1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
|
package IPC::System::Simple;
use 5.006;
use strict;
use warnings;
use re 'taint';
use Carp;
use List::Util qw(first);
use Scalar::Util qw(tainted);
use Config;
use constant WINDOWS => ($^O eq 'MSWin32');
use constant VMS => ($^O eq 'VMS');
BEGIN {
# It would be lovely to use the 'if' module here, but it didn't
# enter core until 5.6.2, and we want to keep 5.6.0 compatibility.
if (WINDOWS) {
## no critic (ProhibitStringyEval)
eval q{
use Win32::Process qw(INFINITE NORMAL_PRIORITY_CLASS);
use File::Spec;
use Win32;
# This uses the same rules as the core win32.c/get_shell() call.
use constant WINDOWS_SHELL => eval { Win32::IsWinNT() }
? [ qw(cmd.exe /x/d/c) ]
: [ qw(command.com /c) ];
# These are used when invoking _win32_capture
use constant NO_SHELL => 0;
use constant USE_SHELL => 1;
};
## use critic
# Die nosily if any of the above broke.
die $@ if $@;
}
}
# Note that we don't use WIFSTOPPED because perl never uses
# the WUNTRACED flag, and hence will never return early from
# system() if the child processes is suspended with a SIGSTOP.
use POSIX qw(WIFEXITED WEXITSTATUS WIFSIGNALED WTERMSIG);
use constant FAIL_START => q{"%s" failed to start: "%s"};
use constant FAIL_PLUMBING => q{Error in IPC::System::Simple plumbing: "%s" - "%s"};
use constant FAIL_CMD_BLANK => q{Entirely blank command passed: "%s"};
use constant FAIL_INTERNAL => q{Internal error in IPC::System::Simple: "%s"};
use constant FAIL_TAINT => q{%s called with tainted argument "%s"};
use constant FAIL_TAINT_ENV => q{%s called with tainted environment $ENV{%s}};
use constant FAIL_SIGNAL => q{"%s" died to signal "%s" (%d)%s};
use constant FAIL_BADEXIT => q{"%s" unexpectedly returned exit value %d};
use constant FAIL_UNDEF => q{%s called with undefined command};
use constant FAIL_POSIX => q{IPC::System::Simple does not understand the POSIX error '%s'. Please check http://search.cpan.org/perldoc?IPC::System::Simple to see if there is an updated version. If not please report this as a bug to http://rt.cpan.org/Public/Bug/Report.html?Queue=IPC-System-Simple};
# On Perl's older than 5.8.x we can't assume that there'll be a
# $^{TAINT} for us to check, so we assume that our args may always
# be tainted.
use constant ASSUME_TAINTED => ($] < 5.008);
use constant EXIT_ANY_CONST => -1; # Used internally
use constant EXIT_ANY => [ EXIT_ANY_CONST ]; # Exported
use constant UNDEFINED_POSIX_RE => qr{not (?:defined|a valid) POSIX macro|not implemented on this architecture};
require Exporter;
our @ISA = qw(Exporter);
our @EXPORT_OK = qw(
capture capturex
run runx
system systemx
$EXITVAL EXIT_ANY
);
our $VERSION = '1.20';
our $EXITVAL = -1;
my @Signal_from_number = split(' ', $Config{sig_name});
# Environment variables we don't want to see tainted.
my @Check_tainted_env = qw(PATH IFS CDPATH ENV BASH_ENV);
if (WINDOWS) {
push(@Check_tainted_env, 'PERL5SHELL');
}
if (VMS) {
push(@Check_tainted_env, 'DCL$PATH');
}
# Not all systems implment the WIFEXITED calls, but POSIX
# will always export them (even if they're just stubs that
# die with an error). Test for the presence of a working
# WIFEXITED and friends, or define our own.
eval { WIFEXITED(0); };
if ($@ =~ UNDEFINED_POSIX_RE) {
no warnings 'redefine'; ## no critic
*WIFEXITED = sub { not $_[0] & 0xff };
*WEXITSTATUS = sub { $_[0] >> 8 };
*WIFSIGNALED = sub { $_[0] & 127 };
*WTERMSIG = sub { $_[0] & 127 };
} elsif ($@) {
croak sprintf FAIL_POSIX, $@;
}
# None of the POSIX modules I've found define WCOREDUMP, although
# many systems define it. Check the POSIX module in the hope that
# it may actually be there.
# TODO: Ideally, $NATIVE_WCOREDUMP should be a constant.
my $NATIVE_WCOREDUMP;
eval { POSIX::WCOREDUMP(1); };
if ($@ =~ UNDEFINED_POSIX_RE) {
*WCOREDUMP = sub { $_[0] & 128 };
$NATIVE_WCOREDUMP = 0;
} elsif ($@) {
croak sprintf FAIL_POSIX, $@;
} else {
# POSIX actually has it defined! Huzzah!
*WCOREDUMP = \&POSIX::WCOREDUMP;
$NATIVE_WCOREDUMP = 1;
}
sub _native_wcoredump {
return $NATIVE_WCOREDUMP;
}
# system simply calls run
*system = \&run;
*systemx = \&runx;
# run is our way of running a process with system() semantics
sub run {
_check_taint(@_);
my ($valid_returns, $command, @args) = _process_args(@_);
# If we have arguments, we really want to call systemx,
# so we do so.
if (@args) {
return systemx($valid_returns, $command, @args);
}
# Without arguments, we're calling system, and checking
# the results.
# We're throwing our own exception on command not found, so
# we don't need a warning from Perl.
no warnings 'exec'; ## no critic
CORE::system($command,@args);
return _process_child_error($?,$command,$valid_returns);
}
# runx is just like system/run, but *never* invokes the shell.
sub runx {
_check_taint(@_);
my ($valid_returns, $command, @args) = _process_args(@_);
if (WINDOWS) {
our $EXITVAL = -1;
my $pid = _spawn_or_die($command, "$command @args");
$pid->Wait(INFINITE); # Wait for process exit.
$pid->GetExitCode($EXITVAL);
return _check_exit($command,$EXITVAL,$valid_returns);
}
# If system() fails, we throw our own exception. We don't
# need to have perl complain about it too.
no warnings; ## no critic
CORE::system { $command } $command, @args;
return _process_child_error($?, $command, $valid_returns);
}
# capture is our way of running a process with backticks/qx semantics
sub capture {
_check_taint(@_);
my ($valid_returns, $command, @args) = _process_args(@_);
if (@args) {
return capturex($valid_returns, $command, @args);
}
if (WINDOWS) {
# USE_SHELL really means "You may use the shell if you need it."
return _win32_capture(USE_SHELL, $valid_returns, $command, @args);
}
our $EXITVAL = -1;
my $wantarray = wantarray();
# We'll produce our own warnings on failure to execute.
no warnings 'exec'; ## no critic
if ($wantarray) {
my @results = qx($command);
_process_child_error($?,$command,$valid_returns);
return @results;
}
my $results = qx($command);
_process_child_error($?,$command,$valid_returns);
return $results;
}
# _win32_capture implements the capture and capurex commands on Win32.
# We need to wrap the whole internals of this sub into
# an if (WINDOWS) block to avoid it being compiled on non-Win32 systems.
sub _win32_capture {
if (not WINDOWS) {
croak sprintf(FAIL_INTERNAL, "_win32_capture called when not under Win32");
} else {
my ($use_shell, $valid_returns, $command, @args) = @_;
my $wantarray = wantarray();
# Perl doesn't support multi-arg open under
# Windows. Perl also doesn't provide very good
# feedback when normal backtails fail, either;
# it returns exit status from the shell
# (which is indistinguishable from the command
# running and producing the same exit status).
# As such, we essentially have to write our own
# backticks.
# We start by dup'ing STDOUT.
open(my $saved_stdout, '>&', \*STDOUT) ## no critic
or croak sprintf(FAIL_PLUMBING, "Can't dup STDOUT", $!);
# We now open up a pipe that will allow us to
# communicate with the new process.
pipe(my ($read_fh, $write_fh))
or croak sprintf(FAIL_PLUMBING, "Can't create pipe", $!);
# Allow CRLF sequences to become "\n", since
# this is what Perl backticks do.
binmode($read_fh, ':crlf');
# Now we re-open our STDOUT to $write_fh...
open(STDOUT, '>&', $write_fh) ## no critic
or croak sprintf(FAIL_PLUMBING, "Can't redirect STDOUT", $!);
# If we have args, or we're told not to use the shell, then
# we treat $command as our shell. Otherwise we grub around
# in our command to look for a command to run.
#
# Note that we don't actually *use* the shell (although in
# a future version we might). Being told not to use the shell
# (capturex) means we treat our command as really being a command,
# and not a command line.
my $exe = @args ? $command :
(! $use_shell) ? $command :
$command =~ m{^"([^"]+)"}x ? $1 :
$command =~ m{(\S+) }x ? $1 :
croak sprintf(FAIL_CMD_BLANK, $command);
# And now we spawn our new process with inherited
# filehandles.
my $pid = _spawn_or_die($exe, "$command @args");
# Now restore our STDOUT.
open(STDOUT, '>&', $saved_stdout) ## no critic
or croak sprintf(FAIL_PLUMBING,"Can't restore STDOUT", $!);
# Clean-up the filehandles we no longer need...
close($write_fh)
or croak sprintf(FAIL_PLUMBING,q{Can't close write end of pipe}, $!);
close($saved_stdout)
or croak sprintf(FAIL_PLUMBING,q{Can't close saved STDOUT}, $!);
# Read the data from our child...
my (@results, $result);
if ($wantarray) {
@results = <$read_fh>;
} else {
$result = join("",<$read_fh>);
}
# Tidy up our windows process and we're done!
$pid->Wait(INFINITE); # Wait for process exit.
$pid->GetExitCode($EXITVAL);
_check_exit($command,$EXITVAL,$valid_returns);
return $wantarray ? @results : $result;
}
}
# capturex() is just like backticks/qx, but never invokes the shell.
sub capturex {
_check_taint(@_);
my ($valid_returns, $command, @args) = _process_args(@_);
our $EXITVAL = -1;
my $wantarray = wantarray();
if (WINDOWS) {
return _win32_capture(NO_SHELL, $valid_returns, $command, @args);
}
# We can't use a multi-arg piped open here, since 5.6.x
# doesn't like them. Instead we emulate what 5.8.x does,
# which is to create a pipe(), set the close-on-exec flag
# on the child, and the fork/exec. If the exec fails, the
# child writes to the pipe. If the exec succeeds, then
# the pipe closes without data.
pipe(my ($read_fh, $write_fh))
or croak sprintf(FAIL_PLUMBING, "Can't create pipe", $!);
# This next line also does an implicit fork.
my $pid = open(my $pipe, '-|'); ## no critic
if (not defined $pid) {
croak sprintf(FAIL_START, $command, $!);
} elsif (not $pid) {
# Child process, execs command.
close($read_fh);
# TODO: 'no warnings exec' doesn't get rid
# of the 'unlikely to be reached' warnings.
# This is a bug in perl / perldiag / perllexwarn / warnings.
no warnings; ## no critic
CORE::exec { $command } $command, @args;
# Oh no, exec fails! Send the reason why to
# the parent.
print {$write_fh} int($!);
exit(-1);
}
{
# In parent process.
close($write_fh);
# Parent process, check for child error.
my $error = <$read_fh>;
# Tidy up our pipes.
close($read_fh);
# Check for error.
if ($error) {
# Setting $! to our child error number gives
# us nice looking strings when printed.
local $! = $error;
croak sprintf(FAIL_START, $command, $!);
}
}
# Parent process, we don't care about our pid, but we
# do go and read our pipe.
if ($wantarray) {
my @results = <$pipe>;
close($pipe);
_process_child_error($?,$command,$valid_returns);
return @results;
}
# NB: We don't check the return status on close(), since
# on failure it sets $?, which we then inspect for more
# useful information.
my $results = join("",<$pipe>);
close($pipe);
_process_child_error($?,$command,$valid_returns);
return $results;
}
# Tries really hard to spawn a process under Windows. Returns
# the pid on success, or undef on error.
sub _spawn_or_die {
# We need to wrap practically the entire sub in an
# if block to ensure it doesn't get compiled under non-Win32
# systems. Compiling on these systems would not only be a
# waste of time, but also results in complaints about
# the NORMAL_PRIORITY_CLASS constant.
if (not WINDOWS) {
croak sprintf(FAIL_INTERNAL, "_spawn_or_die called when not under Win32");
} else {
my ($orig_exe, $cmdline) = @_;
my $pid;
my $exe = $orig_exe;
# If our command doesn't have an extension, add one.
$exe .= $Config{_exe} if ($exe !~ m{\.});
Win32::Process::Create(
$pid, $exe, $cmdline, 1, NORMAL_PRIORITY_CLASS, "."
) and return $pid;
my @path = split(/;/,$ENV{PATH});
foreach my $dir (@path) {
my $fullpath = File::Spec->catfile($dir,$exe);
# We're using -x here on the assumption that stat()
# is faster than spawn, so trying to spawn a process
# for each path element will be unacceptably
# inefficient.
if (-x $fullpath) {
Win32::Process::Create(
$pid, $fullpath, $cmdline, 1,
NORMAL_PRIORITY_CLASS, "."
) and return $pid;
}
}
croak sprintf(FAIL_START, $orig_exe, $^E);
}
}
# Complain on tainted arguments or environment.
# ASSUME_TAINTED is true for 5.6.x, since it's missing ${^TAINT}
sub _check_taint {
return if not (ASSUME_TAINTED or ${^TAINT});
my $caller = (caller(1))[3];
foreach my $var (@_) {
if (tainted $var) {
croak sprintf(FAIL_TAINT, $caller, $var);
}
}
foreach my $var (@Check_tainted_env) {
if (tainted $ENV{$var} ) {
croak sprintf(FAIL_TAINT_ENV, $caller, $var);
}
}
return;
}
# This subroutine performs the difficult task of interpreting
# $?. It's not intended to be called directly, as it will
# croak on errors, and its implementation and interface may
# change in the future.
sub _process_child_error {
my ($child_error, $command, $valid_returns) = @_;
$EXITVAL = -1;
my $coredump = WCOREDUMP($child_error);
# There's a bug in perl 5.10.0 where if the system
# does not provide a native WCOREDUMP, then $? will
# never contain coredump information. This code
# checks to see if we have the bug, and works around
# it if needed.
if ($] >= 5.010 and not $NATIVE_WCOREDUMP) {
$coredump ||= WCOREDUMP( ${^CHILD_ERROR_NATIVE} );
}
if ($child_error == -1) {
croak sprintf(FAIL_START, $command, $!);
} elsif ( WIFEXITED( $child_error ) ) {
$EXITVAL = WEXITSTATUS( $child_error );
return _check_exit($command,$EXITVAL,$valid_returns);
} elsif ( WIFSIGNALED( $child_error ) ) {
my $signal_no = WTERMSIG( $child_error );
my $signal_name = $Signal_from_number[$signal_no] || "UNKNOWN";
croak sprintf FAIL_SIGNAL, $command, $signal_name, $signal_no, ($coredump ? " and dumped core" : "");
}
croak sprintf(FAIL_INTERNAL, qq{'$command' ran without exit value or signal});
}
# A simple subroutine for checking exit values. Results in better
# assurance of consistent error messages, and better forward support
# for new features in I::S::S.
sub _check_exit {
my ($command, $exitval, $valid_returns) = @_;
# If we have a single-value list consisting of the EXIT_ANY
# value, then we're happy with whatever exit value we're given.
if (@$valid_returns == 1 and $valid_returns->[0] == EXIT_ANY_CONST) {
return $exitval;
}
if (not defined first { $_ == $exitval } @$valid_returns) {
croak sprintf FAIL_BADEXIT, $command, $exitval;
}
return $exitval;
}
# This subroutine simply determines a list of valid returns, the command
# name, and any arguments that we need to pass to it.
sub _process_args {
my $valid_returns = [ 0 ];
my $caller = (caller(1))[3];
if (not @_) {
croak "$caller called with no arguments";
}
if (ref $_[0] eq "ARRAY") {
$valid_returns = shift(@_);
}
if (not @_) {
croak "$caller called with no command";
}
my $command = shift(@_);
if (not defined $command) {
croak sprintf( FAIL_UNDEF, $caller );
}
return ($valid_returns,$command,@_);
}
1;
__END__
=head1 NAME
IPC::System::Simple - Run commands simply, with detailed diagnostics
=head1 SYNOPSIS
use IPC::System::Simple qw(system systemx capture capturex);
system("some_command"); # Command succeeds or dies!
system("some_command",@args); # Succeeds or dies, avoids shell if @args
systemx("some_command",@args); # Succeeds or dies, NEVER uses the shell
# Capture the output of a command (just like backticks). Dies on error.
my $output = capture("some_command");
# Just like backticks in list context. Dies on error.
my @output = capture("some_command");
# As above, but avoids the shell if @args is non-empty
my $output = capture("some_command", @args);
# As above, but NEVER invokes the shell.
my $output = capturex("some_command", @args);
my @output = capturex("some_command", @args);
=head1 DESCRIPTION
Calling Perl's in-built C<system()> function is easy,
determining if it was successful is I<hard>. Let's face it,
C<$?> isn't the nicest variable in the world to play with, and
even if you I<do> check it, producing a well-formatted error
string takes a lot of work.
C<IPC::System::Simple> takes the hard work out of calling
external commands. In fact, if you want to be really lazy,
you can just write:
use IPC::System::Simple qw(system);
and all of your C<system> commands will either succeeed (run to
completion and return a zero exit value), or die with rich diagnostic
messages.
The C<IPC::System::Simple> module also provides a simple replacement
to Perl's backticks operator. Simply write:
use IPC::System::Simple qw(capture);
and then use the L</capture()> command just like you'd use backticks.
If there's an error, it will die with a detailed description of what
went wrong. Better still, you can even use C<capturex()> to run the
equivalent of backticks, but without the shell:
use IPC::System::Simple qw(capturex);
my $result = capturex($command, @args);
If you want more power than the basic interface, including the
ability to specify which exit values are acceptable, trap errors,
or process diagnostics, then read on!
=head1 ADVANCED SYNOPSIS
use IPC::System::Simple qw(
capture capturex system systemx run runx $EXITVAL EXIT_ANY
);
# Run a command, throwing exception on failure
run("some_command");
runx("some_command",@args); # Run a command, avoiding the shell
# Do the same thing, but with the drop-in system replacement.
system("some_command");
systemx("some_command", @args);
# Run a command which must return 0..5, avoid the shell, and get the
# exit value (we could also look at $EXITVAL)
my $exit_value = runx([0..5], "some_command", @args);
# The same, but any exit value will do.
my $exit_value = runx(EXIT_ANY, "some_command", @args);
# Capture output into $result and throw exception on failure
my $result = capture("some_command");
# Check exit value from captured command
print "some_command exited with status $EXITVAL\n";
# Captures into @lines, splitting on $/
my @lines = capture("some_command");
# Run a command which must return 0..5, capture the output into
# @lines, and avoid the shell.
my @lines = capturex([0..5], "some_command", @args);
=head1 ADVANCED USAGE
=head2 run() and system()
C<IPC::System::Simple> provides a subroutine called
C<run>, that executes a command using the same semantics is
Perl's built-in C<system>:
use IPC::System::Simple qw(run);
run("cat *.txt"); # Execute command via the shell
run("cat","/etc/motd"); # Execute command without shell
The primary difference between Perl's in-built system and
the C<run> command is that C<run> will throw an exception on
failure, and allows a list of acceptable exit values to be set.
See L</Exit values> for further information.
In fact, you can even have C<IPC::System::Simple> replace the
default C<system> function for your package so it has the
same behaviour:
use IPC::System::Simple qw(system);
system("cat *.txt"); # system now suceeds or dies!
C<system> and C<run> are aliases to each other.
See also L</runx(), systemx() and capturex()> for variants of
C<system()> and C<run()> that never invoke the shell, even with
a single argument.
=head2 capture()
A second subroutine, named C<capture> executes a command with
the same semantics as Perl's built-in backticks (and C<qx()>):
use IPC::System::Simple qw(capture);
# Capture text while invoking the shell.
my $file = capture("cat /etc/motd");
my @lines = capture("cat /etc/passwd");
However unlike regular backticks, which always use the shell, C<capture>
will bypass the shell when called with multiple arguments:
# Capture text while avoiding the shell.
my $file = capture("cat", "/etc/motd");
my @lines = capture("cat", "/etc/passwd");
See also L</runx(), systemx() and capturex()> for a variant of
C<capture()> that never invokes the shell, even with a single
argument.
=head2 runx(), systemx() and capturex()
The C<runx()>, C<systemx()> and C<capturex()> commands are identical
to the multi-argument forms of C<run()>, C<system()> and C<capture()>
respectively, but I<never> invoke the shell, even when called with a
single argument. These forms are particularly useful when a command's
argument list I<might> be empty, for example:
systemx($cmd, @args);
The use of C<systemx()> here guarantees that the shell will I<never>
be invoked, even if C<@args> is empty.
=head2 Exception handling
In the case where the command returns an unexpected status, both C<run> and
C<capture> will throw an exception, which if not caught will terminate your
program with an error.
Capturing the exception is easy:
eval {
run("cat *.txt");
};
if ($@) {
print "Something went wrong - $@\n";
}
See the diagnostics section below for more details.
=head3 Exception cases
C<IPC::System::Simple> considers the following to be unexpected,
and worthy of exception:
=over 4
=item *
Failing to start entirely (eg, command not found, permission denied).
=item *
Returning an exit value other than zero (but see below).
=item *
Being killed by a signal.
=item *
Being passed tainted data (in taint mode).
=back
=head2 Exit values
Traditionally, system commands return a zero status for success and a
non-zero status for failure. C<IPC::System::Simple> will default to throwing
an exception if a non-zero exit value is returned.
You may specify a range of values which are considered acceptable exit
values by passing an I<array reference> as the first argument. The
special constant C<EXIT_ANY> can be used to allow I<any> exit value
to be returned.
use IPC::System::Simple qw(run system capture EXIT_ANY);
run( [0..5], "cat *.txt"); # Exit values 0-5 are OK
system( [0..5], "cat *.txt"); # This works the same way
my @lines = capture( EXIT_ANY, "cat *.txt"); # Any exit is fine.
The C<run> and replacement C<system> subroutines returns the exit
value of the process:
my $exit_value = run( [0..5], "cat *.txt");
# OR:
my $exit_value = system( [0..5] "cat *.txt");
print "Program exited with value $exit_value\n";
=head3 $EXITVAL
The exit value of any command exeucted by C<IPC::System::Simple>
can always be retrieved from the C<$IPC::System::Simple::EXITVAL>
variable:
This is particularly useful when inspecting results from C<capture>,
which returns the captured text from the command.
use IPC::System::Simple qw(capture $EXITVAL EXIT_ANY);
my @enemies_defeated = capture(EXIT_ANY, "defeat_evil", "/dev/mordor");
print "Program exited with value $EXITVAL\n";
C<$EXITVAL> will be set to C<-1> if the command did not exit normally (eg,
being terminated by a signal) or did not start. In this situation an
exception will also be thrown.
=head2 WINDOWS-SPECIFIC NOTES
As of C<IPC::System::Simple> v0.06, the C<run> subroutine I<when
called with multiple arguments> will make available the full 32-bit
exit value on Win32 systems. This is different from the
previous versions of C<IPC::System::Simple> and from Perl's
in-build C<system()> function, which can only handle 8-bit return values.
The C<capture> subroutine always returns the 32-bit exit value under
Windows. The C<capture> subroutine also never uses the shell,
even when passed a single argument.
Versions of C<IPC::System::Simple> before v0.09 would not search
the C<PATH> environment variable when the multi-argument form of
C<run()> was called. Versions from v0.09 onwards correctly search
the path provided the command is provided including the extension
(eg, C<notepad.exe> rather than just C<notepad>, or C<gvim.bat> rather
than just C<gvim>). If no extension is provided, C<.exe> is
assumed.
Signals are not supported on Windows systems. Sending a signal
to a Windows process will usually cause it to exit with the signal
number used.
=head1 DIAGNOSTICS
=over 4
=item "%s" failed to start: "%s"
The command specified did not even start. It may not exist, or
you may not have permission to use it. The reason it could not
start (as determined from C<$!>) will be provided.
=item "%s" unexpectedly returned exit value %d
The command ran successfully, but returned an exit value we did
not expect. The value returned is reported.
=item "%s" died to signal "%s" (%d) %s
The command was killed by a signal. The name of the signal
will be reported, or C<UNKNOWN> if it cannot be determined. The
signal number is always reported. If we detected that the
process dumped core, then the string C<and dumped core> is
appeneded.
=item IPC::System::Simple::%s called with no arguments
You attempted to call C<run> or C<capture> but did not provide any
arguments at all. At the very lease you need to supply a command
to run.
=item IPC::System::Simple::%s called with no command
You called C<run> or C<capture> with a list of acceptable exit values,
but no actual command.
=item IPC::System::Simple::%s called with tainted argument "%s"
You called C<run> or C<capture> with tainted (untrusted) arguments, which is
almost certainly a bad idea. To untaint your arguments you'll need to pass
your data through a regular expression and use the resulting match variables.
See L<perlsec/Laundering and Detecting Tainted Data> for more information.
=item IPC::System::Simple::%s called with tainted environment $ENV{%s}
You called C<run> or C<capture> but part of your environment was tainted
(untrusted). You should either delete the named environment
variable before calling C<run>, or set it to an untainted value
(usually one set inside your program). See
L<perlsec/Cleaning Up Your Path> for more information.
=item Error in IPC::System::Simple plumbing: "%s" - "%s"
Implementing the C<capture> command involves dark and terrible magicks
involving pipes, and one of them has sprung a leak. This could be due to a
lack of file descriptors, although there are other possibilities.
If you are able to reproduce this error, you are encouraged
to submit a bug report according to the L</Reporting bugs> section below.
=item Internal error in IPC::System::Simple: "%s"
You've found a bug in C<IPC::System::Simple>. Please check to
see if an updated version of C<IPC::System::Simple> is available.
If not, please file a bug report according to the L</Reporting bugs> section
below.
=item IPC::System::Simple::%s called with undefined command
You've passed the undefined value as a command to be executed.
While this is a very Zen-like action, it's not supported by
Perl's current implementation.
=back
=head1 DEPENDENCIES
This module depends upon L<Win32::Process> when used on Win32
system. C<Win32::Process> is bundled as a core module in ActivePerl 5.6
and above.
There are no non-core dependencies on non-Win32 systems.
=head1 COMPARISON TO OTHER APIs
Perl provides a range of in-built functions for handling external
commands, and CPAN provides even more. The C<IPC::System::Simple>
differentiates itself from other options by providing:
=over 4
=item Extremely detailed diagnostics
The diagnostics produced by C<IPC::System::Simple> are designed
to provide as much information as possible. Rather than requiring
the developer to inspect C<$?>, C<IPC::System::Simple> does the
hard work for you.
If an odd exit status is provided, you're informed of what it is. If
a signal kills your process, you are informed of both its name and
number. If tainted data or environment prevents your command from
running, you are informed of exactly which datais
=item Exceptions on failure
C<IPC::System::Simple> takes an agressive approach to error handling.
Rather than allow commands to fail silently, exceptions are thrown
when unexpected results are seen. This allows for easy development
using a try/catch style, and avoids the possibility of accidently
continuing after a failed command.
=item Easy access to exit status
The C<run>, C<system> and C<capture> commands all set C<$EXITVAL>,
making it easy to determine the exit status of a command.
Additionally, the C<system> and C<run> interfaces return the exit
status.
=item Consistent interfaces
When called with multiple arguments, the C<run>, C<system> and
C<capture> interfaces I<never> invoke the shell. This differs
from the in-built Perl C<system> command which may invoke the
shell under Windows when called with multiple arguments. It
differs from the in-built Perl backticks operator which always
invokes the shell.
=back
=head1 BUGS
When C<system> is exported, the exotic form C<system { $cmd } @args>
is not supported. Attemping to use the exotic form is a syntax
error. This affects the calling package I<only>. Use C<CORE::system>
if you need it, or consider using the L<autodie> module to replace
C<system> with lexical scope.
Core dumps are only checked for when a process dies due to a
signal. It is not believed thare exist any systems where processes
can dump core without dying to a signal.
C<WIFSTOPPED> status is not checked, as perl never spawns processes
with the C<WUNTRACED> option.
Signals are not supported under Win32 systems, since they don't
work at all like Unix signals. Win32 singals cause commands to
exit with a given exit value, which this modules I<does> capture.
Only 8-bit values are returned when C<run()> or C<system()>
is called with a single value under Win32. Multi-argument calls
to C<run()> and C<system()>, as well as the C<runx()> and
C<systemx()> always return the 32-bit Windows return values.
=head2 Reporting bugs
Before reporting a bug, please check to ensure you are using the
most recent version of C<IPC::System::Simple>. Your problem may
have already been fixed in a new release.
You can find the C<IPC::System::Simple> bug-tracker at
L<http://rt.cpan.org/Public/Dist/Display.html?Name=IPC-System-Simple> .
Please check to see if your bug has already been reported; if
in doubt, report yours anyway.
Submitting a patch and/or failing test case will greatly expediate
the fixing of bugs.
=head1 FEEDBACK
If you find this module useful, please consider rating it on the
CPAN Ratings service at
L<http://cpanratings.perl.org/rate/?distribution=IPC-System-Simple> .
The module author loves to hear how C<IPC::System::Simple> has made
your life better (or worse). Feedback can be sent to
E<lt>pjf@perltraining.com.auE<gt>.
=head1 SEE ALSO
L<autodie> uses C<IPC::System::Simple> to provide succeed-or-die
replacements to C<system> (and other built-ins) with lexical scope.
L<POSIX>, L<IPC::Run::Simple>, L<perlipc>, L<perlport>, L<IPC::Run>,
L<IPC::Run3>, L<Win32::Process>
=head1 AUTHOR
Paul Fenwick E<lt>pjf@cpan.orgE<gt>
=head1 COPYRIGHT AND LICENSE
Copyright (C) 2006-2008 by Paul Fenwick
This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself, either Perl version 5.6.0 or,
at your option, any later version of Perl 5 you may have available.
=cut
|