defined, they are used to round the result of each
operation according to the rules below
* Negative P is ignored in Math::BigInt, since Math::BigInt objects never
have digits after the decimal point
* Math::BigFloat uses Math::BigInt internally, but setting A or P inside
Math::BigInt as globals does not tamper with the parts of a Math::BigFloat.
A flag is used to mark all Math::BigFloat numbers as 'never round'.
=item Precedence
* It only makes sense that a number has only one of A or P at a time.
If you set either A or P on one object, or globally, the other one will
be automatically cleared.
* If two objects are involved in an operation, and one of them has A in
effect, and the other P, this results in an error (NaN).
* A takes precedence over P (Hint: A comes before P).
If neither of them is defined, nothing is used, i.e. the result will have
as many digits as it can (with an exception for bdiv/bsqrt) and will not
be rounded.
* There is another setting for bdiv() (and thus for bsqrt()). If neither of
A or P is defined, bdiv() will use a fallback (F) of $div_scale digits.
If either the dividend's or the divisor's mantissa has more digits than
the value of F, the higher value will be used instead of F.
This is to limit the digits (A) of the result (just consider what would
happen with unlimited A and P in the case of 1/3 :-)
* bdiv will calculate (at least) 4 more digits than required (determined by
A, P or F), and, if F is not used, round the result
(this will still fail in the case of a result like 0.12345000000001 with A
or P of 5, but this can not be helped - or can it?)
* Thus you can have the math done by on Math::Big* class in two modi:
+ never round (this is the default):
This is done by setting A and P to undef. No math operation
will round the result, with bdiv() and bsqrt() as exceptions to guard
against overflows. You must explicitly call bround(), bfround() or
round() (the latter with parameters).
Note: Once you have rounded a number, the settings will 'stick' on it
and 'infect' all other numbers engaged in math operations with it, since
local settings have the highest precedence. So, to get SaferRound[tm],
use a copy() before rounding like this:
$x = Math::BigFloat->new(12.34);
$y = Math::BigFloat->new(98.76);
$z = $x * $y; # 1218.6984
print $x->copy()->bround(3); # 12.3 (but A is now 3!)
$z = $x * $y; # still 1218.6984, without
# copy would have been 1210!
+ round after each op:
After each single operation (except for testing like is_zero()), the
method round() is called and the result is rounded appropriately. By
setting proper values for A and P, you can have all-the-same-A or
all-the-same-P modes. For example, Math::Currency might set A to undef,
and P to -2, globally.
?Maybe an extra option that forbids local A & P settings would be in order,
?so that intermediate rounding does not 'poison' further math?
=item Overriding globals
* you will be able to give A, P and R as an argument to all the calculation
routines; the second parameter is A, the third one is P, and the fourth is
R (shift right by one for binary operations like badd). P is used only if
the first parameter (A) is undefined. These three parameters override the
globals in the order detailed as follows, i.e. the first defined value
wins:
(local: per object, global: global default, parameter: argument to sub)
+ parameter A
+ parameter P
+ local A (if defined on both of the operands: smaller one is taken)
+ local P (if defined on both of the operands: bigger one is taken)
+ global A
+ global P
+ global F
* bsqrt() will hand its arguments to bdiv(), as it used to, only now for two
arguments (A and P) instead of one
=item Local settings
* You can set A or P locally by using $x->accuracy() or
$x->precision()
and thus force different A and P for different objects/numbers.
* Setting A or P this way immediately rounds $x to the new value.
* $x->accuracy() clears $x->precision(), and vice versa.
=item Rounding
* the rounding routines will use the respective global or local settings.
bround() is for accuracy rounding, while bfround() is for precision
* the two rounding functions take as the second parameter one of the
following rounding modes (R):
'even', 'odd', '+inf', '-inf', 'zero', 'trunc', 'common'
* you can set/get the global R by using Math::SomeClass->round_mode()
or by setting $Math::SomeClass::round_mode
* after each operation, $result->round() is called, and the result may
eventually be rounded (that is, if A or P were set either locally,
globally or as parameter to the operation)
* to manually round a number, call $x->round($A,$P,$round_mode);
this will round the number by using the appropriate rounding function
and then normalize it.
* rounding modifies the local settings of the number:
$x = Math::BigFloat->new(123.456);
$x->accuracy(5);
$x->bround(4);
Here 4 takes precedence over 5, so 123.5 is the result and $x->accuracy()
will be 4 from now on.
=item Default values
* R: 'even'
* F: 40
* A: undef
* P: undef
=item Remarks
* The defaults are set up so that the new code gives the same results as
the old code (except in a few cases on bdiv):
+ Both A and P are undefined and thus will not be used for rounding
after each operation.
+ round() is thus a no-op, unless given extra parameters A and P
=back
=head1 Infinity and Not a Number
While Math::BigInt has extensive handling of inf and NaN, certain quirks
remain.
=over
=item oct()/hex()
These perl routines currently (as of Perl v.5.8.6) cannot handle passed inf.
te@linux:~> perl -wle 'print 2 ** 3333'
Inf
te@linux:~> perl -wle 'print 2 ** 3333 == 2 ** 3333'
1
te@linux:~> perl -wle 'print oct(2 ** 3333)'
0
te@linux:~> perl -wle 'print hex(2 ** 3333)'
Illegal hexadecimal digit 'I' ignored at -e line 1.
0
The same problems occur if you pass them Math::BigInt->binf() objects. Since
overloading these routines is not possible, this cannot be fixed from
Math::BigInt.
=back
=head1 INTERNALS
You should neither care about nor depend on the internal representation; it
might change without notice. Use B<ONLY> method calls like C<< $x->sign(); >>
instead relying on the internal representation.
=head2 MATH LIBRARY
Math with the numbers is done (by default) by a module called
C<Math::BigInt::Calc>. This is equivalent to saying:
use Math::BigInt try => 'Calc';
You can change this backend library by using:
use Math::BigInt try => 'GMP';
B<Note>: General purpose packages should not be explicit about the library to
use; let the script author decide which is best.
If your script works with huge numbers and Calc is too slow for them, you can
also for the loading of one of these libraries and if none of them can be used,
the code dies:
use Math::BigInt only => 'GMP,Pari';
The following would first try to find Math::BigInt::Foo, then
Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
use Math::BigInt try => 'Foo,Math::BigInt::Bar';
The library that is loaded last is used. Note that this can be overwritten at
any time by loading a different library, and numbers constructed with different
libraries cannot be used in math operations together.
=head3 What library to use?
B<Note>: General purpose packages should not be explicit about the library to
use; let the script author decide which is best.
L<Math::BigInt::GMP> and L<Math::BigInt::Pari> are in cases involving big
numbers much faster than Calc, however it is slower when dealing with very
small numbers (less than about 20 digits) and when converting very large
numbers to decimal (for instance for printing, rounding, calculating their
length in decimal etc).
So please select carefully what library you want to use.
Different low-level libraries use different formats to store the numbers.
However, you should B<NOT> depend on the number having a specific format
internally.
See the respective math library module documentation for further details.
=head2 SIGN
The sign is either '+', '-', 'NaN', '+inf' or '-inf'.
A sign of 'NaN' is used to represent the result when input arguments are not
numbers or as a result of 0/0. '+inf' and '-inf' represent plus respectively
minus infinity. You get '+inf' when dividing a positive number by 0, and '-inf'
when dividing any negative number by 0.
=head1 EXAMPLES
use Math::BigInt;
sub bigint { Math::BigInt->new(shift); }
$x = Math::BigInt->bstr("1234") # string "1234"
$x = "$x"; # same as bstr()
$x = Math::BigInt->bneg("1234"); # Math::BigInt "-1234"
$x = Math::BigInt->babs("-12345"); # Math::BigInt "12345"
$x = Math::BigInt->bnorm("-0.00"); # Math::BigInt "0"
$x = bigint(1) + bigint(2); # Math::BigInt "3"
$x = bigint(1) + "2"; # ditto (auto-Math::BigIntify of "2")
$x = bigint(1); # Math::BigInt "1"
$x = $x + 5 / 2; # Math::BigInt "3"
$x = $x ** 3; # Math::BigInt "27"
$x *= 2; # Math::BigInt "54"
$x = Math::BigInt->new(0); # Math::BigInt "0"
$x--; # Math::BigInt "-1"
$x = Math::BigInt->badd(4,5) # Math::BigInt "9"
print $x->bsstr(); # 9e+0
Examples for rounding:
use Math::BigFloat;
use Test::More;
$x = Math::BigFloat->new(123.4567);
$y = Math::BigFloat->new(123.456789);
Math::BigFloat->accuracy(4); # no more A than 4
is ($x->copy()->bround(),123.4); # even rounding
print $x->copy()->bround(),"\n"; # 123.4
Math::BigFloat->round_mode('odd'); # round to odd
print $x->copy()->bround(),"\n"; # 123.5
Math::BigFloat->accuracy(5); # no more A than 5
Math::BigFloat->round_mode('odd'); # round to odd
print $x->copy()->bround(),"\n"; # 123.46
$y = $x->copy()->bround(4),"\n"; # A = 4: 123.4
print "$y, ",$y->accuracy(),"\n"; # 123.4, 4
Math::BigFloat->accuracy(undef); # A not important now
Math::BigFloat->precision(2); # P important
print $x->copy()->bnorm(),"\n"; # 123.46
print $x->copy()->bround(),"\n"; # 123.46
Examples for converting:
my $x = Math::BigInt->new('0b1'.'01' x 123);
print "bin: ",$x->as_bin()," hex:",$x->as_hex()," dec: ",$x,"\n";
=head1 Autocreating constants
After C<use Math::BigInt ':constant'> all the B<integer> decimal, hexadecimal
and binary constants in the given scope are converted to C<Math::BigInt>. This
conversion happens at compile time.
In particular,
perl -MMath::BigInt=:constant -e 'print 2**100,"\n"'
prints the integer value of C<2**100>. Note that without conversion of
constants the expression 2**100 is calculated using Perl scalars.
Please note that strings and floating point constants are not affected, so that
use Math::BigInt qw/:constant/;
$x = 1234567890123456789012345678901234567890
+ 123456789123456789;
$y = '1234567890123456789012345678901234567890'
+ '123456789123456789';
does not give you what you expect. You need an explicit Math::BigInt->new()
around one of the operands. You should also quote large constants to protect
loss of precision:
use Math::BigInt;
$x = Math::BigInt->new('1234567889123456789123456789123456789');
Without the quotes Perl would convert the large number to a floating point
constant at compile time and then hand the result to Math::BigInt, which
results in an truncated result or a NaN.
This also applies to integers that look like floating point constants:
use Math::BigInt ':constant';
print ref(123e2),"\n";
print ref(123.2e2),"\n";
prints nothing but newlines. Use either L<bignum> or L<Math::BigFloat> to get
this to work.
=head1 PERFORMANCE
Using the form $x += $y; etc over $x = $x + $y is faster, since a copy of $x
must be made in the second case. For long numbers, the copy can eat up to 20%
of the work (in the case of addition/subtraction, less for
multiplication/division). If $y is very small compared to $x, the form $x += $y
is MUCH faster than $x = $x + $y since making the copy of $x takes more time
then the actual addition.
With a technique called copy-on-write, the cost of copying with overload could
be minimized or even completely avoided. A test implementation of COW did show
performance gains for overloaded math, but introduced a performance loss due to
a constant overhead for all other operations. So Math::BigInt does currently
not COW.
The rewritten version of this module (vs. v0.01) is slower on certain
operations, like C<new()>, C<bstr()> and C<numify()>. The reason are that it
does now more work and handles much more cases. The time spent in these
operations is usually gained in the other math operations so that code on the
average should get (much) faster. If they don't, please contact the author.
Some operations may be slower for small numbers, but are significantly faster
for big numbers. Other operations are now constant (O(1), like C<bneg()>,
C<babs()> etc), instead of O(N) and thus nearly always take much less time.
These optimizations were done on purpose.
If you find the Calc module to slow, try to install any of the replacement
modules and see if they help you.
=head2 Alternative math libraries
You can use an alternative library to drive Math::BigInt. See the section
L</MATH LIBRARY> for more information.
For more benchmark results see L<http://bloodgate.com/perl/benchmarks.html>.
=head1 SUBCLASSING
=head2 Subclassing Math::BigInt
The basic design of Math::BigInt allows simple subclasses with very little
work, as long as a few simple rules are followed:
=over
=item *
The public API must remain consistent, i.e. if a sub-class is overloading
addition, the sub-class must use the same name, in this case badd(). The reason
for this is that Math::BigInt is optimized to call the object methods directly.
=item *
The private object hash keys like C<< $x->{sign} >> may not be changed, but
additional keys can be added, like C<< $x->{_custom} >>.
=item *
Accessor functions are available for all existing object hash keys and should
be used instead of directly accessing the internal hash keys. The reason for
this is that Math::BigInt itself has a pluggable interface which permits it to
support different storage methods.
=back
More complex sub-classes may have to replicate more of the logic internal of
Math::BigInt if they need to change more basic behaviors. A subclass that needs
to merely change the output only needs to overload C<bstr()>.
All other object methods and overloaded functions can be directly inherited
from the parent class.
At the very minimum, any subclass needs to provide its own C<new()> and can
store additional hash keys in the object. There are also some package globals
that must be defined, e.g.:
# Globals
$accuracy = undef;
$precision = -2; # round to 2 decimal places
$round_mode = 'even';
$div_scale = 40;
Additionally, you might want to provide the following two globals to allow
auto-upgrading and auto-downgrading to work correctly:
$upgrade = undef;
$downgrade = undef;
This allows Math::BigInt to correctly retrieve package globals from the
subclass, like C<$SubClass::precision>. See t/Math/BigInt/Subclass.pm or
t/Math/BigFloat/SubClass.pm completely functional subclass examples.
Don't forget to
use overload;
in your subclass to automatically inherit the overloading from the parent. If
you like, you can change part of the overloading, look at Math::String for an
example.
=head1 UPGRADING
When used like this:
use Math::BigInt upgrade => 'Foo::Bar';
certain operations 'upgrade' their calculation and thus the result to the class
Foo::Bar. Usually this is used in conjunction with Math::BigFloat:
use Math::BigInt upgrade => 'Math::BigFloat';
As a shortcut, you can use the module L<bignum>:
use bignum;
Also good for one-liners:
perl -Mbignum -le 'print 2 ** 255'
This makes it possible to mix arguments of different classes (as in 2.5 + 2) as
well es preserve accuracy (as in sqrt(3)).
Beware: This feature is not fully implemented yet.
=head2 Auto-upgrade
The following methods upgrade themselves unconditionally; that is if upgrade is
in effect, they always hands up their work:
div bsqrt blog bexp bpi bsin bcos batan batan2
All other methods upgrade themselves only when one (or all) of their arguments
are of the class mentioned in $upgrade.
=head1 EXPORTS
C<Math::BigInt> exports nothing by default, but can export the following
methods:
bgcd
blcm
=head1 CAVEATS
Some things might not work as you expect them. Below is documented what is
known to be troublesome:
=over
=item Comparing numbers as strings
Both C<bstr()> and C<bsstr()> as well as stringify via overload drop the
leading '+'. This is to be consistent with Perl and to make C<cmp> (especially
with overloading) to work as you expect. It also solves problems with
C<Test.pm> and L<Test::More>, which stringify arguments before comparing them.
Mark Biggar said, when asked about to drop the '+' altogether, or make only
C<cmp> work:
I agree (with the first alternative), don't add the '+' on positive
numbers. It's not as important anymore with the new internal form
for numbers. It made doing things like abs and neg easier, but
those have to be done differently now anyway.
So, the following examples now works as expected:
use Test::More tests => 1;
use Math::BigInt;
my $x = Math::BigInt -> new(3*3);
my $y = Math::BigInt -> new(3*3);
is($x,3*3, 'multiplication');
print "$x eq 9" if $x eq $y;
print "$x eq 9" if $x eq '9';
print "$x eq 9" if $x eq 3*3;
Additionally, the following still works:
print "$x == 9" if $x == $y;
print "$x == 9" if $x == 9;
print "$x == 9" if $x == 3*3;
There is now a C<bsstr()> method to get the string in scientific notation aka
C<1e+2> instead of C<100>. Be advised that overloaded 'eq' always uses bstr()
for comparison, but Perl represents some numbers as 100 and others as 1e+308.
If in doubt, convert both arguments to Math::BigInt before comparing them as
strings:
use Test::More tests => 3;
use Math::BigInt;
$x = Math::BigInt->new('1e56'); $y = 1e56;
is($x,$y); # fails
is($x->bsstr(),$y); # okay
$y = Math::BigInt->new($y);
is($x,$y); # okay
Alternatively, simply use C<< <=> >> for comparisons, this always gets it
right. There is not yet a way to get a number automatically represented as a
string that matches exactly the way Perl represents it.
See also the section about L<Infinity and Not a Number> for problems in
comparing NaNs.
=item int()
C<int()> returns (at least for Perl v5.7.1 and up) another Math::BigInt, not a
Perl scalar:
$x = Math::BigInt->new(123);
$y = int($x); # 123 as a Math::BigInt
$x = Math::BigFloat->new(123.45);
$y = int($x); # 123 as a Math::BigFloat
If you want a real Perl scalar, use C<numify()>:
$y = $x->numify(); # 123 as a scalar
This is seldom necessary, though, because this is done automatically, like when
you access an array:
$z = $array[$x]; # does work automatically
=item Modifying and =
Beware of:
$x = Math::BigFloat->new(5);
$y = $x;
This makes a second reference to the B<same> object and stores it in $y. Thus
anything that modifies $x (except overloaded operators) also modifies $y, and
vice versa. Or in other words, C<=> is only safe if you modify your
Math::BigInt objects only via overloaded math. As soon as you use a method call
it breaks:
$x->bmul(2);
print "$x, $y\n"; # prints '10, 10'
If you want a true copy of $x, use:
$y = $x->copy();
You can also chain the calls like this, this first makes a copy and then
multiply it by 2:
$y = $x->copy()->bmul(2);
See also the documentation for overload.pm regarding C<=>.
=item Overloading -$x
The following:
$x = -$x;
is slower than
$x->bneg();
since overload calls C<sub($x,0,1);> instead of C<neg($x)>. The first variant
needs to preserve $x since it does not know that it later gets overwritten.
This makes a copy of $x and takes O(N), but $x->bneg() is O(1).
=item Mixing different object types
With overloaded operators, it is the first (dominating) operand that determines
which method is called. Here are some examples showing what actually gets
called in various cases.
use Math::BigInt;
use Math::BigFloat;
$mbf = Math::BigFloat->new(5);
$mbi2 = Math::BigInt->new(5);
$mbi = Math::BigInt->new(2);
# what actually gets called:
$float = $mbf + $mbi; # $mbf->badd($mbi)
$float = $mbf / $mbi; # $mbf->bdiv($mbi)
$integer = $mbi + $mbf; # $mbi->badd($mbf)
$integer = $mbi2 / $mbi; # $mbi2->bdiv($mbi)
$integer = $mbi2 / $mbf; # $mbi2->bdiv($mbf)
For instance, Math::BigInt->bdiv() always returns a Math::BigInt, regardless of
whether the second operant is a Math::BigFloat. To get a Math::BigFloat you
either need to call the operation manually, make sure each operand already is a
Math::BigFloat, or cast to that type via Math::BigFloat->new():
$float = Math::BigFloat->new($mbi2) / $mbi; # = 2.5
Beware of casting the entire expression, as this would cast the
result, at which point it is too late:
$float = Math::BigFloat->new($mbi2 / $mbi); # = 2
Beware also of the order of more complicated expressions like:
$integer = ($mbi2 + $mbi) / $mbf; # int / float => int
$integer = $mbi2 / Math::BigFloat->new($mbi); # ditto
If in doubt, break the expression into simpler terms, or cast all operands
to the desired resulting type.
Scalar values are a bit different, since:
$float = 2 + $mbf;
$float = $mbf + 2;
both result in the proper type due to the way the overloaded math works.
This section also applies to other overloaded math packages, like Math::String.
One solution to you problem might be autoupgrading|upgrading. See the
pragmas L<bignum>, L<bigint> and L<bigrat> for an easy way to do this.
=back
=head1 BUGS
Please report any bugs or feature requests to
C<bug-math-bigint at rt.cpan.org>, or through the web interface at
L<https://rt.cpan.org/Ticket/Create.html?Queue=Math-BigInt> (requires login).
We will be notified, and then you'll automatically be notified of progress on
your bug as I make changes.
=head1 SUPPORT
You can find documentation for this module with the perldoc command.
perldoc Math::BigInt
You can also look for information at:
=over 4
=item * RT: CPAN's request tracker
L<https://rt.cpan.org/Public/Dist/Display.html?Name=Math-BigInt>
=item * AnnoCPAN: Annotated CPAN documentation
L<http://annocpan.org/dist/Math-BigInt>
=item * CPAN Ratings
L<http://cpanratings.perl.org/dist/Math-BigInt>
=item * Search CPAN
L<http://search.cpan.org/dist/Math-BigInt/>
=item * CPAN Testers Matrix
L<http://matrix.cpantesters.org/?dist=Math-BigInt>
=item * The Bignum mailing list
=over 4
=item * Post to mailing list
C<bignum at lists.scsys.co.uk>
=item * View mailing list
L<http://lists.scsys.co.uk/pipermail/bignum/>
=item * Subscribe/Unsubscribe
L<http://lists.scsys.co.uk/cgi-bin/mailman/listinfo/bignum>
=back
=back
=head1 LICENSE
This program is free software; you may redistribute it and/or modify it under
the same terms as Perl itself.
=head1 SEE ALSO
L<Math::BigFloat> and L<Math::BigRat> as well as the backends
L<Math::BigInt::FastCalc>, L<Math::BigInt::GMP>, and L<Math::BigInt::Pari>.
The pragmas L<bignum>, L<bigint> and L<bigrat> also might be of interest
because they solve the autoupgrading/downgrading issue, at least partly.
=head1 AUTHORS
=over 4
=item *
Mark Biggar, overloaded interface by Ilya Zakharevich, 1996-2001.
=item *
Completely rewritten by Tels L<http://bloodgate.com>, 2001-2008.
=item *
Florian Ragwitz E<lt>flora@cpan.orgE<gt>, 2010.
=item *
Peter John Acklam E<lt>pjacklam@online.noE<gt>, 2011-.
=back
Many people contributed in one or more ways to the final beast, see the file
CREDITS for an (incomplete) list. If you miss your name, please drop me a
mail. Thank you!
=cut
|