summaryrefslogtreecommitdiff
path: root/Master/tlpkg/TeXLive/SHA.pm
blob: 91cf75c8218cada1e4a163fd61450032cca1583e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
package TeXLive::SHA;

require 5.003000;

printf STDERR "DEBUG DEBUG DEBUG loading TeXLive::SHA!\n";

use strict;
use warnings;
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK);
use Fcntl;
use integer;
use Carp qw(croak);

$VERSION = '5.95';

require Exporter;
@ISA = qw(Exporter);
@EXPORT_OK = ();		# see "SHA and HMAC-SHA functions" below

# Inherit from Digest::base if possible

eval {
	require Digest::base;
	push(@ISA, 'Digest::base');
};

# ref. src/sha.c and sha/sha64bit.c from Digest::SHA

my $MAX32 = 0xffffffff;

my $uses64bit = (((1 << 16) << 16) << 16) << 15;

my @H01 = (			# SHA-1 initial hash value
	0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476,
	0xc3d2e1f0
);

my @H0224 = (			# SHA-224 initial hash value
	0xc1059ed8, 0x367cd507, 0x3070dd17, 0xf70e5939,
	0xffc00b31, 0x68581511, 0x64f98fa7, 0xbefa4fa4
);

my @H0256 = (			# SHA-256 initial hash value
	0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
	0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
);

my(@H0384, @H0512, @H0512224, @H0512256);  # filled in later if $uses64bit

# Routines with a "_c_" prefix return Perl code-fragments which are
# eval'ed at initialization.  This technique emulates the behavior
# of the C preprocessor, allowing the optimized transform code from
# Digest::SHA to be more easily translated into Perl.

sub _c_SL32 {			# code to shift $x left by $n bits
	my($x, $n) = @_;
	"($x << $n)";		# even works for 64-bit integers
				# since the upper 32 bits are
				# eventually discarded in _digcpy
}

sub _c_SR32 {			# code to shift $x right by $n bits
	my($x, $n) = @_;
	my $mask = (1 << (32 - $n)) - 1;
	"(($x >> $n) & $mask)";		# "use integer" does arithmetic
					# shift, so clear upper bits
}

sub _c_Ch { my($x, $y, $z) = @_; "($z ^ ($x & ($y ^ $z)))" }
sub _c_Pa { my($x, $y, $z) = @_; "($x ^ $y ^ $z)" }
sub _c_Ma { my($x, $y, $z) = @_; "(($x & $y) | ($z & ($x | $y)))" }

sub _c_ROTR {			# code to rotate $x right by $n bits
	my($x, $n) = @_;
	"(" . _c_SR32($x, $n) . " | " . _c_SL32($x, 32 - $n) . ")";
}

sub _c_ROTL {			# code to rotate $x left by $n bits
	my($x, $n) = @_;
	"(" . _c_SL32($x, $n) . " | " . _c_SR32($x, 32 - $n) . ")";
}

sub _c_SIGMA0 {			# ref. NIST SHA standard
	my($x) = @_;
	"(" . _c_ROTR($x,  2) . " ^ " . _c_ROTR($x, 13) . " ^ " .
		_c_ROTR($x, 22) . ")";
}

sub _c_SIGMA1 {
	my($x) = @_;
	"(" . _c_ROTR($x,  6) . " ^ " . _c_ROTR($x, 11) . " ^ " .
		_c_ROTR($x, 25) . ")";
}

sub _c_sigma0 {
	my($x) = @_;
	"(" . _c_ROTR($x,  7) . " ^ " . _c_ROTR($x, 18) . " ^ " .
		_c_SR32($x,  3) . ")";
}

sub _c_sigma1 {
	my($x) = @_;
	"(" . _c_ROTR($x, 17) . " ^ " . _c_ROTR($x, 19) . " ^ " .
		_c_SR32($x, 10) . ")";
}

sub _c_M1Ch {			# ref. Digest::SHA sha.c (sha1 routine)
	my($a, $b, $c, $d, $e, $k, $w) = @_;
	"$e += " . _c_ROTL($a, 5) . " + " . _c_Ch($b, $c, $d) .
		" + $k + $w; $b = " . _c_ROTL($b, 30) . ";\n";
}

sub _c_M1Pa {
	my($a, $b, $c, $d, $e, $k, $w) = @_;
	"$e += " . _c_ROTL($a, 5) . " + " . _c_Pa($b, $c, $d) .
		" + $k + $w; $b = " . _c_ROTL($b, 30) . ";\n";
}

sub _c_M1Ma {
	my($a, $b, $c, $d, $e, $k, $w) = @_;
	"$e += " . _c_ROTL($a, 5) . " + " . _c_Ma($b, $c, $d) .
		" + $k + $w; $b = " . _c_ROTL($b, 30) . ";\n";
}

sub _c_M11Ch { my($k, $w) = @_; _c_M1Ch('$a', '$b', '$c', '$d', '$e', $k, $w) }
sub _c_M11Pa { my($k, $w) = @_; _c_M1Pa('$a', '$b', '$c', '$d', '$e', $k, $w) }
sub _c_M11Ma { my($k, $w) = @_; _c_M1Ma('$a', '$b', '$c', '$d', '$e', $k, $w) }
sub _c_M12Ch { my($k, $w) = @_; _c_M1Ch('$e', '$a', '$b', '$c', '$d', $k, $w) }
sub _c_M12Pa { my($k, $w) = @_; _c_M1Pa('$e', '$a', '$b', '$c', '$d', $k, $w) }
sub _c_M12Ma { my($k, $w) = @_; _c_M1Ma('$e', '$a', '$b', '$c', '$d', $k, $w) }
sub _c_M13Ch { my($k, $w) = @_; _c_M1Ch('$d', '$e', '$a', '$b', '$c', $k, $w) }
sub _c_M13Pa { my($k, $w) = @_; _c_M1Pa('$d', '$e', '$a', '$b', '$c', $k, $w) }
sub _c_M13Ma { my($k, $w) = @_; _c_M1Ma('$d', '$e', '$a', '$b', '$c', $k, $w) }
sub _c_M14Ch { my($k, $w) = @_; _c_M1Ch('$c', '$d', '$e', '$a', '$b', $k, $w) }
sub _c_M14Pa { my($k, $w) = @_; _c_M1Pa('$c', '$d', '$e', '$a', '$b', $k, $w) }
sub _c_M14Ma { my($k, $w) = @_; _c_M1Ma('$c', '$d', '$e', '$a', '$b', $k, $w) }
sub _c_M15Ch { my($k, $w) = @_; _c_M1Ch('$b', '$c', '$d', '$e', '$a', $k, $w) }
sub _c_M15Pa { my($k, $w) = @_; _c_M1Pa('$b', '$c', '$d', '$e', '$a', $k, $w) }
sub _c_M15Ma { my($k, $w) = @_; _c_M1Ma('$b', '$c', '$d', '$e', '$a', $k, $w) }

sub _c_W11 { my($s) = @_; '$W[' . (($s +  0) & 0xf) . ']' }
sub _c_W12 { my($s) = @_; '$W[' . (($s + 13) & 0xf) . ']' }
sub _c_W13 { my($s) = @_; '$W[' . (($s +  8) & 0xf) . ']' }
sub _c_W14 { my($s) = @_; '$W[' . (($s +  2) & 0xf) . ']' }

sub _c_A1 {
	my($s) = @_;
	my $tmp = _c_W11($s) . " ^ " . _c_W12($s) . " ^ " .
		_c_W13($s) . " ^ " . _c_W14($s);
	"((\$tmp = $tmp), (" . _c_W11($s) . " = " . _c_ROTL('$tmp', 1) . "))";
}

# The following code emulates the "sha1" routine from Digest::SHA sha.c

my $sha1_code = '

my($K1, $K2, $K3, $K4) = (	# SHA-1 constants
	0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xca62c1d6
);

sub _sha1 {
	my($self, $block) = @_;
	my(@W, $a, $b, $c, $d, $e, $tmp);

	@W = unpack("N16", $block);
	($a, $b, $c, $d, $e) = @{$self->{H}};
' .
	_c_M11Ch('$K1', '$W[ 0]'  ) . _c_M12Ch('$K1', '$W[ 1]'  ) .
	_c_M13Ch('$K1', '$W[ 2]'  ) . _c_M14Ch('$K1', '$W[ 3]'  ) .
	_c_M15Ch('$K1', '$W[ 4]'  ) . _c_M11Ch('$K1', '$W[ 5]'  ) .
	_c_M12Ch('$K1', '$W[ 6]'  ) . _c_M13Ch('$K1', '$W[ 7]'  ) .
	_c_M14Ch('$K1', '$W[ 8]'  ) . _c_M15Ch('$K1', '$W[ 9]'  ) .
	_c_M11Ch('$K1', '$W[10]'  ) . _c_M12Ch('$K1', '$W[11]'  ) .
	_c_M13Ch('$K1', '$W[12]'  ) . _c_M14Ch('$K1', '$W[13]'  ) .
	_c_M15Ch('$K1', '$W[14]'  ) . _c_M11Ch('$K1', '$W[15]'  ) .
	_c_M12Ch('$K1', _c_A1( 0) ) . _c_M13Ch('$K1', _c_A1( 1) ) .
	_c_M14Ch('$K1', _c_A1( 2) ) . _c_M15Ch('$K1', _c_A1( 3) ) .
	_c_M11Pa('$K2', _c_A1( 4) ) . _c_M12Pa('$K2', _c_A1( 5) ) .
	_c_M13Pa('$K2', _c_A1( 6) ) . _c_M14Pa('$K2', _c_A1( 7) ) .
	_c_M15Pa('$K2', _c_A1( 8) ) . _c_M11Pa('$K2', _c_A1( 9) ) .
	_c_M12Pa('$K2', _c_A1(10) ) . _c_M13Pa('$K2', _c_A1(11) ) .
	_c_M14Pa('$K2', _c_A1(12) ) . _c_M15Pa('$K2', _c_A1(13) ) .
	_c_M11Pa('$K2', _c_A1(14) ) . _c_M12Pa('$K2', _c_A1(15) ) .
	_c_M13Pa('$K2', _c_A1( 0) ) . _c_M14Pa('$K2', _c_A1( 1) ) .
	_c_M15Pa('$K2', _c_A1( 2) ) . _c_M11Pa('$K2', _c_A1( 3) ) .
	_c_M12Pa('$K2', _c_A1( 4) ) . _c_M13Pa('$K2', _c_A1( 5) ) .
	_c_M14Pa('$K2', _c_A1( 6) ) . _c_M15Pa('$K2', _c_A1( 7) ) .
	_c_M11Ma('$K3', _c_A1( 8) ) . _c_M12Ma('$K3', _c_A1( 9) ) .
	_c_M13Ma('$K3', _c_A1(10) ) . _c_M14Ma('$K3', _c_A1(11) ) .
	_c_M15Ma('$K3', _c_A1(12) ) . _c_M11Ma('$K3', _c_A1(13) ) .
	_c_M12Ma('$K3', _c_A1(14) ) . _c_M13Ma('$K3', _c_A1(15) ) .
	_c_M14Ma('$K3', _c_A1( 0) ) . _c_M15Ma('$K3', _c_A1( 1) ) .
	_c_M11Ma('$K3', _c_A1( 2) ) . _c_M12Ma('$K3', _c_A1( 3) ) .
	_c_M13Ma('$K3', _c_A1( 4) ) . _c_M14Ma('$K3', _c_A1( 5) ) .
	_c_M15Ma('$K3', _c_A1( 6) ) . _c_M11Ma('$K3', _c_A1( 7) ) .
	_c_M12Ma('$K3', _c_A1( 8) ) . _c_M13Ma('$K3', _c_A1( 9) ) .
	_c_M14Ma('$K3', _c_A1(10) ) . _c_M15Ma('$K3', _c_A1(11) ) .
	_c_M11Pa('$K4', _c_A1(12) ) . _c_M12Pa('$K4', _c_A1(13) ) .
	_c_M13Pa('$K4', _c_A1(14) ) . _c_M14Pa('$K4', _c_A1(15) ) .
	_c_M15Pa('$K4', _c_A1( 0) ) . _c_M11Pa('$K4', _c_A1( 1) ) .
	_c_M12Pa('$K4', _c_A1( 2) ) . _c_M13Pa('$K4', _c_A1( 3) ) .
	_c_M14Pa('$K4', _c_A1( 4) ) . _c_M15Pa('$K4', _c_A1( 5) ) .
	_c_M11Pa('$K4', _c_A1( 6) ) . _c_M12Pa('$K4', _c_A1( 7) ) .
	_c_M13Pa('$K4', _c_A1( 8) ) . _c_M14Pa('$K4', _c_A1( 9) ) .
	_c_M15Pa('$K4', _c_A1(10) ) . _c_M11Pa('$K4', _c_A1(11) ) .
	_c_M12Pa('$K4', _c_A1(12) ) . _c_M13Pa('$K4', _c_A1(13) ) .
	_c_M14Pa('$K4', _c_A1(14) ) . _c_M15Pa('$K4', _c_A1(15) ) .

'	$self->{H}->[0] += $a; $self->{H}->[1] += $b; $self->{H}->[2] += $c;
	$self->{H}->[3] += $d; $self->{H}->[4] += $e;
}
';

eval($sha1_code);

sub _c_M2 {			# ref. Digest::SHA sha.c (sha256 routine)
	my($a, $b, $c, $d, $e, $f, $g, $h, $w) = @_;
	"\$T1 = $h + " . _c_SIGMA1($e) . " + " . _c_Ch($e, $f, $g) .
		" + \$K256[\$i++] + $w; $h = \$T1 + " . _c_SIGMA0($a) .
		" + " . _c_Ma($a, $b, $c) . "; $d += \$T1;\n";
}

sub _c_M21 { _c_M2('$a', '$b', '$c', '$d', '$e', '$f', '$g', '$h', $_[0]) }
sub _c_M22 { _c_M2('$h', '$a', '$b', '$c', '$d', '$e', '$f', '$g', $_[0]) }
sub _c_M23 { _c_M2('$g', '$h', '$a', '$b', '$c', '$d', '$e', '$f', $_[0]) }
sub _c_M24 { _c_M2('$f', '$g', '$h', '$a', '$b', '$c', '$d', '$e', $_[0]) }
sub _c_M25 { _c_M2('$e', '$f', '$g', '$h', '$a', '$b', '$c', '$d', $_[0]) }
sub _c_M26 { _c_M2('$d', '$e', '$f', '$g', '$h', '$a', '$b', '$c', $_[0]) }
sub _c_M27 { _c_M2('$c', '$d', '$e', '$f', '$g', '$h', '$a', '$b', $_[0]) }
sub _c_M28 { _c_M2('$b', '$c', '$d', '$e', '$f', '$g', '$h', '$a', $_[0]) }

sub _c_W21 { my($s) = @_; '$W[' . (($s +  0) & 0xf) . ']' }
sub _c_W22 { my($s) = @_; '$W[' . (($s + 14) & 0xf) . ']' }
sub _c_W23 { my($s) = @_; '$W[' . (($s +  9) & 0xf) . ']' }
sub _c_W24 { my($s) = @_; '$W[' . (($s +  1) & 0xf) . ']' }

sub _c_A2 {
	my($s) = @_;
	"(" . _c_W21($s) . " += " . _c_sigma1(_c_W22($s)) . " + " .
		_c_W23($s) . " + " . _c_sigma0(_c_W24($s)) . ")";
}

# The following code emulates the "sha256" routine from Digest::SHA sha.c

my $sha256_code = '

my @K256 = (			# SHA-224/256 constants
	0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
	0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
	0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
	0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
	0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
	0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
	0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
	0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
	0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
	0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
	0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
	0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
	0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
	0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
	0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
	0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
);

sub _sha256 {
	my($self, $block) = @_;
	my(@W, $a, $b, $c, $d, $e, $f, $g, $h, $i, $T1);

	@W = unpack("N16", $block);
	($a, $b, $c, $d, $e, $f, $g, $h) = @{$self->{H}};
' .
	_c_M21('$W[ 0]' ) . _c_M22('$W[ 1]' ) . _c_M23('$W[ 2]' ) .
	_c_M24('$W[ 3]' ) . _c_M25('$W[ 4]' ) . _c_M26('$W[ 5]' ) .
	_c_M27('$W[ 6]' ) . _c_M28('$W[ 7]' ) . _c_M21('$W[ 8]' ) .
	_c_M22('$W[ 9]' ) . _c_M23('$W[10]' ) . _c_M24('$W[11]' ) .
	_c_M25('$W[12]' ) . _c_M26('$W[13]' ) . _c_M27('$W[14]' ) .
	_c_M28('$W[15]' ) .
	_c_M21(_c_A2( 0)) . _c_M22(_c_A2( 1)) . _c_M23(_c_A2( 2)) .
	_c_M24(_c_A2( 3)) . _c_M25(_c_A2( 4)) . _c_M26(_c_A2( 5)) .
	_c_M27(_c_A2( 6)) . _c_M28(_c_A2( 7)) . _c_M21(_c_A2( 8)) .
	_c_M22(_c_A2( 9)) . _c_M23(_c_A2(10)) . _c_M24(_c_A2(11)) .
	_c_M25(_c_A2(12)) . _c_M26(_c_A2(13)) . _c_M27(_c_A2(14)) .
	_c_M28(_c_A2(15)) . _c_M21(_c_A2( 0)) . _c_M22(_c_A2( 1)) .
	_c_M23(_c_A2( 2)) . _c_M24(_c_A2( 3)) . _c_M25(_c_A2( 4)) .
	_c_M26(_c_A2( 5)) . _c_M27(_c_A2( 6)) . _c_M28(_c_A2( 7)) .
	_c_M21(_c_A2( 8)) . _c_M22(_c_A2( 9)) . _c_M23(_c_A2(10)) .
	_c_M24(_c_A2(11)) . _c_M25(_c_A2(12)) . _c_M26(_c_A2(13)) .
	_c_M27(_c_A2(14)) . _c_M28(_c_A2(15)) . _c_M21(_c_A2( 0)) .
	_c_M22(_c_A2( 1)) . _c_M23(_c_A2( 2)) . _c_M24(_c_A2( 3)) .
	_c_M25(_c_A2( 4)) . _c_M26(_c_A2( 5)) . _c_M27(_c_A2( 6)) .
	_c_M28(_c_A2( 7)) . _c_M21(_c_A2( 8)) . _c_M22(_c_A2( 9)) .
	_c_M23(_c_A2(10)) . _c_M24(_c_A2(11)) . _c_M25(_c_A2(12)) .
	_c_M26(_c_A2(13)) . _c_M27(_c_A2(14)) . _c_M28(_c_A2(15)) .

'	$self->{H}->[0] += $a; $self->{H}->[1] += $b; $self->{H}->[2] += $c;
	$self->{H}->[3] += $d; $self->{H}->[4] += $e; $self->{H}->[5] += $f;
	$self->{H}->[6] += $g; $self->{H}->[7] += $h;
}
';

eval($sha256_code);

sub _sha512_placeholder { return }
my $sha512 = \&_sha512_placeholder;

my $_64bit_code = '

no warnings qw(portable);

my @K512 = (
	0x428a2f98d728ae22, 0x7137449123ef65cd, 0xb5c0fbcfec4d3b2f,
	0xe9b5dba58189dbbc, 0x3956c25bf348b538, 0x59f111f1b605d019,
	0x923f82a4af194f9b, 0xab1c5ed5da6d8118, 0xd807aa98a3030242,
	0x12835b0145706fbe, 0x243185be4ee4b28c, 0x550c7dc3d5ffb4e2,
	0x72be5d74f27b896f, 0x80deb1fe3b1696b1, 0x9bdc06a725c71235,
	0xc19bf174cf692694, 0xe49b69c19ef14ad2, 0xefbe4786384f25e3,
	0x0fc19dc68b8cd5b5, 0x240ca1cc77ac9c65, 0x2de92c6f592b0275,
	0x4a7484aa6ea6e483, 0x5cb0a9dcbd41fbd4, 0x76f988da831153b5,
	0x983e5152ee66dfab, 0xa831c66d2db43210, 0xb00327c898fb213f,
	0xbf597fc7beef0ee4, 0xc6e00bf33da88fc2, 0xd5a79147930aa725,
	0x06ca6351e003826f, 0x142929670a0e6e70, 0x27b70a8546d22ffc,
	0x2e1b21385c26c926, 0x4d2c6dfc5ac42aed, 0x53380d139d95b3df,
	0x650a73548baf63de, 0x766a0abb3c77b2a8, 0x81c2c92e47edaee6,
	0x92722c851482353b, 0xa2bfe8a14cf10364, 0xa81a664bbc423001,
	0xc24b8b70d0f89791, 0xc76c51a30654be30, 0xd192e819d6ef5218,
	0xd69906245565a910, 0xf40e35855771202a, 0x106aa07032bbd1b8,
	0x19a4c116b8d2d0c8, 0x1e376c085141ab53, 0x2748774cdf8eeb99,
	0x34b0bcb5e19b48a8, 0x391c0cb3c5c95a63, 0x4ed8aa4ae3418acb,
	0x5b9cca4f7763e373, 0x682e6ff3d6b2b8a3, 0x748f82ee5defb2fc,
	0x78a5636f43172f60, 0x84c87814a1f0ab72, 0x8cc702081a6439ec,
	0x90befffa23631e28, 0xa4506cebde82bde9, 0xbef9a3f7b2c67915,
	0xc67178f2e372532b, 0xca273eceea26619c, 0xd186b8c721c0c207,
	0xeada7dd6cde0eb1e, 0xf57d4f7fee6ed178, 0x06f067aa72176fba,
	0x0a637dc5a2c898a6, 0x113f9804bef90dae, 0x1b710b35131c471b,
	0x28db77f523047d84, 0x32caab7b40c72493, 0x3c9ebe0a15c9bebc,
	0x431d67c49c100d4c, 0x4cc5d4becb3e42b6, 0x597f299cfc657e2a,
	0x5fcb6fab3ad6faec, 0x6c44198c4a475817);

@H0384 = (
	0xcbbb9d5dc1059ed8, 0x629a292a367cd507, 0x9159015a3070dd17,
	0x152fecd8f70e5939, 0x67332667ffc00b31, 0x8eb44a8768581511,
	0xdb0c2e0d64f98fa7, 0x47b5481dbefa4fa4);

@H0512 = (
	0x6a09e667f3bcc908, 0xbb67ae8584caa73b, 0x3c6ef372fe94f82b,
	0xa54ff53a5f1d36f1, 0x510e527fade682d1, 0x9b05688c2b3e6c1f,
	0x1f83d9abfb41bd6b, 0x5be0cd19137e2179);

@H0512224 = (
	0x8c3d37c819544da2, 0x73e1996689dcd4d6, 0x1dfab7ae32ff9c82,
	0x679dd514582f9fcf, 0x0f6d2b697bd44da8, 0x77e36f7304c48942,
	0x3f9d85a86a1d36c8, 0x1112e6ad91d692a1);

@H0512256 = (
	0x22312194fc2bf72c, 0x9f555fa3c84c64c2, 0x2393b86b6f53b151,
	0x963877195940eabd, 0x96283ee2a88effe3, 0xbe5e1e2553863992,
	0x2b0199fc2c85b8aa, 0x0eb72ddc81c52ca2);

use warnings;

sub _c_SL64 { my($x, $n) = @_; "($x << $n)" }

sub _c_SR64 {
	my($x, $n) = @_;
	my $mask = (1 << (64 - $n)) - 1;
	"(($x >> $n) & $mask)";
}

sub _c_ROTRQ {
	my($x, $n) = @_;
	"(" . _c_SR64($x, $n) . " | " . _c_SL64($x, 64 - $n) . ")";
}

sub _c_SIGMAQ0 {
	my($x) = @_;
	"(" . _c_ROTRQ($x, 28) . " ^ " .  _c_ROTRQ($x, 34) . " ^ " .
		_c_ROTRQ($x, 39) . ")";
}

sub _c_SIGMAQ1 {
	my($x) = @_;
	"(" . _c_ROTRQ($x, 14) . " ^ " .  _c_ROTRQ($x, 18) . " ^ " .
		_c_ROTRQ($x, 41) . ")";
}

sub _c_sigmaQ0 {
	my($x) = @_;
	"(" . _c_ROTRQ($x, 1) . " ^ " .  _c_ROTRQ($x, 8) . " ^ " .
		_c_SR64($x, 7) . ")";
}

sub _c_sigmaQ1 {
	my($x) = @_;
	"(" . _c_ROTRQ($x, 19) . " ^ " .  _c_ROTRQ($x, 61) . " ^ " .
		_c_SR64($x, 6) . ")";
}

my $sha512_code = q/
sub _sha512 {
	my($self, $block) = @_;
	my(@N, @W, $a, $b, $c, $d, $e, $f, $g, $h, $T1, $T2);

	@N = unpack("N32", $block);
	($a, $b, $c, $d, $e, $f, $g, $h) = @{$self->{H}};
	for ( 0 .. 15) { $W[$_] = (($N[2*$_] << 16) << 16) | $N[2*$_+1] }
	for (16 .. 79) { $W[$_] = / .
		_c_sigmaQ1(q/$W[$_- 2]/) . q/ + $W[$_- 7] + / .
		_c_sigmaQ0(q/$W[$_-15]/) . q/ + $W[$_-16] }
	for ( 0 .. 79) {
		$T1 = $h + / . _c_SIGMAQ1(q/$e/) .
			q/ + (($g) ^ (($e) & (($f) ^ ($g)))) +
				$K512[$_] + $W[$_];
		$T2 = / . _c_SIGMAQ0(q/$a/) .
			q/ + ((($a) & ($b)) | (($c) & (($a) | ($b))));
		$h = $g; $g = $f; $f = $e; $e = $d + $T1;
		$d = $c; $c = $b; $b = $a; $a = $T1 + $T2;
	}
	$self->{H}->[0] += $a; $self->{H}->[1] += $b; $self->{H}->[2] += $c;
	$self->{H}->[3] += $d; $self->{H}->[4] += $e; $self->{H}->[5] += $f;
	$self->{H}->[6] += $g; $self->{H}->[7] += $h;
}
/;

eval($sha512_code);
$sha512 = \&_sha512;

';

eval($_64bit_code) if $uses64bit;

sub _SETBIT {
	my($self, $pos) = @_;
	my @c = unpack("C*", $self->{block});
	$c[$pos >> 3] = 0x00 unless defined $c[$pos >> 3];
	$c[$pos >> 3] |= (0x01 << (7 - $pos % 8));
	$self->{block} = pack("C*", @c);
}

sub _CLRBIT {
	my($self, $pos) = @_;
	my @c = unpack("C*", $self->{block});
	$c[$pos >> 3] = 0x00 unless defined $c[$pos >> 3];
	$c[$pos >> 3] &= ~(0x01 << (7 - $pos % 8));
	$self->{block} = pack("C*", @c);
}

sub _BYTECNT {
	my($bitcnt) = @_;
	$bitcnt > 0 ? 1 + (($bitcnt - 1) >> 3) : 0;
}

sub _digcpy {
	my($self) = @_;
	my @dig;
	for (@{$self->{H}}) {
		push(@dig, (($_>>16)>>16) & $MAX32) if $self->{alg} >= 384;
		push(@dig, $_ & $MAX32);
	}
	$self->{digest} = pack("N" . ($self->{digestlen}>>2), @dig);
}

sub _sharewind {
	my($self) = @_;
	my $alg = $self->{alg};
	$self->{block} = ""; $self->{blockcnt} = 0;
	$self->{blocksize} = $alg <= 256 ? 512 : 1024;
	for (qw(lenll lenlh lenhl lenhh)) { $self->{$_} = 0 }
	$self->{digestlen} = $alg == 1 ? 20 : ($alg % 1000)/8;
	if    ($alg == 1)   { $self->{sha} = \&_sha1;   $self->{H} = [@H01]   }
	elsif ($alg == 224) { $self->{sha} = \&_sha256; $self->{H} = [@H0224] }
	elsif ($alg == 256) { $self->{sha} = \&_sha256; $self->{H} = [@H0256] }
	elsif ($alg == 384) { $self->{sha} = $sha512;   $self->{H} = [@H0384] }
	elsif ($alg == 512) { $self->{sha} = $sha512;   $self->{H} = [@H0512] }
	elsif ($alg == 512224) { $self->{sha}=$sha512; $self->{H}=[@H0512224] }
	elsif ($alg == 512256) { $self->{sha}=$sha512; $self->{H}=[@H0512256] }
	push(@{$self->{H}}, 0) while scalar(@{$self->{H}}) < 8;
	$self;
}

sub _shaopen {
	my($alg) = @_;
	my($self);
	return unless grep { $alg == $_ } (1,224,256,384,512,512224,512256);
	return if ($alg >= 384 && !$uses64bit);
	$self->{alg} = $alg;
	_sharewind($self);
}

sub _shadirect {
	my($bitstr, $bitcnt, $self) = @_;
	my $savecnt = $bitcnt;
	my $offset = 0;
	my $blockbytes = $self->{blocksize} >> 3;
	while ($bitcnt >= $self->{blocksize}) {
		&{$self->{sha}}($self, substr($bitstr, $offset, $blockbytes));
		$offset += $blockbytes;
		$bitcnt -= $self->{blocksize};
	}
	if ($bitcnt > 0) {
		$self->{block} = substr($bitstr, $offset, _BYTECNT($bitcnt));
		$self->{blockcnt} = $bitcnt;
	}
	$savecnt;
}

sub _shabytes {
	my($bitstr, $bitcnt, $self) = @_;
	my($numbits);
	my $savecnt = $bitcnt;
	if ($self->{blockcnt} + $bitcnt >= $self->{blocksize}) {
		$numbits = $self->{blocksize} - $self->{blockcnt};
		$self->{block} .= substr($bitstr, 0, $numbits >> 3);
		$bitcnt -= $numbits;
		$bitstr = substr($bitstr, $numbits >> 3, _BYTECNT($bitcnt));
		&{$self->{sha}}($self, $self->{block});
		$self->{block} = "";
		$self->{blockcnt} = 0;
		_shadirect($bitstr, $bitcnt, $self);
	}
	else {
		$self->{block} .= substr($bitstr, 0, _BYTECNT($bitcnt));
		$self->{blockcnt} += $bitcnt;
	}
	$savecnt;
}

sub _shabits {
	my($bitstr, $bitcnt, $self) = @_;
	my($i, @buf);
	my $numbytes = _BYTECNT($bitcnt);
	my $savecnt = $bitcnt;
	my $gap = 8 - $self->{blockcnt} % 8;
	my @c = unpack("C*", $self->{block});
	my @b = unpack("C" . $numbytes, $bitstr);
	$c[$self->{blockcnt}>>3] &= (~0 << $gap);
	$c[$self->{blockcnt}>>3] |= $b[0] >> (8 - $gap);
	$self->{block} = pack("C*", @c);
	$self->{blockcnt} += ($bitcnt < $gap) ? $bitcnt : $gap;
	return($savecnt) if $bitcnt < $gap;
	if ($self->{blockcnt} == $self->{blocksize}) {
		&{$self->{sha}}($self, $self->{block});
		$self->{block} = "";
		$self->{blockcnt} = 0;
	}
	return($savecnt) if ($bitcnt -= $gap) == 0;
	for ($i = 0; $i < $numbytes - 1; $i++) {
		$buf[$i] = (($b[$i] << $gap) & 0xff) | ($b[$i+1] >> (8 - $gap));
	}
	$buf[$numbytes-1] = ($b[$numbytes-1] << $gap) & 0xff;
	_shabytes(pack("C*", @buf), $bitcnt, $self);
	$savecnt;
}

sub _shawrite {
	my($bitstr, $bitcnt, $self) = @_;
	return(0) unless $bitcnt > 0;
	no integer;
	my $TWO32 = 4294967296;
	if (($self->{lenll} += $bitcnt) >= $TWO32) {
		$self->{lenll} -= $TWO32;
		if (++$self->{lenlh} >= $TWO32) {
			$self->{lenlh} -= $TWO32;
			if (++$self->{lenhl} >= $TWO32) {
				$self->{lenhl} -= $TWO32;
				if (++$self->{lenhh} >= $TWO32) {
					$self->{lenhh} -= $TWO32;
				}
			}
		}
	}
	use integer;
	my $blockcnt = $self->{blockcnt};
	return(_shadirect($bitstr, $bitcnt, $self)) if $blockcnt == 0;
	return(_shabytes ($bitstr, $bitcnt, $self)) if $blockcnt % 8 == 0;
	return(_shabits  ($bitstr, $bitcnt, $self));
}

my $no_downgrade = 'sub utf8::downgrade { 1 }';

my $pp_downgrade = q {
	sub utf8::downgrade {

		# No need to downgrade if character and byte
		# semantics are equivalent.  But this might
		# leave the UTF-8 flag set, harmlessly.

		require bytes;
		return 1 if length($_[0]) == bytes::length($_[0]);

		use utf8;
		return 0 if $_[0] =~ /[^\x00-\xff]/;
		$_[0] = pack('C*', unpack('U*', $_[0]));
		return 1;
	}
};

{
	no integer;

	if    ($] < 5.006)	{ eval $no_downgrade }
	elsif ($] < 5.008)	{ eval $pp_downgrade }
}

my $WSE = 'Wide character in subroutine entry';
my $MWS = 16384;

sub _shaWrite {
	my($bytestr_r, $bytecnt, $self) = @_;
	return(0) unless $bytecnt > 0;
	croak $WSE unless utf8::downgrade($$bytestr_r, 1);
	return(_shawrite($$bytestr_r, $bytecnt<<3, $self)) if $bytecnt <= $MWS;
	my $offset = 0;
	while ($bytecnt > $MWS) {
		_shawrite(substr($$bytestr_r, $offset, $MWS), $MWS<<3, $self);
		$offset  += $MWS;
		$bytecnt -= $MWS;
	}
	_shawrite(substr($$bytestr_r, $offset, $bytecnt), $bytecnt<<3, $self);
}

sub _shafinish {
	my($self) = @_;
	my $LENPOS = $self->{alg} <= 256 ? 448 : 896;
	_SETBIT($self, $self->{blockcnt}++);
	while ($self->{blockcnt} > $LENPOS) {
		if ($self->{blockcnt} < $self->{blocksize}) {
			_CLRBIT($self, $self->{blockcnt}++);
		}
		else {
			&{$self->{sha}}($self, $self->{block});
			$self->{block} = "";
			$self->{blockcnt} = 0;
		}
	}
	while ($self->{blockcnt} < $LENPOS) {
		_CLRBIT($self, $self->{blockcnt}++);
	}
	if ($self->{blocksize} > 512) {
		$self->{block} .= pack("N", $self->{lenhh} & $MAX32);
		$self->{block} .= pack("N", $self->{lenhl} & $MAX32);
	}
	$self->{block} .= pack("N", $self->{lenlh} & $MAX32);
	$self->{block} .= pack("N", $self->{lenll} & $MAX32);
	&{$self->{sha}}($self, $self->{block});
}

sub _shadigest { my($self) = @_; _digcpy($self); $self->{digest} }

sub _shahex {
	my($self) = @_;
	_digcpy($self);
	join("", unpack("H*", $self->{digest}));
}

sub _shabase64 {
	my($self) = @_;
	_digcpy($self);
	my $b64 = pack("u", $self->{digest});
	$b64 =~ s/^.//mg;
	$b64 =~ s/\n//g;
	$b64 =~ tr|` -_|AA-Za-z0-9+/|;
	my $numpads = (3 - length($self->{digest}) % 3) % 3;
	$b64 =~ s/.{$numpads}$// if $numpads;
	$b64;
}

sub _shadsize { my($self) = @_; $self->{digestlen} }

sub _shacpy {
	my($to, $from) = @_;
	$to->{alg} = $from->{alg};
	$to->{sha} = $from->{sha};
	$to->{H} = [@{$from->{H}}];
	$to->{block} = $from->{block};
	$to->{blockcnt} = $from->{blockcnt};
	$to->{blocksize} = $from->{blocksize};
	for (qw(lenhh lenhl lenlh lenll)) { $to->{$_} = $from->{$_} }
	$to->{digestlen} = $from->{digestlen};
	$to;
}

sub _shadup { my($self) = @_; my($copy); _shacpy($copy, $self) }

sub _shadump {
	my $self = shift;
	for (qw(alg H block blockcnt lenhh lenhl lenlh lenll)) {
		return unless defined $self->{$_};
	}

	my @state = ();
	my $fmt = ($self->{alg} <= 256 ? "%08x" : "%016x");

	push(@state, "alg:" . $self->{alg});

	my @H = map { $self->{alg} <= 256 ? $_ & $MAX32 : $_ } @{$self->{H}};
	push(@state, "H:" . join(":", map { sprintf($fmt, $_) } @H));

	my @c = unpack("C*", $self->{block});
	push(@c, 0x00) while scalar(@c) < ($self->{blocksize} >> 3);
	push(@state, "block:" . join(":", map {sprintf("%02x", $_)} @c));
	push(@state, "blockcnt:" . $self->{blockcnt});

	push(@state, "lenhh:" . $self->{lenhh});
	push(@state, "lenhl:" . $self->{lenhl});
	push(@state, "lenlh:" . $self->{lenlh});
	push(@state, "lenll:" . $self->{lenll});
	join("\n", @state) . "\n";
}

sub _shaload {
	my $state = shift;

	my %s = ();
	for (split(/\n/, $state)) {
		s/^\s+//;
		s/\s+$//;
		next if (/^(#|$)/);
		my @f = split(/[:\s]+/);
		my $tag = shift(@f);
		$s{$tag} = join('', @f);
	}

	# H and block may contain arbitrary values, but check everything else
	grep { $_ == $s{alg} } (1,224,256,384,512,512224,512256) or return;
	length($s{H}) == ($s{alg} <= 256 ? 64 : 128) or return;
	length($s{block}) == ($s{alg} <= 256 ? 128 : 256) or return;
	{
		no integer;
		for (qw(blockcnt lenhh lenhl lenlh lenll)) {
			0 <= $s{$_} or return;
			$s{$_} <= 4294967295 or return;
		}
		$s{blockcnt} < ($s{alg} <= 256 ? 512 : 1024) or return;
	}

	my $self = _shaopen($s{alg}) or return;

	my @h = $s{H} =~ /(.{8})/g;
	for (@{$self->{H}}) {
		$_ = hex(shift @h);
		if ($self->{alg} > 256) {
			$_ = (($_ << 16) << 16) | hex(shift @h);
		}
	}

	$self->{blockcnt} = $s{blockcnt};
	$self->{block} = pack("H*", $s{block});
	$self->{block} = substr($self->{block},0,_BYTECNT($self->{blockcnt}));

	$self->{lenhh} = $s{lenhh};
	$self->{lenhl} = $s{lenhl};
	$self->{lenlh} = $s{lenlh};
	$self->{lenll} = $s{lenll};

	$self;
}

# ref. src/hmac.c from Digest::SHA

sub _hmacopen {
	my($alg, $key) = @_;
	my($self);
	$self->{isha} = _shaopen($alg) or return;
	$self->{osha} = _shaopen($alg) or return;
	croak $WSE unless utf8::downgrade($key, 1);
	if (length($key) > $self->{osha}->{blocksize} >> 3) {
		$self->{ksha} = _shaopen($alg) or return;
		_shawrite($key, length($key) << 3, $self->{ksha});
		_shafinish($self->{ksha});
		$key = _shadigest($self->{ksha});
	}
	$key .= chr(0x00)
		while length($key) < $self->{osha}->{blocksize} >> 3;
	my @k = unpack("C*", $key);
	for (@k) { $_ ^= 0x5c }
	_shawrite(pack("C*", @k), $self->{osha}->{blocksize}, $self->{osha});
	for (@k) { $_ ^= (0x5c ^ 0x36) }
	_shawrite(pack("C*", @k), $self->{isha}->{blocksize}, $self->{isha});
	$self;
}

sub _hmacWrite {
	my($bytestr_r, $bytecnt, $self) = @_;
	_shaWrite($bytestr_r, $bytecnt, $self->{isha});
}

sub _hmacfinish {
	my($self) = @_;
	_shafinish($self->{isha});
	_shawrite(_shadigest($self->{isha}),
			$self->{isha}->{digestlen} << 3, $self->{osha});
	_shafinish($self->{osha});
}

sub _hmacdigest { my($self) = @_; _shadigest($self->{osha}) }
sub _hmachex    { my($self) = @_; _shahex($self->{osha})    }
sub _hmacbase64 { my($self) = @_; _shabase64($self->{osha}) }

# SHA and HMAC-SHA functions

my @suffix_extern = ("", "_hex", "_base64");
my @suffix_intern = ("digest", "hex", "base64");

my($i, $alg);
for $alg (1, 224, 256, 384, 512, 512224, 512256) {
	for $i (0 .. 2) {
		my $fcn = 'sub sha' . $alg . $suffix_extern[$i] . ' {
			my $state = _shaopen(' . $alg . ') or return;
			for (@_) { _shaWrite(\$_, length($_), $state) }
			_shafinish($state);
			_sha' . $suffix_intern[$i] . '($state);
		}';
		eval($fcn);
		push(@EXPORT_OK, 'sha' . $alg . $suffix_extern[$i]);
		$fcn = 'sub hmac_sha' . $alg . $suffix_extern[$i] . ' {
			my $state = _hmacopen(' . $alg . ', pop(@_)) or return;
			for (@_) { _hmacWrite(\$_, length($_), $state) }
			_hmacfinish($state);
			_hmac' . $suffix_intern[$i] . '($state);
		}';
		eval($fcn);
		push(@EXPORT_OK, 'hmac_sha' . $alg . $suffix_extern[$i]);
	}
}

# OOP methods

sub hashsize  { my $self = shift; _shadsize($self) << 3 }
sub algorithm { my $self = shift; $self->{alg} }

sub add {
	my $self = shift;
	for (@_) { _shaWrite(\$_, length($_), $self) }
	$self;
}

sub digest {
	my $self = shift;
	_shafinish($self);
	my $rsp = _shadigest($self);
	_sharewind($self);
	$rsp;
}

sub hexdigest {
	my $self = shift;
	_shafinish($self);
	my $rsp = _shahex($self);
	_sharewind($self);
	$rsp;
}

sub b64digest {
	my $self = shift;
	_shafinish($self);
	my $rsp = _shabase64($self);
	_sharewind($self);
	$rsp;
}

sub new {
	my($class, $alg) = @_;
	$alg =~ s/\D+//g if defined $alg;
	if (ref($class)) {	# instance method
		if (!defined($alg) || ($alg == $class->algorithm)) {
			_sharewind($class);
			return($class);
		}
		my $self = _shaopen($alg) or return;
		return(_shacpy($class, $self));
	}
	$alg = 1 unless defined $alg;
	my $self = _shaopen($alg) or return;
	bless($self, $class);
	$self;
}

sub clone {
	my $self = shift;
	my $copy = _shadup($self) or return;
	bless($copy, ref($self));
}

BEGIN { *reset = \&new }

sub add_bits {
	my($self, $data, $nbits) = @_;
	unless (defined $nbits) {
		$nbits = length($data);
		$data = pack("B*", $data);
	}
	$nbits = length($data) * 8 if $nbits > length($data) * 8;
	_shawrite($data, $nbits, $self);
	return($self);
}

sub _bail {
	my $msg = shift;

	$msg .= ": $!";
	croak $msg;
}

sub _addfile {
	my ($self, $handle) = @_;

	my $n;
	my $buf = "";

	while (($n = read($handle, $buf, 4096))) {
		$self->add($buf);
	}
	_bail("Read failed") unless defined $n;

	$self;
}

{
	my $_can_T_filehandle;

	sub _istext {
		local *FH = shift;
		my $file = shift;

		if (! defined $_can_T_filehandle) {
			local $^W = 0;
			my $istext = eval { -T FH };
			$_can_T_filehandle = $@ ? 0 : 1;
			return $_can_T_filehandle ? $istext : -T $file;
		}
		return $_can_T_filehandle ? -T FH : -T $file;
	}
}

sub addfile {
	my ($self, $file, $mode) = @_;

	return(_addfile($self, $file)) unless ref(\$file) eq 'SCALAR';

	$mode = defined($mode) ? $mode : "";
	my ($binary, $UNIVERSAL, $BITS, $portable) =
		map { $_ eq $mode } ("b", "U", "0", "p");

		## Always interpret "-" to mean STDIN; otherwise use
		## sysopen to handle full range of POSIX file names

	local *FH;
	$file eq '-' and open(FH, '< -')
		or sysopen(FH, $file, O_RDONLY)
			or _bail('Open failed');

	if ($BITS) {
		my ($n, $buf) = (0, "");
		while (($n = read(FH, $buf, 4096))) {
			$buf =~ s/[^01]//g;
			$self->add_bits($buf);
		}
		_bail("Read failed") unless defined $n;
		close(FH);
		return($self);
	}

	binmode(FH) if $binary || $portable || $UNIVERSAL;
	if ($UNIVERSAL && _istext(*FH, $file)) {
		while (<FH>) {
			s/\015\012/\012/g;	# DOS/Windows
			s/\015/\012/g;		# early MacOS
			$self->add($_);
		}
	}
	elsif ($portable && _istext(*FH, $file)) {
		while (<FH>) {
			s/\015?\015\012/\012/g;
			s/\015/\012/g;
			$self->add($_);
		}
	}
	else { $self->_addfile(*FH) }
	close(FH);

	$self;
}

sub getstate {
	my $self = shift;

	return _shadump($self);
}

sub putstate {
	my $class = shift;
	my $state = shift;

	if (ref($class)) {	# instance method
		my $self = _shaload($state) or return;
		return(_shacpy($class, $self));
	}
	my $self = _shaload($state) or return;
	bless($self, $class);
	return($self);
}

sub dump {
	my $self = shift;
	my $file = shift;

	my $state = $self->getstate or return;
	$file = "-" if (!defined($file) || $file eq "");

	local *FH;
	open(FH, "> $file") or return;
	print FH $state;
	close(FH);

	return($self);
}

sub load {
	my $class = shift;
	my $file = shift;

	$file = "-" if (!defined($file) || $file eq "");
	
	local *FH;
	open(FH, "< $file") or return;
	my $str = join('', <FH>);
	close(FH);

	$class->putstate($str);
}

1;
__END__

=head1 NAME

Digest::SHA::PurePerl - Perl implementation of SHA-1/224/256/384/512

=head1 SYNOPSIS

In programs:

		# Functional interface

	use Digest::SHA::PurePerl qw(sha1 sha1_hex sha1_base64 ...);

	$digest = sha1($data);
	$digest = sha1_hex($data);
	$digest = sha1_base64($data);

	$digest = sha256($data);
	$digest = sha384_hex($data);
	$digest = sha512_base64($data);

		# Object-oriented

	use Digest::SHA::PurePerl;

	$sha = Digest::SHA::PurePerl->new($alg);

	$sha->add($data);		# feed data into stream

	$sha->addfile(*F);
        $sha->addfile($filename);

	$sha->add_bits($bits);
	$sha->add_bits($data, $nbits);

	$sha_copy = $sha->clone;	# make copy of digest object
	$state = $sha->getstate;	# save current state to string
	$sha->putstate($state);		# restore previous $state

	$digest = $sha->digest;		# compute digest
	$digest = $sha->hexdigest;
	$digest = $sha->b64digest;

From the command line:

	$ shasum files

	$ shasum --help

=head1 SYNOPSIS (HMAC-SHA)

		# Functional interface only

	use Digest::SHA::PurePerl qw(hmac_sha1 hmac_sha1_hex ...);

	$digest = hmac_sha1($data, $key);
	$digest = hmac_sha224_hex($data, $key);
	$digest = hmac_sha256_base64($data, $key);

=head1 ABSTRACT

Digest::SHA::PurePerl is a complete implementation of the NIST Secure
Hash Standard.  It gives Perl programmers a convenient way to calculate
SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256
message digests.  The module can handle all types of input, including
partial-byte data.

=head1 DESCRIPTION

Digest::SHA::PurePerl is written entirely in Perl.  If your platform
has a C compiler, you should install the functionally equivalent
(but much faster) L<Digest::SHA> module.

The programming interface is easy to use: it's the same one found
in CPAN's L<Digest> module.  So, if your applications currently
use L<Digest::MD5> and you'd prefer the stronger security of SHA,
it's a simple matter to convert them.

The interface provides two ways to calculate digests:  all-at-once,
or in stages.  To illustrate, the following short program computes
the SHA-256 digest of "hello world" using each approach:

	use Digest::SHA::PurePerl qw(sha256_hex);

	$data = "hello world";
	@frags = split(//, $data);

	# all-at-once (Functional style)
	$digest1 = sha256_hex($data);

	# in-stages (OOP style)
	$state = Digest::SHA::PurePerl->new(256);
	for (@frags) { $state->add($_) }
	$digest2 = $state->hexdigest;

	print $digest1 eq $digest2 ?
		"whew!\n" : "oops!\n";

To calculate the digest of an n-bit message where I<n> is not a
multiple of 8, use the I<add_bits()> method.  For example, consider
the 446-bit message consisting of the bit-string "110" repeated
148 times, followed by "11".  Here's how to display its SHA-1
digest:

	use Digest::SHA::PurePerl;
	$bits = "110" x 148 . "11";
	$sha = Digest::SHA::PurePerl->new(1)->add_bits($bits);
	print $sha->hexdigest, "\n";

Note that for larger bit-strings, it's more efficient to use the
two-argument version I<add_bits($data, $nbits)>, where I<$data> is
in the customary packed binary format used for Perl strings.

The module also lets you save intermediate SHA states to a string.  The
I<getstate()> method generates portable, human-readable text describing
the current state of computation.  You can subsequently restore that
state with I<putstate()> to resume where the calculation left off.

To see what a state description looks like, just run the following:

	use Digest::SHA::PurePerl;
	print Digest::SHA::PurePerl->new->add("Shaw" x 1962)->getstate;

As an added convenience, the Digest::SHA::PurePerl module offers
routines to calculate keyed hashes using the HMAC-SHA-1/224/256/384/512
algorithms.  These services exist in functional form only, and
mimic the style and behavior of the I<sha()>, I<sha_hex()>, and
I<sha_base64()> functions.

	# Test vector from draft-ietf-ipsec-ciph-sha-256-01.txt

	use Digest::SHA::PurePerl qw(hmac_sha256_hex);
	print hmac_sha256_hex("Hi There", chr(0x0b) x 32), "\n";

=head1 UNICODE AND SIDE EFFECTS

Perl supports Unicode strings as of version 5.6.  Such strings may
contain wide characters, namely, characters whose ordinal values are
greater than 255.  This can cause problems for digest algorithms such
as SHA that are specified to operate on sequences of bytes.

The rule by which Digest::SHA::PurePerl handles a Unicode string is easy
to state, but potentially confusing to grasp: the string is interpreted
as a sequence of byte values, where each byte value is equal to the
ordinal value (viz. code point) of its corresponding Unicode character.
That way, the Unicode string 'abc' has exactly the same digest value as
the ordinary string 'abc'.

Since a wide character does not fit into a byte, the Digest::SHA::PurePerl
routines croak if they encounter one.  Whereas if a Unicode string
contains no wide characters, the module accepts it quite happily.
The following code illustrates the two cases:

	$str1 = pack('U*', (0..255));
	print sha1_hex($str1);		# ok

	$str2 = pack('U*', (0..256));
	print sha1_hex($str2);		# croaks

Be aware that the digest routines silently convert UTF-8 input into its
equivalent byte sequence in the native encoding (cf. utf8::downgrade).
This side effect influences only the way Perl stores the data internally,
but otherwise leaves the actual value of the data intact.

=head1 NIST STATEMENT ON SHA-1

NIST acknowledges that the work of Prof. Xiaoyun Wang constitutes a
practical collision attack on SHA-1.  Therefore, NIST encourages the
rapid adoption of the SHA-2 hash functions (e.g. SHA-256) for applications
requiring strong collision resistance, such as digital signatures.

ref. L<http://csrc.nist.gov/groups/ST/hash/statement.html>

=head1 PADDING OF BASE64 DIGESTS

By convention, CPAN Digest modules do B<not> pad their Base64 output.
Problems can occur when feeding such digests to other software that
expects properly padded Base64 encodings.

For the time being, any necessary padding must be done by the user.
Fortunately, this is a simple operation: if the length of a Base64-encoded
digest isn't a multiple of 4, simply append "=" characters to the end
of the digest until it is:

	while (length($b64_digest) % 4) {
		$b64_digest .= '=';
	}

To illustrate, I<sha256_base64("abc")> is computed to be

	ungWv48Bz+pBQUDeXa4iI7ADYaOWF3qctBD/YfIAFa0

which has a length of 43.  So, the properly padded version is

	ungWv48Bz+pBQUDeXa4iI7ADYaOWF3qctBD/YfIAFa0=

=head1 EXPORT

None by default.

=head1 EXPORTABLE FUNCTIONS

Provided your Perl installation supports 64-bit integers, all of
these functions will be available for use.  Otherwise, you won't
be able to perform the SHA-384 and SHA-512 transforms, both of
which require 64-bit operations.

I<Functional style>

=over 4

=item B<sha1($data, ...)>

=item B<sha224($data, ...)>

=item B<sha256($data, ...)>

=item B<sha384($data, ...)>

=item B<sha512($data, ...)>

=item B<sha512224($data, ...)>

=item B<sha512256($data, ...)>

Logically joins the arguments into a single string, and returns
its SHA-1/224/256/384/512 digest encoded as a binary string.

=item B<sha1_hex($data, ...)>

=item B<sha224_hex($data, ...)>

=item B<sha256_hex($data, ...)>

=item B<sha384_hex($data, ...)>

=item B<sha512_hex($data, ...)>

=item B<sha512224_hex($data, ...)>

=item B<sha512256_hex($data, ...)>

Logically joins the arguments into a single string, and returns
its SHA-1/224/256/384/512 digest encoded as a hexadecimal string.

=item B<sha1_base64($data, ...)>

=item B<sha224_base64($data, ...)>

=item B<sha256_base64($data, ...)>

=item B<sha384_base64($data, ...)>

=item B<sha512_base64($data, ...)>

=item B<sha512224_base64($data, ...)>

=item B<sha512256_base64($data, ...)>

Logically joins the arguments into a single string, and returns
its SHA-1/224/256/384/512 digest encoded as a Base64 string.

It's important to note that the resulting string does B<not> contain
the padding characters typical of Base64 encodings.  This omission is
deliberate, and is done to maintain compatibility with the family of
CPAN Digest modules.  See L</"PADDING OF BASE64 DIGESTS"> for details.

=back

I<OOP style>

=over 4

=item B<new($alg)>

Returns a new Digest::SHA::PurePerl object.  Allowed values for
I<$alg> are 1, 224, 256, 384, 512, 512224, or 512256.  It's also
possible to use common string representations of the algorithm
(e.g. "sha256", "SHA-384").  If the argument is missing, SHA-1 will
be used by default.

Invoking I<new> as an instance method will reset the object to the
initial state associated with I<$alg>.  If the argument is missing,
the object will continue using the same algorithm that was selected
at creation.

=item B<reset($alg)>

This method has exactly the same effect as I<new($alg)>.  In fact,
I<reset> is just an alias for I<new>.

=item B<hashsize>

Returns the number of digest bits for this object.  The values are
160, 224, 256, 384, 512, 224, and 256 for SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, SHA-512/224, and SHA-512/256, respectively.

=item B<algorithm>

Returns the digest algorithm for this object.  The values are 1,
224, 256, 384, 512, 512224, and 512256 for SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, SHA-512/224, and SHA-512/256, respectively.

=item B<clone>

Returns a duplicate copy of the object.

=item B<add($data, ...)>

Logically joins the arguments into a single string, and uses it to
update the current digest state.  In other words, the following
statements have the same effect:

	$sha->add("a"); $sha->add("b"); $sha->add("c");
	$sha->add("a")->add("b")->add("c");
	$sha->add("a", "b", "c");
	$sha->add("abc");

The return value is the updated object itself.

=item B<add_bits($data, $nbits)>

=item B<add_bits($bits)>

Updates the current digest state by appending bits to it.  The
return value is the updated object itself.

The first form causes the most-significant I<$nbits> of I<$data>
to be appended to the stream.  The I<$data> argument is in the
customary binary format used for Perl strings.

The second form takes an ASCII string of "0" and "1" characters as
its argument.  It's equivalent to

	$sha->add_bits(pack("B*", $bits), length($bits));

So, the following two statements do the same thing:

	$sha->add_bits("111100001010");
	$sha->add_bits("\xF0\xA0", 12);

=item B<addfile(*FILE)>

Reads from I<FILE> until EOF, and appends that data to the current
state.  The return value is the updated object itself.

=item B<addfile($filename [, $mode])>

Reads the contents of I<$filename>, and appends that data to the current
state.  The return value is the updated object itself.

By default, I<$filename> is simply opened and read; no special modes
or I/O disciplines are used.  To change this, set the optional I<$mode>
argument to one of the following values:

	"b"	read file in binary mode

	"U"	use universal newlines

	"p"	use portable mode (to be deprecated)

	"0"	use BITS mode

The "U" mode is modeled on Python's "Universal Newlines" concept, whereby
DOS and Mac OS line terminators are converted internally to UNIX newlines
before processing.  This ensures consistent digest values when working
simultaneously across multiple file systems.  B<The "U" mode influences
only text files>, namely those passing Perl's I<-T> test; binary files
are processed with no translation whatsoever.

The "p" mode differs from "U" only in that it treats "\r\r\n" as a single
newline, a quirky feature designed to accommodate legacy applications that
occasionally added an extra carriage return before DOS line terminators.
The "p" mode will be phased out eventually in favor of the cleaner and
more well-established Universal Newlines concept.

The BITS mode ("0") interprets the contents of I<$filename> as a logical
stream of bits, where each ASCII '0' or '1' character represents a 0 or
1 bit, respectively.  All other characters are ignored.  This provides
a convenient way to calculate the digest values of partial-byte data
by using files, rather than having to write separate programs employing
the I<add_bits> method.

=item B<getstate>

Returns a string containing a portable, human-readable representation
of the current SHA state.

=item B<putstate($str)>

Returns a Digest::SHA object representing the SHA state contained
in I<$str>.  The format of I<$str> matches the format of the output
produced by method I<getstate>.  If called as a class method, a new
object is created; if called as an instance method, the object is reset
to the state contained in I<$str>.

=item B<dump($filename)>

Writes the output of I<getstate> to I<$filename>.  If the argument is
missing, or equal to the empty string, the state information will be
written to STDOUT.

=item B<load($filename)>

Returns a Digest::SHA object that results from calling I<putstate> on
the contents of I<$filename>.  If the argument is missing, or equal to
the empty string, the state information will be read from STDIN.

=item B<digest>

Returns the digest encoded as a binary string.

Note that the I<digest> method is a read-once operation. Once it
has been performed, the Digest::SHA::PurePerl object is automatically
reset in preparation for calculating another digest value.  Call
I<$sha-E<gt>clone-E<gt>digest> if it's necessary to preserve the
original digest state.

=item B<hexdigest>

Returns the digest encoded as a hexadecimal string.

Like I<digest>, this method is a read-once operation.  Call
I<$sha-E<gt>clone-E<gt>hexdigest> if it's necessary to preserve
the original digest state.

=item B<b64digest>

Returns the digest encoded as a Base64 string.

Like I<digest>, this method is a read-once operation.  Call
I<$sha-E<gt>clone-E<gt>b64digest> if it's necessary to preserve
the original digest state.

It's important to note that the resulting string does B<not> contain
the padding characters typical of Base64 encodings.  This omission is
deliberate, and is done to maintain compatibility with the family of
CPAN Digest modules.  See L</"PADDING OF BASE64 DIGESTS"> for details.

=back

I<HMAC-SHA-1/224/256/384/512>

=over 4

=item B<hmac_sha1($data, $key)>

=item B<hmac_sha224($data, $key)>

=item B<hmac_sha256($data, $key)>

=item B<hmac_sha384($data, $key)>

=item B<hmac_sha512($data, $key)>

=item B<hmac_sha512224($data, $key)>

=item B<hmac_sha512256($data, $key)>

Returns the HMAC-SHA-1/224/256/384/512 digest of I<$data>/I<$key>,
with the result encoded as a binary string.  Multiple I<$data>
arguments are allowed, provided that I<$key> is the last argument
in the list.

=item B<hmac_sha1_hex($data, $key)>

=item B<hmac_sha224_hex($data, $key)>

=item B<hmac_sha256_hex($data, $key)>

=item B<hmac_sha384_hex($data, $key)>

=item B<hmac_sha512_hex($data, $key)>

=item B<hmac_sha512224_hex($data, $key)>

=item B<hmac_sha512256_hex($data, $key)>

Returns the HMAC-SHA-1/224/256/384/512 digest of I<$data>/I<$key>,
with the result encoded as a hexadecimal string.  Multiple I<$data>
arguments are allowed, provided that I<$key> is the last argument
in the list.

=item B<hmac_sha1_base64($data, $key)>

=item B<hmac_sha224_base64($data, $key)>

=item B<hmac_sha256_base64($data, $key)>

=item B<hmac_sha384_base64($data, $key)>

=item B<hmac_sha512_base64($data, $key)>

=item B<hmac_sha512224_base64($data, $key)>

=item B<hmac_sha512256_base64($data, $key)>

Returns the HMAC-SHA-1/224/256/384/512 digest of I<$data>/I<$key>,
with the result encoded as a Base64 string.  Multiple I<$data>
arguments are allowed, provided that I<$key> is the last argument
in the list.

It's important to note that the resulting string does B<not> contain
the padding characters typical of Base64 encodings.  This omission is
deliberate, and is done to maintain compatibility with the family of
CPAN Digest modules.  See L</"PADDING OF BASE64 DIGESTS"> for details.

=back

=head1 SEE ALSO

L<Digest>, L<Digest::SHA>

The Secure Hash Standard (Draft FIPS PUB 180-4) can be found at:

L<http://csrc.nist.gov/publications/drafts/fips180-4/Draft-FIPS180-4_Feb2011.pdf>

The Keyed-Hash Message Authentication Code (HMAC):

L<http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf>

=head1 AUTHOR

	Mark Shelor	<mshelor@cpan.org>

=head1 ACKNOWLEDGMENTS

The author is particularly grateful to

	Gisle Aas
	Sean Burke
	Chris Carey
	Alexandr Ciornii
	Jim Doble
	Thomas Drugeon
	Julius Duque
	Jeffrey Friedl
	Robert Gilmour
	Brian Gladman
	Adam Kennedy
	Mark Lawrence
	Andy Lester
	Alex Muntada
	Steve Peters
	Chris Skiscim
	Martin Thurn
	Gunnar Wolf
	Adam Woodbury

"Believe it I don't."
- Torvic Drewmel

=head1 COPYRIGHT AND LICENSE

Copyright (C) 2003-2014 Mark Shelor

This library is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.

L<perlartistic>

=cut