summaryrefslogtreecommitdiff
path: root/Master/texmf/doc/info/asymptote.info
blob: 481694a9d08a4197b8b1abe50c99bbbdcdce02dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
This is asymptote.info, produced by makeinfo version 4.13 from
../asymptote.texi.

This file documents `Asymptote', version 1.98.

   `http://asymptote.sourceforge.net'

   Copyright (C) 2004-9 Andy Hammerlindl, John Bowman, and Tom Prince.

     Permission is granted to copy, distribute and/or modify this
     document under the terms of the GNU Lesser General Public License
     (see the file LICENSE in the top-level source directory).


INFO-DIR-SECTION Languages
START-INFO-DIR-ENTRY
* asymptote: (asymptote/asymptote). Vector graphics language.
END-INFO-DIR-ENTRY


File: asymptote.info,  Node: Top,  Next: Description,  Up: (dir)

Asymptote
*********

This file documents `Asymptote', version 1.98.

   `http://asymptote.sourceforge.net'

   Copyright (C) 2004-9 Andy Hammerlindl, John Bowman, and Tom Prince.

     Permission is granted to copy, distribute and/or modify this
     document under the terms of the GNU Lesser General Public License
     (see the file LICENSE in the top-level source directory).


* Menu:

* Description::                 What is `Asymptote'?
* Installation::                Downloading and installing
* Tutorial::                    Getting started
* Drawing commands::            Four primitive graphics commands
* Bezier curves::               Path connectors and direction specifiers
* Programming::                 The `Asymptote' vector graphics language
* LaTeX usage::                 Embedding `Asymptote' commands within `LaTeX'
* Base modules::                Base modules shipped with `Asymptote'
* Options::                     Command-line options
* Interactive mode::            Typing `Asymptote' commands interactively
* GUI::                         Graphical user interface
* PostScript to Asymptote::     `Asymptote' backend to `pstoedit'
* Help::                        Where to get help and submit bug reports
* Debugger::                    Squish those bugs!
* Credits::                     Contributions and acknowledgments
* Index::                       General index

 --- The Detailed Node Listing ---

Installation

* UNIX binary distributions::   Prebuilt `UNIX' binaries
* MacOS X binary distributions::  Prebuilt `MacOS X' binaries
* Microsoft Windows::           Prebuilt `Microsoft Windows' binary
* Configuring::                 Configuring `Asymptote' for your system
* Search paths::                Where `Asymptote' looks for your files
* Compiling from UNIX source::  Building `Asymptote' from scratch
* Editing modes::               Convenient `emacs' and `vim' modes
* Subversion::                  Getting the latest development source
* Uninstall::                   Goodbye, `Asymptote'!

Drawing commands

* draw::                        Draw a path on a picture or frame
* fill::                        Fill a cyclic path on a picture or frame
* clip::                        Clip a picture or frame to a cyclic path
* label::                       Label a point on a picture

Programming

* Data types::                  void, bool, int, real, pair, triple, string
* Paths and guides::
* Pens::                        Colors, line types, line widths, font sizes
* Transforms::                  Affine transforms
* Frames and pictures::         Canvases for immediate and deferred drawing
* Files::                       Reading and writing your data
* Variable initializers::       Initialize your variables
* Structures::                  Organize your data
* Operators::                   Arithmetic and logical operators
* Implicit scaling::            Avoiding those ugly *s
* Functions::                   Traditional and high-order functions
* Arrays::                      Dynamic vectors
* Casts::                       Implicit and explicit casts
* Import::                      Importing external `Asymptote' packages
* Static::                      Where to allocate your variable?

Operators

* Arithmetic & logical::        Basic mathematical operators
* Self & prefix operators::     Increment and decrement
* User-defined operators::      Overloading operators

Functions

* Default arguments::           Default values can appear anywhere
* Named arguments::             Assigning function arguments by keyword
* Rest arguments::              Functions with a variable number of arguments
* Mathematical functions::      Standard libm functions


Arrays

* Slices::                      Python-style array slices

Base modules

* plain::                       Default `Asymptote' base file
* simplex::                     Linear programming: simplex method
* math::                        Extend `Asymptote''s math capabilities
* interpolate::                 Interpolation routines
* geometry::                    Geometry routines
* trembling::                   Wavy lines
* stats::                       Statistics routines and histograms
* patterns::                    Custom fill and draw patterns
* markers::                     Custom path marker routines
* tree::                        Dynamic binary search tree
* binarytree::                  Binary tree drawing module
* drawtree::                    Tree drawing module
* syzygy::                      Syzygy and braid drawing module
* feynman::                     Feynman diagrams
* roundedpath::                 Round the sharp corners of paths
* animation::                   Embedded PDF and MPEG movies
* embed::                       Embedding movies, sounds, and 3D objects
* slide::                       Making presentations with `Asymptote'
* MetaPost::                    `MetaPost' compatibility routines
* unicode::                     Accept `unicode' (UTF-8) characters
* latin1::                      Accept `ISO 8859-1' characters
* babel::                       Interface to `LaTeX' `babel' package
* labelpath::                   Drawing curved labels
* labelpath3::                  Drawing curved labels in 3D
* annotate::                    Annotate your PDF files
* CAD::                         2D CAD pen and measurement functions (DIN 15)
* graph::                       2D linear & logarithmic graphs
* palette::                     Color density images and palettes
* three::                       3D vector graphics
* obj::                         3D obj files
* graph3::                      3D linear & logarithmic graphs
* grid3::                       3D grids
* solids::                      3D solid geometry
* tube::                        3D rotation minimizing tubes
* flowchart::                   Flowchart drawing routines
* contour::                     Contour lines
* contour3::                    Contour surfaces
* slopefield::                  Slope fields
* ode::                         Ordinary differential equations

Graphical User Interface

* GUI installation::            Installing `xasy'
* GUI usage::


File: asymptote.info,  Node: Description,  Next: Installation,  Prev: Top,  Up: Top

1 Description
*************

`Asymptote' is a powerful descriptive vector graphics language that
provides a mathematical coordinate-based framework for technical
drawings.  Labels and equations are typeset with `LaTeX', for overall
document consistency, yielding the same high-quality level of
typesetting that `LaTeX' provides for scientific text. By default it
produces `PostScript' output, but it can also generate any format that
the `ImageMagick' package can produce.

   A major advantage of `Asymptote' over other graphics packages is
that it is a high-level programming language, as opposed to just a
graphics program: it can therefore exploit the best features of the
script (command-driven) and graphical-user-interface (GUI) methods for
producing figures. The rudimentary GUI `xasy' included with the package
allows one to move script-generated objects around. To make `Asymptote'
accessible to the average user, this GUI is currently being developed
into a full-fledged interface that can generate objects directly.
However, the script portion of the language is now ready for general
use by users who are willing to learn a few simple `Asymptote' graphics
commands (*note Drawing commands::).

   `Asymptote' is mathematically oriented (e.g. one can use complex
multiplication to rotate a vector) and uses `LaTeX' to do the
typesetting of labels. This is an important feature for scientific
applications. It was inspired by an earlier drawing program (with a
weaker syntax and capabilities) called `MetaPost'.

   The `Asymptote' vector graphics language provides:

   * a standard for typesetting mathematical figures, just as
     TeX/`LaTeX' is the de-facto standard for typesetting equations.

   * `LaTeX' typesetting of labels, for overall document consistency;

   * the ability to generate and embed 3D vector PRC graphics within
     PDF files;

   * a natural coordinate-based framework for technical drawings,
     inspired by `MetaPost', with a much cleaner, powerful C++-like
     programming syntax;

   * compilation of figures into virtual machine code for speed, without
     sacrificing portability;

   * the power of a script-based language coupled to the convenience of
     a GUI;

   * customization using its own C++-like graphics programming language;

   * sensible defaults for graphical features, with the ability to
     override;

   * a high-level mathematically oriented interface to the `PostScript'
     language for vector graphics, including affine transforms and
     complex variables;

   * functions that can create new (anonymous) functions;

   * deferred drawing that uses the simplex method to solve overall size
     constraint issues between fixed-sized objects (labels and
     arrowheads) and objects that should scale with figure size;


   Many of the features of `Asymptote' are written in the `Asymptote'
language itself. While the stock version of `Asymptote' is designed for
mathematics typesetting needs, one can write `Asymptote' modules that
tailor it to specific applications. A scientific graphing module has
already been written (*note graph::). Examples of `Asymptote' code and
output, including animations, are available at

     `http://asymptote.sourceforge.net/gallery/'.
   Links to many external resources, including an excellent user-written
`Asymptote' tutorial can be found at

     `http://asymptote.sourceforge.net/links.html'.


File: asymptote.info,  Node: Installation,  Next: Tutorial,  Prev: Description,  Up: Top

2 Installation
**************

* Menu:

* UNIX binary distributions::   Prebuilt `UNIX' binaries
* MacOS X binary distributions::  Prebuilt `MacOS X' binaries
* Microsoft Windows::           Prebuilt `Microsoft Windows' binary
* Configuring::                 Configuring `Asymptote' for your system
* Search paths::                Where `Asymptote' looks for your files
* Compiling from UNIX source::  Building `Asymptote' from scratch
* Editing modes::               Convenient `emacs' and `vim' modes
* Subversion::                  Getting the latest development source
* Uninstall::                   Goodbye, `Asymptote'!

   After following the instructions for your specific distribution,
please see also *note Configuring::.

We recommend subscribing to new release announcements at

     `http://freshmeat.net/projects/asy'
   Users may also wish to monitor the `Asymptote' forum:

     `http://sourceforge.net/projects/asymptote/forums/forum/409349'


File: asymptote.info,  Node: UNIX binary distributions,  Next: MacOS X binary distributions,  Up: Installation

2.1 UNIX binary distributions
=============================

We release both `tgz' and RPM binary distributions of `Asymptote'. The
root user can install the `Linux i386' `tgz' distribution of version
`x.xx' of `Asymptote' with the commands:
tar -C / -zxf asymptote-x.xx.i386.tgz
texhash
 The `texhash' command, which installs LaTeX style files, is optional.
The executable file will be `/usr/local/bin/asy') and example code will
be installed by default in `/usr/local/share/doc/asymptote/examples'.

Fedora users can easily install the most recent version of `Asymptote'
with the command
yum --enablerepo=rawhide install asymptote

To install the latest version of `Asymptote' on a Debian-based
distribution (e.g. Ubuntu, Mepis, Linspire) follow the instructions for
compiling from `UNIX' source (*note Compiling from UNIX source::).
Alternatively, Debian users can install one of Hubert Chan's prebuilt
`Asymptote' binaries from

     `http://ftp.debian.org/debian/pool/main/a/asymptote'


File: asymptote.info,  Node: MacOS X binary distributions,  Next: Microsoft Windows,  Prev: UNIX binary distributions,  Up: Installation

2.2 MacOS X binary distributions
================================

`MacOS X' users can either compile the `UNIX' source code (*note
Compiling from UNIX source::) or install the contributed `Asymptote'
binary available at

`http://www.hmug.org/pub/MacOS_X/X/Applications/Publishing/asymptote/'

Because these preconfigured binary distributions have strict
architecture and library dependencies that many installations do not
satisfy, we recommend installing `Asymptote' directly from the official
source:

   `http://sourceforge.net/project/showfiles.php?group_id=120000'

Note that many `MacOS X' (and FreeBSD) systems lack the GNU `readline'
library. For full interactive functionality, GNU `readline' version 4.3
or later must be installed.


File: asymptote.info,  Node: Microsoft Windows,  Next: Configuring,  Prev: MacOS X binary distributions,  Up: Installation

2.3 Microsoft Windows
=====================

Users of the `Microsoft Windows' operating system can install the
self-extracting `Asymptote' executable `asymptote-x.xx-setup.exe',
where `x.xx' denotes the latest version.

   A working TeX implementation (such as the one available at
`http://www.miktex.org') will be required to typeset labels.  You will
also need to install `GPL Ghostscript' from
`http://sourceforge.net/projects/ghostscript/'.

   To view the default `PostScript' output, you can install the program
`gsview' available from `http://www.cs.wisc.edu/~ghost/gsview/'.  A
better (and free) `PostScript' viewer available at
`http://psview.sourceforge.net/' (which in particular works properly in
interactive mode) unfortunately currently requires some manual
configuration. Specifically, if version `x.xx' of `psview' is extracted
to the directory `c:\Program Files' one needs to put
import settings;
psviewer="c:\Program Files\psview-x.xx\psv.exe";
 in the optional `Asymptote' configuration file; *note configuration
file::).

   The `ImageMagick' package from

   `http://www.imagemagick.org/script/binary-releases.php'

is required to support output formats other than EPS and PDF (*note
convert::).  The `Python' interpreter from `http://www.python.org' is
only required if you wish to try out the graphical user interface
(*note GUI::).

Example code will be installed by default in the `examples'
subdirectory of the installation directory (by default, `C:\Program
Files\Asymptote').


File: asymptote.info,  Node: Configuring,  Next: Search paths,  Prev: Microsoft Windows,  Up: Installation

2.4 Configuring
===============

In interactive mode, or when given the `-V' option (the default when
running `Asymptote' on a single file under `MSDOS'), `Asymptote' will
automatically invoke the `PostScript' viewer `gv' (under `UNIX') or
`gsview' (under `MSDOS' to display graphical output. These defaults may
be overridden with the configuration variable `psviewer'.  The
`PostScript' viewer should be capable of automatically redrawing
whenever the output file is updated. The default `UNIX' `PostScript'
viewer `gv' supports this (via a `SIGHUP' signal). Version `gv-3.6.3'
or later (from `http://ftp.gnu.org/gnu/gv/') is required for
interactive mode to work properly.  Users of `ggv' will need to enable
`Watch file' under `Edit/Postscript Viewer Preferences'.  Users of
`gsview' will need to enable `Options/Auto Redisplay' (however, under
`MSDOS' it is still necessary to click on the `gsview' window; under
`UNIX' one must manually redisplay by pressing the `r' key). A better
(and free) multiplatform alternative to `gsview' is `psview' (*note
psview::).

   Configuration variables are most easily set as `Asymptote' variables
in an optional configuration file `config.asy' *note configuration
file::).  Here are the default values of several important configuration
variables under `UNIX':


import settings;
psviewer="gv";
pdfviewer="acroread";
gs="gs";

Under `MSDOS', the (installation-dependent) default values of these
configuration variables are determined automatically from the
`Microsoft Windows' registry. Viewer settings (such as `psviewer' and
`pdfviewer') can be set to the string `cmd' to request the application
normally associated with the corresponding file type.

   For PDF format output, the `gs' setting specifies the location of
the `PostScript'-to-PDF processor `Ghostscript', available from
`http://sourceforge.net/projects/ghostscript/'.

   The setting `pdfviewer' specifies the location of the PDF viewer. On
`UNIX' systems, to support automatic document reloading in `Adobe
Reader', we recommend copying the file `reload.js' from the `Asymptote'
system directory (by default, `/usr/local/share/asymptote' under `UNIX'
to `~/.adobe/Acrobat/x.x/JavaScripts/', where `x.x' represents the
appropriate `Adobe Reader' version number. The automatic document
reload feature must then be explicitly enabled by putting
import settings;
pdfreload=true;
pdfreloadOptions="-tempFile";
 in the `Asymptote' configuration file. This reload feature is not
useful under `MSDOS' since the document cannot be updated anyway on
that operating system until it is first closed by `Adobe Reader'.

   The configuration variable `dir' can be used to adjust the search
path (*note Search paths::).

   By default, `Asymptote' attempts to center the figure on the page,
assuming that the paper type is `letter'. The default paper type may be
changed to `a4' with the configuration variable `papertype'. Alignment
to other paper sizes can be obtained by setting the configuration
variables `paperwidth' and `paperheight'.

   The following configuration variables normally do not require
adjustment:
texpath
texcommand
dvips
dvisvgm
convert
display
animate
 Warnings (such as "writeoverloaded") may be enabled or disabled with
the functions
warn(string s);
nowarn(string s);
 or by directly modifying the string array `settings.suppress', which
lists all disabled warnings.

   Configuration variables may also be set or overwritten with a
command-line option:
asy -psviewer=gsview -V venn

   Alternatively, system environment versions of the above configuration
variables may be set in the conventional way. The corresponding
environment variable name is obtained by converting the configuration
variable name to upper case  and prepending `ASYMPTOTE_': for example,
to set the environment variable
ASYMPTOTE_PSVIEWER="C:\Program Files\Ghostgum\gsview\gsview32.exe";
 under `Microsoft Windows XP':
  1. Click on the `Start' button;

  2. Right-click on `My Computer';

  3. Choose `Properties' from the popup menu;

  4. Click the `Advanced' tab;

  5. Click the `Environment Variables' button.


File: asymptote.info,  Node: Search paths,  Next: Compiling from UNIX source,  Prev: Configuring,  Up: Installation

2.5 Search paths
================

In looking for `Asymptote' system files, `asy' will search the
following paths, in the order listed:
  1. The current directory;

  2. A list of one or more directories specified by the configuration
     variable `dir' (separated by `:' under UNIX and `;' under `MSDOS');

  3. The directory specified by the environment variable
     `ASYMPTOTE_HOME'; if this variable is not set, the directory
     `.asy' in the user's home directory (`%USERPROFILE%\.asy' under
     `MSDOS') is used;

  4. The `Asymptote' system directory (by default,
     `/usr/local/share/asymptote' under `UNIX' and `C:\Program
     Files\Asymptote' under `MSDOS').


File: asymptote.info,  Node: Compiling from UNIX source,  Next: Editing modes,  Prev: Search paths,  Up: Installation

2.6 Compiling from UNIX source
==============================

To compile and install a `UNIX' executable from a source release
`x.xx', first execute the commands:
gunzip asymptote-x.xx.src.tgz
tar -xf asymptote-x.xx.src.tar
cd asymptote-x.xx
 By default the system version of the Boehm garbage collector will be
used; if it is old we recommend first putting
`http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_source/gc-7.1.tar.gz'
in the `Asymptote' source directory.

If your graphics card supports multisampling, we recommend using version
`2.6.0-rc1' (or later) of `freeglut' to support antialiasing in
`Asymptote''s adaptive `OpenGL' 3D renderer (`MacOS X' users can skip
this step since `Asymptote' is configured to use the native glut
library on that platform). Download

     `http://prdownloads.sourceforge.net/freeglut/freeglut-2.6.0.tar.gz'
   and type (as the root user):
tar -zxf freeglut-2.6.0.tar.gz
cd freeglut-2.6.0
./configure --prefix=/usr
make install
cd ..
 Then compile `Asymptote' with the commands
./configure
make all
make install
 Be sure to use GNU `make' (on non-GNU systems this command may be
called `gmake').  To build the documentation, you may need to install
the `texinfo-tex' package. If you get errors from a broken `texinfo' or
`pdftex' installation, simply put

     `http://asymptote.sourceforge.net/asymptote.pdf'
   in the directory `doc' and repeat the command `make all'.

For a (default) system-wide installation, the last command should be
done as the root user. To install without root privileges, change the
`./configure' command to
./configure --prefix=$HOME/asymptote
 One can disable use of the Boehm garbage collector by configuring with
`./configure --disable-gc'. For a list of other configuration options,
say `./configure --help'. For example, one can tell configure to look
for header files and libraries in nonstandard locations:
./configure CFLAGS=-I/opt/usr/include LDFLAGS=-L/opt/usr/lib

   If you are compiling `Asymptote' with `gcc', you will need a
relatively recent version (e.g. 3.4.4 or later).  For full interactive
functionality, you will need version 4.3 or later of the GNU `readline'
library.  The file `gcc3.3.2curses.patch' in the `patches' directory can
be used to patch the broken curses.h header file (or a local copy
thereof in the current directory) on some `AIX' and `IRIX' systems.

   The `FFTW' library is only required if you want `Asymptote' to be
able to take Fourier transforms of data (say, to compute an audio power
spectrum). The `GSL' library is only required if you require the
special functions that it supports.

   If you don't want to install `Asymptote' system wide, just make sure
the compiled binary `asy' and GUI script `xasy' are in your path and
set the configuration variable `dir' to point to the directory `base'
(in the top level directory of the `Asymptote' source code).


File: asymptote.info,  Node: Editing modes,  Next: Subversion,  Prev: Compiling from UNIX source,  Up: Installation

2.7 Editing modes
=================

Users of `emacs' can edit `Asymptote' code with the mode `asy-mode',
after enabling it by putting the following lines in their `.emacs'
initialization file, replacing `ASYDIR' with the location of the
`Asymptote' system directory (by default, `/usr/local/share/asymptote'
or `C:\Program Files\Asymptote' under `MSDOS'):
(add-to-list 'load-path "ASYDIR")
(autoload 'asy-mode "asy-mode.el" "Asymptote major mode." t)
(autoload 'lasy-mode "asy-mode.el" "hybrid Asymptote/Latex major mode." t)
(autoload 'asy-insinuate-latex "asy-mode.el" "Asymptote insinuate LaTeX." t)
(add-to-list 'auto-mode-alist '("\\.asy$" . asy-mode))

 Particularly useful key bindings in this mode are `C-c C-c', which
compiles and displays the current buffer, and the key binding `C-c ?',
which shows the available function prototypes for the command at the
cursor.  For full functionality you should also install the Apache
Software Foundation package `two-mode-mode':

     `http://www.dedasys.com/freesoftware/files/two-mode-mode.el'
   Once installed, you can use the hybrid mode `lasy-mode' to edit a
LaTeX file containing embedded `Asymptote' code (*note LaTeX usage::).
This mode can be enabled within `latex-mode' with the key sequence `M-x
lasy-mode <RET>'.  On `UNIX' systems, additional keywords will be
generated from all `asy' files in the space-separated list of
directories specified by the environment variable `ASYMPTOTE_SITEDIR'.
Further documentation of `asy-mode' is available within `emacs' by
pressing the sequence keys `C-h f asy-mode <RET>'.

   Fans of `vim' can customize `vim' for `Asymptote' with

`cp /usr/local/share/asymptote/asy.vim ~/.vim/syntax/asy.vim'

and add the following to their `~/.vimrc' file:
augroup filetypedetect
au BufNewFile,BufRead *.asy     setf asy
augroup END
filetype plugin on

   If any of these directories or files don't exist, just create them.
To set `vim' up to run the current asymptote script using `:make' just
add to `~/.vim/ftplugin/asy.vim':
setlocal makeprg=asy\ %
setlocal errorformat=%f:\ %l.%c:\ %m

   Syntax highlighting support for the KDE editor `Kate' can be enabled
by running `asy-kate.sh' in the `/usr/local/share/asymptote' directory
and putting the generated `asymptote.xml' file in
`~/.kde/share/apps/katepart/syntax/'.


File: asymptote.info,  Node: Subversion,  Next: Uninstall,  Prev: Editing modes,  Up: Installation

2.8 Subversion (SVN)
====================

The following commands are needed to install the latest development
version of `Asymptote' using `Subversion':
svn co http://asymptote.svn.sourceforge.net/svnroot/asymptote/trunk/asymptote
cd asymptote
./autogen.sh
./configure
make all
make install

To compile without optimization, use the command `make CFLAGS=-g'.


File: asymptote.info,  Node: Uninstall,  Prev: Subversion,  Up: Installation

2.9 Uninstall
=============

To uninstall an `Linux i386' binary distribution, use the commands
tar -zxvf asymptote-x.xx.i386.tgz | xargs --replace=% rm /%
texhash

To uninstall all `Asymptote' files installed from a source
distribution, use the command
make uninstall


File: asymptote.info,  Node: Tutorial,  Next: Drawing commands,  Prev: Installation,  Up: Top

3 Tutorial
**********

3.1 Drawing in batch mode
=========================

To draw a line from coordinate (0,0) to coordinate (100,100), create a
text file `test.asy' containing

draw((0,0)--(100,100));
 Then execute the command
asy -V test
 Alternatively, `MSDOS' users can drag and drop `test.asy' onto the
Desktop `asy' icon (or make `Asymptote' the default application for the
extension `asy').

This method, known as _batch mode_, outputs a `PostScript' file
`test.eps'. The `-V' option opens up a `PostScript' viewer window so
you can immediately view the result:


The `--' connector joins the two points `(0,0)' and `(100,100)' with a
line segment.

3.2 Drawing in interactive mode
===============================

Another method is _interactive mode_, where `Asymptote' reads
individual commands as they are entered by the user. To try this out,
enter `Asymptote''s interactive mode by clicking on the `Asymptote'
icon or typing the command `asy'.  Then type
draw((0,0)--(100,100));
 followed by `Enter', to obtain the above image.  At this point you can
type further `draw' commands, which will be added to the displayed
figure, `erase' to clear the canvas,
input test;
 to execute all of the commands contained in the file `test.asy', or
`quit' to exit interactive mode.  You can use the arrow keys in
interactive mode to edit previous lines.  The tab key will
automatically complete unambiguous words; otherwise, hitting tab again
will show the possible choices. Further commands specific to
interactive mode are described in *note Interactive mode::.

3.3 Figure size
===============

In `Asymptote', coordinates like `(0,0)' and `(100,100)', called
_pairs_, are expressed in `PostScript' "big points" (1 `bp' = 1/72
`inch') and the default line width is `0.5bp'.  However, it is often
inconvenient to work directly in `PostScript' coordinates.  The next
example produces identical output to the previous example, by scaling
the line `(0,0)--(1,1)' to fit a rectangle of width `100.5 bp' and
height `100.5 bp' (the extra `0.5bp' accounts for the line width):
size(100.5,100.5);
draw((0,0)--(1,1));



One can also specify the size in `pt' (1 `pt' = 1/72.27 `inch'), `cm',
`mm', or `inches'.  Two nonzero size arguments (or a single size
argument) restrict the size in both directions, preserving the aspect
ratio.  If 0 is given as a size argument, no restriction is made in
that direction; the overall scaling will be determined by the other
direction (*note size::):

size(0,100.5);
draw((0,0)--(2,1),Arrow);



To connect several points and create a cyclic path, use the `cycle'
keyword:

size(100,100);
draw((0,0)--(1,0)--(1,1)--(0,1)--cycle);


For convenience, the path `(0,0)--(1,0)--(1,1)--(0,1)--cycle' may be
replaced with the predefined variable `unitsquare', or equivalently,
`box((0,0),(1,1))'.

   To make the user coordinates represent multiples of exactly `1cm':
unitsize(1cm);
draw(unitsquare);

3.4 Labels
==========

Adding labels is easy in `Asymptote'; one specifies the label as a
double-quoted `LaTeX' string, a coordinate, and an optional alignment
direction:

size(3cm);
draw(unitsquare);
label("$A$",(0,0),SW);
label("$B$",(1,0),SE);
label("$C$",(1,1),NE);
label("$D$",(0,1),NW);



`Asymptote' uses the standard compass directions `E=(1,0)', `N=(0,1)',
`NE=unit(N+E)', and `ENE=unit(E+NE)', etc., which along with the
directions `up', `down', `right', and `left' are defined as pairs in
the `Asymptote' base module `plain' (a user who has a local variable
named `E' may access the compass direction `E' by prefixing it with the
name of the module where it is defined: `plain.E').

3.5 Paths
=========

This example draws a path that approximates a quarter circle,
terminated with an arrowhead:

size(100,0);
draw((1,0){up}..{left}(0,1),Arrow);


Here the directions `up' and `left' in braces specify the incoming and
outgoing directions at the points `(1,0)' and `(0,1)', respectively.

   In general, a path is specified as a list of points (or other paths)
interconnected with `--', which denotes a straight line segment, or
`..', which denotes a cubic spline (*note Bezier curves::).  Specifying
a final `..cycle' creates a cyclic path that connects smoothly back to
the initial node, as in this approximation (accurate to within 0.06%)
of a unit circle:
path unitcircle=E..N..W..S..cycle;

An `Asymptote' path, being connected, is equivalent to a `Postscript
subpath'. The `^^' binary operator, which requests that the pen be
moved (without drawing or affecting endpoint curvatures) from the final
point of the left-hand path to the initial point of the right-hand
path, may be used to group several `Asymptote' paths into a `path[]'
array (equivalent to a `PostScript' path):

size(0,100);
path unitcircle=E..N..W..S..cycle;
path g=scale(2)*unitcircle;
filldraw(unitcircle^^g,evenodd+yellow,black);



The `PostScript' even-odd fill rule here specifies that only the region
bounded between the two unit circles is filled (*note fillrule::).  In
this example, the same effect can be achieved by using the default zero
winding number fill rule, if one is careful to alternate the
orientation of the paths:
filldraw(unitcircle^^reverse(g),yellow,black);

   The `^^' operator is used by the `box(triple, triple)' function in
the module `three.asy' to construct the edges of a cube `unitbox'
without retracing steps (*note three::):

import three;

currentprojection=orthographic(5,4,2,center=true);

size(5cm);
size3(3cm,5cm,8cm);

draw(unitbox);

dot(unitbox,red);

label("$O$",(0,0,0),NW);
label("(1,0,0)",(1,0,0),S);
label("(0,1,0)",(0,1,0),E);
label("(0,0,1)",(0,0,1),Z);



See section *note graph:: (or the online `Asymptote' gallery and
external links posted at `http://asymptote.sourceforge.net') for
further examples, including two-dimensional and interactive
three-dimensional scientific graphs. Additional examples have been
posted by Philippe Ivaldi at `http://www.piprime.fr/asymptote'.  A
user-written `Asymptote' tutorial is available at
http://www.artofproblemsolving.com/Wiki/index.php/Asymptote:_Basics


File: asymptote.info,  Node: Drawing commands,  Next: Bezier curves,  Prev: Tutorial,  Up: Top

4 Drawing commands
******************

All of `Asymptote''s graphical capabilities are based on four primitive
commands. The three `PostScript' drawing commands `draw', `fill', and
`clip' add objects to a picture in the order in which they are
executed, with the most recently drawn object appearing on top.  The
labeling command `label' can be used to add text labels and external
EPS images, which will appear on top of the `PostScript' objects (since
this is normally what one wants), but again in the relative order in
which they were executed. After drawing objects on a picture, the
picture can be output with the `shipout' function (*note shipout::).

   If you wish to draw `PostScript' objects on top of labels (or
verbatim `tex' commands; *note tex::), the `layer' command may be used
to start a new `PostScript/LaTeX' layer:
void layer(picture pic=currentpicture);

   The `layer' function gives one full control over the order in which
objects are drawn. Layers are drawn sequentially, with the most recent
layer appearing on top. Within each layer, labels, images, and verbatim
`tex' commands are always drawn after the `PostScript' objects in that
layer.

   While some of these drawing commands take many options, they all
have sensible default values (for example, the picture argument
defaults to currentpicture).

* Menu:

* draw::                        Draw a path on a picture or frame
* fill::                        Fill a cyclic path on a picture or frame
* clip::                        Clip a picture or frame to a cyclic path
* label::                       Label a point on a picture


File: asymptote.info,  Node: draw,  Next: fill,  Up: Drawing commands

4.1 draw
========

void draw(picture pic=currentpicture, Label L="", path g,
          align align=NoAlign, pen p=currentpen,
          arrowbar arrow=None, arrowbar bar=None, margin margin=NoMargin,
          Label legend="", marker marker=nomarker);

Draw the path `g' on the picture `pic' using pen `p' for drawing, with
optional drawing attributes (Label `L', explicit label alignment
`align', arrows and bars `arrow' and `bar', margins `margin', legend,
and markers `marker'). Only one parameter, the path, is required. For
convenience, the arguments `arrow' and `bar' may be specified in either
order. The argument `legend' is a Label to use in constructing an
optional legend entry.

   Bars are useful for indicating dimensions. The possible values of
`bar' are `None', `BeginBar', `EndBar' (or equivalently `Bar'), and
`Bars' (which draws a bar at both ends of the path). Each of these bar
specifiers (except for `None') will accept an optional real argument
that denotes the length of the bar in `PostScript' coordinates. The
default bar length is `barsize(pen)'.

   The possible values of `arrow' are `None', `Blank' (which draws no
arrows or path), `BeginArrow', `MidArrow', `EndArrow' (or equivalently
`Arrow'), and `Arrows' (which draws an arrow at both ends of the path).
All of the arrow specifiers except for `None' and `Blank' may be given
the optional arguments arrowhead `arrowhead' (one of the predefined
arrowhead styles `DefaultHead', `SimpleHead', `HookHead', `TeXHead'),
real `size' (arrowhead size in `PostScript' coordinates), real `angle'
(arrowhead angle in degrees), filltype `filltype' (one of `FillDraw',
`Fill', `NoFill', `UnFill', `Draw') and (except for `MidArrow' and
`Arrows') a real `position' (in the sense of `point(path p, real t)')
along the path where the tip of the arrow should be placed. The default
arrowhead size when drawn with a pen `p' is `arrowsize(p)'. There are
also arrow versions with slightly modified default values of `size' and
`angle' suitable for curved arrows: `BeginArcArrow', `EndArcArrow' (or
equivalently `ArcArrow'), `MidArcArrow', and `ArcArrows'.

   Margins can be used to shrink the visible portion of a path by
`labelmargin(p)' to avoid overlap with other drawn objects.  Typical
values of `margin' are `NoMargin', `BeginMargin', `EndMargin' (or
equivalently `Margin'), and `Margins' (which leaves a margin at both
ends of the path). One may use `Margin(real begin, real end)' to
specify the size of the beginning and ending margin, respectively, in
multiples of the units `labelmargin(p)' used for aligning labels.
Alternatively, `BeginPenMargin', `EndPenMargin' (or equivalently
`PenMargin'), `PenMargins', `PenMargin(real begin, real end)' specify a
margin in units of the pen line width, taking account of the pen line
width when drawing the path or arrow. For example, use `DotMargin', an
abbreviation for `PenMargin(-0.5*dotfactor,0.5*dotfactor)', to draw
from the usual beginning point just up to the boundary of an end dot of
width `dotfactor*linewidth(p)'.  The qualifiers `BeginDotMargin',
`EndDotMargin', and `DotMargins' work similarly. The qualifier
`TrueMargin(real begin, real end)' allows one to specify a margin
directly in `PostScript' units, independent of the pen line width.

   The use of arrows, bars, and margins is illustrated by the examples
`Pythagoras.asy', `sqrtx01.asy', and `triads.asy'.

   The legend for a picture `pic' can be fit and aligned to a frame
with the routine: 
frame legend(picture pic=currentpicture, int perline=1,
             real xmargin=legendmargin, real ymargin=xmargin,
             real linelength=legendlinelength,
             real hskip=legendhskip, real vskip=legendvskip,
             real maxwidth=0, real maxheight=0,
             bool hstretch=false, bool vstretch=false, pen p=currentpen);
 Here `xmargin' and `ymargin' specify the surrounding x and y margins,
`perline' specifies the number of entries per line (default 1; 0 means
choose this number automatically), `linelength' specifies the length of
the path lines, `hskip' and `vskip' specify the line skip (as a
multiple of the legend entry size), `maxwidth' and `maxheight' specify
optional upper limits on the width and height of the resulting legend
(0 means unlimited), `hstretch' and `vstretch' allow the legend to
stretch horizontally or vertically, and `p' specifies the pen used to
draw the bounding box. The legend frame can then be added and aligned
about a point on a picture `dest' using `add' or `attach' (*note add
about::).

   To draw a dot, simply draw a path containing a single point.  The
`dot' command defined in the module `plain' draws a dot having a
diameter equal to an explicit pen line width or the default line width
magnified by `dotfactor' (6 by default), using the specified filltype
(*note filltype::):
void dot(picture pic=currentpicture, pair z, pen p=currentpen,
         filltype filltype=Fill);
void dot(picture pic=currentpicture, Label L, pair z, align align=NoAlign,
         string format=defaultformat, pen p=currentpen, filltype filltype=Fill);
void dot(picture pic=currentpicture, Label[] L=new Label[], pair[] z,
         align align=NoAlign, string format=defaultformat, pen p=currentpen,
         filltype filltype=Fill)
void dot(picture pic=currentpicture, Label L, pen p=currentpen,
         filltype filltype=Fill);

   If the variable `Label' is given as the `Label' argument to the
second routine, the `format' argument will be used to format a string
based on the dot location (here `defaultformat' is `"$%.4g$"').  The
third routine draws a dot at every point of a pair array `z'.  One can
also draw a dot at every node of a path:
void dot(picture pic=currentpicture, Label[] L=new Label[],
         path g, align align=RightSide, string format=defaultformat,
         pen p=currentpen, filltype filltype=Fill);
 See *note pathmarkers:: and *note markers:: for more general methods
for marking path nodes.

   To draw a fixed-sized object (in `PostScript' coordinates) about the
user coordinate `origin', use the routine 
void draw(pair origin, picture pic=currentpicture, Label L="", path g,
          align align=NoAlign, pen p=currentpen, arrowbar arrow=None,
          arrowbar bar=None, margin margin=NoMargin, Label legend="",
          marker marker=nomarker);


File: asymptote.info,  Node: fill,  Next: clip,  Prev: draw,  Up: Drawing commands

4.2 fill
========

void fill(picture pic=currentpicture, path g, pen p=currentpen);

Fill the interior region bounded by the cyclic path `g' on the picture
`pic', using the pen `p'.

   There is also a convenient `filldraw' command, which fills the path
and then draws in the boundary. One can specify separate pens for each
operation:
void filldraw(picture pic=currentpicture, path g, pen fillpen=currentpen,
              pen drawpen=currentpen);

   This fixed-size version of `fill' allows one to fill an object
described in `PostScript' coordinates about the user coordinate
`origin':
void fill(pair origin, picture pic=currentpicture, path g, pen p=currentpen);

This is just a convenient abbreviation for the commands:
picture opic;
fill(opic,g,p);
add(pic,opic,origin);

   The routine 
void filloutside(picture pic=currentpicture, path g, pen p=currentpen);
 fills the region exterior to the path `g', out to the current boundary
of picture `pic'.

   Lattice gradient shading varying smoothly over a two-dimensional
array of pens `p', using fill rule `fillrule', can be produced with
void latticeshade(picture pic=currentpicture, path g, bool stroke=false,
                  pen fillrule=currentpen, pen[][] p)
 If `stroke=true', the region filled is the same as the region that
would be drawn by `draw(pic,g,fillrule+zerowinding)'; in this case the
path `g' need not be cyclic.  The pens in `p' must belong to the same
color space. One can use the functions `rgb(pen)' or `cmyk(pen)' to
promote pens to a higher color space, as illustrated in the example file
`latticeshading.asy'.

   Axial gradient shading varying smoothly from `pena' to `penb' in the
direction of the line segment `a--b' can be achieved with
void axialshade(picture pic=currentpicture, path g, bool stroke=false,
                pen pena, pair a,
                pen penb, pair b);

   Radial gradient shading varying smoothly from `pena' on the circle
with center `a' and radius `ra' to `penb' on the circle with center `b'
and radius `rb' is similar:
void radialshade(picture pic=currentpicture, path g, bool stroke=false,
                 pen pena, pair a, real ra,
                 pen penb, pair b, real rb);
 Illustrations of radial shading are provided in the example files
`shade.asy', `ring.asy', and `shadestroke.asy'.

   Gouraud shading using fill rule `fillrule' and the vertex colors in
the pen array `p' on a triangular lattice defined by the vertices `z'
and edge flags `edges' is implemented with
void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
                  pen fillrule=currentpen, pen[] p, pair[] z,
                  int[] edges);
void gouraudshade(picture pic=currentpicture, path g, bool stroke=false,
                  pen fillrule=currentpen, pen[] p, int[] edges);
 In the second form, the elements of `z' are taken to be successive
nodes of path `g'. The pens in `p' must belong to the same color space.
Illustrations of Gouraud shading are provided in the example file
`Gouraud.asy' and in the solid geometry module `solids.asy'.  The edge
flags used in Gouraud shading are documented here:

     `http://partners.adobe.com/public/developer/en/ps/sdk/TN5600.SmoothShading.pdf'.

   Tensor product shading using fill rule `fillrule' on patches bounded
by the n cyclic paths of length 4 in path array `b', using the vertex
colors specified in the n \times 4 pen array `p' and internal control
points in the n \times 4 array `z', is implemented with
void tensorshade(picture pic=currentpicture, path g, bool stroke=false,
                 pen fillrule=currentpen, pen[][] p, path[] b=g,
                 pair[][] z=new pair[][]);
 If the array `z' is empty, Coons shading, in which the color control
points are calculated automatically, is used.  The pens in `p' must
belong to the same color space.  A simpler interface for the case of a
single patch (n=1) is also available:
void tensorshade(picture pic=currentpicture, path g, bool stroke=false,
                 pen fillrule=currentpen, pen[] p, path b=g,
                 pair[] z=new pair[]);
 One can also smoothly shade the regions between consecutive paths of a
sequence using a given array of pens:
void draw(picture pic=currentpicture, pen fillrule=currentpen, path[] g,
          pen[] p);
 Illustrations of tensor product and Coons shading are provided in the
example files `tensor.asy', `Coons.asy', `BezierSurface.asy', and
`rainbow.asy'.

   More general shading possibilities are available with the `pdflatex',
`context', and `pdftex' TeX engines: the routine
void functionshade(picture pic=currentpicture, path[] g, bool stroke=false,
                   pen fillrule=currentpen, string shader);
 shades on picture `pic' the interior of path `g' according to fill
rule `fillrule' using the `PostScript' calculator routine specified by
the string `shader'; this routine takes 2 arguments, each in [0,1], and
returns `colors(fillrule).length' color components.  Function shading
is illustrated in the example `functionshading.asy'.

   The following routine uses `evenodd' clipping together with the `^^'
operator to unfill a region:

void unfill(picture pic=currentpicture, path g);


File: asymptote.info,  Node: clip,  Next: label,  Prev: fill,  Up: Drawing commands

4.3 clip
========

void clip(picture pic=currentpicture, path g, stroke=false,
          pen fillrule=currentpen);

Clip the current contents of picture `pic' to the region bounded by the
path `g', using fill rule `fillrule' (*note fillrule::).  If
`stroke=true', the clipped portion is the same as the region that would
be drawn with `draw(pic,g,fillrule+zerowinding)'; in this case the path
`g' need not be cyclic. For an illustration of picture clipping, see
the first example in *note LaTeX usage::.


File: asymptote.info,  Node: label,  Prev: clip,  Up: Drawing commands

4.4 label
=========

void label(picture pic=currentpicture, Label L, pair position,
           align align=NoAlign, pen p=nullpen, filltype filltype=NoFill)

Draw Label `L' on picture `pic' using pen `p'. If `align' is `NoAlign',
the label will be centered at user coordinate `position'; otherwise it
will be aligned in the direction of `align' and displaced from
`position' by the `PostScript' offset `align*labelmargin(p)'.  The
constant `Align' can be used to align the bottom-left corner of the
label at `position'.  If `p' is `nullpen', the pen specified within the
Label, which defaults to `currentpen', will be used.  The Label `L' can
either be a string or the structure obtained by calling one of the
functions
Label Label(string s="", pair position, align align=NoAlign,
            pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
Label Label(string s="", align align=NoAlign,
            pen p=nullpen, embed embed=Rotate, filltype filltype=NoFill);
Label Label(Label L, pair position, align align=NoAlign,
            pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);
Label Label(Label L, align align=NoAlign,
            pen p=nullpen, embed embed=L.embed, filltype filltype=NoFill);
 The text of a Label can be scaled, slanted, rotated, or shifted by
multiplying it on the left by an affine transform (*note Transforms::).
For example, `rotate(45)*xscale(2)*L' first scales `L' in the x
direction and then rotates it counterclockwise by 45 degrees. The final
position of a Label can also be shifted by a `PostScript' coordinate
translation: `shift(10,0)*L'.  The `embed' argument determines how the
Label should transform with the embedding picture:
`Shift'
     only shift with embedding picture;

`Rotate'
     only shift and rotate with embedding picture (default);

`Rotate(pair z)'
     rotate with (picture-transformed) vector `z'.

`Slant'
     only shift, rotate, slant, and reflect with embedding picture;

`Scale'
     shift, rotate, slant, reflect, and scale with embedding picture.


   To add a label to a path, use
void label(picture pic=currentpicture, Label L, path g, align align=NoAlign,
           pen p=nullpen, filltype filltype=NoFill);
 By default the label will be positioned at the midpoint of the path.
An alternative label position (in the sense of `point(path p, real t)')
may be specified as a real value for `position' in constructing the
Label. The position `Relative(real)' specifies a location relative to
the total arclength of the path. These convenient abbreviations are
predefined: 
position BeginPoint=Relative(0);
position MidPoint=Relative(0.5);
position EndPoint=Relative(1);

   Path labels are aligned in the direction `align', which may be
specified as an absolute compass direction (pair) or a direction
`Relative(pair)' measured relative to a north axis in the local
direction of the path. For convenience `LeftSide', `Center', and
`RightSide' are defined as `Relative(W)', `Relative((0,0))', and
`Relative(E)', respectively.  Multiplying `LeftSide', `Center',
`RightSide' on the left by a real scaling factor will move the label
further away from or closer to the path.

   A label with a fixed-size arrow of length `arrowlength' pointing to
`b' from direction `dir' can be produced with the routine 
void arrow(picture pic=currentpicture, Label L="", pair b, pair dir,
           real length=arrowlength, align align=NoAlign,
           pen p=currentpen, arrowbar arrow=Arrow, margin margin=EndMargin);
 If no alignment is specified (either in the Label or as an explicit
argument), the optional Label will be aligned in the direction `dir',
using margin `margin'.

   The function `string graphic(string name, string options="")'
returns a string that can be used to include an encapsulated
`PostScript' (EPS) file. Here, `name' is the name of the file to
include and `options' is a string containing a comma-separated list of
optional bounding box (`bb=llx lly urx ury'), width (`width=value'),
height (`height=value'), rotation (`angle=value'), scaling
(`scale=factor'), clipping (`clip=bool'), and draft mode (`draft=bool')
parameters. The `layer()' function can be used to force future objects
to be drawn on top of the included image:
label(graphic("file.eps","width=1cm"),(0,0),NE);
layer();

   The `string baseline(string s, string template="\strut")' function
can be used to enlarge the bounding box of labels to match a given
template, so that their baselines will be typeset on a horizontal line.
See `Pythagoras.asy' for an example.

   One can prevent labels from overwriting one another with the
`overwrite' pen attribute (*note overwrite::).

   The structure `object' defined in `plain_Label.asy' allows Labels
and frames to be treated in a uniform manner.  A group of objects may
be packed together into single frame with the routine 
frame pack(pair align=2S ... object inset[]);
 To draw or fill a box (or ellipse or other path) around a Label and
return the bounding object, use one of the routines
object draw(picture pic=currentpicture, Label L, envelope e,
            real xmargin=0, real ymargin=xmargin, pen p=currentpen,
            filltype filltype=NoFill, bool above=true);
object draw(picture pic=currentpicture, Label L, envelope e, pair position,
            real xmargin=0, real ymargin=xmargin, pen p=currentpen,
            filltype filltype=NoFill, bool above=true);
 Here `envelope' is a boundary-drawing routine such as `box',
`roundbox', or `ellipse' defined in `plain_boxes.asy' (*note
envelope::).

   The function `path[] texpath(Label L)' returns the path array that
TeX would fill to draw the Label `L'.

   The `string minipage(string s, width=100pt)' function can be used to
format string `s' into a paragraph of width `width'.  This example uses
`minipage', `clip', and `graphic' to produce a CD label:


size(11.7cm,11.7cm);
asy(nativeformat(),"logo");
fill(unitcircle^^(scale(2/11.7)*unitcircle),
     evenodd+rgb(124/255,205/255,124/255));
label(scale(1.1)*minipage(
"\centering\scriptsize \textbf{\LARGE {\tt Asymptote}\\
\smallskip
\small The Vector Graphics Language}\\
\smallskip
\textsc{Andy Hammerlindl, John Bowman, and Tom Prince}
http://asymptote.sourceforge.net\\
",8cm),(0,0.6));
label(graphic("logo."+nativeformat(),"height=7cm"),(0,-0.22));
clip(unitcircle^^(scale(2/11.7)*unitcircle),evenodd);


File: asymptote.info,  Node: Bezier curves,  Next: Programming,  Prev: Drawing commands,  Up: Top

5 Bezier curves
***************

Each interior node of a cubic spline may be given a direction prefix or
suffix `{dir}': the direction of the pair `dir' specifies the direction
of the incoming or outgoing tangent, respectively, to the curve at that
node. Exterior nodes may be given direction specifiers only on their
interior side.

   A cubic spline between the node z_0, with postcontrol point c_0, and
the node z_1, with precontrol point c_1, is computed as the Bezier curve



As illustrated in the diagram below, the third-order midpoint (m_5)
constructed from two endpoints z_0 and z_1 and two control points c_0
and c_1, is the point corresponding to t=1/2 on the Bezier curve formed
by the quadruple (z_0, c_0, c_1, z_1). This allows one to recursively
construct the desired curve, by using the newly extracted third-order
midpoint as an endpoint and the respective second- and first-order
midpoints as control points:



Here m_0, m_1 and m_2 are the first-order midpoints, m_3 and m_4 are
the second-order midpoints, and m_5 is the third-order midpoint.  The
curve is then constructed by recursively applying the algorithm to
(z_0, m_0, m_3, m_5) and (m_5, m_4, m_2, z_1).

   In fact, an analogous property holds for points located at any
fraction t in [0,1] of each segment, not just for midpoints (t=1/2).

   The Bezier curve constructed in this manner has the following
properties:
   * It is entirely contained in the convex hull of the given four
     points.

   * It starts heading from the first endpoint to the first control
     point and finishes heading from the second control point to the
     second endpoint.


   The user can specify explicit control points between two nodes like
this:
draw((0,0)..controls (0,100) and (100,100)..(100,0));

   However, it is usually more convenient to just use the `..'
operator, which tells `Asymptote' to choose its own control points
using the algorithms described in Donald Knuth's monograph, The
MetaFontbook, Chapter 14.  The user can still customize the guide (or
path) by specifying direction, tension, and curl values.

   The higher the tension, the straighter the curve is, and the more it
approximates a straight line.  One can change the spline tension from
its default value of 1 to any real value greater than or equal to 0.75
(cf. John D. Hobby, Discrete and Computational Geometry 1, 1986):
draw((100,0)..tension 2 ..(100,100)..(0,100));
draw((100,0)..tension 2 and 1 ..(100,100)..(0,100));
draw((100,0)..tension atleast 1 ..(100,100)..(0,100));

   The curl parameter specifies the curvature at the endpoints of a path
(0 means straight; the default value of 1 means approximately circular):
draw((100,0){curl 0}..(100,100)..{curl 0}(0,100));

   The `MetaPost ...' path connector, which requests, when possible, an
inflection-free curve confined to a triangle defined by the endpoints
and directions, is implemented in `Asymptote' as the convenient
abbreviation `::' for `..tension atleast 1 ..' (the ellipsis `...' is
used in `Asymptote' to indicate a variable number of arguments; *note
Rest arguments::).  For example, compare

draw((0,0){up}..(100,25){right}..(200,0){down});


with

draw((0,0){up}::(100,25){right}::(200,0){down});



The `---' connector is an abbreviation for `..tension atleast
infinity..' and the `&' connector concatenates two paths, after first
stripping off the last node of the first path (which normally should
coincide with the first node of the second path).


File: asymptote.info,  Node: Programming,  Next: LaTeX usage,  Prev: Bezier curves,  Up: Top

6 Programming
*************

Here is a short introductory example to the `Asymptote' programming
language that highlights the similarity of its control structures with
those of C, C++, and Java: 
// This is a comment.

// Declaration: Declare x to be a real variable;
real x;

// Assignment: Assign the real variable x the value 1.
x=1.0;

// Conditional: Test if x equals 1 or not.
if(x == 1.0) {
  write("x equals 1.0");
} else {
  write("x is not equal to 1.0");
}

// Loop: iterate 10 times
for(int i=0; i < 10; ++i) {
  write(i);
}

   `Asymptote' supports `while', `do', `break', and `continue'
statements just as in C/C++. It also supports the Java-style shorthand
for iterating over all elements of an array:

// Iterate over an array
int[] array={1,1,2,3,5};
for(int k : array) {
  write(k);
}
 In addition, it supports many features beyond the ones found in those
languages.

* Menu:

* Data types::                  void, bool, int, real, pair, triple, string
* Paths and guides::
* Pens::                        Colors, line types, line widths, font sizes
* Transforms::                  Affine transforms
* Frames and pictures::         Canvases for immediate and deferred drawing
* Files::                       Reading and writing your data
* Variable initializers::       Initialize your variables
* Structures::                  Organize your data
* Operators::                   Arithmetic and logical operators
* Implicit scaling::            Avoiding those ugly *s
* Functions::                   Traditional and high-order functions
* Arrays::                      Dynamic vectors
* Casts::                       Implicit and explicit casts
* Import::                      Importing external `Asymptote' packages
* Static::                      Where to allocate your variable?


File: asymptote.info,  Node: Data types,  Next: Paths and guides,  Up: Programming

6.1 Data types
==============

`Asymptote' supports the following data types (in addition to
user-defined types):

`void'
     The void type is used only by functions that take or return no
     arguments.

`bool'
     a boolean type that can only take on the values `true' or `false'.
     For example: bool b=true;

     defines a boolean variable `b' and initializes it to the value
     `true'. If no initializer is given: bool b;

     the value `false' is assumed.

`bool3'
     an extended boolean type that can take on the values `true',
     `default', or `false'. A bool3 type can be cast to or from a bool.
     The default initializer for bool3 is `default'.

`int'
     an integer type; if no initializer is given, the implicit value `0'
     is assumed. The minimum allowed value of an integer is `intMin'
     and the maximum value is `intMax'.

`real'
     a real number; this should be set to the highest-precision native
     floating-point type on the architecture. The implicit initializer
     for reals is `0.0'. Real numbers have precision `realEpsilon',
     with `realDigits' significant digits.  The smallest positive real
     number is `realMin' and the largest positive real number is
     `realMax'.

`pair'
     complex number, that is, an ordered pair of real components
     `(x,y)'.  The real and imaginary parts of a pair `z' can read as
     `z.x' and `z.y'. We say that `x' and `y' are virtual members of
     the data element pair; they cannot be directly modified, however.
     The implicit initializer for pairs is `(0.0,0.0)'.

     There are a number of ways to take the complex conjugate of a pair:
          pair z=(3,4);
          z=(z.x,-z.y);
          z=z.x-I*z.y;
          z=conj(z);

     Here `I' is the pair `(0,1)'.  A number of built-in functions are
     defined for pairs:

    `pair conj(pair z)'
          returns the conjugate of `z';

    `real length(pair z)'
          returns the complex modulus `|z|' of its argument `z'.  For
          example,
               pair z=(3,4);
               length(z);
          returns the result 5. A synonym for `length(pair)' is
          `abs(pair)';

    `real angle(pair z, bool warn=true)'
          returns the angle of `z' in radians in the interval
          [-`pi',`pi'] or `0' if `warn' is `false' and `z=(0,0)'
          (rather than producing an error);

    `real degrees(pair z, bool warn=true)'
          returns the angle of `z' in degrees in the interval [0,360)
          or `0' if `warn' is `false' and `z=(0,0)' (rather than
          producing an error);

    `pair unit(pair z)'
          returns a unit vector in the direction of the pair `z';

    `pair expi(real angle)'
          returns a unit vector in the direction `angle' measured in
          radians;

    `pair dir(real degrees)'
          returns a unit vector in the direction `degrees' measured in
          degrees;

    `real xpart(pair z)'
          returns `z.x';

    `real ypart(pair z)'
          returns `z.y';

    `pair realmult(pair z, pair w)'
          returns the element-by-element product `(z.x*w.x,z.y*w.y)';

    `real dot(explicit pair z, explicit pair w)'
          returns the dot product `z.x*w.x+z.y*w.y';

    `pair minbound(pair z, pair w)'
          returns `(min(z.x,w.x),min(z.y,w.y))';

    `pair maxbound(pair z, pair w)'
          returns `(max(z.x,w.x),max(z.y,w.y))'.


`triple'
     an ordered triple of real components `(x,y,z)' used for
     three-dimensional drawings. The respective components of a triple
     `v' can read as `v.x', `v.y', and `v.z'.  The implicit initializer
     for triples is `(0.0,0.0,0.0)'.

     Here are the built-in functions for triples:
    `real length(triple v)'
          returns the length `|v|' of the vector `v'.  A synonym for
          `length(triple)' is `abs(triple)';

    `real polar(triple v, bool warn=true)'
          returns the colatitude of `v' measured from the z axis in
          radians or `0' if `warn' is `false' and `v=O' (rather than
          producing an error);

    `real azimuth(triple v, bool warn=true)'
          returns the longitude of `v' measured from the x axis in
          radians or `0' if `warn' is `false' and `v.x=v.y=0' (rather
          than producing an error);

    `real colatitude(triple v, bool warn=true)'
          returns the colatitude of `v' measured from the z axis in
          degrees or `0' if `warn' is `false' and `v=O' (rather than
          producing an error);

    `real latitude(triple v, bool warn=true)'
          returns the latitude of `v' measured from the xy plane in
          degrees or `0' if `warn' is `false' and `v=O' (rather than
          producing an error);

    `real longitude(triple v, bool warn=true)'
          returns the longitude of `v' measured from the x axis in
          degrees or `0' if `warn' is `false' and `v.x=v.y=0' (rather
          than producing an error);

    `triple unit(triple v)'
          returns a unit triple in the direction of the triple `v';

    `triple expi(real polar, real azimuth)'
          returns a unit triple in the direction `(polar,azimuth)'
          measured in radians;

    `triple dir(real colatitude, real longitude)'
          returns a unit triple in the direction
          `(colatitude,longitude)' measured in degrees;

    `real xpart(triple v)'
          returns `v.x';

    `real ypart(triple v)'
          returns `v.y';

    `real zpart(triple v)'
          returns `v.z';

    `real dot(triple u, triple v)'
          returns the dot product `u.x*v.x+u.y*v.y+u.z*v.z';

    `triple cross(triple u, triple v)'
          returns the cross product

          `(u.y*v.z-u.z*v.y,u.z*v.x-u.x*v.z,u.x*v.y-v.x*u.y)';

    `triple minbound(triple u, triple v)'
          returns `(min(u.x,v.x),min(u.y,v.y),min(u.z,v.z))';

    `triple maxbound(triple u, triple v)'
          returns `(max(u.x,v.x),max(u.y,v.y),max(u.z,v.z)').


`string'
     a character string, implemented using the STL `string' class.

     Strings delimited by double quotes (`"') are subject to the
     following mappings to allow the use of double quotes in TeX (e.g.
     for using the `babel' package, *note babel::):

        * \" maps to "

        * \\ maps to \\

     Strings delimited by single quotes (`'') have the same mappings as
     character strings in ANSI `C':

        * \' maps to '

        * \" maps to "

        * \? maps to ?

        * \\ maps to backslash

        * \a maps to alert

        * \b maps to backspace

        * \f maps to form feed

        * \n maps to newline

        * \r maps to carriage return

        * \t maps to tab

        * \v maps to vertical tab

        * \0-\377 map to corresponding octal byte

        * \x0-\xFF map to corresponding hexadecimal byte

     The implicit initializer for strings is the empty string `""'.
     Strings may be concatenated with the `+' operator. In the following
     string functions, position `0' denotes the start of the string:
    `int length(string s)'
          returns the length of the string `s';

    `int find(string s, string t, int pos=0)'
          returns the position of the first occurrence of string `t' in
          string `s' at or after position `pos', or -1 if `t' is not a
          substring of `s';

    `int rfind(string s, string t, int pos=-1)'
          returns the position of the last occurrence of string `t' in
          string `s' at or before position `pos' (if `pos'=-1, at the
          end of the string `s'), or -1 if `t' is not a substring of
          `s';

    `string insert(string s, int pos, string t)'
          returns the string formed by inserting string `t' at position
          `pos' in `s';

    `string erase(string s, int pos, int n)'
          returns the string formed by erasing the string of length `n'
          (if `n'=-1, to the end of the string `s') at position `pos'
          in `s';

    `string substr(string s, int pos, int n=-1)'
          returns the substring of `s' starting at position `pos' and
          of length `n' (if `n'=-1, until the end of the string `s');

    `string reverse(string s)'
          returns the string formed by reversing string `s';

    `string replace(string s, string before, string after)'
          returns a string with all occurrences of the string `before'
          in the string `s' changed to the string `after';

    `string replace(string s, string[][] table)'
          returns a string constructed by translating in string `s' all
          occurrences of the string `before' in an array `table' of
          string pairs {`before',`after'} to the corresponding string
          `after';

    `string[] split(string s, string delimiter="")'
          returns an array of strings obtained by splitting `s' into
          substrings delimited by `delimiter' (an empty delimiter
          signifies a space, but with duplicate delimiters discarded);

    `string format(string s, int n)'
          returns a string containing `n' formatted according to the
          C-style format string `s' using the current locale;

    `string format(string s=defaultformat, real x, string locale="")'
          returns a string containing `x' formatted according to the
          C-style format string `s' using locale `locale' (or the
          current locale if an empty string is specified), following
          the behaviour of the C function `fprintf'), except that only
          one data field is allowed, trailing zeros are removed by
          default (unless `#' is specified), and (if the format string
          specifies math mode) TeX is used to typeset scientific
          notation;

    `int hex(string s);'
          casts a hexidecimal string `s' to an integer.

    `string string(real x, int digits=realDigits)'
          casts `x' to a string using precision `digits' and the C
          locale;

    `string locale(string s="")'
          sets the locale to the given string, if nonempty, and returns
          the current locale.

    `string time(string format="%a %b %d %T %Z %Y")'
          returns the current time formatted by the ANSI C routine
          `strftime' according to the string `format' using the current
          locale. Thus time();
          time("%a %b %d %H:%M:%S %Z %Y");

          are equivalent ways of returning the current time in the
          default format used by the `UNIX' `date' command;

    `int seconds(string t="", string format="")'
          returns the time measured in seconds after the Epoch (Thu Jan
          01 00:00:00 UTC 1970) as determined by the ANSI C routine
          `strptime' according to the string `format' using the current
          locale, or the current time if `t' is the empty string.  Note
          that the `"%Z"' extension to the POSIX `strptime'
          specification is ignored by the current GNU C Library. If an
          error occurs, the value -1 is returned. Here are some
          examples: seconds("Mar 02 11:12:36 AM PST 2007","%b %d %r PST %Y");
          seconds(time("%b %d %r %z %Y"),"%b %d %r %z %Y");
          seconds(time("%b %d %r %Z %Y"),"%b %d %r "+time("%Z")+" %Y");
          1+(seconds()-seconds("Jan 1","%b %d"))/(24*60*60);
           The last example returns today's ordinal date, measured from
          the beginning of the year.

    `string time(int seconds, string format="%a %b %d %T %Z %Y")'
          returns the time corresponding to `seconds' seconds after the
          Epoch (Thu Jan 01 00:00:00 UTC 1970) formatted by the ANSI C
          routine `strftime' according to the string `format' using the
          current locale. For example, to return the date corresponding
          to 24 hours ago: time(seconds()-24*60*60);

    `void abort(string s="")'
          aborts execution (with a non-zero return code in batch mode);
          if string `s' is nonempty, a diagnostic message constructed
          from the source file, line number, and `s' is printed;

    `void assert(bool b, string s="")'
          aborts execution with an error message constructed from `s' if
          `b=false';

    `void exit()'
          exits (with a zero error return code in batch mode);

    `void sleep(int seconds)'
          pauses for the given number of seconds;

    `void usleep(int microseconds)'
          pauses for the given number of microseconds;

    `void beep()'
          produces a beep on the console;



   As in C/C++, complicated types may be abbreviated with `typedef'
(see the example in *note Functions::).


File: asymptote.info,  Node: Paths and guides,  Next: Pens,  Prev: Data types,  Up: Programming

6.2 Paths and guides
====================

`path'
     a cubic spline resolved into a fixed path.  The implicit
     initializer for paths is `nullpath'.

     For example, the routine `circle(pair c, real r)', which returns a
     Bezier curve approximating a circle of radius `r' centered on `c',
     is based on `unitcircle' (*note unitcircle::): path circle(pair c, real r)
     {
       return shift(c)*scale(r)*unitcircle;
     }
      If high accuracy is needed, a true circle may be produced with the
     routine `Circle' defined in the module `graph.asy': import graph;
     path Circle(pair c, real r, int n=nCircle);

     A circular arc consistent with `circle' centered on `c' with
     radius `r' from `angle1' to `angle2' degrees, drawing
     counterclockwise if `angle2 >= angle1', can be constructed with path arc(pair c, real r, real angle1, real angle2);
      One may also specify the direction explicitly: path arc(pair c, real r, real angle1, real angle2, bool direction);
      Here the direction can be specified as CCW (counter-clockwise) or
     CW (clockwise). For convenience, an arc centered at `c' from pair
     `z1' to `z2' (assuming `|z2-c|=|z1-c|') in the may also be
     constructed with path arc(pair c, explicit pair z1, explicit pair z2,
              bool direction=CCW)

     If high accuracy is needed, true arcs may be produced with routines
     in the module `graph.asy' that produce Bezier curves with `n'
     control points: import graph;
     path Arc(pair c, real r, real angle1, real angle2, bool direction,
              int n=nCircle);
     path Arc(pair c, real r, real angle1, real angle2, int n=nCircle);
     path Arc(pair c, explicit pair z1, explicit pair z2,
              bool direction=CCW, int n=nCircle);

     An ellipse can be drawn with the routine path ellipse(pair c, real a, real b)
     {
       return shift(c)*scale(a,b)*unitcircle;
     }

     This example illustrates the use of all five guide connectors
     discussed in *note Tutorial:: and *note Bezier curves::: size(300,0);
     pair[] z=new pair[10];

     z[0]=(0,100); z[1]=(50,0); z[2]=(180,0);

     for(int n=3; n <= 9; ++n)
       z[n]=z[n-3]+(200,0);

     path p=z[0]..z[1]---z[2]::{up}z[3]
     &z[3]..z[4]--z[5]::{up}z[6]
     &z[6]::z[7]---z[8]..{up}z[9];

     draw(p,grey+linewidth(4mm));

     dot(z);



     Here are some useful functions for paths:

    `int length(path p);'
          This is the number of (linear or cubic) segments in path `p'.
          If `p' is cyclic, this is the same as the number of nodes in
          `p'.

    `int size(path p);'
          This is the number of nodes in the path `p'.  If `p' is
          cyclic, this is the same as `length(p)'.

    `bool cyclic(path p);'
          returns `true' iff path `p' is cyclic.

    `bool straight(path p, int i);'
          returns `true' iff the segment of path `p' between node `i'
          and node `i+1' is straight.

    `bool piecewisestraight(path p)'
          returns `true' iff the path `p' is piecewise straight.

    `pair point(path p, int t);'
          If `p' is cyclic, return the coordinates of node `t' mod
          `length(p)'. Otherwise, return the coordinates of node `t',
          unless `t' < 0 (in which case `point(0)' is returned) or `t'
          > `length(p)' (in which case `point(length(p))' is returned).

    `pair point(path p, real t);'
          This returns the coordinates of the point between node
          `floor(t)' and `floor(t)+1' corresponding to the cubic spline
          parameter `t-floor(t)' (*note Bezier curves::). If `t' lies
          outside the range [0,`length(p)'], it is first reduced modulo
          `length(p)' in the case where `p' is cyclic or else converted
          to the corresponding endpoint of `p'.

    `pair dir(path p, int t, int sign=0, bool normalize=true);'
          If `sign < 0', return the direction (as a pair) of the
          incoming tangent to path `p' at node `t'; if `sign > 0',
          return the direction of the outgoing tangent. If `sign=0',
          the mean of these two directions is returned.

    `pair dir(path p, real t, bool normalize=true);'
          returns the direction of the tangent to path `p' at the point
          between node `floor(t)' and `floor(t)+1' corresponding to the
          cubic spline parameter `t-floor(t)' (*note Bezier curves::).

    `pair dir(path p)'
          returns dir(p,length(p)).

    `pair dir(path p, path g)'
          returns unit(dir(p)+dir(g)).

    `pair accel(path p, int t, int sign=0);'
          If `sign < 0', return the acceleration of the incoming path
          `p' at node `t'; if `sign > 0', return the acceleration of
          the outgoing path. If `sign=0', the mean of these two
          accelerations is returned.

    `pair accel(path p, real t);'
          returns the acceleration of the path `p' at the point `t'.

    `real radius(path p, real t);'
          returns the radius of curvature of the path `p' at the point
          `t'.

    `pair precontrol(path p, int t);'
          returns the precontrol point of `p' at node `t'.

    `pair precontrol(path p, real t);'
          returns the effective precontrol point of `p' at parameter
          `t'.

    `pair postcontrol(path p, int t);'
          returns the postcontrol point of `p' at node `t'.

    `pair postcontrol(path p, real t);'
          returns the effective postcontrol point  of `p' at parameter
          `t'.

    `real arclength(path p);'
          returns the length (in user coordinates) of the piecewise
          linear or cubic curve that path `p' represents.

    `real arctime(path p, real L);'
          returns the path "time", a real number between 0 and the
          length of the path in the sense of `point(path p, real t)',
          at which the cumulative arclength (measured from the
          beginning of the path) equals `L'.

    `real dirtime(path p, pair z);'
          returns the first "time", a real number between 0 and the
          length of the path in the sense of `point(path, real)', at
          which the tangent to the path has the direction of pair `z',
          or -1 if this never happens.

    `real reltime(path p, real l);'
          returns the time on path `p' at the relative fraction `l' of
          its arclength.

    `pair relpoint(path p, real l);'
          returns the point on path `p' at the relative fraction `l' of
          its arclength.

    `pair midpoint(path p);'
          returns the point on path `p' at half of its arclength.

    `path reverse(path p);'
          returns a path running backwards along `p'.

    `path subpath(path p, int a, int b);'
          returns the subpath of `p' running from node `a' to node `b'.
          If `a' < `b', the direction of the subpath is reversed.

    `path subpath(path p, real a, real b);'
          returns the subpath  of `p' running from path time `a' to path
          time `b', in the sense of `point(path, real)'. If `a' < `b',
          the direction of the subpath is reversed.

    `real[] intersect(path p, path q, real fuzz=-1);'
          If `p' and `q' have at least one intersection point, return a
          real array of length 2 containing the times representing the
          respective path times along `p' and `q', in the sense of
          `point(path, real)', for one such intersection point (as
          chosen by the algorithm described on page 137 of `The
          MetaFontbook').  The computations are performed to the
          absolute error specified by `fuzz', or if `fuzz < 0', to
          machine precision. If the paths do not intersect, return a
          real array of length 0.

    `real[][] intersections(path p, path q, real fuzz=-1);'
          Return all (unless there are infinitely many) intersection
          times of paths `p' and `q' as a sorted array of real arrays
          of length 2 (*note sort::). The computations are performed to
          the absolute error specified by `fuzz', or if `fuzz < 0', to
          machine precision.

    `real[] intersections(path p, explicit pair a, explicit pair b, real fuzz=-1);'
          Return all (unless there are infinitely many) intersection
          times of path `p' with the (infinite) line through points `a'
          and `b' as a sorted array. The intersections returned are
          guaranteed to be correct to within the absolute error
          specified by `fuzz', or if `fuzz < 0', to machine precision.

    `real[] times(path p, real x)'
          returns all intersection times of path `p' with the vertical
          line through `(x,0)'.

    `real[] times(path p, explicit pair z)'
          returns all intersection times of path `p' with the
          horizontal line through `(0,z.y)'.

    `real[] mintimes(path p)'
          returns an array of length 2 containing times at which path
          `p' reaches its minimal horizontal and vertical extents,
          respectively.

    `real[] maxtimes(path p)'
          returns an array of length 2 containing the times at which
          path `p' reaches its maximal horizontal and vertical extents,
          respectively.

    `pair intersectionpoint(path p, path q, real fuzz=-1);'
          returns the intersection point
          `point(p,intersect(p,q,fuzz)[0])'.

    `pair[] intersectionpoints(path p, path q, real fuzz=-1);'
          returns an array containing all intersection points of the
          paths `p' and `q'.

    `pair extension(pair P, pair Q, pair p, pair q);'
          returns the intersection point of the extensions of the line
          segments `P--Q' and `p--q', or if the lines are parallel,
          `(infinity,infinity)'.

    `slice cut(path p, path knife, int n);'
          returns the portions of path `p' before and after the `n'th
          intersection of `p' with path `knife' as a structure `slice'
          (if no intersection exist is found, the entire path is
          considered to be `before' the intersection): struct slice {
            path before,after;
          }
           The argument `n' is treated as modulo the number of
          intersections.

    `slice firstcut(path p, path knife);'
          equivalent to `cut(p,knife,0);' Note that `firstcut.after'
          plays the role of the `MetaPost cutbefore' command.

    `slice lastcut(path p, path knife);'
          equivalent to `cut(p,knife,-1);' Note that `lastcut.before'
          plays the role of the `MetaPost cutafter' command.

    `path buildcycle(... path[] p);'
          This returns the path surrounding a region bounded by a list
          of two or more consecutively intersecting paths, following
          the behaviour of the `MetaPost buildcycle' command.

    `pair min(path p);'
          returns the pair (left,bottom) for the path bounding box of
          path `p'.

    `pair max(path p);'
          returns the pair (right,top) for the path bounding box of
          path `p'.

    `int windingnumber(path p, pair z);'
          returns the winding number of the cyclic path `p' relative to
          the point `z'. The winding number is positive if the path
          encircles `z' in the counterclockwise direction. If `z' lies
          on `p' the constant `undefined' (defined to be the largest
          odd integer) is returned.

    `bool interior(int windingnumber, pen fillrule)'
          returns true if `windingnumber' corresponds to an interior
          point according to `fillrule'.

    `bool inside(path p, pair z, pen fillrule=currentpen);'
          returns `true' iff the point `z' lies inside or on the edge of
          the region bounded by the cyclic path `p' according to the
          fill rule `fillrule' (*note fillrule::).

    `int inside(path p, path q, pen fillrule=currentpen);'
          returns `1' if the cyclic path `p' strictly contains `q'
          according to the fill rule `fillrule' (*note fillrule::), `-1'
          if the cyclic path `q' strictly contains `p', and `0'
          otherwise.

    `pair inside(path p, pen fillrule=currentpen);'
          returns an arbitrary point strictly inside a cyclic path `p'
          according to the fill rule `fillrule' (*note fillrule::).

    `path[] strokepath(path g, pen p=currentpen);'
          returns the path array that `PostScript' would fill in
          drawing path `g' with pen `p'.


`guide'
     an unresolved cubic spline (list of cubic-spline nodes and control
     points).  The implicit initializer for a guide is `nullpath'; this
     is useful for building up a guide within a loop.

     A guide is similar to a path except that the computation of the
     cubic spline is deferred until drawing time (when it is resolved
     into a path); this allows two guides with free endpoint conditions
     to be joined together smoothly.  The solid curve in the following
     example is built up incrementally as a guide, but only resolved at
     drawing time; the dashed curve is incrementally resolved at each
     iteration, before the entire set of nodes (shown in red) is known:

     size(200);

     real mexican(real x) {return (1-8x^2)*exp(-(4x^2));}

     int n=30;
     real a=1.5;
     real width=2a/n;

     guide hat;
     path solved;

     for(int i=0; i < n; ++i) {
       real t=-a+i*width;
       pair z=(t,mexican(t));
       hat=hat..z;
       solved=solved..z;
     }

     draw(hat);
     dot(hat,red);
     draw(solved,dashed);



     We point out an efficiency distinction in the use of guides and
     paths: guide g;
     for(int i=0; i < 10; ++i)
       g=g--(i,i);
     path p=g;

     runs in linear time, whereas path p;
     for(int i=0; i < 10; ++i)
       p=p--(i,i);

     runs in quadratic time, as the entire path up to that point is
     copied at each step of the iteration.

     The following routines can be used to examine the individual
     elements of a guide without actually resolving the guide to a
     fixed path (except for internal cycles, which are resolved):

    `int size(guide g);'
          Analogous to `size(path p)'.

    `int length(guide g);'
          Analogous to `length(path p)'.

    `bool cyclic(path p);'
          Analogous to `cyclic(path p)'.

    `pair point(guide g, int t);'
          Analogous to `point(path p, int t)'.

    `guide reverse(guide g);'
          Analogous to `reverse(path p)'. If `g' is cyclic and also
          contains a secondary cycle, it is first solved to a path,
          then reversed. If `g' is not cyclic but contains an internal
          cycle, only the internal cycle is solved before reversal. If
          there are no internal cycles, the guide is reversed but not
          solved to a path.

    `pair[] dirSpecifier(guide g, int i);'
          This returns a pair array of length 2 containing the outgoing
          (in element 0) and incoming (in element 1) direction
          specifiers (or `(0,0)' if none specified) for the segment of
          guide `g' between nodes `i' and `i+1'.

    `pair[] controlSpecifier(guide g, int i);'
          If the segment of guide `g' between nodes `i' and `i+1' has
          explicit outgoing and incoming control points, they are
          returned as elements 0 and 1, respectively, of a two-element
          array. Otherwise, an empty array is returned.

    `tensionSpecifier tensionSpecifier(guide g, int i);'
          This returns the tension specifier for the segment of guide
          `g' between nodes `i' and `i+1'. The individual components of
          the `tensionSpecifier' type can be accessed as the virtual
          members `in', `out', and `atLeast'.

    `real[] curlSpecifier(guide g);'
          This returns an array containing the initial curl specifier
          (in element 0) and final curl specifier (in element 1) for
          guide `g'.


     As a technical detail we note that a direction specifier given to
     `nullpath' modifies the node on the other side: the guides a..{up}nullpath..b;
     c..nullpath{up}..d;
     e..{up}nullpath{down}..f;
      are respectively equivalent to a..nullpath..{up}b;
     c{up}..nullpath..d;
     e{down}..nullpath..{up}f;



File: asymptote.info,  Node: Pens,  Next: Transforms,  Prev: Paths and guides,  Up: Programming

6.3 Pens
========

In `Asymptote', pens provide a context for the four basic drawing
commands (*note Drawing commands::). They are used to specify the
following drawing attributes: color, line type, line width, line cap,
line join, fill rule, text alignment, font, font size, pattern,
overwrite mode, and calligraphic transforms on the pen nib. The default
pen used by the drawing routines is called `currentpen'. This provides
the same functionality as the `MetaPost' command `pickup'.  The
implicit initializer for pens is `defaultpen'.

   Pens may be added together with the nonassociative binary operator
`+'. This will add the colors of the two pens.  All other non-default
attributes of the rightmost pen will override those of the leftmost
pen. Thus, one can obtain a yellow dashed pen by saying
`dashed+red+green' or `red+green+dashed' or `red+dashed+green'. The
binary operator `*' can be used to scale the color of a pen by a real
number, until it saturates with one or more color components equal to 1.

   * Colors are specified using one of the following colorspaces: 
    `pen gray(real g);'
          This produces a grayscale color, where the intensity `g' lies
          in the interval [0,1], with 0.0 denoting black and 1.0
          denoting white.

    `pen rgb(real r, real g, real b);'
          This produces an RGB color, where each of the red, green, and
          blue intensities `r', `g', `b', lies in the interval [0,1].

    `pen cmyk(real c, real m, real y, real k);'
          This produces a CMYK color, where each of the cyan, magenta,
          yellow, and black intensities `c', `m', `y', `k', lies in the
          interval [0,1].

    `pen invisible;'
          This special pen writes in invisible ink, but adjusts the
          bounding box as if something had been drawn (like the
          `\phantom' command in TeX). The function `bool
          invisible(pen)' can be used to test whether a pen is
          invisible.


     The default color is `black'; this may be changed with the routine
     `defaultpen(pen)'. The function `colorspace(pen p)' returns the
     colorspace of pen `p' as a string (`"gray"', `"rgb"', `"cmyk"', or
     `""').

     The function `real[] colors(pen)' returns the color components of
     a pen.  The functions `pen gray(pen)', `pen rgb(pen)',  and `pen
     cmyk(pen)' return new pens obtained by converting their arguments
     to the respective color spaces.  The function
     `colorless(pen=currentpen)' returns a copy of its argument with
     the color attributes stripped (to avoid color mixing).

     A 6-character RGB hexidecimal string can be converted to a pen with
     the routine pen rgb(string s);
      A pen can be converted to a hexidecimal string with 

   * string hex(pen p);

     Various shades and mixtures of the grayscale primary colors
     `black' and `white', RGB primary colors `red', `green', and
     `blue', and RGB secondary colors `cyan', `magenta', and `yellow'
     are defined as named colors, along with the CMYK primary colors
     `Cyan', `Magenta', `Yellow', and `Black', in the module `plain':



     The standard 140 RGB `X11' colors can be imported with the command import x11colors;
      and the standard 68 CMYK TeX colors can be imported with the
     command import texcolors;
      Note that there is some overlap between these two standards and
     the definitions of some colors (e.g. `Green') actually disagree.

     `Asymptote' also comes with a `asycolors.sty' `LaTeX' package that
     defines to `LaTeX' CMYK versions of `Asymptote''s predefined
     colors, so that they can be used directly within `LaTeX' strings.
     Normally, such colors are passed to `LaTeX' via a pen argument;
     however, to change the color of only a portion of a string, say
     for a slide presentation, (*note slide::) it may be desirable to
     specify the color directly to `LaTeX'. This file can be passed to
     `LaTeX' with the `Asymptote' command usepackage("asycolors");

     The structure `hsv' defined in `plain_pens.asy' may be used to
     convert between HSV and RGB spaces, where the hue `h' is an angle
     in [0,360) and the saturation `s' and value `v' lie in `[0,1]': pen p=hsv(180,0.5,0.75);
     write(p);           // ([default], red=0.375, green=0.75, blue=0.75)
     hsv q=p;
     write(q.h,q.s,q.v); // 180     0.5     0.75

   * Line types are specified with the function `pen linetype(real[] a,
     real offset=0, bool scale=true, bool adjust=true)', where `a' is
     an array of real array numbers.  The optional parameter `offset'
     specifies where in the pattern to begin. The first number
     specifies how far (if `scale' is `true', in units of the pen line
     width; otherwise in `PostScript' units) to draw with the pen on,
     the second number specifies how far to draw with the pen off, and
     so on. If `adjust' is `true', these spacings are automatically
     adjusted by `Asymptote' to fit the arclength of the path. Here are
     the predefined line types: pen solid=linetype(new real[]);
     pen dotted=linetype(new real[] {0,4});
     pen dashed=linetype(new real[] {8,8});
     pen longdashed=linetype(new real[] {24,8});
     pen dashdotted=linetype(new real[] {8,8,0,8});
     pen longdashdotted=linetype(new real[] {24,8,0,8});
     pen Dotted=dotted+1.0;
     pen Dotted(pen p=currentpen) {return dotted+2*linewidth(p);}



     The default line type is `solid'; this may be changed with
     `defaultpen(pen)'.  The line type of a pen can be determined with
     the functions `real[] linetype(pen p=currentpen)', `real
     offset(pen p)', `bool scale(pen p)', and `bool adjust(pen p)'.

   * The pen line width is specified in `PostScript' units with `pen
     linewidth(real)'. The default line width is 0.5 bp; this value may
     be changed with `defaultpen(pen)'. The line width of a pen is
     returned by `real linewidth(pen p=currentpen)'.  For convenience,
     in the module `plain' we define static void defaultpen(real w) {defaultpen(linewidth(w));}
     static pen operator +(pen p, real w) {return p+linewidth(w);}
     static pen operator +(real w, pen p) {return linewidth(w)+p;}
      so that one may set the line width like this: defaultpen(2);
     pen p=red+0.5;

   * A pen with a specific `PostScript' line cap is returned on calling
     `linecap' with an integer argument: pen squarecap=linecap(0);
     pen roundcap=linecap(1);
     pen extendcap=linecap(2);

     The default line cap, `roundcap', may be changed with
     `defaultpen(pen)'. The line cap of a pen is returned by `int
     linecap(pen p=currentpen)'.

   * A pen with a specific `PostScript' join style is returned on
     calling `linejoin' with an integer argument: pen miterjoin=linejoin(0);
     pen roundjoin=linejoin(1);
     pen beveljoin=linejoin(2);

     The default join style, `roundjoin', may be changed with
     `defaultpen(pen)'.The join style of a pen is returned by `int
     linejoin(pen p=currentpen)'.

   * A pen with a specific `PostScript' miter limit is returned by
     calling `miterlimit(real)'.  The default miterlimit, `10.0', may
     be changed with `defaultpen(pen)'. The miter limit of a pen is
     returned by `real miterlimit(pen p=currentpen)'.

   * A pen with a specific `PostScript' fill rule is returned on
     calling `fillrule' with an integer argument: pen zerowinding=fillrule(0);
     pen evenodd=fillrule(1);

     The fill rule, which identifies the algorithm used to determine the
     insideness of a path or array of paths, only affects the `clip',
     `fill', and `inside' functions. For the `zerowinding' fill rule, a
     point `z' is outside the region bounded by a path if the number of
     upward intersections of the path with the horizontal line
     `z--z+infinity' minus the number of downward intersections is
     zero. For the `evenodd' fill rule, `z' is considered to be outside
     the region if the total number of such intersections is even.  The
     default fill rule, `zerowinding', may be changed with
     `defaultpen(pen)'. The fill rule of a pen is returned by `int
     fillrule(pen p=currentpen)'.

   * A pen with a specific text alignment setting is returned on
     calling `basealign' with an integer argument: pen nobasealign=basealign(0);
     pen basealign=basealign(1);

     The default setting, `nobasealign',which may be changed with
     `defaultpen(pen)', causes the label alignment routines to use the
     full label bounding box for alignment. In contrast, `basealign'
     requests that the TeX baseline be respected.  The base align
     setting of a pen is returned by `int basealigin(pen p=currentpen)'.

   * The font size is specified in TeX points (1 pt = 1/72.27 inches)
     with the function `pen fontsize(real size, real
     lineskip=1.2*size)'.  The default font size, 12pt, may be changed
     with `defaultpen(pen)'.  Nonstandard font sizes may require
     inserting import fontsize;
      at the beginning of the file (this requires the `fix-cm' package
     available from

          `http://www.ctan.org/tex-archive/help/Catalogue/entries/fix-cm'
     and included in recent `LaTeX' distributions). The font size and
     line skip of a pen can be examined with the routines `real
     fontsize(pen p=currentpen)' and `real lineskip(pen p=currentpen)',
     respectively.

   * A pen using a specific `LaTeX' `NFSS' font is returned by calling
     the function `pen font(string encoding, string family, string
     series, string shape)'. The default setting,
     `font("OT1","cmr","m","n")', corresponds to 12pt Computer Modern
     Roman; this may be changed with `defaultpen(pen)'.  The font
     setting of a pen is returned by `string font(pen p=currentpen)'.
     Support for standardized international characters is provided by
     the `unicode' package (*note unicode::).

     Alternatively, one may select a fixed-size TeX font (on which
     `fontsize' has no effect) like `"cmr12"' (12pt Computer Modern
     Roman) or `"pcrr"' (Courier) using the function `pen font(string
     name)'. An optional size argument can also be given to scale the
     font to the requested size: `pen font(string name, real size)'.

     A nonstandard font command can be generated with `pen
     fontcommand(string)'.

     A convenient interface to the following standard `PostScript'
     fonts is also provided: pen AvantGarde(string series="m", string shape="n");
     pen Bookman(string series="m", string shape="n");
     pen Courier(string series="m", string shape="n");
     pen Helvetica(string series="m", string shape="n");
     pen NewCenturySchoolBook(string series="m", string shape="n");
     pen Palatino(string series="m", string shape="n");
     pen TimesRoman(string series="m", string shape="n");
     pen ZapfChancery(string series="m", string shape="n");
     pen Symbol(string series="m", string shape="n");
     pen ZapfDingbats(string series="m", string shape="n");

   * The transparency of a pen can be changed with the command: pen opacity(real opacity=1, string blend="Compatible");
      The opacity can be varied from `0' (fully transparent) to the
     default value of `1' (opaque), and `blend' specifies one of the
     following foreground-background blending operations: "Compatible","Normal","Multiply","Screen","Overlay","SoftLight",
     "HardLight","ColorDodge","ColorBurn","Darken","Lighten","Difference",
     "Exclusion","Hue","Saturation","Color","Luminosity",
      as described in

     `http://partners.adobe.com/public/developer/en/pdf/PDFReference16.pdf'.
     Since `PostScript' does not support transparency, this feature is
     only effective with the `-f pdf' output format option; other
     formats can be produced from the resulting PDF file with the
     `ImageMagick' `convert' program.  Labels are always drawn with an
     `opacity' of 1.  A simple example of transparent filling is
     provided in the example file `transparency.asy'.

   * `PostScript' commands within a `picture' may be used to create a
     tiling pattern, identified by the string `name', for `fill' and
     `draw' operations by adding it to the global `PostScript' frame
     `currentpatterns', with optional left-bottom margin `lb' and
     right-top margin `rt'.  import patterns;
     void add(string name, picture pic, pair lb=0, pair rt=0);

     To `fill' or `draw' using pattern `name', use the pen
     `pattern("name")'. For example, rectangular tilings can be
     constructed using the routines `picture tile(real Hx=5mm, real
     Hy=0, pen p=currentpen, filltype filltype=NoFill)', `picture
     checker(real Hx=5mm, real Hy=0, pen p=currentpen)', and `picture
     brick(real Hx=5mm, real Hy=0, pen p=currentpen)' defined in
     `patterns.asy': size(0,90);
     import patterns;

     add("tile",tile());
     add("filledtilewithmargin",tile(6mm,4mm,red,Fill),(1mm,1mm),(1mm,1mm));
     add("checker",checker());
     add("brick",brick());

     real s=2.5;
     filldraw(unitcircle,pattern("tile"));
     filldraw(shift(s,0)*unitcircle,pattern("filledtilewithmargin"));
     filldraw(shift(2s,0)*unitcircle,pattern("checker"));
     filldraw(shift(3s,0)*unitcircle,pattern("brick"));



     Hatch patterns can be generated with the routines `picture
     hatch(real H=5mm, pair dir=NE, pen p=currentpen)', `picture
     crosshatch(real H=5mm, pen p=currentpen)': size(0,100);
     import patterns;

     add("hatch",hatch());
     add("hatchback",hatch(NW));
     add("crosshatch",crosshatch(3mm));

     real s=1.25;
     filldraw(unitsquare,pattern("hatch"));
     filldraw(shift(s,0)*unitsquare,pattern("hatchback"));
     filldraw(shift(2s,0)*unitsquare,pattern("crosshatch"));



     You may need to turn off aliasing in your `PostScript' viewer for
     patterns to appear correctly. Custom patterns can easily be
     constructed, following the examples in `patterns.asy'. The tiled
     pattern can even incorporate shading (*note gradient shading::),
     as illustrated in this example (not included in the manual because
     not all printers support `PostScript' 3): size(0,100);
     import patterns;

     real d=4mm;
     picture tiling;
     path square=scale(d)*unitsquare;
     axialshade(tiling,square,white,(0,0),black,(d,d));
     fill(tiling,shift(d,d)*square,blue);
     add("shadedtiling",tiling);

     filldraw(unitcircle,pattern("shadedtiling"));

      

   * One can specify a custom pen nib as an arbitrary polygonal path
     with `pen makepen(path)'; this path represents the mark to be
     drawn for paths containing a single point. This pen nib path can be
     recovered from a pen with `path nib(pen)'. Unlike in `MetaPost',
     the path need not be convex:

     size(200);
     pen convex=makepen(scale(10)*polygon(8))+grey;
     draw((1,0.4),convex);
     draw((0,0)---(1,1)..(2,0)--cycle,convex);

     pen nonconvex=scale(10)*
       makepen((0,0)--(0.25,-1)--(0.5,0.25)--(1,0)--(0.5,1.25)--cycle)+red;
     draw((0.5,-1.5),nonconvex);
     draw((0,-1.5)..(1,-0.5)..(2,-1.5),nonconvex);



     The value `nullpath' represents a circular pen nib (the default);
     an elliptical pen can be achieved simply by multiplying the pen by
     a transform: `yscale(2)*currentpen'.

   * One can prevent labels from overwriting one another by using the
     pen attribute `overwrite', which takes a single argument:

    `Allow'
          Allow labels to overwrite one another. This is the default
          behaviour (unless overridden with `defaultpen(pen)'.

    `Suppress'
          Suppress, with a warning, each label that would overwrite
          another label.

    `SuppressQuiet'
          Suppress, without warning, each label that would overwrite
          another label.

    `Move'
          Move a label that would overwrite another out of the way and
          issue a warning.  As this adjustment is during the final
          output phase (in `PostScript' coordinates) it could result in
          a larger figure than requested.

    `MoveQuiet'
          Move a label that would overwrite another out of the way,
          without warning.  As this adjustment is during the final
          output phase (in `PostScript' coordinates) it could result in
          a larger figure than requested.



   The routine `defaultpen()' returns the current default pen
attributes.  Calling the routine `resetdefaultpen()' resets all pen
default attributes to their initial values.


File: asymptote.info,  Node: Transforms,  Next: Frames and pictures,  Prev: Pens,  Up: Programming

6.4 Transforms
==============

`Asymptote' makes extensive use of affine transforms. A pair `(x,y)' is
transformed by the transform `t=(t.x,t.y,t.xx,t.xy,t.yx,t.yy)' to
`(x',y')', where
x' = t.x + t.xx * x + t.xy * y
y' = t.y + t.yx * x + t.yy * y
 This is equivalent to the `PostScript' transformation `[t.xx t.yx t.xy
t.yy t.x t.y]'.

   Transforms can be applied to pairs, guides, paths, pens, strings,
transforms, frames, and pictures by multiplication (via the binary
operator `*') on the left (*note circle:: for an example).  Transforms
can be composed with one another and inverted with the function
`transform inverse(transform t)'; they can also be raised to any
integer power with the `^' operator.

   The built-in transforms are:

`transform identity();'
     the identity transform;

`transform shift(pair z);'
     translates by the pair `z';

`transform shift(real x, real y);'
     translates by the pair `(x,y)';

`transform xscale(real x);'
     scales by `x' in the x direction;

`transform yscale(real y);'
     scales by `y' in the y direction;

`transform scale(real s);'
     scale by `s' in both x and y directions;

`transform scale(real x, real y);'
     scale by `x' in the x direction and by `y' in the y direction;

`transform slant(real s);'
     maps `(x,y)' -> `(x+s*y,y)';

`transform rotate(real angle, pair z=(0,0));'
     rotates by `angle' in degrees about `z';

`transform reflect(pair a, pair b);'
     reflects about the line `a--b'.

   The implicit initializer for transforms is `identity()'.  The
routines `shift(transform t)' and `shiftless(transform t)' return the
transforms `(t.x,t.y,0,0,0,0)' and `(0,0,t.xx,t.xy,t.yx,t.yy)'
respectively.


File: asymptote.info,  Node: Frames and pictures,  Next: Files,  Prev: Transforms,  Up: Programming

6.5 Frames and pictures
=======================

`frame'
     Frames are canvases for drawing in `PostScript' coordinates. While
     working with frames directly is occasionally necessary for
     constructing deferred drawing routines, pictures are usually more
     convenient to work with.  The implicit initializer for frames is
     `newframe'. The function `bool empty(frame f)' returns `true' only
     if the frame `f' is empty. A frame may be erased with the
     `erase(frame)' routine.  The functions `pair min(frame)' and `pair
     max(frame)' return the (left,bottom) and (right,top) coordinates
     of the frame bounding box, respectively. The contents of frame
     `src' may be appended to frame `dest' with the command void add(frame dest, frame src);
      or prepended with void prepend(frame dest, frame src);
      A frame obtained by aligning frame `f' in the direction `align',
     in a manner analogous to the `align' argument of `label' (*note
     label::), is returned by frame align(frame f, pair align);

     To draw or fill a box or ellipse around a label or frame and
     return the boundary as a path, use one of the predefined
     `envelope' routines path box(frame f, Label L="", real xmargin=0,
              real ymargin=xmargin, pen p=currentpen,
              filltype filltype=NoFill, bool above=true);
     path roundbox(frame f, Label L="", real xmargin=0,
                   real ymargin=xmargin, pen p=currentpen,
                   filltype filltype=NoFill, bool above=true);
     path ellipse(frame f, Label L="", real xmargin=0,
                  real ymargin=xmargin, pen p=currentpen,
                  filltype filltype=NoFill, bool above=true);

`picture'
     Pictures are high-level structures (*note Structures::) defined in
     the module `plain' that provide canvases for drawing in user
     coordinates.  The default picture is called `currentpicture'. A
     new picture can be created like this: picture pic;
      Anonymous pictures can be made by the expression `new picture'.

     The `size' routine specifies the dimensions of the desired picture:

     void size(picture pic=currentpicture, real x, real y=x,
               bool keepAspect=Aspect);

     If the `x' and `y' sizes are both 0, user coordinates will be
     interpreted as `PostScript' coordinates. In this case, the
     transform mapping `pic' to the final output frame is `identity()'.

     If exactly one of `x' or `y' is 0, no size restriction is imposed
     in that direction; it will be scaled the same as the other
     direction.

     If `keepAspect' is set to `Aspect' or `true', the picture will be
     scaled with its aspect ratio preserved such that the final width
     is no more than `x' and the final height is no more than `y'.

     If `keepAspect' is set to `IgnoreAspect' or `false', the picture
     will be scaled in both directions so that the final width is `x'
     and the height is `y'.

     To make the user coordinates of picture `pic' represent multiples
     of `x' units in the x direction and `y' units in the y direction,
     use void unitsize(picture pic=currentpicture, real x, real y=x);
      When nonzero, these `x' and `y' values override the corresponding
     size parameters of picture `pic'.

     The routine void size(picture pic=currentpicture, real xsize, real ysize,
               pair min, pair max);
      forces the final picture scaling to map the user coordinates
     `box(min,max)' to a region of width `xsize' and height `ysize'
     (when these parameters are nonzero).

     Alternatively, calling the routine transform fixedscaling(picture pic=currentpicture, pair min,
                            pair max, pen p=nullpen, bool warn=false);
      will cause picture `pic' to use a fixed scaling to map user
     coordinates in `box(min,max)' to the (already specified) picture
     size, taking account of the width of pen `p'. A warning will be
     issued if the final picture exceeds the specified size.

     A picture `pic' can be fit to a frame and output to a file
     `prefix'.`format' using image format `format' by calling the
     `shipout' function: void shipout(string prefix=defaultfilename, picture pic=currentpicture,
                  orientation orientation=orientation,
                  string format="", bool wait=false, bool view=true,
                  string options="", string script="",
                  light light=currentlight, projection P=currentprojection)
      The default output format, `PostScript', may be changed with the
     `-f' or `-tex' command-line options.  The `options', `script', and
     `projection' parameters are only relevant for 3D pictures. If
     `defaultfilename' is an empty string, the prefix `outprefix()'
     will be used.

     A `shipout()' command is added implicitly at file exit if no
     previous `shipout' commands have been executed.  The default page
     orientation is `Portrait'; this may be modified by changing the
     variable `orientation'. To output in landscape mode, simply set
     the variable `orientation=Landscape' or issue the command shipout(Landscape);

     To rotate the page by -90 degrees, use the orientation `Seascape'.  The
     orientation `UpsideDown' rotates the page by 180 degrees.

     A picture `pic' can be explicitly fit to a frame by calling frame pic.fit(real xsize=pic.xsize, real ysize=pic.ysize,
                   bool keepAspect=pic.keepAspect);
      The default size and aspect ratio settings are those given to the
     `size' command (which default to `0', `0', and `true',
     respectively).  The transformation that would currently be used to
     fit a picture `pic' to a frame is returned by the member function
     `pic.calculateTransform()'.

     In certain cases (e.g. 2D graphs) where only an approximate size
     estimate for `pic' is available, the picture fitting routine frame pic.scale(real xsize=this.xsize, real ysize=this.ysize,
                     bool keepAspect=this.keepAspect);
      (which scales the resulting frame, including labels and fixed-size
     objects) will enforce perfect compliance with the requested size
     specification, but should not normally be required.

     To draw a bounding box with margins around a picture, fit the
     picture to a frame using the function frame bbox(picture pic=currentpicture, real xmargin=0,
                real ymargin=xmargin, pen p=currentpen,
                filltype filltype=NoFill);
      Here `filltype' specifies one of the following fill types:
    `FillDraw'
          Fill the interior and draw the boundary.

    `FillDraw(real xmargin=0, real ymargin=xmargin, pen fillpen=nullpen,'
          `pen drawpen=nullpen)' If `fillpen' is `nullpen', fill with
          the drawing pen; otherwise fill with pen `fillpen'.  If
          `drawpen' is `nullpen', draw the boundary with `fillpen';
          otherwise with `drawpen'. An optional margin of `xmargin' and
          `ymargin' can be specified.

    `Fill'
          Fill the interior.

    `Fill(real xmargin=0, real ymargin=xmargin, pen p=nullpen)'
          If `p' is `nullpen', fill with the drawing pen; otherwise
          fill with pen `p'. An optional margin of `xmargin' and
          `ymargin' can be specified.

    `NoFill'
          Do not fill.

    `Draw'
          Draw only the boundary.

    `Draw(real xmargin=0, real ymargin=xmargin, pen p=nullpen)'
          If `p' is `nullpen', draw the boundary with the drawing pen;
          otherwise draw with pen `p'. An optional margin of `xmargin'
          and `ymargin' can be specified.

    `UnFill'
          Clip the region.

    `UnFill(real xmargin=0, real ymargin=xmargin)'
          Clip the region and surrounding margins `xmargin' and
          `ymargin'.

    `RadialShade(pen penc, pen penr)'
          Fill varying radially from `penc' at the center of the
          bounding box to `penr' at the edge.

    `RadialShadeDraw(real xmargin=0, real ymargin=xmargin, pen penc,'
          `pen penr, pen drawpen=nullpen)' Fill with RadialShade and
          draw the boundary.


     For example, to draw a bounding box around a picture with a 0.25 cm
     margin and output the resulting frame, use the command: shipout(bbox(0.25cm));
      A `picture' may be fit to a frame with the background color pen
     `p', using the function `bbox(p,Fill)'.

     The functions pair min(picture pic, user=false);
     pair max(picture pic, user=false);
     pair size(picture pic, user=false);
      calculate the bounds that picture `pic' would have if it were
     currently fit to a frame using its default size specification.  If
     `user' is `false' the returned value is in `PostScript'
     coordinates, otherwise it is in user coordinates.

     The function pair point(picture pic=currentpicture, pair dir, bool user=true);
      is a convenient way of determining the point on the bounding box
     of `pic' in the direction `dir' relative to its center, ignoring
     the contributions from fixed-size objects (such as labels and
     arrowheads).  If `user' is `true' the returned value is in user
     coordinates, otherwise it is in `PostScript' coordinates.

     The function pair truepoint(picture pic=currentpicture, pair dir, bool user=true);
      is identical to `point', except that it also accounts for
     fixed-size objects, using the scaling transform that picture `pic'
     would have if currently fit to a frame using its default size
     specification. If `user' is `true' the returned value is in user
     coordinates, otherwise it is in `PostScript' coordinates.

     Sometimes it is useful to draw objects on separate pictures and
     add one picture to another using the `add' function: void add(picture src, bool group=true,
              filltype filltype=NoFill, bool above=true);
     void add(picture dest, picture src, bool group=true,
              filltype filltype=NoFill, bool above=true);
      The first example adds `src' to `currentpicture'; the second one
     adds `src' to `dest'.  The `group' option specifies whether or not
     the graphical user interface `xasy' should treat all of the
     elements of `src' as a single entity (*note GUI::), `filltype'
     requests optional background filling or clipping, and `above'
     specifies whether to add `src' above or below existing objects.

     There are also routines to add a picture or frame `src' specified
     in postscript coordinates to another picture `dest' (or
     `currentpicture') about the user coordinate `position': void add(picture src, pair position, bool group=true,
              filltype filltype=NoFill, bool above=true);
     void add(picture dest, picture src, pair position,
              bool group=true, filltype filltype=NoFill, bool above=true);
     void add(picture dest=currentpicture, frame src, pair position=0,
              bool group=true, filltype filltype=NoFill, bool above=true);
     void add(picture dest=currentpicture, frame src, pair position,
              pair align, bool group=true, filltype filltype=NoFill,
              bool above=true);

     The optional `align' argument in the last form specifies a
     direction to use for aligning the frame, in a manner analogous to
     the `align' argument of `label' (*note label::). However, one key
     difference is that when `align' is not specified, labels are
     centered, whereas frames and pictures are aligned so that their
     origin is at `position'. Illustrations of frame alignment can be
     found in the examples *note errorbars:: and *note image::. If you
     want to align three or more subpictures, group them two at a time:

     picture pic1;
     real size=50;
     size(pic1,size);
     fill(pic1,(0,0)--(50,100)--(100,0)--cycle,red);

     picture pic2;
     size(pic2,size);
     fill(pic2,unitcircle,green);

     picture pic3;
     size(pic3,size);
     fill(pic3,unitsquare,blue);

     picture pic;
     add(pic,pic1.fit(),(0,0),N);
     add(pic,pic2.fit(),(0,0),10S);

     add(pic.fit(),(0,0),N);
     add(pic3.fit(),(0,0),10S);



     Alternatively, one can use `attach' to automatically increase the
     size of picture `dest' to accommodate adding a frame `src' about
     the user coordinate `position': void attach(picture dest=currentpicture, frame src,
                      pair position=0, bool group=true,
                      filltype filltype=NoFill, bool above=true);
     void attach(picture dest=currentpicture, frame src,
                      pair position, pair align, bool group=true,
                      filltype filltype=NoFill, bool above=true);

     To erase the contents of a picture (but not the size
     specification), use the function void erase(picture pic=currentpicture);

     To save a snapshot of `currentpicture', `currentpen', and
     `currentprojection', use the function `save()'.

     To restore a snapshot of `currentpicture', `currentpen', and
     `currentprojection', use the function `restore()'.

     Many further examples of picture and frame operations are provided
     in the base module `plain'.

     It is possible to insert verbatim `PostScript' commands in a
     picture with one of the routines void postscript(picture pic=currentpicture, string s);
     void postscript(picture pic=currentpicture, string s, pair min,
                     pair max)
      Here `min' and `max' can be used to specify explicit bounds
     associated with the resulting `PostScript' code.

     Verbatim TeX commands can be inserted in the intermediate `LaTeX'
     output file with one of the functions void tex(picture pic=currentpicture, string s);
     void tex(picture pic=currentpicture, string s, pair min, pair max)
      Here `min' and `max' can be used to specify explicit bounds
     associated with the resulting TeX code.

     To issue a global TeX command (such as a TeX macro definition) in
     the TeX preamble (valid for the remainder of the top-level module)
     use: void texpreamble(string s);

     The TeX environment can be reset to its initial state, clearing all
     macro definitions, with the function void texreset();

     The routine void usepackage(string s, string options="");
      provides a convenient abbreviation for texpreamble("\usepackage["+options+"]{"+s+"}");
      that can be used for importing `LaTeX' packages.



File: asymptote.info,  Node: Files,  Next: Variable initializers,  Prev: Frames and pictures,  Up: Programming

6.6 Files
=========

`Asymptote' can read and write text files (including comma-separated
value) files and portable XDR (External Data Representation) binary
files.

   An input file must first be opened with `input(string name, bool
check=true, string comment="#")'; reading is then done by assignment: 
file fin=input("test.txt");
real a=fin;

   If the optional boolean argument `check' is `false', no check will
be made that the file exists. If the file does not exist or is not
readable, the function `bool error(file)' will return `true'.  The
first character of the string `comment' specifies a comment character.
If this character is encountered in a data file, the remainder of the
line is ignored. When reading strings, a comment character followed
immediately by another comment character is treated as a single literal
comment character.

   One can change the current working directory for read operations to
the contents of the string `s' with the function `string cd(string s)',
which returns the new working directory. If `string s' is empty, the
path is reset to the value it had at program startup.

   When reading pairs, the enclosing parenthesis are optional.  Strings
are also read by assignment, by reading characters up to but not
including a newline. In addition, `Asymptote' provides the function
`string getc(file)' to read the next character (treating the comment
character as an ordinary character) and return it as a string.

   A file named `name' can be open for output with
file output(string name, bool update=false);
 If `update=false', any existing data in the file will be erased and
only write operations can be used on the file.  If `update=true', any
existing data will be preserved, the position will be set to the
end-of-file, and both reading and writing operations will be enabled.
For security reasons, writing to files in directories other than the
current directory is allowed only if the `-globalwrite' (or `-nosafe')
command-line option is specified.

   There are two special files: `stdin', which reads from the keyboard,
and `stdout', which writes to the terminal. The implicit initializer
for files is `null'.

   Data of a built-in type `T' can be written to an output file by
calling one of the functions 
write(string s="", T x, suffix suffix=endl ... T[]);
write(file file, string s="", T x, suffix suffix=none ... T[]);
write(file file=stdout, string s="", explicit T[] x ... T[][]);
write(file file=stdout, T[][]);
write(file file=stdout, T[][][]);
write(suffix suffix=endl);
write(file file, suffix suffix=none);
 If `file' is not specified, `stdout' is used and terminated by default
with a newline. If specified, the optional identifying string `s' is
written before the data `x'.  An arbitrary number of data values may be
listed when writing scalars or one-dimensional arrays. The `suffix' may
be one of the following: `none' (do nothing), `flush' (output buffered
data), `endl' (terminate with a newline and flush), `newl' (terminate
with a newline), `tab' (terminate with a tab), or `comma' (terminate
with a comma). Here are some simple examples of data output:
file fout=output("test.txt");
write(fout,1);                  // Writes "1"
write(fout);                    // Writes a new line
write(fout,"List: ",1,2,3);     // Writes "List: 1     2     3"
 A file may also be opened with `xinput' or `xoutput', instead of
`input' or `output', to read or write double precision (64-bit) reals
and single precision (32-bit) integers in Sun Microsystem's XDR
(External Data Representation) portable binary format (available on all
`UNIX' platforms).  Alternatively, a file may also be opened with
`binput' or `boutput' to read or write double precision reals and single
precision integers in the native (nonportable) machine binary format.
The virtual member functions `file singlereal(bool b=true)' and `file
singleint(bool b=true)' be used to change the precision of real and
integer I/O operations, respectively, for an XDR or binary file `f'.
Similarly, the function `file signedint(bool b=true)' can be used to
modify the signedness of integer reads and writes for an XDR or binary
file `f'.

   The virtual members `name', `mode', `singlereal', `singleint', and
`signedint' may be used to query the respective parameters for a given
file.

   One can test a file for end-of-file with the boolean function
`eof(file)', end-of-line with `eol(file)', and for I/O errors with
`error(file)'.  One can flush the output buffers with `flush(file)',
clear a previous I/O error with `clear(file)', and close the file with
`close(file)'. The function `int precision(file file=stdout, int
digits=0)' sets the number of digits of output precision for `file' to
`digits', provided `digits' is nonzero, and returns the previous
precision setting. The function `int tell(file)' returns the current
position in a file relative to the beginning.  The routine `seek(file
file, int pos)' can be used to change this position, where a negative
value for the position `pos' is interpreted as relative to the
end-of-file. For example, one can rewind a file `file' with the command
`seek(file,0)' and position to the final character in the file with
`seek(file,-1)'.  The command `seekeof(file)' sets the position to the
end of the file.

   Assigning `settings.scroll=n' for a positive integer `n' requests a
pause after every `n' output lines to `stdout'.  One may then press
`Enter' to continue to the next `n' output lines, `s' followed by
`Enter' to scroll without further interruption, or `q' followed by
`Enter' to quit the current output operation. If `n' is negative, the
output scrolls a page at a time (i.e. by one less than the current
number of display lines). The default value, `settings.scroll=0',
specifies continuous scrolling.

   The routines 
string getstring(string name="", string default="", string prompt="",
                 bool store=true);
int getint(string name="", int default=0, string prompt="",
           bool store=true);
real getreal(string name="", real default=0, string prompt="",
             bool store=true);
pair getpair(string name="", pair default=0, string prompt="",
             bool store=true);
triple gettriple(string name="", triple default=(0,0,0), string prompt="",
                 bool store=true);
 defined in the module `plain' may be used to prompt for a value from
`stdin' using the GNU `readline' library.  If `store=true', the history
of values for `name' is stored in the file `".asy_history_"+name'
(*note history::). The most recent value in the history will be used to
provide a default value for subsequent runs.  The default value
(initially `default') is displayed after `prompt'. These functions are
based on the internal routines 
string readline(string prompt="", string name="", bool tabcompletion=false);
void saveline(string name, string value, bool store=true);
 Here, `readline' prompts the user with the default value formatted
according to `prompt', while `saveline' is used to save the string
`value' in a local history named `name', optionally storing the local
history in a file `".asy_history_"+name'.

   The routine `history(string name, int n=1)' can be used to look up
the `n' most recent values (or all values up to `historylines' if
`n=0') entered for string `name'.  The routine `history(int n=0)'
returns the interactive history.  For example,
write(output("transcript.asy"),history());
 outputs the interactive history to the file `transcript.asy'.

   The function `int delete(string s)' deletes the file named by the
string `s'. Unless the `-globalwrite' (or `-nosafe') option is enabled,
the file must reside in the current directory.  The function `int
rename(string from, string to)' may be used to rename file `from' to
file `to'.  Unless the `-globalwrite' (or `-nosafe') option is enabled,
this operation is restricted to the current directory.  The functions
int convert(string args="", string file="", string format="");
int animate(string args="", string file="", string format="");
 call the `ImageMagick' commands `convert' and `animate', respectively,
with the arguments `args' and the file name constructed from the
strings `file' and `format'.  If the setting `safe' is false, then the
functions `int system(string s)' and `int system(string[] s)' can be
used to call the arbitrary system command `s'.


File: asymptote.info,  Node: Variable initializers,  Next: Structures,  Prev: Files,  Up: Programming

6.7 Variable initializers
=========================

A variable can be assigned a value when it is declared, as in `int
x=3;' where the variable `x' is assigned the value `3'.  As well as
literal constants such as `3', arbitary expressions can be used as
initializers, as in `real x=2*sin(pi/2);'.

   A variable is not added to the namespace until after the initializer
is evaluated, so for example, in
int x=2;
int x=5*x;
 the `x' in the initializer on the second line refers to the variable
`x' declared on the first line.  The second line, then, declares a
variable `x' shadowing the original `x' and initializes it to the value
`10'.

   Variables of most types can be declared without an explicit
initializer and they will be initialized by the default initializer of
that type:

   * Variables of the numeric types `int', `real', and `pair' are all
     initialized to zero; variables of type `triple' are initialized to
     `O=(0,0,0)'.

   * `boolean' variables are initialized to `false'.

   * `string' variables are initialized to the empty string.

   * `transform' variables are initialized to the identity
     transformation.

   * `path' and `guide' variables are initialized to `nullpath'.

   * `pen' variables are initialized to the default pen.

   * `frame' and `picture' variables are initialized to empty frames
     and pictures, respectively.

   * `file' variables are initialized to `null'.

   The default initializers for user-defined array, structure, and
function types are explained in their respective sections.  Some types,
such as `code', do not have default initializers.  When a variable of
such a type is introduced, the user must initialize it by explicitly
giving it a value.

   The default initializer for any type `T' can be redeclared by
defining the function `T operator init()'.  For instance, `int'
variables are usually initialized to zero, but in
int operator init() {
  return 3;
}
int y;

the variable `y' is initialized to `3'.  This example was given for
illustrative purposes; redeclaring the initializers of built-in types
is not recommended. Typically, `operator init' is used to define
sensible defaults for user-defined types.

   The special type `var' may be used to infer the type of a variable
from its initializer.  If the initializer is an expression of a unique
type, then the variable will be defined with that type.  For instance,
var x=5;
var y=4.3;
var reddash=red+dashed;
 is equivalent to
int x=5;
real y=4.3;
pen reddash=red+dashed;


File: asymptote.info,  Node: Structures,  Next: Operators,  Prev: Variable initializers,  Up: Programming

6.8 Structures
==============

Users may also define their own data types as structures, along with
user-defined operators, much as in C++. By default, structure members
are `public' (may be read and modified anywhere in the code), but may be
optionally declared `restricted' (readable anywhere but writeable only
inside the structure where they are defined) or `private' (readable and
writable only inside the structure). In a structure definition, the
keyword `this' can be used as an expression to refer to the enclosing
structure. Any code at the top-level scope within the structure is
executed on initialization.

   Variables hold references to structures.  That is, in the example:
struct T {
  int x;
}

T foo=new T;
T bar=foo;
bar.x=5;

   The variable `foo' holds a reference to an instance of the structure
`T'.  When `bar' is assigned the value of `foo', it too now holds a
reference to the same instance as `foo' does.  The assignment `bar.x=5'
changes the value of the field `x' in that instance, so that `foo.x'
will also be equal to `5'.

   The expression `new T' creates a new instance of the structure `T'
and returns a reference to that instance.  In creating the new
instance, any code in the body of the record definition is executed.
For example:
int Tcount=0;
struct T {
  int x;
  ++Tcount;
}

T foo=new T;

   Here, the expression `new T' will produce a new instance of the
class, but will also cause `Tcount' to be incremented, so that it keeps
track of the number of instances produced.

   The expression `null' can be cast to any structure type to yield a
null reference, a reference that does not actually refer to any
instance of the structure.  Trying to use a field of a null reference
will cause an error.

   The function `bool alias(T,T)' checks to see if two structure
references refer to the same instance of the structure (or both to
`null').  For example, in the example code at the start of the section,
`alias(foo,bar)' would return true, but `alias(foo,new T)' would return
false, as `new T' creates a new instance of the structure `T'.  The
boolean operators `==' and `!=' are by default equivalent to `alias' and
`!alias' respectively, but may be overwritten for a particular type
(for example, to do a deep comparison).

   After the definition of a structure `T', a variable of type `T' is
initialized to a new instance (`new T') by default.  During the
definition of the structure, however, variables of type `T' are
initialized to `null' by default. This special behaviour is to avoid
infinite recursion of creating new instances in code such as
struct tree {
  int value;
  tree left;
  tree right;
}

   Here is a simple example that illustrates the use of structures:
struct S {
  real a=1;
  real f(real a) {return a+this.a;}
}

S s;                            // Initializes s with new S;

write(s.f(2));                  // Outputs 3

S operator + (S s1, S s2)
{
  S result;
  result.a=s1.a+s2.a;
  return result;
}

write((s+s).f(0));              // Outputs 2

   It is often convenient to have functions that construct new
instances of a structure.  Say we have a `Person' structure:
struct Person {
  string firstname;
  string lastname;
}

Person joe=new Person;
joe.firstname="Joe";
joe.lastname="Jones";
 Creating a new Person is a chore; it takes three lines to create a new
instance and to initialize its fields (that's still considerably less
effort than creating a new person in real life, though).

   We can reduce the work by defining a constructor function
`Person(string,string)':
struct Person {
  string firstname;
  string lastname;

  static Person Person(string firstname, string lastname) {
    Person p=new Person;
    p.firstname=firstname;
    p.lastname=lastname;
    return p;
  }
}

Person joe=Person.Person("Joe", "Jones");

   While it is now easier than before to create a new instance, we still
have to refer to the constructor by the qualified name `Person.Person'.
If we add the line
from Person unravel Person;
 immediately after the structure definition, then the constructor can
be used without qualification: `Person joe=Person("Joe", "Jones");'.

   The constructor is now easy to use, but it is quite a hassle to
define.  If you write a lot of constructors, you will find that you are
repeating a lot of code in each of them.  Fortunately, your friendly
neighbourhood Asymptote developers have devised a way to automate much
of the process.

   If, in the body of a structure, Asymptote encounters the definition
of a function of the form `void operator init(ARGS)',  it implicitly
defines a constructor function of the arguments `ARGS' that uses the
`void operator init' function to initialize a new instance of the
structure.  That is, it essentially defines the following constructor
(assuming the structure is called `Foo'):

     static Foo Foo(ARGS) {
       Foo instance=new Foo;
       instance.operator init(ARGS);
       return instance;
     }

   This constructor is also implicitly copied to the enclosing scope
after the end of the structure definition, so that it can used
subsequently without qualifying it by the structure name.  Our `Person'
example can thus be implemented as:
struct Person {
  string firstname;
  string lastname;

  void operator init(string firstname, string lastname) {
    this.firstname=firstname;
    this.lastname=lastname;
  }
}

Person joe=Person("Joe", "Jones");

   The use of `operator init' to implicitly define constructors should
not be confused with its use to define default values for variables
(*note Variable initializers::).  Indeed, in the first case, the return
type of the `operator init' must be `void' while in the second, it must
be the (non-`void') type of the variable.

   The function `cputime()' returns a structure `cputime' with
cumulative CPU times broken down into the fields `parent.user',
`parent.system', `child.user', and `child.system'. For convenience, the
incremental fields `change.user' and `change.system' indicate the
change in the corresponding total parent and child CPU times since the
last call to `cputime()'. The function
void write(file file=stdout, string s="", cputime c,
           string format=cputimeformat, suffix suffix=none);
 displays the incremental user cputime followed by "u", the incremental
system cputime followed by "s", the total user cputime followed by "U",
and the total system cputime followed by "S".

   Much like in C++, casting (*note Casts::) provides for an elegant
implementation of structure inheritance, including virtual functions:
struct parent {
  real x;
  void operator init(int x) {this.x=x;}
  void virtual(int) {write(0);}
  void f() {virtual(1);}
}

void write(parent p) {write(p.x);}

struct child {
  parent parent;
  real y=3;
  void operator init(int x) {parent.operator init(x);}
  void virtual(int x) {write(x);}
  parent.virtual=virtual;
  void f()=parent.f;
}

parent operator cast(child child) {return child.parent;}

parent p=parent(1);
child c=child(2);

write(c);                       // Outputs 2;

p.f();                          // Outputs 0;
c.f();                          // Outputs 1;

write(c.parent.x);              // Outputs 2;
write(c.y);                     // Outputs 3;

   For further examples of structures, see `Legend' and `picture' in
the `Asymptote' base module `plain'.


File: asymptote.info,  Node: Operators,  Next: Implicit scaling,  Prev: Structures,  Up: Programming

6.9 Operators
=============

* Menu:

* Arithmetic & logical::        Basic mathematical operators
* Self & prefix operators::     Increment and decrement
* User-defined operators::      Overloading operators


File: asymptote.info,  Node: Arithmetic & logical,  Next: Self & prefix operators,  Up: Operators

6.9.1 Arithmetic & logical operators
------------------------------------

`Asymptote' uses the standard binary arithmetic operators.  However,
when one integer is divided by another, both arguments are converted to
real values before dividing and a real quotient is returned (since this
is usually what is intended). The function `int quotient(int x, int y)'
returns the greatest integer less than or equal to `x/y'. In all other
cases both operands are promoted to the same type, which will also be
the type of the result:
`+'
     addition 

`-'
     subtraction 

`*'
     multiplication 

`/'
     division 

`%'
     modulo; the result always has the same sign as the divisor.  In
     particular, this makes `q*quotient(p,q)+p%q == p' for all integers
     `p' and nonzero integers `q'.  

`^'
     power; if the exponent (second argument) is an int, recursive
     multiplication is used; otherwise, logarithms and exponentials are
     used (`**' is a synonym for `^').


   The usual boolean operators are also defined:
`=='
     equals 

`!='
     not equals 

`<'
     less than 

`<='
     less than or equals 

`>='
     greater than or equals 

`>'
     greater than 

`&&'
     and (with conditional evaluation of right-hand argument) 

`&'
     and 

`||'
     or (with conditional evaluation of right-hand argument) 

`|'
     or 

`^'
     xor 

`!'
     not

   `Asymptote' also supports the C-like conditional syntax: 
bool positive=(pi >= 0) ? true : false;

   The function `T interp(T a, T b, real t)' returns `(1-t)*a+t*b' for
nonintegral built-in arithmetic types `T'. If `a' and `b' are pens,
they are first promoted to the same color space.

   `Asymptote' also defines bitwise functions `int AND(int,int)', `int
OR(int,int)', `int XOR(int,int)', `int NOT(int)', `int CLZ(int)' (count
leading zeros), and `int CTZ(int)' (count trailing zeros).


File: asymptote.info,  Node: Self & prefix operators,  Next: User-defined operators,  Prev: Arithmetic & logical,  Up: Operators

6.9.2 Self & prefix operators
-----------------------------

As in C, each of the arithmetic operators `+', `-', `*', `/', `%', and
`^' can be used as a self operator.  The prefix operators `++'
(increment by one) and `--' (decrement by one) are also defined.  For
example,
int i=1;
i += 2;
int j=++i;

is equivalent to the code
int i=1;
i=i+2;
int j=i=i+1;

   However, postfix operators like `i++' and `i--' are not defined
(because of the inherent ambiguities that would arise with the `--'
path-joining operator). In the rare instances where `i++' and `i--' are
really needed, one can substitute the expressions `(++i-1)' and
`(--i+1)', respectively.


File: asymptote.info,  Node: User-defined operators,  Prev: Self & prefix operators,  Up: Operators

6.9.3 User-defined operators
----------------------------

The following symbols may be used with `operator' to define or redefine
operators on structures and built-in types:
- + * / % ^ ! < > == != <= >= & | ^^ .. :: -- --- ++
<< >> $ $$ @ @@
 The operators on the second line have precedence one higher than the
boolean operators `<', `>', `<=', and `>='.

   Guide operators like `..' may be overloaded, say, to write a user
function that produces a new guide from a given guide:
guide dots(... guide[] g)=operator ..;

guide operator ..(... guide[] g) {
  guide G;
  if(g.length > 0) {
    write(g[0]);
    G=g[0];
  }
  for(int i=1; i < g.length; ++i) {
    write(g[i]);
    write();
    G=dots(G,g[i]);
  }
  return G;
}

guide g=(0,0){up}..{SW}(100,100){NE}..{curl 3}(50,50)..(10,10);
write("g=",g);


File: asymptote.info,  Node: Implicit scaling,  Next: Functions,  Prev: Operators,  Up: Programming

6.10 Implicit scaling
=====================

If a numeric literal is in front of certain types of expressions, then
the two are multiplied:
int x=2;
real y=2.0;
real cm=72/2.540005;

write(3x);
write(2.5x);
write(3y);
write(-1.602e-19 y);
write(0.5(x,y));
write(2x^2);
write(3x+2y);
write(3(x+2y));
write(3sin(x));
write(3(sin(x))^2);
write(10cm);

   This produces the output
6
5
6
-3.204e-19
(1,1)
8
10
18
2.72789228047704
2.48046543129542
283.464008929116


File: asymptote.info,  Node: Functions,  Next: Arrays,  Prev: Implicit scaling,  Up: Programming

6.11 Functions
==============

`Asymptote' functions are treated as variables with a signature
(non-function variables have null signatures). Variables with the same
name are allowed, so long as they have distinct signatures.

   Functions arguments are passed by value. To pass an argument by
reference, simply enclose it in a structure (*note Structures::).

   Here are some significant features of `Asymptote' functions:

  1. Variables with signatures (functions) and without signatures
     (nonfunction variables) are distinct: int x, x();
     x=5;
     x=new int() {return 17;};
     x=x();              // calls x() and puts the result, 17, in the scalar x

  2. Traditional function definitions are allowed: int sqr(int x)
     {
       return x*x;
     }
     sqr=null;           // but the function is still just a variable.

  3. Casting can be used to resolve ambiguities: int a, a(), b, b(); // Valid: creates four variables.
     a=b;                // Invalid: assignment is ambiguous.
     a=(int) b;          // Valid: resolves ambiguity.
     (int) (a=b);        // Valid: resolves ambiguity.
     (int) a=b;          // Invalid: cast expressions cannot be L-values.

     int c();
     c=a;                // Valid: only one possible assignment.

  4. Anonymous (so-called "high-order") functions are also allowed: typedef int intop(int);
     intop adder(int m)
     {
       return new int(int n) {return m+n;};
     }
     intop addby7=adder(7);
     write(addby7(1));   // Writes 8.

  5. One may redefine a function `f', even for calls to `f' in
     previously declared functions, by assigning another (anonymous or
     named) function to it. However, if `f' is overloaded by a new
     function definition, previous calls will still access the original
     version of `f', as illustrated in this example: void f() {
       write("hi");
     }

     void g() {
       f();
     }

     g(); // writes "hi"

     f=new void() {write("bye");};

     g(); // writes "bye"

     void f() {write("overloaded");};

     f(); // writes "overloaded"
     g(); // writes "bye"

  6. Anonymous functions can be used to redefine a function variable
     that has been declared (and implicitly initialized to the null
     function) but not yet explicitly defined: void f(bool b);

     void g(bool b) {
       if(b) f(b);
       else write(b);
     }

     f=new void(bool b) {
       write(b);
       g(false);
     };

     g(true); // Writes true, then writes false.


   `Asymptote' is the only language we know of that treats functions as
variables, but allows overloading by distinguishing variables based on
their signatures.

   Functions are allowed to call themselves recursively. As in C++,
infinite nested recursion will generate a stack overflow (reported as a
segmentation fault, unless a fully working version of the GNU library
`libsigsegv' (e.g. 2.4 or later) is installed at configuration time).

* Menu:

* Default arguments::           Default values can appear anywhere
* Named arguments::             Assigning function arguments by keyword
* Rest arguments::              Functions with a variable number of arguments
* Mathematical functions::      Standard libm functions


File: asymptote.info,  Node: Default arguments,  Next: Named arguments,  Up: Functions

6.11.1 Default arguments
------------------------

`Asymptote' supports a more flexible mechanism for default function
arguments than C++: they may appear anywhere in the function prototype.
Because certain data types are implicitly cast to more sophisticated
types (*note Casts::) one can often avoid ambiguities by ordering
function arguments from the simplest to the most complicated.  For
example, given
real f(int a=1, real b=0) {return a+b;}
 then `f(1)' returns 1.0, but `f(1.0)' returns 2.0.

   The value of a default argument is determined by evaluating the
given `Asymptote' expression in the scope where the called function is
defined.


File: asymptote.info,  Node: Named arguments,  Next: Rest arguments,  Prev: Default arguments,  Up: Functions

6.11.2 Named arguments
----------------------

It is sometimes difficult to remember the order in which arguments
appear in a function declaration. Named (keyword) arguments make calling
functions with multiple arguments easier. Unlike in the C and C++
languages, an assignment in a function argument is interpreted as an
assignment to a parameter of the same name in the function signature,
_not within the local scope_. The command-line option `-d' may be used
to check `Asymptote' code for cases where a named argument may be
mistaken for a local assignment.

   When matching arguments to signatures, first all of the keywords are
matched, then the arguments without names are matched against the
unmatched formals as usual. For example,
int f(int x, int y) {
  return 10x+y;
}
write(f(4,x=3));
 outputs 34, as `x' is already matched when we try to match the unnamed
argument `4', so it gets matched to the next item, `y'.

   For the rare occasions where it is desirable to assign a value to
local variable within a function argument (generally _not_ a good
programming practice), simply enclose the assignment in parentheses.
For example, given the definition of `f' in the previous example,
int x;
write(f(4,(x=3)));
 is equivalent to the statements
int x;
x=3;
write(f(4,3));
 and outputs 43.

   As a technical detail, we point out that, since variables of the same
name but different signatures are allowed in the same scope, the code
int f(int x, int x()) {
  return x+x();
}
int seven() {return 7;}
 is legal in `Asymptote', with `f(2,seven)' returning 9.  A named
argument matches the first unmatched formal of the same name, so
`f(x=2,x=seven)' is an equivalent call, but `f(x=seven,2)' is not, as
the first argument is matched to the first formal, and `int ()' cannot
be implicitly cast to `int'.  Default arguments do not affect which
formal a named argument is matched to, so if `f' were defined as
int f(int x=3, int x()) {
  return x+x();
}
 then `f(x=seven)' would be illegal, even though `f(seven)' obviously
would be allowed.


File: asymptote.info,  Node: Rest arguments,  Next: Mathematical functions,  Prev: Named arguments,  Up: Functions

6.11.3 Rest arguments
---------------------

Rest arguments allow one to write functions that take a variable number
of arguments:
// This function sums its arguments.
int sum(... int[] nums) {
  int total=0;
  for(int i=0; i < nums.length; ++i)
    total += nums[i];
  return total;
}

sum(1,2,3,4);                       // returns 10
sum();                              // returns 0

// This function subtracts subsequent arguments from the first.
int subtract(int start ... int[] subs) {
  for(int i=0; i < subs.length; ++i)
    start -= subs[i];
  return start;
}

subtract(10,1,2);                   // returns 7
subtract(10);                       // returns 10
subtract();                         // illegal

   Putting an argument into a rest array is called _packing_.  One can
give an explicit list of arguments for the rest argument, so `subtract'
could alternatively be implemented as
int subtract(int start ... int[] subs) {
  return start - sum(... subs);
}

   One can even combine normal arguments with rest arguments:
sum(1,2,3 ... new int[] {4,5,6});   // returns 21
 This builds a new six-element array that is passed to `sum' as `nums'.
The opposite operation, _unpacking_, is not allowed:
subtract(... new int[] {10, 1, 2});
 is illegal, as the start formal is not matched.

   If no arguments are packed, then a zero-length array (as opposed to
`null') is bound to the rest parameter. Note that default arguments are
ignored for rest formals and the rest argument is not bound to a
keyword.

   The overloading resolution in `Asymptote' is similar to the function
matching rules used in C++. Every argument match is given a score.
Exact matches score better than matches with casting, and matches with
formals (regardless of casting) score better than packing an argument
into the rest array.  A candidate is maximal if all of the arguments
score as well in it as with any other candidate.  If there is one
unique maximal candidate, it is chosen; otherwise, there is an
ambiguity error.

int f(path g);
int f(guide g);
f((0,0)--(100,100)); // matches the second; the argument is a guide

int g(int x, real y);
int g(real x, int x);

g(3,4); // ambiguous; the first candidate is better for the first argument,
        // but the second candidate is better for the second argument

int h(... int[] rest);
int h(real x ... int[] rest);

h(1,2); // the second definition matches, even though there is a cast,
        // because casting is preferred over packing

int i(int x ... int[] rest);
int i(real x, real y ... int[] rest);

i(3,4); // ambiguous; the first candidate is better for the first argument,
        // but the second candidate is better for the second one


File: asymptote.info,  Node: Mathematical functions,  Prev: Rest arguments,  Up: Functions

6.11.4 Mathematical functions
-----------------------------

`Asymptote' has built-in versions of the standard `libm' mathematical
real(real) functions `sin', `cos', `tan', `asin', `acos', `atan',
`exp', `log', `pow10', `log10', `sinh', `cosh', `tanh', `asinh',
`acosh', `atanh', `sqrt', `cbrt', `fabs', `expm1', `log1p', as well as
the identity function `identity'.  `Asymptote' also defines the order
`n' Bessel functions of the first kind `Jn(int n, real)' and second kind
`Yn(int n, real)', as well as the gamma function `gamma', the error
function `erf', and the complementary error function `erfc'. The
standard real(real, real) functions `atan2', `hypot', `fmod',
`remainder' are also included.

   The functions `degrees(real radians)' and `radians(real degrees)'
can be used to convert between radians and degrees. The function
`Degrees(real radians)' returns the angle in degrees in the interval
[0,360).  For convenience, `Asymptote' defines variants `Sin', `Cos',
`Tan', `aSin', `aCos', and `aTan' of the standard trigonometric
functions that use degrees rather than radians.  We also define complex
versions of the `sqrt', `sin', `cos', `exp', `log', and `gamma'
functions.

   The functions `floor', `ceil', and `round' differ from their usual
definitions in that they all return an int value rather than a real
(since that is normally what one wants).  The functions `Floor',
`Ceil', and `Round' are respectively similar, except that if the result
cannot be converted to a valid int, they return `intMax' for positive
arguments and `intMin' for negative arguments, rather than generating
an integer overflow.  We also define a function `sgn', which returns
the sign of its real argument as an integer (-1, 0, or 1).

   There is an `abs(int)' function, as well as an `abs(real)' function
(equivalent to `fabs(real)'), an `abs(pair)' function (equivalent to
`length(pair)').

   Random numbers can be seeded with `srand(int)' and generated with
the `int rand()' function, which returns a random integer between 0 and
the integer `randMax'. The `unitrand()' function returns a random
number uniformly distributed in the interval [0,1].  A Gaussian random
number generator `Gaussrand' and a collection of statistics routines,
including `histogram', are provided in the base file `stats.asy'.  The
functions `factorial(int n)', which returns n!, and `choose(int n, int
k)', which returns n!/(k!(n-k)!), are also defined.

   When configured with the GNU Scientific Library (GSL), available from
`http://www.gnu.org/software/gsl/', `Asymptote' contains an internal
module `gsl' that defines the airy functions `Ai(real)', `Bi(real)',
`Ai_deriv(real)', `Bi_deriv(real)', `zero_Ai(int)', `zero_Bi(int)',
`zero_Ai_deriv(int)', `zero_Bi_deriv(int)', the Bessel functions
`I(int, real)', `K(int, real)', `j(int, real)', `y(int, real)',
`i_scaled(int, real)', `k_scaled(int, real)', `J(real, real)', `Y(real,
real)', `I(real, real)', `K(real, real)', `zero_J(real, int)', the
elliptic functions `F(real, real)', `E(real, real)', and `P(real,
real)', the exponential/trigonometric integrals `Ei', `Si', and `Ci',
the Legendre polynomials `Pl(int, real)', and the Riemann zeta function
`zeta(real)'. For example, to compute the sine integral `Si' of 1.0:
import gsl;
write(Si(1.0));

   `Asymptote' also provides a few general purpose numerical routines:

``real newton(int iterations=100, real f(real), real fprime(real), real x, bool verbose=false);''
     Use Newton-Raphson iteration to solve for a root of a real-valued
     differentiable function `f', given its derivative `fprime' and an
     initial guess `x'. Diagnostics for each iteration are printed if
     `verbose=true'.  If the iteration fails after the maximum allowed
     number of loops (`iterations'), `realMax' is returned.

``real newton(int iterations=100, real f(real), real fprime(real), real x1, real x2, bool verbose=false);''
     Use bracketed Newton-Raphson bisection to solve for a root of a
     real-valued differentiable function `f' within an interval
     [`x1',`x2'] (on which the endpoint values of `f' have opposite
     signs), given its derivative `fprime'. Diagnostics for each
     iteration are printed if `verbose=true'.  If the iteration fails
     after the maximum allowed number of loops (`iterations'),
     `realMax' is returned.

``real simpson(real f(real), real a, real b, real acc=realEpsilon, real dxmax=b-a)''
     returns the integral of `f' from `a' to `b' using adaptive Simpson
     integration.



File: asymptote.info,  Node: Arrays,  Next: Casts,  Prev: Functions,  Up: Programming

6.12 Arrays
===========

* Menu:

* Slices::                      Python-style array slices

   Appending `[]' to a built-in or user-defined type yields an array.
The array element `i' of an array `A' can be accessed as `A[i]'.  By
default, attempts to access or assign to an array element using a
negative index generates an error. Reading an array element with an
index beyond the length of the array also generates an error; however,
assignment to an element beyond the length of the array causes the
array to be resized to accommodate the new element.  One can also index
an array `A' with an integer array `B': the array `A[B]' is formed by
indexing array `A' with successive elements of array `B'.  A convenient
Java-style shorthand exists for iterating over all elements of an
array; see *note array iteration::.

   The declaration
real[] A;

initializes `A' to be an empty (zero-length) array. Empty arrays should
be distinguished from null arrays. If we say
real[] A=null;

then `A' cannot be dereferenced at all (null arrays have no length and
cannot be read from or assigned to).

   Arrays can be explicitly initialized like this:
real[] A={0,1,2};

   Array assignment in `Asymptote' does a shallow copy: only the
pointer is copied (if one copy if modified, the other will be too).
The `copy' function listed below provides a deep copy of an array.

   Every array `A' of type `T[]' has the virtual members
   * `int length',

   * `int cyclic',

   * `int[] keys',

   * `T push(T x)',

   * `void append(T[] a)',

   * `T pop()',

   * `void insert(int i ... T[] x)',

   * `void delete(int i, int j=i)',

   * `void delete()', and

   * `bool initialized(int n)'.

   The member `A.length' evaluates to the length of the array.  Setting
`A.cyclic=true' signifies that array indices should be reduced modulo
the current array length. Reading from or writing to a nonempty cyclic
array never leads to out-of-bounds errors or array resizing.

   The member `A.keys' evaluates to an array of integers containing the
indices of initialized entries in the array in ascending order.  Hence,
for an array of length `n' with all entries initialized, `A.keys'
evaluates to `{0,1,...,n-1}'.  A new keys array is produced each time
`A.keys' is evaluated.

   The functions `A.push' and `A.append' append their arguments onto
the end of the array, while `A.insert(int i ... T[] x)' inserts `x'
into the array at index `i'.  For convenience `A.push' returns the
pushed item.  The function `A.pop()' pops and returns the last element,
while `A.delete(int i, int j=i)' deletes elements with indices in the
range [`i',`j'], shifting the position of all higher-indexed elements
down. If no arguments are given, `A.delete()' provides a convenient way
of deleting all elements of `A'. The routine `A.initialized(int n)' can
be used to examine whether the element at index `n' is initialized.
Like all `Asymptote' functions, `push', `append', `pop', `insert',
`delete', and `initialized' can be "pulled off" of the array and used
on their own. For example,
int[] A={1};
A.push(2);         // A now contains {1,2}.
A.append(A);       // A now contains {1,2,1,2}.
int f(int)=A.push;
f(3);              // A now contains {1,2,1,2,3}.
int g()=A.pop;
write(g());        // Outputs 3.
A.delete(0);       // A now contains {2,1,2}.
A.delete(0,1);       // A now contains {2}.
A.insert(1,3);     // A now contains {2,3}.
A.insert(1 ... A); // A now contains {2,2,3,3}
A.insert(2,4,5);   // A now contains {2,2,4,5,3,3}.

   The `[]' suffix can also appear after the variable name; this is
sometimes convenient for declaring a list of variables and arrays of
the same type:
real a,A[];
 This declares `a' to be `real' and implicitly declares `A' to be of
type `real[]'.

   In the following list of built-in array functions, `T' represents a
generic type. Note that the internal functions `alias', `array',
`copy', `concat', `sequence', `map', and `transpose', which depend on
type `T[]', are defined only after the first declaration of a variable
of type `T[]'.

`new T[]'
     returns a new empty array of type `T[]';

`new T[] {list}'
     returns a new array of type `T[]' initialized with `list' (a comma
     delimited list of elements).

`new T[n]'
     returns a new array of `n' elements of type `T[]'.  These `n'
     array elements are not initialized unless they are arrays
     themselves (in which case they are each initialized to empty
     arrays).

`T[] array(int n, T value, int depth=intMax)'
     returns an array consisting of `n' deep copies of a 0, 1, or 2
     dimensional array `T value'. If `depth' is specified, this deep
     copying recurses to no more than the number of levels specified.

`int[] sequence(int n)'
     if `n >= 1' returns the array `{0,1,...,n-1}' (otherwise returns a
     null array);

`int[] sequence(int n, int m)'
     if `m >= n' returns an array `{n,n+1,...,m}' (otherwise returns a
     null array);

`T[] sequence(T f(int), int n)'
     if `n >= 1' returns the sequence `{f_i :i=0,1,...n-1}' given a
     function `T f(int)' and integer `int n' (otherwise returns a null
     array);

`T[] map(T f(T), T[] a)'
     returns the array obtained by applying the function `f' to each
     element of the array `a'. This is equivalent to `sequence(new
     T(int i) {return f(a[i]);},a.length)'.

`int[] reverse(int n)'
     if `n >= 1' returns the array `{n-1,n-2,...,0}' (otherwise returns
     a null array);

`int[] complement(int[] a, int n)'
     returns the complement of the integer array `a' in
     `{0,1,2,...,n-1}', so that `b[complement(a,b.length)]' yields the
     complement of `b[a]'.

`real[] uniform(real a, real b, int n)'
     if `n >= 1' returns a uniform partition of `[a,b]' into `n'
     subintervals (otherwise returns a null array);

`int find(bool[], int n=1)'
     returns the index of the `n'th `true' value or -1 if not found.
     If `n' is negative, search backwards from the end of the array for
     the `-n'th value;

`int search(T[] a, T key)'
     For built-in ordered types `T', searches a sorted ordered array
     `a' of `n' elements for k, returning the index `i' if `a[i] <= key
     < a[i+1]', `-1' if `key' is less than all elements of `a', or
     `n-1' if `key' is greater than or equal to the last element of `a'.

`T[] copy(T[] a)'
     returns a copy of the array `a';

`T[][] copy(T[][] a)'
     returns a copy of the array `a';

`T[][][] copy(T[][][] a)'
     returns a copy of the array `a';

`T[] concat(... T[][] a)'
     returns a new array formed by concatenating the arrays given as
     arguments;

`bool alias(T[] a, T[] b)'
     returns `true' if the arrays `a' and `b' are identical;

`T[] sort(T[] a)'
     For built-in ordered types `T', returns a copy of `a' sorted in
     ascending order;

`T[][] sort(T[][] a)'
     For built-in ordered types `T', returns a copy of `a' with the rows
     sorted by the first column, breaking ties with successively higher
     columns. For example: string[][] a={{"bob","9"},{"alice","5"},{"pete","7"},
                   {"alice","4"}};
     // Row sort (by column 0, using column 1 to break ties):
     write(sort(a));

     produces alice   4
     alice   5
     bob     9
     pete    7

`T[] sort(T[] a, bool compare(T i, T j))'
     returns a copy of `a' stably sorted in ascending order such that
     element `i' precedes element `j' if `compare(i,j)' is true.

`T[][] transpose(T[][] a)'
     returns the transpose of `a'.

`T[][][] transpose(T[][][] a, int[] perm)'
     returns the 3D transpose of `a' obtained by applying the
     permutation `perm' of `new int[]{0,1,2}' to the indices of each
     entry.

`T sum(T[] a)'
     For arithmetic types `T', returns the sum of `a'.  In the case
     where `T' is `bool', the number of true elements in `a' is
     returned.

`T min(T[] a)'

`T min(T[][] a)'

`T min(T[][][] a)'
     For built-in ordered types `T', returns the minimum element of `a'.

`T max(T[] a)'

`T max(T[][] a)'

`T max(T[][][] a)'
     For built-in ordered types `T', returns the maximum element of `a'.

`T[] min(T[] a, T[] b)'
     For built-in ordered types `T', and arrays `a' and `b' of the same
     length, returns an array composed of the minimum of the
     corresponding elements of `a' and `b'.

`T[] max(T[] a, T[] b)'
     For built-in ordered types `T', and arrays `a' and `b' of the same
     length, returns an array composed of the maximum of the
     corresponding elements of `a' and `b'.

`pair[] pairs(real[] x, real[] y);'
     For arrays `x' and `y' of the same length, returns the pair array
     `sequence(new pair(int i) {return (x[i],y[i]);},x.length)'.

`pair[] fft(pair[] a, int sign=1)'
     returns the Fast Fourier Transform of `a' (if the optional `FFTW'
     package is installed), using the given `sign'. Here is a simple
     example: int n=4;
     pair[] f=sequence(n);
     write(f);
     pair[] g=fft(f,-1);
     write();
     write(g);
     f=fft(g,1);
     write();
     write(f/n);

`real dot(real[] a, real[] b)'
     returns the dot product of the vectors `a' and `b'.

`pair dot(pair[] a, pair[] b)'
     returns the complex dot product `sum(a*conj(b))' of the vectors
     `a' and `b'.

`real[] tridiagonal(real[] a, real[] b, real[] c, real[] f);'
     Solve the periodic tridiagonal problem L`x'=`f' and return the
     solution `x', where `f' is an n vector and L is the n \times n
     matrix [ b[0] c[0]           a[0]   ]
     [ a[1] b[1] c[1]             ]
     [      a[2] b[2] c[2]        ]
     [                ...         ]
     [ c[n-1]       a[n-1] b[n-1] ]
      For Dirichlet boundary conditions (denoted here by `u[-1]' and
     `u[n]'), replace `f[0]' by `f[0]-a[0]u[-1]' and
     `f[n-1]-c[n-1]u[n]'; then set `a[0]=c[n-1]=0'.

`real[] solve(real[][] a, real[] b, bool warn=true)'
     Solve the linear equation `a'x=`b' by LU decomposition and return
     the solution x, where `a' is an n \times n matrix and `b' is an
     array of length n.  For example: import math;
     real[][] a={{1,-2,3,0},{4,-5,6,2},{-7,-8,10,5},{1,50,1,-2}};
     real[] b={7,19,33,3};
     real[] x=solve(a,b);
     write(a); write();
     write(b); write();
     write(x); write();
     write(a*x);
      If `a' is a singular matrix and `warn' is `false', return an
     empty array.  If the matrix `a' is tridiagonal, the routine
     `tridiagonal' provides a more efficient algorithm (*note
     tridiagonal::).

`real[][] solve(real[][] a, real[][] b, bool warn=true)'
     Solve the linear equation `a'x=`b' and return the solution x,
     where `a' is an n \times n matrix and `b' is an n \times m matrix.
     If `a' is a singular matrix and `warn' is `false', return an empty
     matrix.

`real[][] identity(int n);'
     returns the n \times n identity matrix.

`real[][] diagonal(... real[] a)'
     returns the diagonal matrix with diagonal entries given by a.

`real[][] inverse(real[][] a)'
     returns the inverse of a square matrix `a'.

``real[] quadraticroots(real a, real b, real c);''
     This numerically robust solver returns the real roots of the
     quadratic equation ax^2+bx+c=0, in ascending order. Multiple roots
     are listed separately.

``pair[] quadraticroots(explicit pair a, explicit pair b, explicit pair c);''
     This numerically robust solver returns the complex roots of the
     quadratic equation ax^2+bx+c=0.

``real[] cubicroots(real a, real b, real c, real d);''
     This numerically robust solver returns the real roots of the cubic
     equation ax^3+bx^2+cx+d=0. Multiple roots are listed separately.


   `Asymptote' includes a full set of vectorized array instructions for
arithmetic (including self) and logical operations. These
element-by-element instructions are implemented in C++ code for speed.
Given
real[] a={1,2};
real[] b={3,2};
 then `a == b' and `a >= 2' both evaluate to the vector `{false, true}'.  To
test whether all components of `a' and `b' agree, use the boolean
function `all(a == b)'. One can also use conditionals like `(a >= 2) ?
a : b', which returns the array `{3,2}', or `write((a >= 2) ? a :
null', which returns the array `{2}'.

   All of the standard built-in `libm' functions of signature
`real(real)' also take a real array as an argument, effectively like an
implicit call to `map'.

   As with other built-in types, arrays of the basic data types can be
read in by assignment. In this example, the code
file fin=input("test.txt");
real[] A=fin;

reads real values into `A' until the end-of-file is reached (or an I/O
error occurs).

   The virtual members `dimension', `line', `csv', `word', and `read'
of a file are useful for reading arrays.  For example, if line mode is
set with `file line(bool b=true)', then reading will stop once the end
of the line is reached instead
file fin=input("test.txt");
real[] A=fin.line();

   Since string reads by default read up to the end of line anyway,
line mode normally has no effect on string array reads.  However, there
is a white-space delimiter mode for reading strings, `file word(bool
b=true)', which causes string reads to respect white-space delimiters,
instead of the default end-of-line delimiter:
file fin=input("test.txt").line().word();
real[] A=fin;

   Another useful mode is comma-separated-value mode, `file csv(bool
b=true)', which causes reads to respect comma delimiters:
file fin=csv(input("test.txt"));
real[] A=fin;

   To restrict the number of values read, use the `file dimension(int)'
function:
file fin=input("test.txt");
real[] A=dimension(fin,10);

   This reads 10 values into A, unless end-of-file (or end-of-line in
line mode) occurs first. Attempting to read beyond the end of the file
will produce a runtime error message. Specifying a value of 0 for the
integer limit is equivalent to the previous example of reading until
end-of-file (or end-of-line in line mode) is encountered.

   Two- and three-dimensional arrays of the basic data types can be read
in like this:
file fin=input("test.txt");
real[][] A=fin.dimension(2,3);
real[][][] B=fin.dimension(2,3,4);
 Again, an integer limit of zero means no restriction.

   Sometimes the array dimensions are stored with the data as integer
fields at the beginning of an array. Such 1, 2, or 3 dimensional arrays
can be read in with the virtual member functions `read(1)', `read(2)',
or `read(3)', respectively:
file fin=input("test.txt");
real[] A=fin.read(1);
real[][] B=fin.read(2);
real[][][] C=fin.read(3);

   One, two, and three-dimensional arrays of the basic data types can be
output with the functions `write(file,T[])', `write(file,T[][])',
`write(file,T[][][])', respectively.


File: asymptote.info,  Node: Slices,  Up: Arrays

6.12.1 Slices
-------------

Asymptote allows a section of an array to be addressed as a slice using
a Python-like syntax.  If `A' is an array, the expression `A[m:n]'
returns a new array consisting of the elements of `A' with indices from
`m' up to but not including `n'. For example,
int[] x={0,1,2,3,4,5,6,7,8,9};
int[] y=x[2:6];  // y={2,3,4,5};
int[] z=x[5:10]; // z={5,6,7,8,9};

   If the left index is omitted, it is taken be `0'.  If the right
index is omitted it is taken to be the length of the array.  If both
are omitted, the slice then goes from the start of the array to the
end, producing a non-cyclic deep copy of the array.  For example:
int[] x={0,1,2,3,4,5,6,7,8,9};
int[] y=x[:4];  // y={0,1,2,3}
int[] z=x[5:];  // z={5,6,7,8,9}
int[] w=x[:];   // w={0,1,2,3,4,5,6,7,8,9}, distinct from array x.

   If A is a non-cyclic array, it is illegal to use negative values for
either of the indices.  If the indices exceed the length of the array,
however, they are politely truncated to that length.

   For cyclic arrays, the slice `A[m:n]' still consists of the cells
with indices in the set [`m',`n'), but now negative values and values
beyond the length of the array are allowed.  The indices simply wrap
around.  For example:

int[] x={0,1,2,3,4,5,6,7,8,9};
x.cyclic=true;
int[] y=x[8:15];  // y={8,9,0,1,2,3,4}.
int[] z=x[-5:5];  // z={5,6,7,8,9,0,1,2,3,4}
int[] w=x[-3:17]; // w={7,8,9,0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6}

   Notice that with cyclic arrays, it is possible to include the same
element of the original array multiple times within a slice.
Regardless of the original array, arrays produced by slices are always
non-cyclic.

   If the left and right indices of a slice are the same, the result is
an empty array.  If the array being sliced is empty, the result is an
empty array.  Any slice with a left index greater than its right index
will yield an error.

   Slices can also be assigned to, changing the value of the original
array.  If the array being assigned to the slice has a different length
than the slice itself, elements will be inserted or removed from the
array to accommodate it. For instance:
string[] toppings={"mayo", "salt", "ham", "lettuce"};
toppings[0:2]=new string[] {"mustard", "pepper"};
    // Now toppings={"mustard", "pepper", "ham", "lettuce"}
toppings[2:3]=new string[] {"turkey", "bacon" };
    // Now toppings={"mustard", "pepper", "turkey", "bacon", "lettuce"}
toppings[0:3]=new string[] {"tomato"};
    // Now toppings={"tomato", "bacon", "lettuce"}

   If an array is assigned to a slice of itself, a copy of the original
array is assigned to the slice.  That is, code such as `x[m:n]=x' is
equivalent to `x[m:n]=copy(x)'.  One can use the shorthand `x[m:m]=y'
to insert the contents of the array `y' into the array `x' starting at
the location just before `x[m]'.

   For a cyclic array, a slice is bridging if it addresses cells up to
the end of the array and then continues on to address cells at the
start of the array.  For instance, if `A' is a cyclic array of length
10, `A[8:12]', `A[-3:1]', and `A[5:25]' are bridging slices whereas
`A[3:7]', `A[7:10]', `A[-3:0]' and `A[103:107]' are not.  Bridging
slices can only be assigned to if the number of elements in the slice
is exactly equal to the number of elements we are assigning to it.
Otherwise, there is no clear way to decide which of the new entries
should be `A[0]' and an error is reported.  Non-bridging slices may be
assigned an array of any length.

   For a cyclic array `A' an expression of the form
`A[A.length:A.length]' is equivalent to the expression `A[0:0]' and so
assigning to this slice will insert values at the start of the array.
`A.append()' can be used to insert values at the end of the array.

   It is illegal to assign to a slice of a cyclic array that repeats
any of the cells.


File: asymptote.info,  Node: Casts,  Next: Import,  Prev: Arrays,  Up: Programming

6.13 Casts
==========

`Asymptote' implicitly casts `int' to `real', `int' to `pair', `real'
to `pair', `pair' to `path', `pair' to `guide', `path' to `guide',
`guide' to `path', `real' to `pen', `pair[]' to `guide[]', `pair[]' to
`path[]', `path' to `path[]', and `guide' to `path[]', along with
various three-dimensional casts defined in `three.asy'.  Implicit casts
are automatically attempted on assignment and when trying to match
function calls with possible function signatures. Implicit casting can
be inhibited by declaring individual arguments `explicit' in the
function signature, say to avoid an ambiguous function call in the
following example, which outputs 0:
int f(pair a) {return 0;}
int f(explicit real x) {return 1;}

write(f(0));

   Other conversions, say `real' to `int' or `real' to `string',
require an explicit cast:
int i=(int) 2.5;
string s=(string) 2.5;

real[] a={2.5,-3.5};
int[] b=(int []) a;
write(stdout,b);     // Outputs 2,-3

   Casting to user-defined types is also possible using `operator cast':
struct rpair {
  real radius;
  real angle;
}

pair operator cast(rpair x) {
  return (x.radius*cos(x.angle),x.radius*sin(x.angle));
}

rpair x;
x.radius=1;
x.angle=pi/6;

write(x);            // Outputs (0.866025403784439,0.5)

   One must use care when defining new cast operators. Suppose that in
some code one wants all integers to represent multiples of 100. To
convert them to reals, one would first want to multiply them by 100.
However, the straightforward implementation
real operator cast(int x) {return x*100;}
 is equivalent to an infinite recursion, since the result `x*100' needs
itself to be cast from an integer to a real. Instead, we want to use
the standard conversion of int to real:
real convert(int x) {return x*100;}
real operator cast(int x)=convert;

   Explicit casts are implemented similarly, with `operator ecast'.


File: asymptote.info,  Node: Import,  Next: Static,  Prev: Casts,  Up: Programming

6.14 Import
===========

While `Asymptote' provides many features by default, some applications
require specialized features contained in external `Asymptote' modules.
For instance, the lines
access graph;
graph.axes();
 draw x and y axes on a two-dimensional graph.  Here, the command looks
up the module under the name `graph' in a global dictionary of modules
and puts it in a new variable named `graph'.  The module is a
structure, and we can refer to its fields as we usually would with a
structure.

   Often, one wants to use module functions without having to specify
the module name.  The code
from graph access axes;
 adds the `axes' field of `graph' into the local name space, so that
subsequently, one can just write `axes()'.  If the given name is
overloaded, all types and variables of that name are added.  To add
more than one name, just use a comma-separated list:
from graph access axes, xaxis, yaxis;
 Wild card notation can be used to add all non-private fields and types
of a module to the local name space:

from graph access *;

   Similarly, one can add the non-private fields and types of a
structure to the local environment with the `unravel' keyword:
struct matrix {
  real a,b,c,d;
}

real det(matrix m) {
  unravel m;
  return a*d-b*c;
}
 Alternatively, one can unravel selective fields:
real det(matrix m) {
  from m unravel a,b,c as C,d;
  return a*d-b*C;
}

   The command
import graph;
 is a convenient abbreviation for the commands
access graph;
unravel graph;
 That is, `import graph' first loads a module into a structure called
`graph' and then adds its non-private fields and types to the local
environment. This way, if a member variable (or function) is
overwritten with a local variable (or function of the same signature),
the original one can still be accessed by qualifying it with the module
name.

   Wild card importing will work fine in most cases, but one does not
usually know all of the internal types and variables of a module, which
can also change as the module writer adds or changes features of the
module.  As such, it is prudent to add `import' commands at the start
of an `Asymptote' file, so that imported names won't shadow locally
defined functions.  Still, imported names may shadow other imported
names, depending on the order in which they were imported, and imported
functions may cause overloading resolution problems if they have the
same name as local functions defined later.

   To rename modules or fields when adding them to the local
environment, use `as':
access graph as graph2d;
from graph access xaxis as xline, yaxis as yline;

   The command
import graph as graph2d;
 is a convenient abbreviation for the commands
access graph as graph2d;
unravel graph2d;

   Except for a few built-in modules, such as `settings', all modules
are implemented as `Asymptote' files.  When looking up a module that
has not yet been loaded, `Asymptote' searches the standard search paths
(*note Search paths::) for the matching file.  The file corresponding
to that name is read and the code within it is interpreted as the body
of a structure defining the module.

   If the file name contains nonalphanumeric characters, enclose it
with quotation marks:

`access "/usr/local/share/asymptote/graph.asy" as graph;'

`from "/usr/local/share/asymptote/graph.asy" access axes;'

`import "/usr/local/share/asymptote/graph.asy" as graph;'

   It is an error if modules import themselves (or each other in a
cycle).  The module name to be imported must be known at compile time.

   However, you can import an `Asymptote' module determined by the
string `s' at runtime like this:
eval("import "+s,true);

   To conditionally execute an array of asy files, use
void asy(string format, bool overwrite ... string[] s);
 The file will only be processed, using output format `format', if
overwrite is `true' or the output file is missing.

   One can evaluate an `Asymptote' expression (without any return
value, however) contained in the string `s' with: 
void eval(string s, bool embedded=false);
 It is not necessary to terminate the string `s' with a semicolon.  If
`embedded' is `true', the string will be evaluated at the top level of
the current environment.  If `embedded' is `false' (the default), the
string will be evaluated in an independent environment, sharing the same
`settings' module (*note settings::).

   One can evaluate arbitrary `Asymptote' code (which may contain
unescaped quotation marks) with the command
void eval(code s, bool embedded=false);
 Here `code' is a special type used with `quote {}' to enclose
`Asymptote code' like this:
real a=1;
code s=quote {
  write(a);
};
eval(s,true);        // Outputs 1

   To include the contents of a file `graph' verbatim (as if the
contents of the file were inserted at that point), use one of the forms:
include graph;

`include "/usr/local/share/asymptote/graph.asy";'

   To list all global functions and variables defined in a module named
by the contents of the string `s', use the function
void list(string s, bool imports=false);
 Imported global functions and variables are also listed if `imports'
is `true'.


File: asymptote.info,  Node: Static,  Prev: Import,  Up: Programming

6.15 Static
===========

Static qualifiers allocate the memory address of a variable in a higher
enclosing level.

   For a function body, the variable is allocated in the block where the
function is defined; so in the code
struct s {
  int count() {
    static int c=0;
    ++c;
    return c;
  }
}

there is one instance of the variable `c' for each object `s' (as
opposed to each call of `count').

   Similarly, in
int factorial(int n) {
  int helper(int k) {
    static int x=1;
    x *= k;
    return k == 1 ? x : helper(k-1);
  }
  return helper(n);
}

there is one instance of `x' for every call to `factorial' (and not for
every call to `helper'), so this is a correct, but ugly, implementation
of factorial.

   Similarly, a static variable declared within a structure is
allocated in the block where the structure is defined. Thus,
struct A {
  struct B {
    static pair z;
  }
}

creates one object `z' for each object of type `A' created.

   In this example,
int pow(int n, int k) {
  struct A {
    static int x=1;
    void helper() {
      x *= n;
    }
  }
  for(int i=0; i < k; ++i) {
    A a;
    a.helper();
  }
  return A.x;
}

there is one instance of `x' for each call to `pow', so this is an ugly
implementation of exponentiation.

   Loop constructs allocate a new frame in every iteration.  This is so
that higher-order functions can refer to variables of a specific
iteration of a loop:
void f();
for(int i=0; i < 10; ++i) {
  int x=i;
  if(x==5) {
    f=new void () { write(x); }
  }
}
f();

   Here, every iteration of the loop has its own variable `x', so `f()'
will write `5'.  If a variable in a loop is declared static, it will be
allocated where the enclosing function or structure was defined (just
as if it were declared static outside of the loop).  For instance, in:
void f() {
  static int x;
  for(int i=0; i < 10; ++i) {
    static int y;
  }
}
 both `x' and `y' will be allocated in the same place, which is also
where `f' is also allocated.

   Statements may also be declared static, in which case they are run
at the place where the enclosing function or structure is defined.
Declarations or statements not enclosed in a function or structure
definition are already at the top level, so static modifiers are
meaningless.  A warning is given in such a case.

   Since structures can have static fields, it is not always clear for
a qualified name whether the qualifier is a variable or a type.  For
instance, in:

struct A {
  static int x;
}
pair A;

int y=A.x;
 does the `A' in `A.x' refer to the structure or to the pair variable.
It is the convention in Asymptote that, if there is a non-function
variable with the same name as the qualifier, the qualifier refers to
that variable, and not to the type.  This is regardless of what fields
the variable actually possesses.


File: asymptote.info,  Node: LaTeX usage,  Next: Base modules,  Prev: Programming,  Up: Top

7 `LaTeX' usage
***************

`Asymptote' comes with a convenient `LaTeX' style file `asymptote.sty'
that makes `LaTeX' `Asymptote'-aware. Entering `Asymptote' code
directly into the `LaTeX' source file, at the point where it is needed,
keeps figures organized and avoids the need to invent new file names
for each figure. Simply add the line `\usepackage{asymptote}' at the
beginning of your file and enclose your `Asymptote' code within a
`\begin{asy}...\end{asy}' environment. As with the `LaTeX' `comment'
environment, the `\end{asy}' command must appear on a line by itself,
with no leading spaces or trailing commands/comments.

   The sample `LaTeX' file below, named `latexusage.tex', can be run as
follows:
latex latexusage
asy latexusage
latex latexusage

or
pdflatex latexusage
asy latexusage
pdflatex latexusage

   To switch between using `latex' and `pdflatex' you may first need to
remove the files `latexusage-*', `latexusage_.pre', and
`latexusage.aux'.

   One can specify `width', `height', `viewportwidth',
`viewportheight', and `attach' `keyval'-style options to the `asy'
environment.  The current version of `asymptote.sty' supports the
embedding of 3D PRC files, either inline or, using the `attach' option
with the `attachfile2' (or older `attachfile') `LaTeX' package, as
annotated (but printable) attachments. For many applications, the
annotated attachment method tends to be more convenient.  The default
value of `viewportwidth' is `\the\linewidth' for inline 3D figures and
`0' for attachments.

   If the `inline' option is given to the `asymptote.sty' package,
inline `LaTeX' code is generated instead of EPS or PDF files. This
makes 2D LaTeX symbols visible to the `\begin{asy}...\end{asy}'
environment.  In this mode, Asymptote correctly aligns 2D LaTeX symbols
defined outside of `\begin{asy}...\end{asy}', but treats their size as
zero; an optional second string can be given to `Label' to provide an
estimate of the unknown label size.

   Note that if `latex' is used with the `inline' option, the labels
might not show up in DVI viewers that cannot handle raw `PostScript'
code. One can use `dvips'/`dvipdf' to produce `PostScript'/PDF output
(we recommend using the modified version of `dvipdf' in the `Asymptote'
patches directory, which accepts the `dvips -z' hyperdvi option).

   An excellent tutorial by Dario Teixeira on integrating `Asymptote'
and `LaTeX' is available at `http://dario.dse.nl/projects/asylatex/'.

   Here now is `latexusage.tex':

\documentclass[12pt]{article}

% Use this form to include EPS (latex) or PDF (pdflatex) files:
\usepackage{asymptote}

% Use this form with latex or pdflatex to include inline LaTeX code:
%\usepackage[inline]{asymptote}

% Enable this line to support PDF hyperlinks:
%\usepackage{hyperref}\hypersetup{setpagesize=false}

% Enable this line for PDF attachments with asy environment option attach=true:
%\usepackage[dvips]{attachfile2}

\begin{document}

\begin{asydef}
// Global Asymptote definitions can be put here.
usepackage("bm");
texpreamble("\def\V#1{\bm{#1}}");
// One can globally override the default toolbar settings here:
// settings.toolbar=true;
\end{asydef}

Here is a venn diagram produced with Asymptote, drawn to width 4cm:

\def\A{A}
\def\B{\V{B}}

%\begin{figure}
\begin{center}
\begin{asy}
size(4cm,0);
pen colour1=red;
pen colour2=green;

pair z0=(0,0);
pair z1=(-1,0);
pair z2=(1,0);
real r=1.5;
path c1=circle(z1,r);
path c2=circle(z2,r);
fill(c1,colour1);
fill(c2,colour2);

picture intersection=new picture;
fill(intersection,c1,colour1+colour2);
clip(intersection,c2);

add(intersection);

draw(c1);
draw(c2);

//draw("$\A$",box,z1);              // Requires [inline] package option.
//draw(Label("$\B$","$B$"),box,z2); // Requires [inline] package option.
draw("$A$",box,z1);
draw("$\V{B}$",box,z2);

pair z=(0,-2);
real m=3;
margin BigMargin=Margin(0,m*dot(unit(z1-z),unit(z0-z)));

draw(Label("$A\cap B$",0),conj(z)--z0,Arrow,BigMargin);
draw(Label("$A\cup B$",0),z--z0,Arrow,BigMargin);
draw(z--z1,Arrow,Margin(0,m));
draw(z--z2,Arrow,Margin(0,m));

shipout(bbox(0.25cm));
\end{asy}
%\caption{Venn diagram}\label{venn}
\end{center}
%\end{figure}

Each graph is drawn in its own environment. One can specify the width
and height to \LaTeX\ explicitly. This 3D example can be viewed
interactively either with Adobe Reader or Asymptote's fast OpenGL-based
renderer. It is often desirable to embed such files as annotated attachments;
this requires the optional \verb+\usepackage{attachfile2}+ package and
the \verb+{attach=true}+ option:
\begin{center}
\begin{asy}[height=4cm,attach=false]
import three;
defaultrender.margin=3pt;
currentprojection=orthographic(5,4,2);
draw(unitcube,blue);
label("$V-E+F=2$",(0,1,0.5),3Y,blue+fontsize(17pt));
\end{asy}
\end{center}

One can also scale the figure to the full line width:
\begin{center}
\begin{asy}[width=\the\linewidth]
pair z0=(0,0);
pair z1=(2,0);
pair z2=(5,0);
pair zf=z1+0.75*(z2-z1);

draw(z1--z2);
dot(z1,red+0.15cm);
dot(z2,darkgreen+0.3cm);
label("$m$",z1,1.2N,red);
label("$M$",z2,1.5N,darkgreen);
label("$\hat{\ }$",zf,0.2*S,fontsize(24pt)+blue);

pair s=-0.2*I;
draw("$x$",z0+s--z1+s,N,red,Arrows,Bars,PenMargins);
s=-0.5*I;
draw("$\bar{x}$",z0+s--zf+s,blue,Arrows,Bars,PenMargins);
s=-0.95*I;
draw("$X$",z0+s--z2+s,darkgreen,Arrows,Bars,PenMargins);
\end{asy}
\end{center}
\end{document}


File: asymptote.info,  Node: Base modules,  Next: Options,  Prev: LaTeX usage,  Up: Top

8 Base modules
**************

`Asymptote' currently ships with the following base modules:

* Menu:

* plain::                       Default `Asymptote' base file
* simplex::                     Linear programming: simplex method
* math::                        Extend `Asymptote''s math capabilities
* interpolate::                 Interpolation routines
* geometry::                    Geometry routines
* trembling::                   Wavy lines
* stats::                       Statistics routines and histograms
* patterns::                    Custom fill and draw patterns
* markers::                     Custom path marker routines
* tree::                        Dynamic binary search tree
* binarytree::                  Binary tree drawing module
* drawtree::                    Tree drawing module
* syzygy::                      Syzygy and braid drawing module
* feynman::                     Feynman diagrams
* roundedpath::                 Round the sharp corners of paths
* animation::                   Embedded PDF and MPEG movies
* embed::                       Embedding movies, sounds, and 3D objects
* slide::                       Making presentations with `Asymptote'
* MetaPost::                    `MetaPost' compatibility routines
* unicode::                     Accept `unicode' (UTF-8) characters
* latin1::                      Accept `ISO 8859-1' characters
* babel::                       Interface to `LaTeX' `babel' package
* labelpath::                   Drawing curved labels
* labelpath3::                  Drawing curved labels in 3D
* annotate::                    Annotate your PDF files
* CAD::                         2D CAD pen and measurement functions (DIN 15)
* graph::                       2D linear & logarithmic graphs
* palette::                     Color density images and palettes
* three::                       3D vector graphics
* obj::                         3D obj files
* graph3::                      3D linear & logarithmic graphs
* grid3::                       3D grids
* solids::                      3D solid geometry
* tube::                        3D rotation minimizing tubes
* flowchart::                   Flowchart drawing routines
* contour::                     Contour lines
* contour3::                    Contour surfaces
* slopefield::                  Slope fields
* ode::                         Ordinary differential equations


File: asymptote.info,  Node: plain,  Next: simplex,  Up: Base modules

8.1 `plain'
===========

This is the default `Asymptote' base file, which defines key parts of
the drawing language (such as the `picture' structure).

   By default, an implicit `private import plain;' occurs before
translating a file and before the first command given in interactive
mode.  This also applies when translating files for module definitions
(except when translating `plain', of course).  This means that the
types and functions defined in `plain' are accessible in almost all
`Asymptote' code. Use the `-noautoplain' command-line option to disable
this feature.


File: asymptote.info,  Node: simplex,  Next: math,  Prev: plain,  Up: Base modules

8.2 `simplex'
=============

This package solves the two-variable linear programming problem using
the simplex method. It is used by the module `plain' for automatic
sizing of pictures.


File: asymptote.info,  Node: math,  Next: interpolate,  Prev: simplex,  Up: Base modules

8.3 `math'
==========

This package extends `Asymptote''s mathematical capabilities with
useful functions such as

`void drawline(picture pic=currentpicture, pair P, pair Q, pen p=currentpen);'
     draw the visible portion of the (infinite) line going through `P'
     and `Q', without altering the size of picture `pic', using pen `p'.

`real intersect(triple P, triple Q, triple n, triple Z);'
     returns the intersection time of the extension of the line segment
     `PQ' with the plane perpendicular to `n' and passing through `Z'.

`triple intersectionpoint(triple n0, triple P0, triple n1, triple P1);'
     Return any point on the intersection of the two planes with normals
     `n0' and `n1' passing through points `P0' and `P1', respectively.
     If the planes are parallel, return `(infinity,infinity,infinity)'.

`pair[] quarticroots(real a, real b, real c, real d, real e);'
     returns the four complex roots of the quartic equation
     ax^4+bx^3+cx^2+dx+e=0.

`pair[][] fft(pair[][] a, int sign=1)'
     returns the two-dimensional Fourier transform of a using the given
     `sign'.

`real time(path g, real x, int n=0)'
     returns the `n'th intersection time of path `g' with the vertical
     line through x.

`real time(path g, explicit pair z, int n=0)'
     returns the `n'th intersection time of path `g' with the horizontal
     line through `(0,z.y)'.

`real value(path g, real x, int n=0)'
     returns the `n'th `y' value of `g' at `x'.

`real value(path g, real x, int n=0)'
     returns the `n'th `x' value of `g' at `y=z.y'.

`real slope(path g, real x, int n=0)'
     returns the `n'th slope of `g' at `x'.

`real slope(path g, explicit pair z, int n=0)'
     returns the `n'th slope of `g' at `y=z.y'.

     int[][] segment(bool[] b) returns the indices of consecutive
     true-element segments of bool[] `b'.

`real[] partialsum(real[] a)'
     returns the partial sums of a real array `a'.

`real[] partialsum(real[] a, real[] dx)'
     returns the partial `dx'-weighted sums of a real array `a'.

`bool increasing(real[] a, bool strict=false)'
     returns, if `strict=false', whether `i > j' implies `a[i] >=
     a[j]', or if `strict=true', whether `i > j' implies implies `a[i]
     > a[j]'.

`int unique(real[] a, real x)'
     if the sorted array `a' does not contain `x', insert it
     sequentially, returning the index of `x' in the resulting array.

`bool lexorder(pair a, pair b)'
     returns the lexicographical partial order of `a' and `b'.

`bool lexorder(triple a, triple b)'
     returns the lexicographical partial order of `a' and `b'.


File: asymptote.info,  Node: interpolate,  Next: geometry,  Prev: math,  Up: Base modules

8.4 `interpolate'
=================

This module implements Lagrange, Hermite, and standard cubic spline
interpolation in `Asymptote', as illustrated in the example
`interpolate1.asy'.


File: asymptote.info,  Node: geometry,  Next: trembling,  Prev: interpolate,  Up: Base modules

8.5 `geometry'
==============

This module, written by Philippe Ivaldi, provides an extensive set of
geometry routines, including `perpendicular' symbols and a `triangle'
structure. Link to the documentation for the `geometry' module are
posted here: `http://asymptote.sourceforge.net/links.html', including
an extensive set of examples,
`http://www.piprime.fr/files/asymptote/geometry/', and an index:

     `http://www.piprime.fr/files/asymptote/geometry/modules/geometry.asy.index.type.html'


File: asymptote.info,  Node: trembling,  Next: stats,  Prev: geometry,  Up: Base modules

8.6 `trembling'
===============

This module, written by Philippe Ivaldi and illustrated in the example
`floatingdisk.asy', allows one to draw wavy lines, as if drawn by hand.
Further examples are posted at
`http://www.piprime.fr/files/asymptote/trembling/'


File: asymptote.info,  Node: stats,  Next: patterns,  Prev: trembling,  Up: Base modules

8.7 `stats'
===========

This package implements a Gaussian random number generator and a
collection of statistics routines, including `histogram' and
`leastsquares'.


File: asymptote.info,  Node: patterns,  Next: markers,  Prev: stats,  Up: Base modules

8.8 `patterns'
==============

This package implements `Postscript' tiling patterns and includes
several convenient pattern generation routines.


File: asymptote.info,  Node: markers,  Next: tree,  Prev: patterns,  Up: Base modules

8.9 `markers'
=============

This package implements specialized routines for marking paths and
angles.  The principal mark routine provided by this package is
markroutine markinterval(int n=1, frame f, bool rotated=false);
 which centers `n' copies of frame `f' within uniformly space intervals
in arclength along the path, optionally rotated by the angle of the
local tangent.

   The `marker' (*note marker::) routine can be used to construct new
markers from these predefined frames:

frame stickframe(int n=1, real size=0, pair space=0, real angle=0,
                 pair offset=0, pen p=currentpen);
 
frame circlebarframe(int n=1, real barsize=0,
                     real radius=0,real angle=0,
                     pair offset=0, pen p=currentpen,
                     filltype filltype=NoFill, bool above=false);
 
frame crossframe(int n=3, real size=0, pair space=0,
                 real angle=0, pair offset=0, pen p=currentpen);
 
frame tildeframe(int n=1, real size=0, pair space=0,
                 real angle=0, pair offset=0, pen p=currentpen);

   For convenience, this module also constructs the markers
`StickIntervalMarker',  `CrossIntervalMarker',
`CircleBarIntervalMarker', and `TildeIntervalMarker' from the above
frames. The example `markers1.asy' illustrates the use of these markers:




This package also provides a routine for marking an angle AOB: 
void markangle(picture pic=currentpicture, Label L="",
               int n=1, real radius=0, real space=0,
               pair A, pair O, pair B, arrowbar arrow=None,
               pen p=currentpen, margin margin=NoMargin,
               marker marker=nomarker);
 as illustrated in the example `markers2.asy'.





File: asymptote.info,  Node: tree,  Next: binarytree,  Prev: markers,  Up: Base modules

8.10 `tree'
===========

This package implements an example of a dynamic binary search tree.


File: asymptote.info,  Node: binarytree,  Next: drawtree,  Prev: tree,  Up: Base modules

8.11 `binarytree'
=================

This module can be used to draw an arbitrary binary tree and includes an
input routine for the special case of a binary search tree, as
illustrated in the example `binarytreetest.asy':

import binarytree;

picture pic,pic2;

binarytree bt=binarytree(1,2,4,nil,5,nil,nil,0,nil,nil,3,6,nil,nil,7);
draw(pic,bt);

binarytree st=searchtree(10,5,2,1,3,4,7,6,8,9,15,13,12,11,14,17,16,18,19);
draw(pic2,st,blue);

add(pic.fit(),(0,0),10N);
add(pic2.fit(),(0,0),10S);




File: asymptote.info,  Node: drawtree,  Next: syzygy,  Prev: binarytree,  Up: Base modules

8.12 `drawtree'
===============

This is a simple tree drawing module used by the example `treetest.asy'.


File: asymptote.info,  Node: syzygy,  Next: feynman,  Prev: drawtree,  Up: Base modules

8.13 `syzygy'
=============

This module automates the drawing of braids, relations, and syzygies,
along with the corresponding equations, as illustrated in the example
`knots.asy'.


File: asymptote.info,  Node: feynman,  Next: roundedpath,  Prev: syzygy,  Up: Base modules

8.14 `feynman'
==============

This package, contributed by Martin Wiebusch, is useful for drawing
Feynman diagrams, as illustrated by the examples `eetomumu.asy' and
`fermi.asy'.


File: asymptote.info,  Node: roundedpath,  Next: animation,  Prev: feynman,  Up: Base modules

8.15 `roundedpath'
==================

This package, contributed by Stefan Knorr, is useful for rounding the
sharp corners of paths, as illustrated in the example file
`roundpath.asy'.


File: asymptote.info,  Node: animation,  Next: embed,  Prev: roundedpath,  Up: Base modules

8.16 `animation'
================

This module allows one to generate animations, as illustrated by the
files `wheel.asy', `wavelet.asy', and `cube.asy' in the `animations'
subdirectory of the examples directory. These animations use the
`ImageMagick' `convert' program to merge multiple images into a GIF or
MPEG movie.

   The related `animate' module, derived from the `animation' module,
generates higher-quality portable clickable PDF movies, with optional
controls. This requires installing the package

     `http://www.ctan.org/tex-archive/macros/latex/contrib/animate/animate.sty'
   (version 2007/11/30 or later) in a new directory `animate' in the
local `LaTeX' directory (for example, in
`/usr/local/share/texmf/tex/latex/animate'). On `UNIX' systems, one
must then execute the command `texhash'.

   The example `pdfmovie.asy' in the `animations' directory, along with
the slide presentations `slidemovies.asy' and `intro.asy', illustrate
the use of embedded PDF movies.  The examples `inlinemovie.tex' and
`inlinemovie3.tex' show how to generate and embed PDF movies directly
within a `LaTeX' file (*note LaTeX usage::).  The member function
string pdf(fit fit=NoBox, real delay=animationdelay, string options="",
           bool keep=settings.keep, bool multipage=true);
 of the `animate' structure accepts any of the `animate.sty' options,
as described here:

     `http://www.ctan.org/tex-archive/macros/latex/contrib/animate/doc/animate.pdf'


File: asymptote.info,  Node: embed,  Next: slide,  Prev: animation,  Up: Base modules

8.17 `embed'
============

This module provides an interface to the `LaTeX' package (included with
`MikTeX')

     `http://www.ctan.org/tex-archive/macros/latex/contrib/movie15'
   for embedding movies, sounds, and 3D objects into a PDF document.  However,
`XeLaTeX' users need to rename the modified version
`movie15_dvipdfmx.sty' from

     `http://asymptote.svn.sourceforge.net/viewvc/asymptote/trunk/asymptote/patches/'
   to `movie15.sty' and place it in their `LaTeX' path.

   The latest version of the `movie15' package requires both `pdflatex'
version 1.20 or later and the file

     `http://www.ctan.org/tex-archive/macros/latex/contrib/oberdiek/ifdraft.dtx'
   which can be installed by placing it in a directory `ifdraft' in the
local `LaTeX' directory (e.g.
`/usr/local/share/texmf/tex/latex/ifdraft') and executing in that
directory the commands:
tex ifdraft.dtx
texhash

   An example of embedding `U3D' code is provided in the file
`embeddedu3d.asy'.  As of version 7.0.8, `Adobe Reader' supports the
`U3D' format under Linux.

   Unfortunately, Adobe has not yet made available an embedded movie
plugin for the Linux version of `Adobe Reader'.  A portable method for
embedding movie files, which should work on any platform and does not
require the `movie15' or `ifdraft' packages, is provided by using the
`external' module instead of `embed'. An example of these interfaces is
provided in the file `embeddedmovie.asy' and `externalmovie.asy' in the
`animations' subdirectory of the examples directory. For a higher
quality movie generated directly by `Asymptote', use the `animate'
module along with the `animate.sty' package to embed a portable PDF
animation (*note animate::).


File: asymptote.info,  Node: slide,  Next: MetaPost,  Prev: embed,  Up: Base modules

8.18 `slide'
============

This package provides a simple yet high-quality facility for making
presentation slides, including portable embedded PDF animations (see
the file `slidemovies.asy'). A simple example is provided in the file
`slidedemo.asy'.


File: asymptote.info,  Node: MetaPost,  Next: unicode,  Prev: slide,  Up: Base modules

8.19 `MetaPost'
===============

This package provides some useful routines to help `MetaPost' users
migrate old `MetaPost' code to `Asymptote'. Further contributions here
are welcome.

   Unlike `MetaPost', `Asymptote' does not implicitly solve linear
equations and therefore does not have the notion of a `whatever'
unknown. The routine `extension' (*note extension::) provides a useful
replacement for a common use of `whatever': finding the intersection
point of the lines through `P', `Q' and `p', `q'. For less common
occurrences of `whatever', one can use the built-in explicit linear
equation solver `solve' instead.


File: asymptote.info,  Node: unicode,  Next: latin1,  Prev: MetaPost,  Up: Base modules

8.20 `unicode'
==============

Import this package at the beginning of the file to instruct `LaTeX' to
accept `unicode' (UTF-8) standardized international characters.  To use
Cyrillic fonts, you will need to change the font encoding:
import unicode;
texpreamble("\usepackage{mathtext}\usepackage[russian]{babel}");
defaultpen(font("T2A","cmr","m","n"));
 Support for Chinese, Japanese, and Korean fonts is provided by the CJK
package:

     `http://www.ctan.org/tex-archive/languages/chinese/CJK/'
   The following commands enable the CJK song family (within a label,
you can also temporarily switch to another family, say kai, by
prepending `"\CJKfamily{kai}"' to the label string):
texpreamble("\usepackage{CJK}
\AtBeginDocument{\begin{CJK*}{GBK}{song}}
\AtEndDocument{\clearpage\end{CJK*}}");


File: asymptote.info,  Node: latin1,  Next: babel,  Prev: unicode,  Up: Base modules

8.21 `latin1'
=============

If you don't have `LaTeX' support for `unicode' installed, you can
enable support for Western European languages (ISO 8859-1) by importing
the module `latin1'. This module can be used as a template for
providing support for other ISO 8859 alphabets.


File: asymptote.info,  Node: babel,  Next: labelpath,  Prev: latin1,  Up: Base modules

8.22 `babel'
============

This module implements the `LaTeX' `babel' package in `Asymptote'. For
example:
import babel;
babel("german");


File: asymptote.info,  Node: labelpath,  Next: labelpath3,  Prev: babel,  Up: Base modules

8.23 `labelpath'
================

This module uses the `PSTricks' `pstextpath' macro to fit labels along
a path (properly kerned, as illustrated in the example file
`curvedlabel.asy'), using the command
void labelpath(picture pic=currentpicture, Label L, path g,
               string justify=Centered, pen p=currentpen);
 Here `justify' is one of `LeftJustified', `Centered', or
`RightJustified'. The x component of a shift transform applied to the
Label is interpreted as a shift along the curve, whereas the y
component is interpreted as a shift away from the curve.  All other
Label transforms are ignored. This package requires the `latex' tex
engine and inherits the limitations of the `PSTricks' `\pstextpath'
macro.


File: asymptote.info,  Node: labelpath3,  Next: annotate,  Prev: labelpath,  Up: Base modules

8.24 `labelpath3'
=================

This module, contributed by Jens Schwaiger, implements a 3D version of
`labelpath' that does not require the `PSTricks' package.  An example
is provided in `curvedlabel3.asy'.


File: asymptote.info,  Node: annotate,  Next: CAD,  Prev: labelpath3,  Up: Base modules

8.25 `annotate'
===============

This module supports PDF annotations for viewing with `Adobe Reader',
via the function
void annotate(picture pic=currentpicture, string title, string text,
              pair position);
 Annotations are illustrated in the example file `annotation.asy'.
Currently, annotations are only implemented for the `latex' (default)
and `tex' TeX engines.


File: asymptote.info,  Node: CAD,  Next: graph,  Prev: annotate,  Up: Base modules

8.26 `CAD'
==========

This package, contributed by Mark Henning, provides basic pen
definitions and measurement functions for simple 2D CAD drawings
according to DIN 15. It is documented separately, in the file `CAD.pdf'.


File: asymptote.info,  Node: graph,  Next: palette,  Prev: CAD,  Up: Base modules

8.27 `graph'
============

This package implements two-dimensional linear and logarithmic graphs,
including automatic scale and tick selection (with the ability to
override manually). A graph is a `guide' (that can be drawn with the
draw command, with an optional legend) constructed with one of the
following routines:

   * guide graph(picture pic=currentpicture, real f(real), real a, real b,
                 int n=ngraph, real T(real)=identity,
                 interpolate join=operator --);
     guide[] graph(picture pic=currentpicture, real f(real), real a, real b,
                  int n=ngraph, real T(real)=identity, bool3 cond(real),
                  interpolate join=operator --);

     Returns a graph using the scaling information for picture `pic'
     (*note automatic scaling::) of the function `f' on the interval
     [`T'(`a'),`T'(`b')], sampling at `n' points evenly spaced in
     [`a',`b'], optionally restricted by the bool3 function `cond' on
     [`a',`b']. If `cond' is:
        * `true', the point is added to the existing guide;

        * `default', the point is added to a new guide;

        * `false', the point is omitted and a new guide is begun.
     The points are connected using the interpolation specified by
     `join':
        * `operator --' (linear interpolation; the abbreviation
          `Straight' is also accepted);

        * `operator ..' (piecewise Bezier cubic spline interpolation;
          the abbreviation `Spline' is also accepted);

        * `Hermite' (standard cubic spline interpolation using boundary
          condition `notaknot', `natural',  `periodic', `clamped(real
          slopea, real slopeb)'), or `monotonic'.  The abbreviation
          `Hermite' is equivalent to `Hermite(notaknot)' for
          nonperiodic data and `Hermite(periodic)' for periodic data).


   * guide graph(picture pic=currentpicture, real x(real), real y(real),
                 real a, real b, int n=ngraph, real T(real)=identity,
                 interpolate join=operator --);
     guide[] graph(picture pic=currentpicture, real x(real), real y(real),
                   real a, real b, int n=ngraph, real T(real)=identity,
                   bool3 cond(real), interpolate join=operator --);

     Returns a graph using the scaling information for picture `pic' of
     the parametrized function (`x'(t),`y'(t)) for t in the interval
     [`T'(`a'),`T'(`b')], sampling at `n' points evenly spaced in
     [`a',`b'], optionally restricted by the bool3 function `cond' on
     [`a',`b'], using the given interpolation type.

   * guide graph(picture pic=currentpicture, pair z(real), real a, real b,
                 int n=ngraph, real T(real)=identity,
                 interpolate join=operator --);
     guide[] graph(picture pic=currentpicture, pair z(real), real a, real b,
                   int n=ngraph, real T(real)=identity, bool3 cond(real),
                   interpolate join=operator --);

     Returns a graph using the scaling information for picture `pic' of
     the parametrized function `z'(t) for t in the interval
     [`T'(`a'),`T'(`b')], sampling at `n' points evenly spaced in
     [`a',`b'], optionally restricted by the bool3 function `cond' on
     [`a',`b'], using the given interpolation type.

   * guide graph(picture pic=currentpicture, pair[] z,
                 interpolate join=operator --);
     guide[] graph(picture pic=currentpicture, pair[] z, bool3[] cond,
                   interpolate join=operator --);

     Returns a graph using the scaling information for picture `pic' of
     the elements of the array `z', optionally restricted to those
     indices for which the elements of the boolean array `cond' are
     `true', using the given interpolation type.

   * guide graph(picture pic=currentpicture, real[] x, real[] y,
                 interpolate join=operator --);
     guide[] graph(picture pic=currentpicture, real[] x, real[] y,
                   bool3[] cond, interpolate join=operator --);

     Returns a graph using the scaling information for picture `pic' of
     the elements of the arrays (`x',`y'), optionally restricted to
     those indices for which the elements of the boolean array `cond'
     are `true', using the given interpolation type.

   * guide polargraph(picture pic=currentpicture, real f(real), real a,
                      real b, int n=ngraph, interpolate join=operator --);

     Returns a polar-coordinate graph using the scaling information for
     picture `pic' of the function `f' on the interval [`a',`b'],
     sampling at `n' evenly spaced points, with the given interpolation
     type.

   * guide polargraph(picture pic=currentpicture, real[] r, real[] theta,
                      interpolate join=operator--);
      Returns a polar-coordinate graph using the scaling information for
     picture `pic' of the elements of the arrays (`r',`theta'), using
     the given interpolation type.




   An axis can be drawn on a picture with one of the following commands:

   * void xaxis(picture pic=currentpicture, Label L="", axis axis=YZero,
                real xmin=-infinity, real xmax=infinity, pen p=currentpen,
                ticks ticks=NoTicks, arrowbar arrow=None, bool above=false);

     Draw an x axis on picture `pic' from x=`xmin' to x=`xmax' using
     pen `p', optionally labelling it with Label `L'. The relative
     label location along the axis (a real number from [0,1]) defaults
     to 1 (*note Label::), so that the label is drawn at the end of the
     axis. An infinite value of `xmin' or `xmax' specifies that the
     corresponding axis limit will be automatically determined from the
     picture limits.  The optional `arrow' argument takes the same
     values as in the `draw' command (*note arrows::). The axis is
     drawn before any existing objects in `pic' unless `above=true'.
     The axis placement is determined by one of the following `axis'
     types:

    `YZero(bool extend=true)'
          Request an x axis at y=0 (or y=1 on a logarithmic axis)
          extending to the full dimensions of the picture, unless
          `extend'=false.

    `YEquals(real Y, bool extend=true)'
          Request an x axis at y=`Y' extending to the full dimensions
          of the picture, unless `extend'=false.

    `Bottom(bool extend=false)'
          Request a bottom axis.

    `Top(bool extend=false)'
          Request a top axis.

    `BottomTop(bool extend=false)'
          Request a bottom and top axis.


     Custom axis types can be created by following the examples in
     `graph.asy'.  One can easily override the default values for the
     standard axis types: import graph;

     YZero=new axis(bool extend=true) {
       return new void(picture pic, axisT axis) {
         real y=pic.scale.x.scale.logarithmic ? 1 : 0;
         axis.value=I*pic.scale.y.T(y);
         axis.position=1;
         axis.side=right;
         axis.align=2.5E;
         axis.value2=Infinity;
         axis.extend=extend;
       };
     };
     YZero=YZero();

     The default tick option is `NoTicks'.  The options `LeftTicks',
     `RightTicks', or `Ticks' can be used to draw ticks on the left,
     right, or both sides of the path, relative to the direction in
     which the path is drawn.  These tick routines accept a number of
     optional arguments: ticks LeftTicks(Label format="", ticklabel ticklabel=null,
                     bool beginlabel=true, bool endlabel=true,
                     int N=0, int n=0, real Step=0, real step=0,
                     bool begin=true, bool end=true, tickmodifier modify=None,
                     real Size=0, real size=0, bool extend=false,
                     pen pTick=nullpen, pen ptick=nullpen);

     If any of these parameters are omitted, reasonable defaults will
     be chosen:
    `Label format'
          override the default tick label format (`defaultformat',
          initially "$%.4g$"), rotation, pen, and alignment (for
          example, `LeftSide', `Center', or `RightSide') relative to
          the axis. To enable `LaTeX' math mode fonts, the format
          string should begin and end with `$' *note format::. If the
          format string is `trailingzero', trailing zeros will be added
          to the tick labels; if the format string is `"%"', the tick
          label will be suppressed;

    `ticklabel'
          is a function `string(real x)' returning the label (by
          default, format(format.s,x)) for each major tick value `x';

    `bool beginlabel'
          include the first label;

    `bool endlabel'
          include the last label;

    `int N'
          when automatic scaling is enabled (the default; *note
          automatic scaling::), divide a linear axis evenly into this
          many intervals, separated by major ticks; for a logarithmic
          axis, this is the number of decades between labelled ticks;

    `int n'
          divide each interval into this many subintervals, separated
          by minor ticks;

    `real Step'
          the tick value spacing between major ticks (if `N'=`0');

    `real step'
          the tick value spacing between minor ticks (if `n'=`0');

    `bool begin'
          include the first major tick;

    `bool end'
          include the last major tick;

    `tickmodifier modify;'
          an optional function that takes and returns a `tickvalue'
          structure having real[] members `major' and `minor'
          consisting of the tick values (to allow modification of the
          automatically generated tick values);

    `real Size'
          the size of the major ticks (in `PostScript' coordinates);

    `real size'
          the size of the minor ticks (in `PostScript' coordinates);

    `bool extend;'
          extend the ticks between two axes (useful for drawing a grid
          on the graph);

    `pen pTick'
          an optional pen used to draw the major ticks;

    `pen ptick'
          an optional pen used to draw the minor ticks.


     For convenience, the predefined tickmodifiers `OmitTick(... real[]
     x)', `OmitTickInterval(real a, real b)', and
     `OmitTickIntervals(real[] a, real[] b)' can be used to remove
     specific auto-generated ticks and their labels. The
     `OmitFormat(string s=defaultformat ... real[] x)' ticklabel can be
     used to remove specific tick labels but not the corresponding
     ticks. The tickmodifier `NoZero' is an abbreviation for
     `OmitTick(0)' and the ticklabel `NoZeroFormat' is an abbrevation
     for `OmitFormat(0)'.

     It is also possible to specify custom tick locations with
     `LeftTicks', `RightTicks', and `Ticks' by passing explicit real
     arrays `Ticks' and (optionally) `ticks' containing the locations
     of the major and minor ticks, respectively: ticks LeftTicks(Label format="", ticklabel ticklabel=null,
                     bool beginlabel=true, bool endlabel=true,
                     real[] Ticks, real[] ticks=new real[],
                     real Size=0, real size=0, bool extend=false,
                     pen pTick=nullpen, pen ptick=nullpen)

   * void yaxis(picture pic=currentpicture, Label L="", axis axis=XZero,
                real ymin=-infinity, real ymax=infinity, pen p=currentpen,
                ticks ticks=NoTicks, arrowbar arrow=None, bool above=false,
                bool autorotate=true);

     Draw a y axis on picture `pic' from y=`ymin' to y=`ymax' using pen
     `p', optionally labelling it with a Label `L' that is autorotated
     unless `autorotate=false'.  The relative location of the label (a
     real number from [0,1]) defaults to 1 (*note Label::). An infinite
     value of `ymin' or `ymax' specifies that the corresponding axis
     limit will be automatically determined from the picture limits.
     The optional `arrow' argument takes the same values as in the
     `draw' command (*note arrows::). The axis is drawn before any
     existing objects in `pic' unless `above=true'.  The tick type is
     specified by `ticks' and the axis placement is determined by one
     of the following `axis' types:

    `XZero(bool extend=true)'
          Request a y axis at x=0 (or x=1 on a logarithmic axis)
          extending to the full dimensions of the picture, unless
          `extend'=false.

    `XEquals(real X, bool extend=true)'
          Request a y axis at x=`X' extending to the full dimensions of
          the picture, unless `extend'=false.

    `Left(bool extend=false)'
          Request a left axis.

    `Right(bool extend=false)'
          Request a right axis.

    `LeftRight(bool extend=false)'
          Request a left and right axis.


   * For convenience, the functions void xequals(picture pic=currentpicture, Label L="", real x,
                  bool extend=false, real ymin=-infinity, real ymax=infinity,
                  pen p=currentpen, ticks ticks=NoTicks, bool above=true,
                  arrowbar arrow=None);
      and void yequals(picture pic=currentpicture, Label L="", real y,
                  bool extend=false, real xmin=-infinity, real xmax=infinity,
                  pen p=currentpen, ticks ticks=NoTicks, bool above=true,
                  arrowbar arrow=None);
      can be respectively used to call `yaxis' and `xaxis' with the
     appropriate axis types `XEquals(x,extend)' and
     `YEquals(y,extend)'. This is the recommended way of drawing
     vertical or horizontal lines and axes at arbitrary locations.

   * void axes(picture pic=currentpicture, Label xlabel="", Label ylabel="",
               pair min=(-infinity,-infinity), pair max=(infinity,infinity),
               pen p=currentpen, arrowbar arrow=None, bool above=false);
      This convenience routine draws both x and y axes on picture `pic'
     from `min' to `max', with optional labels `xlabel' and `ylabel'
     and any arrows specified by `arrow'. The axes are drawn on top of
     existing objects in `pic' only if `above=true'.

   * void axis(picture pic=currentpicture, Label L="", path g,
               pen p=currentpen, ticks ticks, ticklocate locate,
               arrowbar arrow=None, int[] divisor=new int[],
               bool above=false, bool opposite=false);

     This routine can be used to draw on picture `pic' a general axis
     based on an arbitrary path `g', using pen `p'.  One can optionally
     label the axis with Label `L' and add an arrow `arrow'. The tick
     type is given by `ticks'.  The optional integer array `divisor'
     specifies what tick divisors to try in the attempt to produce
     uncrowded tick labels. A `true' value for the flag `opposite'
     identifies an unlabelled secondary axis (typically drawn opposite
     a primary axis). The axis is drawn before any existing objects in
     `pic' unless `above=true'.  The tick locator `ticklocate' is
     constructed by the routine ticklocate ticklocate(real a, real b, autoscaleT S=defaultS,
                           real tickmin=-infinity, real tickmax=infinity,
                           real time(real)=null, pair dir(real)=zero);
      where `a' and `b' specify the respective tick values at
     `point(g,0)' and `point(g,length(g))', `S' specifies the
     autoscaling transformation, the function `real time(real v)'
     returns the time corresponding to the value `v', and `pair
     dir(real t)' returns the absolute tick direction as a function of
     `t' (zero means draw the tick perpendicular to the axis).

   * These routines are useful for manually putting ticks and labels on
     axes (if the variable `Label' is given as the `Label' argument,
     the `format' argument will be used to format a string based on the
     tick location): void xtick(picture pic=currentpicture, Label L="", explicit pair z,
                pair dir=N, string format="",
                real size=Ticksize, pen p=currentpen);
     void xtick(picture pic=currentpicture, Label L="", real x,
                pair dir=N, string format="",
                real size=Ticksize, pen p=currentpen);
     void ytick(picture pic=currentpicture, Label L="", explicit pair z,
                pair dir=E, string format="",
                real size=Ticksize, pen p=currentpen);
     void ytick(picture pic=currentpicture, Label L="", real y,
                pair dir=E, string format="",
                real size=Ticksize, pen p=currentpen);
     void tick(picture pic=currentpicture, pair z,
               pair dir, real size=Ticksize, pen p=currentpen);
     void labelx(picture pic=currentpicture, Label L="", explicit pair z,
                 align align=S, string format="", pen p=nullpen);
     void labelx(picture pic=currentpicture, Label L="", real x,
                 align align=S, string format="", pen p=nullpen);
     void labelx(picture pic=currentpicture, Label L,
                 string format="", explicit pen p=currentpen);
     void labely(picture pic=currentpicture, Label L="", explicit pair z,
                 align align=W, string format="", pen p=nullpen);
     void labely(picture pic=currentpicture, Label L="", real y,
                 align align=W, string format="", pen p=nullpen);
     void labely(picture pic=currentpicture, Label L,
                 string format="", explicit pen p=nullpen);

   Here are some simple examples of two-dimensional graphs:

  1. This example draws a textbook-style graph of y= exp(x), with the y
     axis starting at y=0: import graph;
     size(150,0);

     real f(real x) {return exp(x);}
     pair F(real x) {return (x,f(x));}

     xaxis("$x$");
     yaxis("$y$",0);

     draw(graph(f,-4,2,operator ..),red);

     labely(1,E);
     label("$e^x$",F(1),SE);



  2. The next example draws a scientific-style graph with a legend.
     The position of the legend can be adjusted either explicitly or by
     using the graphical user interface `xasy' (*note GUI::). If an
     `UnFill(real xmargin=0, real ymargin=xmargin)' or `Fill(pen)'
     option is specified to `add', the legend will obscure any
     underlying objects. Here we illustrate how to clip the portion of
     the picture covered by a label:

     import graph;

     size(400,200,IgnoreAspect);

     real Sin(real t) {return sin(2pi*t);}
     real Cos(real t) {return cos(2pi*t);}

     draw(graph(Sin,0,1),red,"$\sin(2\pi x)$");
     draw(graph(Cos,0,1),blue,"$\cos(2\pi x)$");

     xaxis("$x$",BottomTop,LeftTicks);
     yaxis("$y$",LeftRight,RightTicks(trailingzero));

     label("LABEL",point(0),UnFill(1mm));

     add(legend(),point(E),20E,UnFill);



     To specify a fixed size for the graph proper, use `attach': import graph;

     size(250,200,IgnoreAspect);

     real Sin(real t) {return sin(2pi*t);}
     real Cos(real t) {return cos(2pi*t);}

     draw(graph(Sin,0,1),red,"$\sin(2\pi x)$");
     draw(graph(Cos,0,1),blue,"$\cos(2\pi x)$");

     xaxis("$x$",BottomTop,LeftTicks);
     yaxis("$y$",LeftRight,RightTicks(trailingzero));

     label("LABEL",point(0),UnFill(1mm));

     attach(legend(),truepoint(E),20E,UnFill);
      A legend can have multiple entries per line: import graph;
     size(8cm,6cm,IgnoreAspect);

     typedef real realfcn(real);
     realfcn F(real p) {
       return new real(real x) {return sin(p*x);};
     };

     for(int i=1; i < 5; ++i)
       draw(graph(F(i*pi),0,1),Pen(i),
            "$\sin("+(i == 1 ? "" : (string) i)+"\pi x)$");
     xaxis("$x$",BottomTop,LeftTicks);
     yaxis("$y$",LeftRight,RightTicks(trailingzero));

     attach(legend(2),(point(S).x,truepoint(S).y),10S,UnFill);



  3. This example draws a graph of one array versus another (both of
     the same size) using custom tick locations and a smaller font size
     for the tick labels on the y axis.  import graph;

     size(200,150,IgnoreAspect);

     real[] x={0,1,2,3};
     real[] y=x^2;

     draw(graph(x,y),red);

     xaxis("$x$",BottomTop,LeftTicks);
     yaxis("$y$",LeftRight,
           RightTicks(Label(fontsize(8pt)),new real[]{0,4,9}));



  4. This example shows how to graph columns of data read from a file.  import graph;

     size(200,150,IgnoreAspect);

     file in=input("filegraph.dat").line();
     real[][] a=in.dimension(0,0);
     a=transpose(a);

     real[] x=a[0];
     real[] y=a[1];

     draw(graph(x,y),red);

     xaxis("$x$",BottomTop,LeftTicks);
     yaxis("$y$",LeftRight,RightTicks);



  5. The next example draws two graphs of an array of coordinate pairs,
     using frame alignment and data markers. In the left-hand graph, the
     markers, constructed with marker marker(path g, markroutine markroutine=marknodes,
                   pen p=currentpen, filltype filltype=NoFill,
                   bool above=true);
      using the path `unitcircle' (*note filltype::), are drawn below
     each node. Any frame can be converted to a marker, using marker marker(frame f, markroutine markroutine=marknodes,
                   bool above=true);
      In the right-hand graph, the unit n-sided regular polygon
     `polygon(int n)' and the unit n-point cyclic cross `cross(int n,
     bool round=true, real r=0)' (where `r' is an optional "inner"
     radius) are used to build a custom marker frame.  Here
     `markuniform(bool centered=false, int n, bool rotated=false)' adds
     this frame at `n' uniformly spaced points along the arclength of
     the path, optionally rotated by the angle of the local tangent to
     the path (if centered is true, the frames will be centered within
     `n' evenly spaced arclength intervals). Alternatively, one can use
     markroutine `marknodes' to request that the marks be placed at each
     Bezier node of the path, or markroutine `markuniform(pair z(real
     t), real a, real b, int n)' to place marks at points `z(t)' for n
     evenly spaced values of `t' in `[a,b]'.

     These markers are predefined: marker[] Mark={
       marker(scale(circlescale)*unitcircle),
       marker(polygon(3)),marker(polygon(4)),
       marker(polygon(5)),marker(invert*polygon(3)),
       marker(cross(4)),marker(cross(6))
     };

     marker[] MarkFill={
       marker(scale(circlescale)*unitcircle,Fill),marker(polygon(3),Fill),
       marker(polygon(4),Fill),marker(polygon(5),Fill),
       marker(invert*polygon(3),Fill)
     };

     The example also illustrates the `errorbar' routines:

     void errorbars(picture pic=currentpicture, pair[] z, pair[] dp,
                    pair[] dm={}, bool[] cond={}, pen p=currentpen,
                    real size=0);

     void errorbars(picture pic=currentpicture, real[] x, real[] y,
                    real[] dpx, real[] dpy, real[] dmx={}, real[] dmy={},
                    bool[] cond={}, pen p=currentpen, real size=0);

     Here, the positive and negative extents of the error are given by
     the absolute values of the elements of the pair array `dp' and the
     optional pair array `dm'. If `dm' is not specified, the positive
     and negative extents of the error are assumed to be equal.  import graph;

     picture pic;
     real xsize=200, ysize=140;
     size(pic,xsize,ysize,IgnoreAspect);

     pair[] f={(5,5),(50,20),(90,90)};
     pair[] df={(0,0),(5,7),(0,5)};

     errorbars(pic,f,df,red);
     draw(pic,graph(pic,f),"legend",
          marker(scale(0.8mm)*unitcircle,red,FillDraw(blue),above=false));

     scale(pic,true);

     xaxis(pic,"$x$",BottomTop,LeftTicks);
     yaxis(pic,"$y$",LeftRight,RightTicks);
     add(pic,legend(pic),point(pic,NW),20SE,UnFill);

     picture pic2;
     size(pic2,xsize,ysize,IgnoreAspect);

     frame mark;
     filldraw(mark,scale(0.8mm)*polygon(6),green,green);
     draw(mark,scale(0.8mm)*cross(6),blue);

     draw(pic2,graph(pic2,f),marker(mark,markuniform(5)));

     scale(pic2,true);

     xaxis(pic2,"$x$",BottomTop,LeftTicks);
     yaxis(pic2,"$y$",LeftRight,RightTicks);

     yequals(pic2,55.0,red+Dotted);
     xequals(pic2,70.0,red+Dotted);

     // Fit pic to W of origin:
     add(pic.fit(),(0,0),W);

     // Fit pic2 to E of (5mm,0):
     add(pic2.fit(),(5mm,0),E);



  6. A custom mark routine can be also be specified: import graph;

     size(200,100,IgnoreAspect);

     markroutine marks() {
       return new void(picture pic=currentpicture, frame f, path g) {
         path p=scale(1mm)*unitcircle;
         for(int i=0; i <= length(g); ++i) {
           pair z=point(g,i);
           frame f;
           if(i % 4 == 0) {
             fill(f,p);
             add(pic,f,z);
           } else {
             if(z.y > 50) {
               pic.add(new void(frame F, transform t) {
                   path q=shift(t*z)*p;
                   unfill(F,q);
                   draw(F,q);
                 });
             } else {
               draw(f,p);
               add(pic,f,z);
             }
           }
         }
       };
     }

     pair[] f={(5,5),(40,20),(55,51),(90,30)};

     draw(graph(f),marker(marks()));

     scale(true);

     xaxis("$x$",BottomTop,LeftTicks);
     yaxis("$y$",LeftRight,RightTicks);



  7. This example shows how to label an axis with arbitrary strings.  import graph;

     size(400,150,IgnoreAspect);

     real[] x=sequence(12);
     real[] y=sin(2pi*x/12);

     scale(false);

     string[] month={"Jan","Feb","Mar","Apr","May","Jun",
                     "Jul","Aug","Sep","Oct","Nov","Dec"};

     draw(graph(x,y),red,MarkFill[0]);

     xaxis(BottomTop,LeftTicks(new string(real x) {
           return month[round(x % 12)];}));
     yaxis("$y$",LeftRight,RightTicks(4));



  8. The next example draws a graph of a parametrized curve.  The calls
     to xlimits(picture pic=currentpicture, real min=-infinity,
             real max=infinity, bool crop=NoCrop);
      and the analogous function `ylimits' can be uncommented to set
     the respective axes limits for picture `pic' to the specified
     `min' and `max' values. Alternatively, the function void limits(picture pic=currentpicture, pair min, pair max, bool crop=NoCrop);
      can be used to limit the axes to the box having opposite vertices
     at the given pairs). Existing objects in picture `pic' will be
     cropped to lie within the given limits if `crop'=`Crop'. The
     function `crop(picture pic)' can be used to crop a graph to the
     current graph limits.  import graph;

     size(0,200);

     real x(real t) {return cos(2pi*t);}
     real y(real t) {return sin(2pi*t);}

     draw(graph(x,y,0,1));

     //xlimits(0,1,Crop);
     //ylimits(-1,0,Crop);

     xaxis("$x$",BottomTop,LeftTicks);
     yaxis("$y$",LeftRight,RightTicks(trailingzero));



     The next example illustrates how one can extract a common axis
     scaling factor.  import graph;

     axiscoverage=0.9;
     size(200,IgnoreAspect);

     real[] x={-1e-11,1e-11};
     real[] y={0,1e6};

     real xscale=round(log10(max(x)));
     real yscale=round(log10(max(y)))-1;

     draw(graph(x*10^(-xscale),y*10^(-yscale)),red);

     xaxis("$x/10^{"+(string) xscale+"}$",BottomTop,LeftTicks);
     yaxis("$y/10^{"+(string) yscale+"}$",LeftRight,RightTicks(trailingzero));



     Axis scaling can be requested and/or automatic selection of the
     axis limits can be inhibited with one of these `scale' routines: void scale(picture pic=currentpicture, scaleT x, scaleT y);

     void scale(picture pic=currentpicture, bool xautoscale=true,
                bool yautoscale=xautoscale, bool zautoscale=yautoscale);

     This sets the scalings for picture `pic'. The `graph' routines
     accept an optional `picture' argument for determining the
     appropriate scalings to use; if none is given, it uses those set
     for `currentpicture'.

     Two frequently used scaling routines `Linear' and `Log' are
     predefined in `graph'.

     All picture coordinates (including those in paths and those given
     to the `label' and `limits' functions) are always treated as linear
     (post-scaled) coordinates. Use pair Scale(picture pic=currentpicture, pair z);
      to convert a graph coordinate into a scaled picture coordinate.

     The x and y components can be individually scaled using the
     analogous routines real ScaleX(picture pic=currentpicture, real x);
     real ScaleY(picture pic=currentpicture, real y);

     The predefined scaling routines can be given two optional boolean
     arguments: `automin=false' and `automax=automin'. These default to
     `false' but can be respectively set to `true' to enable automatic
     selection of "nice" axis minimum and maximum values. The `Linear'
     scaling can also take as optional final arguments a multiplicative
     scaling factor and intercept (e.g. for a depth axis, `Linear(-1)'
     requests axis reversal).

     For example, to draw a log/log graph of a function, use
     `scale(Log,Log)': import graph;

     size(200,200,IgnoreAspect);

     real f(real t) {return 1/t;}

     scale(Log,Log);

     draw(graph(f,0.1,10));

     //xlimits(1,10,Crop);
     //ylimits(0.1,1,Crop);

     dot(Label("(3,5)",align=S),Scale((3,5)));

     xaxis("$x$",BottomTop,LeftTicks);
     yaxis("$y$",LeftRight,RightTicks);



     By extending the ticks, one can easily produce a logarithmic grid: import graph;
     size(200,200,IgnoreAspect);

     real f(real t) {return 1/t;}

     scale(Log,Log);
     draw(graph(f,0.1,10),red);
     pen thin=linewidth(0.5*linewidth());
     xaxis("$x$",BottomTop,LeftTicks(begin=false,end=false,extend=true,
                                     ptick=thin));
     yaxis("$y$",LeftRight,RightTicks(begin=false,end=false,extend=true,
                                      ptick=thin));



     One can also specify custom tick locations and formats for
     logarithmic axes: import graph;

     size(300,175,IgnoreAspect);
     scale(Log,Log);
     draw(graph(identity,5,20));
     xlimits(5,20);
     ylimits(1,100);
     xaxis("$M/M_\odot$",BottomTop,LeftTicks(DefaultFormat,
                                             new real[] {6,10,12,14,16,18}));
     yaxis("$\nu_{\rm upp}$ [Hz]",LeftRight,RightTicks(DefaultFormat));



     It is easy to draw logarithmic graphs with respect to other bases: import graph;
     size(200,IgnoreAspect);

     // Base-2 logarithmic scale on y-axis:

     real log2(real x) {static real log2=log(2); return log(x)/log2;}
     real pow2(real x) {return 2^x;}

     scaleT yscale=scaleT(log2,pow2,logarithmic=true);
     scale(Linear,yscale);

     real f(real x) {return 1+x^2;}

     draw(graph(f,-4,4));

     yaxis("$y$",ymin=1,ymax=f(5),RightTicks(Label(Fill(white))),EndArrow);
     xaxis("$x$",xmin=-5,xmax=5,LeftTicks,EndArrow);



     Here is an example of "broken" linear x and logarithmic y axes
     that omit the segments [3,8] and [100,1000], respectively.  In the
     case of a logarithmic axis, the break endpoints are automatically
     rounded to the nearest integral power of the base.  import graph;

     size(200,150,IgnoreAspect);

     // Break the x axis at 3; restart at 8:
     real a=3, b=8;

     // Break the y axis at 100; restart at 1000:
     real c=100, d=1000;

     scale(Broken(a,b),BrokenLog(c,d));

     real[] x={1,2,4,6,10};
     real[] y=x^4;

     draw(graph(x,y),red,MarkFill[0]);

     xaxis("$x$",BottomTop,LeftTicks(Break(a,b)));
     yaxis("$y$",LeftRight,RightTicks(Break(c,d)));

     label(rotate(90)*Break,(a,point(S).y));
     label(rotate(90)*Break,(a,point(N).y));
     label(Break,(point(W).x,ScaleY(c)));
     label(Break,(point(E).x,ScaleY(c)));



  9. `Asymptote' can draw secondary axes with the routines picture secondaryX(picture primary=currentpicture, void f(picture));
     picture secondaryY(picture primary=currentpicture, void f(picture));

     In this example, `secondaryY' is used to draw a secondary linear y
     axis against a primary logarithmic y axis: import graph;
     texpreamble("\def\Arg{\mathop {\rm Arg}\nolimits}");

     size(10cm,5cm,IgnoreAspect);

     real ampl(real x) {return 2.5/(1+x^2);}
     real phas(real x) {return -atan(x)/pi;}

     scale(Log,Log);
     draw(graph(ampl,0.01,10));
     ylimits(0.001,100);

     xaxis("$\omega\tau_0$",BottomTop,LeftTicks);
     yaxis("$|G(\omega\tau_0)|$",Left,RightTicks);

     picture q=secondaryY(new void(picture pic) {
         scale(pic,Log,Linear);
         draw(pic,graph(pic,phas,0.01,10),red);
         ylimits(pic,-1.0,1.5);
         yaxis(pic,"$\Arg G/\pi$",Right,red,
               LeftTicks("$% #.1f$",
                         begin=false,end=false));
         yequals(pic,1,Dotted);
       });
     label(q,"(1,0)",Scale(q,(1,0)),red);
     add(q);



     A secondary logarithmic y axis can be drawn like this: import graph;

     size(9cm,6cm,IgnoreAspect);
     string data="secondaryaxis.csv";

     file in=input(data).line().csv();

     string[] titlelabel=in;
     string[] columnlabel=in;

     real[][] a=in.dimension(0,0);
     a=transpose(a);
     real[] t=a[0], susceptible=a[1], infectious=a[2], dead=a[3], larvae=a[4];
     real[] susceptibleM=a[5], exposed=a[6],infectiousM=a[7];

     scale(true);

     draw(graph(t,susceptible,t >= 10 & t <= 15));
     draw(graph(t,dead,t >= 10 & t <= 15),dashed);

     xaxis("Time ($\tau$)",BottomTop,LeftTicks);
     yaxis(Left,RightTicks);

     picture secondary=secondaryY(new void(picture pic) {
         scale(pic,Linear(true),Log(true));
         draw(pic,graph(pic,t,infectious,t >= 10 & t <= 15),red);
         yaxis(pic,Right,red,LeftTicks(begin=false,end=false));
       });

     add(secondary);
     label(shift(5mm*N)*"Proportion of crows",point(NW),E);



 10. Here is a histogram example, which uses the `stats' module.  import graph;
     import stats;

     size(400,200,IgnoreAspect);

     int n=10000;
     real[] a=new real[n];
     for(int i=0; i < n; ++i) a[i]=Gaussrand();

     draw(graph(Gaussian,min(a),max(a)),blue);

     // Optionally calculate "optimal" number of bins a la Shimazaki and Shinomoto.
     int N=bins(a);

     histogram(a,min(a),max(a),N,normalize=true,low=0,lightred,black,bars=false);

     xaxis("$x$",BottomTop,LeftTicks);
     yaxis("$dP/dx$",LeftRight,RightTicks(trailingzero));



 11. Here is an example of reading column data in from a file and a
     least-squares fit, using the `stats' module.  size(400,200,IgnoreAspect);

     import graph;
     import stats;

     file fin=input("leastsquares.dat").line();

     real[][] a=fin.dimension(0,0);
     a=transpose(a);

     real[] t=a[0], rho=a[1];

     // Read in parameters from the keyboard:
     //real first=getreal("first");
     //real step=getreal("step");
     //real last=getreal("last");

     real first=100;
     real step=50;
     real last=700;

     // Remove negative or zero values of rho:
     t=rho > 0 ? t : null;
     rho=rho > 0 ? rho : null;

     scale(Log(true),Linear(true));

     int n=step > 0 ? ceil((last-first)/step) : 0;

     real[] T,xi,dxi;

     for(int i=0; i <= n; ++i) {
       real first=first+i*step;
       real[] logrho=(t >= first & t <= last) ? log(rho) : null;
       real[] logt=(t >= first & t <= last) ? -log(t) : null;

       if(logt.length < 2) break;

       // Fit to the line logt=L.m*logrho+L.b:
       linefit L=leastsquares(logt,logrho);

       T.push(first);
       xi.push(L.m);
       dxi.push(L.dm);
     }

     draw(graph(T,xi),blue);
     errorbars(T,xi,dxi,red);

     crop();

     ylimits(0);

     xaxis("$T$",BottomTop,LeftTicks);
     yaxis("$\xi$",LeftRight,RightTicks);



 12. Here is an example that illustrates the general `axis' routine.  import graph;
     size(0,100);

     path g=ellipse((0,0),1,2);

     scale(true);

     axis(Label("C",align=10W),g,LeftTicks(endlabel=false,8,end=false),
          ticklocate(0,360,new real(real v) {
              path h=(0,0)--max(abs(max(g)),abs(min(g)))*dir(v);
              return intersect(g,h)[0];}));



 13. To draw a vector field of `n' arrows evenly spaced along the
     arclength of a path, use the routine picture vectorfield(path vector(real), path g, int n, bool truesize=false,
                         pen p=currentpen, arrowbar arrow=Arrow);
      as illustrated in this simple example of a flow field: import graph;
     defaultpen(1.0);

     size(0,150,IgnoreAspect);

     real arrowsize=4mm;
     real arrowlength=2arrowsize;

     typedef path vector(real);

     // Return a vector interpolated linearly between a and b.
     vector vector(pair a, pair b) {
       return new path(real x) {
         return (0,0)--arrowlength*interp(a,b,x);
       };
     }

     real f(real x) {return 1/x;}

     real epsilon=0.5;
     path g=graph(f,epsilon,1/epsilon);

     int n=3;
     draw(g);
     xaxis("$x$");
     yaxis("$y$");

     add(vectorfield(vector(W,W),g,n,true));
     add(vectorfield(vector(NE,NW),(0,0)--(point(E).x,0),n,true));
     add(vectorfield(vector(NE,NE),(0,0)--(0,point(N).y),n,true));



 14. To draw a vector field of `nx'\times`ny' arrows in `box(a,b)', use
     the routine picture vectorfield(path vector(pair), pair a, pair b,
                         int nx=nmesh, int ny=nx, bool truesize=false,
                         real maxlength=truesize ? 0 : maxlength(a,b,nx,ny),
                         bool cond(pair z)=null, pen p=currentpen,
                         arrowbar arrow=Arrow, margin margin=PenMargin)
      as illustrated in this example: import graph;
     size(100);

     pair a=(0,0);
     pair b=(2pi,2pi);

     path vector(pair z) {return (0,0)--(sin(z.x),cos(z.y));}

     add(vectorfield(vector,a,b));



 15. The following scientific graphs, which illustrate many features of
     `Asymptote''s graphics routines, were generated from the examples
     `diatom.asy' and `westnile.asy', using the comma-separated data in
     `diatom.csv' and `westnile.csv'.



File: asymptote.info,  Node: palette,  Next: three,  Prev: graph,  Up: Base modules

8.28 `palette'
==============

`Asymptote' can also generate color density images and palettes. The
following palettes are predefined in `palette.asy':

`pen[] Grayscale(int NColors=256)'
     a grayscale palette;

`pen[] Rainbow(int NColors=32766)'
     a rainbow spectrum;

`pen[] BWRainbow(int NColors=32761)'
     a rainbow spectrum tapering off to black/white at the ends;

`pen[] BWRainbow2(int NColors=32761)'
     a double rainbow palette tapering off to black/white at the ends,
     with a linearly scaled intensity.

`pen[] Wheel(int NColors=32766)'
     a full color wheel palette;

`pen[] Gradient(int NColors=256 ... pen[] p)'
     a palette varying linearly over the specified array of pens, using
     NColors in each interpolation interval;


   The function `cmyk(pen[] Palette)' may be used to convert any of
these palettes to the CMYK colorspace.

   A color density plot using palette `palette' can be generated from a
function `f'(x,y) and added to a picture `pic': 
bounds image(picture pic=currentpicture, real f(real,real),
             range range=Full, pair initial, pair final,
             int nx=ngraph, int ny=nx, pen[] palette, bool antialias=false)
 The function `f' will be sampled at `nx' and `ny' evenly spaced points
over a rectangle defined by the points `initial' and `final',
respecting the current graphical scaling of `pic'. The color space is
scaled according to the z axis scaling (*note automatic scaling::). A
bounds structure for the function values is returned:
struct bounds {
  real min;
  real max;
  // Possible tick intervals:
  int[] divisor;
}
 This information can be used for generating an optional palette bar.
The palette color space corresponds to a range of values specified by
the argument `range', which can be `Full', `Automatic', or an explicit
range `Range(real min, real max)'.  Here `Full' specifies a range
varying from the minimum to maximum values of the function over the
sampling interval, while `Automatic' selects "nice" limits.  The
example `imagecontour.asy' illustrates how level sets (contour lines)
can be drawn on a color density plot (*note contour::).

   A color density plot can also be generated from an explicit real[][]
array `data': 
bounds image(picture pic=currentpicture, real[][] f, range range=Full,
             pair initial, pair final, pen[] palette,
             bool transpose=(initial.x < final.x && initial.y < final.y),
             bool copy=true, bool antialias=false);
 If the initial point is to the left and below the final point, by
default the array indices are interpreted according to the Cartesian
convention (first index: x, second index: y) rather than the usual
matrix convention (first index: -y, second index: x).

   To construct an image from an array of irregularly spaced points and
an array of values `f' at these points, use one of the routines
bounds image(picture pic=currentpicture, pair[] z, real[] f,
             range range=Full, pen[] palette)
bounds image(picture pic=currentpicture, real[] x, real[] y, real[] f,
             range range=Full, pen[] palette)

   An optionally labelled palette bar may be generated with the routine
void palette(picture pic=currentpicture, Label L="", bounds bounds,
             pair initial, pair final, axis axis=Right, pen[] palette,
             pen p=currentpen, paletteticks ticks=PaletteTicks,
             bool copy=true, bool antialias=false);
 The color space of `palette' is taken to be over bounds `bounds' with
scaling given by the z scaling of `pic'.  The palette orientation is
specified by `axis', which may be one of `Right', `Left', `Top', or
`Bottom'.  The bar is drawn over the rectangle from `initial' to
`final'.  The argument `paletteticks' is a special tick type (*note
ticks::) that takes the following arguments:
paletteticks PaletteTicks(Label format="", ticklabel ticklabel=null,
                          bool beginlabel=true, bool endlabel=true,
                          int N=0, int n=0, real Step=0, real step=0,
                          pen pTick=nullpen, pen ptick=nullpen);

   The image and palette bar can be fit to a frame and added and
optionally aligned to a picture at the desired location:

size(12cm,12cm);

import graph;
import palette;

int n=256;
real ninv=2pi/n;
real[][] v=new real[n][n];

for(int i=0; i < n; ++i)
  for(int j=0; j < n; ++j)
    v[i][j]=sin(i*ninv)*cos(j*ninv);

pen[] Palette=BWRainbow();

picture bar;

bounds range=image(v,(0,0),(1,1),Palette);
palette(bar,"$A$",range,(0,0),(0.5cm,8cm),Right,Palette,
        PaletteTicks("$%+#.1f$"));
add(bar.fit(),point(E),30E);



Here is an example that uses logarithmic scaling of the function values:

import graph;
import palette;

size(10cm,10cm,IgnoreAspect);

real f(real x, real y) {
  return 0.9*pow10(2*sin(x/5+2*y^0.25)) + 0.1*(1+cos(10*log(y)));
}

scale(Linear,Log,Log);

pen[] Palette=BWRainbow();

bounds range=image(f,Automatic,(0,1),(100,100),nx=200,Palette);

xaxis("$x$",BottomTop,LeftTicks,above=true);
yaxis("$y$",LeftRight,RightTicks,above=true);

palette("$f(x,y)$",range,(0,200),(100,250),Top,Palette,
        PaletteTicks(ptick=linewidth(0.5*linewidth())));



One can also draw an image directly from a two-dimensional pen array:
void image(picture pic=currentpicture, pen[][] data,
           pair initial, pair final,
           bool transpose=(initial.x < final.x && initial.y < final.y),
           bool copy=true, bool antialias=false);
 as illustrated in the following example:

size(200);

import palette;

int n=256;
real ninv=2pi/n;
pen[][] v=new pen[n][n];

for(int i=0; i < n; ++i)
  for(int j=0; j < n; ++j)
    v[i][j]=rgb(0.5*(1+sin(i*ninv)),0.5*(1+cos(j*ninv)),0);

image(v,(0,0),(1,1));



For convenience, the module `palette' also defines functions that may
be used to construct a pen array from a given function and palette:
pen[] palette(real[] f, pen[] palette);
pen[][] palette(real[][] f, pen[] palette);


File: asymptote.info,  Node: three,  Next: obj,  Prev: palette,  Up: Base modules

8.29 `three'
============

This module fully extends the notion of guides and paths in `Asymptote'
to three dimensions. It introduces the new types guide3, path3, and
surface.  Guides in three dimensions are specified with the same syntax
as in two dimensions except that triples `(x,y,z)' are used in place of
pairs `(x,y)' for the nodes and direction specifiers.  This
generalization of John Hobby's spline algorithm is shape-invariant under
three-dimensional rotation, scaling, and shifting, and reduces in the
planar case to the two-dimensional algorithm used in `Asymptote',
`MetaPost', and `MetaFont' [cf. J. C. Bowman, Proceedings in Applied
Mathematics and Mechanics, 7:1, 2010021-2010022 (2007)].

   For example, a unit circle in the XY plane may be filled and drawn
like this:

import three;

size(100);

path3 g=(1,0,0)..(0,1,0)..(-1,0,0)..(0,-1,0)..cycle;
draw(g);
draw(O--Z,red+dashed,Arrow3);
draw(((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle));
dot(g,red);


and then distorted into a saddle:

import three;

size(100,0);
path3 g=(1,0,0)..(0,1,1)..(-1,0,0)..(0,-1,1)..cycle;
draw(g);
draw(((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle));
dot(g,red);


Module `three' provides constructors for converting two-dimensional
paths to three-dimensional ones, and vice-versa: 
path3 path3(path p, triple plane(pair)=XYplane);
path path(path3 p, pair P(triple)=xypart);

   A Bezier surface, the natural two-dimensional generalization of
Bezier curves, is defined in `three_surface.asy' as a structure
containing an array of Bezier patches. Surfaces may drawn with one of
the routines
void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
          material surfacepen=currentpen, pen meshpen=nullpen,
          light light=currentlight, light meshlight=light, string name="",
          render render=defaultrender);
void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
          material[] surfacepen, pen meshpen,
          light light=currentlight, light meshlight=light, string name="",
          render render=defaultrender);
void draw(picture pic=currentpicture, surface s, int nu=1, int nv=1,
          material[] surfacepen, pen[] meshpen=nullpens,
          light light=currentlight, light meshlight=light, string name="",
          render render=defaultrender);

 The parameters `nu' and `nv' specify the number of subdivisions for
drawing optional mesh lines for each Bezier patch. The optional `name'
parameter is used as a prefix for naming the surface patches in the PRC
model tree.  Here material is a structure defined in `three_light.asy':
struct material {
  pen[] p; // diffusepen,ambientpen,emissivepen,specularpen
  real opacity;
  real shininess;
...
}
 These material properties are used to implement `OpenGL'-style
lighting, based on the Phong-Blinn specular model. Sample Bezier
surfaces are contained in the example files `BezierSurface.asy',
`teapot.asy', and `parametricsurface.asy'. The structure `render'
contains specialized rendering options documented at the beginning of
module `three.asy'.

   The examples `elevation.asy' and `sphericalharmonic.asy' illustrate
how to draw a surface with patch-dependent colors.  The examples
`vertexshading' and `smoothelevation' illustrate vertex-dependent
colors, which is supported for both `Asymptote''s native `OpenGL'
renderer and two-dimensional projections. Since the PRC output format
does not currently support vertex shading of Bezier surfaces, PRC
patches are shaded with the mean of the four vertex colors.

   A surface can be constructed from a cyclic `path3' with the
constructor
surface surface(path3 external, triple[] internal=new triple[],
                triple[] normals=new triple[], pen[] colors=new pen[],
                bool3 planar=default);
 and then filled:
draw(surface(path3(polygon(5))),red,nolight);
draw(surface(unitcircle3),red,nolight);
draw(surface(unitcircle3,new pen[] {red,green,blue,black}),nolight);
 The last example constructs a patch with vertex-specific colors.  A
three-dimensional planar surface in the plane `plane' can be
constructed from a two-dimensional cyclic path `g' with the constructor 
surface surface(path p, triple plane(pair)=XYplane);
 and then filled:
draw(surface((0,0)--E+2N--2E--E+N..0.2E..cycle),red);
 Planar Bezier surfaces patches are constructed using Orest Shardt's
`bezulate' routine, which decomposes (possibly nonsimply connected)
regions bounded (according to the `zerowinding' fill rule) by simple
cyclic paths (intersecting only at the endpoints) into subregions
bounded by cyclic paths of length `4' or less.

   Arbitrary thick three-dimensional curves and line caps (which the
`OpenGL' standard does not require implementations to provide) are
constructed with
tube tube(path3 p, real width, render render=defaultrender);
 this returns a tube structure representing a tube of diameter `width'
centered approximately on `g'. The tube structure consists of a surface
`s' and the actual tube center, path3 `center'.  Drawing thick lines as
tubes can be slow to render, especially with the `Adobe Reader'
renderer. The setting `thick=false' can be used to disable this feature
and force all lines to be drawn with `linewidth(0)' (one pixel wide,
regardless of the resolution). By default, mesh and contour lines in
three-dimensions are always drawn thin, unless an explicit line width
is given in the pen parameter or the setting `thin' is set to `false'.
The pens `thin()' and `thick()' defined in plain_pens.asy can also be
used to override these defaults for specific draw commands.

There are four choices for viewing 3D `Asymptote' output:
  1. Use the native `Asymptote' adaptive `OpenGL'-based renderer (with
     the command-line option `-V' and the default settings
     `outformat=""' and `render=-1'). If you encounter warnings from
     your graphics card driver, try specifying `-glOptions=-indirect'
     on the command line. On `UNIX' systems with graphics support for
     multisampling, we recommend installing the latest SVN (antialiased)
     version of the `freeglut' library (*note multisampling::); the
     sample width can be controlled with the setting `multisample'. An
     initial screen position can be specified with the pair setting
     `position', where negative values are interpreted as relative to
     the corresponding maximum screen dimension. The default settings import settings;
     leftbutton=new string[] {"rotate","zoom","shift","pan"};
     middlebutton=new string[] {"menu"};
     rightbutton=new string[] {"zoom/menu","rotateX","rotateY","rotateZ"};
     wheelup=new string[] {"zoomin"};
     wheeldown=new string[] {"zoomout"};
      bind the mouse buttons as follows:
        * Left: rotate

        * Shift Left: zoom

        * Ctrl Left: shift viewport

        * Alt Left: pan

        * Middle: menu (must be unmodified; ignores Shift, Ctrl, and
          Alt)

        * Wheel Up: zoom in

        * Wheel Down: zoom out

        * Right: zoom/menu (must be unmodified)

        * Right double click: menu

        * Shift Right: rotate about the X axis

        * Ctrl Right: rotate about the Y axis

        * Alt Right: rotate about the Z axis

     The keyboard shortcuts are: 
        * h: home

        * f: toggle fitscreen

        * x: spin about the X axis

        * y: spin about the Y axis

        * z: spin about the Z axis

        * s: stop spinning

        * m: rendering mode (solid/mesh/patch)

        * e: export

        * c: show camera parameters

        * p: play animation

        * r: reverse animation

        * : step animation

        * +: expand

        * =: expand

        * >: expand

        * -: shrink

        * _: shrink

        * <: shrink

        * q: exit

        * Ctrl-q: exit

  2. Render the scene to a specified rasterized format `outformat' at
     the resolution of `n' pixels per `bp', as specified by the setting
     `render=n'. A negative value of `n' is interpreted as `|2n|' for
     EPS and PDF formats and `|n|' for other formats. The default value
     of `render' is -1.  By default, the scene is internally rendered
     at twice the specified resolution; this can be disabled by setting
     `antialias=1'.  High resolution rendering is done by tiling the
     image. If your graphics card allows it, the rendering can be made
     more efficient by increasing the maximum tile size `maxtile'
     beyond the screen dimensions (indicated by `maxtile=(0,0)'. If
     your video card generates unwanted black stripes in the output,
     try setting the horizontal and vertical components of `maxtiles'
     to something less than your screen dimensions. The tile size is
     also limited by the setting `maxviewport', which restricts the
     maximum width and height of the viewport. On `UNIX' systems some
     graphics drivers support batch mode (`-noV') rendering in an
     iconified window; this can be enabled with the setting
     `iconify=true'.  Some (broken) `UNIX' graphics drivers may require
     the command line setting `-glOptions=-indirect', which requests
     (slower) indirect rendering.

  3. Embed the 3D PRC format in a PDF file and view the resulting PDF
     file with version `9.0' or later of `Adobe Reader'.  In addition
     to the default `settings.prc=true', this requires
     `settings.outformat="pdf"', which can be specified by the command
     line option `-f pdf', put in the `Asymptote' configuration file
     (*note configuration file::), or specified in the script before
     `three.asy' (or `graph3.asy') is imported.  Version 2008/10/08 or
     later of the `movie15' package is also required (*note embed::).
     The example `pdb.asy' illustrates how one can generate a list of
     predefined views (see `100d.views').  A stationary preview image
     with a resolution of `n' pixels per `bp' can be embedded with the
     setting `render=n'; this allows the file to be viewed with other
     `PDF' viewers. Alternatively, the file `externalprc.tex'
     illustrates how the resulting PRC and rendered image files can be
     extracted and processed in a separate `LaTeX' file. However, see
     *note LaTeX usage:: for an easier way to embed three-dimensional
     `Asymptote' pictures within `LaTeX'.  The open-source PRC
     specification is available from
     `http://livedocs.adobe.com/acrobat_sdk/9/Acrobat9_HTMLHelp/API_References/PRCReference/PRC_Format_Specification/'.

  4. Project the scene to a two-dimensional vector (EPS or PDF) format
     with `render=0'. Only limited hidden surface removal facilities
     are currently available with this approach (*note PostScript3D::).


   Automatic picture sizing in three dimensions is accomplished with
double deferred drawing. The maximal desired dimensions of the scene in
each of the three dimensions can optionally be specified with the
routine 
void size3(picture pic=currentpicture, real x, real y=x, real z=y,
          bool keepAspect=pic.keepAspect);
 The resulting simplex linear programming problem is then solved to
produce a 3D version of a frame (actually implemented as a 3D picture).
The result is then fit with another application of deferred drawing to
the viewport dimensions corresponding to the usual two-dimensional
picture `size' parameters. The global pair `viewportmargin' may be used
to add horizontal and vertical margins to the viewport dimensions.
Alternatively, a minimum `viewportsize' may be specified.  A 3D picture
`pic' can be explicitly fit to a 3D frame by calling 
frame pic.fit3(projection P=currentprojection);
 and then added to picture `dest' about `position' with 
void add(picture dest=currentpicture, frame src, triple position=(0,0,0));

   For convenience, the `three' module defines `O=(0,0,0)',
`X=(1,0,0)', `Y=(0,1,0)', and `Z=(0,0,1)', along with a unitcircle in
the XY plane:
path3 unitcircle3=X..Y..-X..-Y..cycle;

   A general (approximate) circle can be drawn perpendicular to the
direction `normal' with the routine
path3 circle(triple c, real r, triple normal=Z);

   A circular arc centered at `c' with radius `r' from
`c+r*dir(theta1,phi1)' to `c+r*dir(theta2,phi2)', drawing
counterclockwise relative to the normal vector
`cross(dir(theta1,phi1),dir(theta2,phi2))' if `theta2 > theta1' or if
`theta2 == theta1' and `phi2 >= phi1', can be constructed with
path3 arc(triple c, real r, real theta1, real phi1, real theta2, real phi2,
          triple normal=O);
 The normal must be explicitly specified if `c' and the endpoints are
colinear. If `r' < 0, the complementary arc of radius `|r|' is
constructed.  For convenience, an arc centered at `c' from triple `v1'
to `v2' (assuming `|v2-c|=|v1-c|') in the direction CCW
(counter-clockwise) or CW (clockwise) may also be constructed with
path3 arc(triple c, triple v1, triple v2, triple normal=O,
          bool direction=CCW);
 When high accuracy is needed, the routines `Circle' and `Arc' defined
in `graph3' may be used instead.  See *note GaussianSurface:: for an
example of a three-dimensional circular arc.

   The representation `O--O+u--O+u+v--O+v--cycle' of the plane passing
through point `O' with normal `cross(u,v)' is returned by
path3 plane(triple u, triple v, triple O=O);
 A three-dimensional box with opposite vertices at triples `v1' and
`v2' may be drawn with the function 
path3[] box(triple v1, triple v2);
 For example, a unit box is predefined as 
path3[] unitbox=box(O,(1,1,1));
 `Asymptote' also provides optimized definitions for the
three-dimensional paths `unitsquare3' and `unitcircle3', along with the
surfaces `unitdisk', `unitplane', `unitcube', `unitcylinder',
`unitcone', `unitsolidcone', `unitfrustum(real t1, real t2)',
`unitsphere', and `unithemisphere'.

These projections to two dimensions are predefined:
`oblique'

`oblique(real angle)'
     The point `(x,y,z)' is projected to `(x-0.5z,y-0.5z)'.  If an
     optional real argument is given, the negative z axis is drawn at
     this angle in degrees.  The projection `obliqueZ' is a synonym for
     `oblique'.

`obliqueX'

`obliqueX(real angle)'
     The point `(x,y,z)' is projected to `(y-0.5x,z-0.5x)'.  If an
     optional real argument is given, the negative x axis is drawn at
     this angle in degrees.

`obliqueY'

`obliqueY(real angle)'
     The point `(x,y,z)' is projected to `(x+0.5y,z+0.5y)'.  If an
     optional real argument is given, the positive y axis is drawn at
     this angle in degrees.

`orthographic(triple camera, triple up=Z, triple target=O,
     real zoom=1, pair viewportshift=0, bool showtarget=true,
     bool center=false)'
     This projects from three to two dimensions using the view as seen
     at a point infinitely far away in the direction `unit(camera)',
     orienting the camera so that, if possible, the vector `up' points
     upwards. Parallel lines are projected to parallel lines. The
     bounding volume is expanded to include `target' if
     `showtarget=true'.  If `center=true', the target will be adjusted
     to the center of the bounding volume.

`orthographic(real x, real y, real z, triple up=Z, triple target=O,
     real zoom=1, pair viewportshift=0, bool showtarget=true,
     bool center=false)'
     This is equivalent to orthographic((x,y,z),up,target,zoom,viewportshift,showtarget,center)

`perspective(triple camera, triple up=Z, triple target=O,
     real zoom=1, real angle=0, pair viewportshift=0,
     bool showtarget=true, bool autoadjust=true,
     bool center=autoadjust)'
     This projects from three to two dimensions, taking account of
     perspective, as seen from the location `camera' looking at
     `target', orienting the camera so that, if possible, the vector
     `up' points upwards.  If `render=0', projection of
     three-dimensional cubic Bezier splines is implemented by
     approximating a two-dimensional nonuniform rational B-spline
     (NURBS) with a two-dimensional Bezier curve containing additional
     nodes and control points. If `autoadjust=true', the camera will
     automatically be adjusted to lie outside the bounding volume for
     all possible interactive rotations about `target'.  If
     `center=true', the target will be adjusted to the center of the
     bounding volume.

`perspective(real x, real y, real z, triple up=Z, triple target=O,
     real zoom=1, real angle=0, pair viewportshift=0,
     bool showtarget=true, bool autoadjust=true,
     bool center=autoadjust)'
     This is equivalent to perspective((x,y,z),up,target,zoom,angle,viewportshift,showtarget,
                 autoadjust,center)

The default projection, `currentprojection', is initially set to
`perspective(5,4,2)'.

   We also define standard orthographic views used in technical drawing:
projection LeftView=orthographic(-X,showtarget=true);
projection RightView=orthographic(X,showtarget=true);
projection FrontView=orthographic(-Y,showtarget=true);
projection BackView=orthographic(Y,showtarget=true);
projection BottomView=orthographic(-Z,showtarget=true);
projection TopView=orthographic(Z,showtarget=true);
 The function 
void addViews(picture dest=currentpicture, picture src,
              projection[][] views=SixViewsUS,
              bool group=true, filltype filltype=NoFill);
 adds to picture `dest' an array of views of picture `src' using the
layout projection[][] `views'. The default layout `SixViewsUS' aligns
the projection `FrontView' below `TopView' and above `BottomView', to
the right of `LeftView' and left of `RightView' and `BackView'.  The
predefined layouts are: 
projection[][] ThreeViewsUS={{TopView},
                             {FrontView,RightView}};

projection[][] SixViewsUS={{null,TopView},
                           {LeftView,FrontView,RightView,BackView},
                           {null,BottomView}};

projection[][] ThreeViewsFR={{RightView,FrontView},
                             {null,TopView}};

projection[][] SixViewsFR={{null,BottomView},
                           {RightView,FrontView,LeftView,BackView},
                           {null,TopView}};

projection[][] ThreeViews={{FrontView,TopView,RightView}};

projection[][] SixViews={{FrontView,TopView,RightView},
                         {BackView,BottomView,LeftView}};

   A triple or path3 can be projected to a pair or path, with
`project(triple, projection P=currentprojection)' or `project(path3,
projection P=currentprojection)'.

   It is occasionally useful to be able to invert a projection, sending
a pair `z' onto the plane perpendicular to `normal' and passing through
`point': 
triple invert(pair z, triple normal, triple point,
              projection P=currentprojection);
 A pair `z' on the projection plane can be inverted to a triple with
the routine
triple invert(pair z, projection P=currentprojection);
 A pair direction `dir' on the projection plane can be inverted to a
triple direction relative to a point `v' with the routine
triple invert(pair dir, triple v, projection P=currentprojection).

   Three-dimensional objects may be transformed with one of the
following built-in transform3 types (the identity transformation is
`identity4'):

`shift(triple v)'
     translates by the triple `v';

`xscale3(real x)'
     scales by `x' in the x direction;

`yscale3(real y)'
     scales by `y' in the y direction;

`zscale3(real z)'
     scales by `z' in the z direction;

`scale3(real s)'
     scales by `s' in the x, y, and z directions;

`scale(real x, real y, real z)'
     scales by `x' in the x direction, by `y' in the y direction, and
     by `z' in the z direction; 

`rotate(real angle, triple v)'
     rotates by `angle' in degrees about an axis `v' through the origin;

`rotate(real angle, triple u, triple v)'
     rotates by `angle' in degrees about the axis `u--v';

`reflect(triple u, triple v, triple w)'
     reflects about the plane through `u', `v', and `w'.  

   When not multiplied on the left by a transform3, three-dimensional
TeX Labels are drawn as Bezier surfaces directly on the projection
plane: 
void label(picture pic=currentpicture, Label L, triple position,
           align align=NoAlign, pen p=currentpen,
           light light=nolight, string name="",
           render render=defaultrender, interaction interaction=
           settings.autobillboard ? Billboard : Embedded)
 The optional `name' parameter is used as a prefix for naming the label
patches in the PRC model tree.  The default interaction is `Billboard',
which means that labels are rotated interactively so that they always
face the camera.  The interaction `Embedded' means that the label
interacts as a normal `3D' surface, as illustrated in the example
`billboard.asy'.  Alternatively, a label can be transformed from the
`XY' plane by an explicit transform3 or mapped to a specified
two-dimensional plane with the predefined transform3 types `XY', `YZ',
`ZX', `YX', `ZY', `ZX'. There are also modified versions of these
transforms that take an optional argument `projection
P=currentprojection' that rotate and/or flip the label so that it is
more readable from the initial viewpoint.

   A transform3 that projects in the direction `dir' onto the plane
with normal `n' through point `O' is returned by
transform3 planeproject(triple n, triple O=O, triple dir=n);
 One can use 
triple normal(path3 p);
 to find the unit normal vector to a planar three-dimensional path `p'.
As illustrated in the example `planeproject.asy', a transform3 that
projects in the direction `dir' onto the plane defined by a planar path
`p' is returned by
transform3 planeproject(path3 p, triple dir=normal(p));

   The functions 
surface extrude(path p, triple axis=Z);
surface extrude(Label L, triple axis=Z);
 return the surface obtained by extruding path `p' or Label `L' along
`axis'.

   Three-dimensional versions of the path functions `length', `size',
`point', `dir', `accel', `radius', `precontrol', `postcontrol',
`arclength', `arctime', `reverse', `subpath', `intersect',
`intersections', `intersectionpoint', `intersectionpoints', `min',
`max', `cyclic', and `straight' are also defined.

   The routine 
real[][] intersections(path3 p, surface s, real fuzz=-1);
 returns the intersection times of a path `p' with a surface `s' as a
sorted array of real arrays of length 2, and 
triple[] intersectionpoints(path3 p, surface s, real fuzz=-1);
 returns the corresponding intersection points.  Here, the computations
are performed to the absolute error specified by `fuzz', or if `fuzz <
0', to machine precision.

   Here is an example showing all five guide3 connectors:

import graph3;

size(200);

currentprojection=orthographic(500,-500,500);

triple[] z=new triple[10];

z[0]=(0,100,0); z[1]=(50,0,0); z[2]=(180,0,0);

for(int n=3; n <= 9; ++n)
  z[n]=z[n-3]+(200,0,0);

path3 p=z[0]..z[1]---z[2]::{Y}z[3]
&z[3]..z[4]--z[5]::{Y}z[6]
&z[6]::z[7]---z[8]..{Y}z[9];

draw(p,grey+linewidth(4mm),currentlight);

xaxis3(Label(XY()*"$x$",align=-3Y),red,above=true);
yaxis3(Label(XY()*"$y$",align=-3X),red,above=true);



Three-dimensional versions of bars or arrows can be drawn with one of
the specifiers `None', `Blank', `BeginBar3', `EndBar3' (or equivalently
`Bar3'), `Bars3', `BeginArrow3', `MidArrow3', `EndArrow3' (or
equivalently `Arrow3'), `Arrows3', `BeginArcArrow3', `EndArcArrow3' (or
equivalently `ArcArrow3'), `MidArcArrow3', and `ArcArrows3'.
Three-dimensional bars accept the optional arguments `(real size=0,
triple dir=O)'. If `size=O', the default bar length is used; if
`dir=O', the bar is drawn perpendicular to the path and the initial
viewing direction. The predefined three-dimensional arrowhead styles
are `DefaultHead3', `HookHead3', `TeXHead3'.  Versions of the
two-dimensional arrowheads lifted to three-dimensional space and
aligned according to the initial viewpoint (or an optionally specified
`normal' vector) are also defined: `DefaultHead2(triple normal=O)',
`HookHead2(triple normal=O)', `TeXHead2(triple normal=O)'. These are
illustrated in the example `arrows3.asy'.

   Module `three' also defines the three-dimensional margins
`NoMargin3', `BeginMargin3', `EndMargin3', `Margin3', `Margins3',
`BeginPenMargin2', `EndPenMargin2', `PenMargin2', `PenMargins2',
`BeginPenMargin3', `EndPenMargin3', `PenMargin3', `PenMargins3',
`BeginDotMargin3', `EndDotMargin3', `DotMargin3', `DotMargins3',
`Margin3', and `TrueMargin3'.

   Further three-dimensional examples are provided in the files
`near_earth.asy', `conicurv.asy', and (in the `animations'
subdirectory) `cube.asy'.

   Limited support for projected vector graphics (effectively
three-dimensional nonrendered `PostScript') is available with the
setting `render=0'. This currently only works for piecewise planar
surfaces, such as those produced by the parametric `surface' routines
in the `graph3' module. Surfaces produced by the `solids' package will
also be properly rendered if the parameter `nslices' is sufficiently
large.

   In the module `bsp', hidden surface removal of planar pictures is
implemented using a binary space partition and picture clipping.  A
planar path is first converted to a structure `face' derived from
`picture'. A `face' may be given to a two-dimensional drawing routine
in place of any `picture' argument.  An array of such faces may then be
drawn, removing hidden surfaces:
void add(picture pic=currentpicture, face[] faces,
         projection P=currentprojection);
 Labels may be projected to two dimensions, using projection `P', onto
the plane passing through point `O' with normal `cross(u,v)' by
multiplying it on the left by the transform
transform transform(triple u, triple v, triple O=O,
                    projection P=currentprojection);

   Here is an example that shows how a binary space partition may be
used to draw a two-dimensional vector graphics projection of three
orthogonal intersecting planes:

size(6cm,0);
import bsp;

real u=2.5;
real v=1;

currentprojection=oblique;

path3 y=plane((2u,0,0),(0,2v,0),(-u,-v,0));
path3 l=rotate(90,Z)*rotate(90,Y)*y;
path3 g=rotate(90,X)*rotate(90,Y)*y;

face[] faces;
filldraw(faces.push(y),project(y),yellow);
filldraw(faces.push(l),project(l),lightgrey);
filldraw(faces.push(g),project(g),green);

add(faces);




File: asymptote.info,  Node: obj,  Next: graph3,  Prev: three,  Up: Base modules

8.30 `obj'
==========

This module allows one to construct surfaces from simple obj files, as
illustrated in the example files `galleon.asy' and `triceratops.asy'.


File: asymptote.info,  Node: graph3,  Next: grid3,  Prev: obj,  Up: Base modules

8.31 `graph3'
=============

This module implements three-dimensional versions of the functions in
`graph.asy'.  To draw an x axis in three dimensions, use the routine
void xaxis3(picture pic=currentpicture, Label L="", axis axis=YZZero,
            real xmin=-infinity, real xmax=infinity, pen p=currentpen,
            ticks3 ticks=NoTicks3, arrowbar3 arrow=None, bool above=false);
 Analogous routines `yaxis' and `zaxis' can be used to draw y and z
axes in three dimensions.  There is also a routine for drawing all
three axis:
void axes3(picture pic=currentpicture,
           Label xlabel="", Label ylabel="", Label zlabel="",
           triple min=(-infinity,-infinity,-infinity),
           triple max=(infinity,infinity,infinity),
           pen p=currentpen, arrowbar3 arrow=None);

The predefined three-dimensional axis types are
axis YZEquals(real y, real z, triple align=O, bool extend=false);
axis XZEquals(real x, real z, triple align=O, bool extend=false);
axis XYEquals(real x, real y, triple align=O, bool extend=false);
axis YZZero(triple align=O, bool extend=false);
axis XZZero(triple align=O, bool extend=false);
axis XYZero(triple align=O, bool extend=false);
axis Bounds(int type=Both, int type2=Both, triple align=O, bool extend=false);
 The optional `align' parameter to these routines can be used to
specify the default axis and tick label alignments. The `Bounds' axis
accepts two type parameters, each of which must be one of `Min', `Max',
or `Both'. These parameters specify which of the four possible
three-dimensional bounding box edges should be drawn.

   The three-dimensional tick options are `NoTicks3', `InTicks',
`OutTicks', and `InOutTicks'. These specify the tick directions for the
`Bounds' axis type; other axis types inherit the direction that would
be used for the `Bounds(Min,Min)' axis.

   Here is an example of a helix and bounding box axes with ticks and
axis labels, using orthographic projection:

import graph3;

size(0,200);
size3(200,IgnoreAspect);

currentprojection=orthographic(4,6,3);

real x(real t) {return cos(2pi*t);}
real y(real t) {return sin(2pi*t);}
real z(real t) {return t;}

path3 p=graph(x,y,z,0,2.7,operator ..);

draw(p,Arrow3);

scale(true);

xaxis3(XZ()*"$x$",Bounds,red,InTicks(Label,2,2));
yaxis3(YZ()*"$y$",Bounds,red,InTicks(beginlabel=false,Label,2,2));
zaxis3(XZ()*"$z$",Bounds,red,InTicks);



The next example illustrates three-dimensional x, y, and z axes,
without autoscaling of the axis limits: 

import graph3;

size(0,200);
size3(200,IgnoreAspect);

currentprojection=perspective(5,2,2);

scale(Linear,Linear,Log);

xaxis3("$x$",0,1,red,OutTicks(2,2));
yaxis3("$y$",0,1,red,OutTicks(2,2));
zaxis3("$z$",1,30,red,OutTicks(beginlabel=false));



One can also place ticks along a general three-dimensional axis: 

import graph3;

size(0,100);

path3 g=yscale3(2)*unitcircle3;
currentprojection=perspective(10,10,10);

axis(Label("C",position=0,align=15X),g,InTicks(endlabel=false,8,end=false),
     ticklocate(0,360,new real(real v) {
         path3 h=O--max(abs(max(g)),abs(min(g)))*dir(90,v);
         return intersect(g,h)[0];},
       new triple(real t) {return cross(dir(g,t),Z);}));



Surface plots of matrices and functions over the region `box(a,b)' in
the XY plane are also implemented:
surface surface(real[][] f, pair a, pair b, bool[][] cond={});
surface surface(real[][] f, pair a, pair b, splinetype xsplinetype,
                splinetype ysplinetype=xsplinetype, bool[][] cond={});
surface surface(real[][] f, real[] x, real[] y,
                splinetype xsplinetype=null, splinetype ysplinetype=xsplinetype,
                bool[][] cond={})
surface surface(triple[][] f, bool[][] cond={});
surface surface(real f(pair z), pair a, pair b, int nx=nmesh, int ny=nx,
                bool cond(pair z)=null);
surface surface(real f(pair z), pair a, pair b, int nx=nmesh, int ny=nx,
                splinetype xsplinetype, splinetype ysplinetype=xsplinetype,
                bool cond(pair z)=null);
surface surface(triple f(pair z), real[] u, real[] v,
                splinetype[] usplinetype, splinetype[] vsplinetype=Spline,
                bool cond(pair z)=null);
surface surface(triple f(pair z), pair a, pair b, int nu=nmesh, int nv=nu,
                bool cond(pair z)=null);
surface surface(triple f(pair z), pair a, pair b, int nu=nmesh, int nv=nu,
                splinetype[] usplinetype, splinetype[] vsplinetype=Spline,
                bool cond(pair z)=null);
 The final two versions draw parametric surfaces for a function f(u,v)
over the parameter space `box(a,b)', as illustrated in the example
`parametricsurface.asy'.  An optional splinetype `Spline' may be
specified.  The boolean array or function `cond' can be used to control
which surface mesh cells are actually drawn (by default all mesh cells
over `box(a,b)' are drawn).  Surface lighting is illustrated in the
example files `parametricsurface.asy' and `sinc.asy'.  Lighting can be
disabled by setting `light=nolight', as in this example of a Gaussian
surface:

import graph3;

size(200,0);

currentprojection=perspective(10,8,4);

real f(pair z) {return 0.5+exp(-abs(z)^2);}

draw((-1,-1,0)--(1,-1,0)--(1,1,0)--(-1,1,0)--cycle);

draw(arc(0.12Z,0.2,90,60,90,25),ArcArrow3);

surface s=surface(f,(-1,-1),(1,1),nx=5,Spline);

xaxis3(Label("$x$"),red,Arrow3);
yaxis3(Label("$y$"),red,Arrow3);
zaxis3(XYZero(extend=true),red,Arrow3);

draw(s,lightgray,meshpen=black+thick(),nolight,render(merge=true));

label("$O$",O,-Z+Y,red);


A mesh can be drawn without surface filling by specifying `nullpen' for
the surfacepen.

   A vector field of `nu'\times`nv' arrows on a parametric surface `f'
over `box(a,b)' can be drawn with the routine 
picture vectorfield(path3 vector(pair v), triple f(pair z), pair a, pair b,
                    int nu=nmesh, int nv=nu, bool truesize=false,
                    real maxlength=truesize ? 0 : maxlength(f,a,b,nu,nv),
                    bool cond(pair z)=null, pen p=currentpen,
                    arrowbar3 arrow=Arrow3, margin3 margin=PenMargin3)
 as illustrated in the examples `vectorfield3.asy' and
`vectorfieldsphere.asy'.


File: asymptote.info,  Node: grid3,  Next: solids,  Prev: graph3,  Up: Base modules

8.32 `grid3'
============

This module, contributed by Philippe Ivaldi, can be used for drawing 3D
grids. Here is an example (further examples can be found in `grid3.asy'
and at `http://www.piprime.fr/files/asymptote/grid3/'):

import grid3;

size(8cm,0,IgnoreAspect);
currentprojection=orthographic(0.5,1,0.5);

scale(Linear, Linear, Log);

limits((-2,-2,1),(0,2,100));

grid3(XYZgrid);

xaxis3(Label("$x$",position=EndPoint,align=S),Bounds(Min,Min),
       OutTicks());
yaxis3(Label("$y$",position=EndPoint,align=S),Bounds(Min,Min),OutTicks());
zaxis3(Label("$z$",position=EndPoint,align=(-1,0.5)),Bounds(Min,Min),
       OutTicks(beginlabel=false));




File: asymptote.info,  Node: solids,  Next: tube,  Prev: grid3,  Up: Base modules

8.33 `solids'
=============

This solid geometry package defines a structure `revolution' that can
be used to fill and draw surfaces of revolution. The following example
uses it to display the outline of a circular cylinder of radius 1 with
axis `O--1.5unit(Y+Z)' with perspective projection:

import solids;

size(0,100);

revolution r=cylinder(O,1,1.5,Y+Z);
draw(r,heavygreen);



Further illustrations are provided in the example files `cylinder.asy',
`cones.asy', `hyperboloid.asy', and `torus.asy'.

   The structure `skeleton' contains the three-dimensional wireframe
used to visualize a volume of revolution:
struct skeleton {
  struct curve {
    path3[] front;
    path3[] back;
  }
  // transverse skeleton (perpendicular to axis of revolution)
  curve transverse;
  // longitudinal skeleton (parallel to axis of revolution)
  curve longitudinal;
}


File: asymptote.info,  Node: tube,  Next: flowchart,  Prev: solids,  Up: Base modules

8.34 `tube'
===========

This package extends the `tube' surfaces constructed in
`three_arrows.asy' to arbitrary cross sections, colors, and spine
transformations. The routine
surface tube(path3 g, coloredpath section,
             transform T(real)=new transform(real t) {return identity();},
             real corner=1, real relstep=0);
 draws a tube along `g' with cross section `section', after applying
the transformation `T(t)' at `relpoint(g,t)'.  The parameter `corner'
controls the number of elementary tubes at the angular points of `g'. A
nonzero value of `relstep' specifies a fixed relative time step (in the
sense of `relpoint(g,t)') to use in constructing elementary tubes along
`g'.  The type `coloredpath' is a generalization of `path' to which a
`path' can be cast: 
struct coloredpath
{
  path p;
  pen[] pens(real);
  int colortype=coloredSegments;
}
 Here `p' defines the cross section and the method `pens(real t)'
returns an array of pens (interpreted as a cyclic array) used for
shading the tube patches at `relpoint(g,t)'. If
`colortype=coloredSegments', the tube patches are filled as if each
segment of the section was colored with the pen returned by `pens(t)',
whereas if `colortype=coloredNodes', the tube components are vertex
shaded as if the nodes of the section were colored.

   A `coloredpath' can be constructed with one of the routines:
coloredpath coloredpath(path p, pen[] pens(real),
                        int colortype=coloredSegments);
coloredpath coloredpath(path p, pen[] pens=new pen[] {currentpen},
                        int colortype=coloredSegments);
coloredpath coloredpath(path p, pen pen(real));
 In the second case, the pens are independent of the relative time.  In
the third case, the array of pens contains only one pen, which depends
of the relative time.

   The casting of `path' to `coloredpath' allows the use of a `path'
instead of a `coloredpath'; in this case the shading behaviour is the
default shading behavior for a surface.

   An example of `tube' is provided in the file `trefoilknot.asy'.
Further examples can be found at
`http://www.piprime.fr/files/asymptote/tube/'.


File: asymptote.info,  Node: flowchart,  Next: contour,  Prev: tube,  Up: Base modules

8.35 `flowchart'
================

This package provides routines for drawing flowcharts. The primary
structure is a `block', which represents a single block on the
flowchart. The following eight functions return a position on the
appropriate edge of the block, given picture transform `t':

pair block.top(transform t=identity());
pair block.left(transform t=identity());
pair block.right(transform t=identity());
pair block.bottom(transform t=identity());
pair block.topleft(transform t=identity());
pair block.topright(transform t=identity());
pair block.bottomleft(transform t=identity());
pair block.bottomright(transform t=identity());
 

To obtain an arbitrary position along the boundary of the block in user
coordinates, use:
pair block.position(real x, transform t=identity());
 

The center of the block in user coordinates is stored in `block.center'
and the block size in `PostScript' coordinates is given by `block.size'.

A frame containing the block is returned by
frame block.draw(pen p=currentpen);
 

   The following block generation routines accept a Label, string, or
frame for their object argument:

"rectangular block with an optional header (and padding `dx' around header and body):"
     block rectangle(object header, object body, pair center=(0,0),
                     pen headerpen=mediumgray, pen bodypen=invisible,
                     pen drawpen=currentpen,
                     real dx=3, real minheaderwidth=minblockwidth,
                     real minheaderheight=minblockwidth,
                     real minbodywidth=minblockheight,
                     real minbodyheight=minblockheight);
     block rectangle(object body, pair center=(0,0),
                     pen fillpen=invisible, pen drawpen=currentpen,
                     real dx=3, real minwidth=minblockwidth,
                     real minheight=minblockheight);

"parallelogram block:"
     block parallelogram(object body, pair center=(0,0),
                         pen fillpen=invisible, pen drawpen=currentpen,
                         real dx=3, real slope=2,
                         real minwidth=minblockwidth,
                         real minheight=minblockheight);

"diamond-shaped block:"
     block diamond(object body, pair center=(0,0),
                   pen fillpen=invisible, pen drawpen=currentpen,
                   real ds=5, real dw=1,
                   real height=20, real minwidth=minblockwidth,
                   real minheight=minblockheight);

"circular block:"
     block circle(object body, pair center=(0,0), pen fillpen=invisible,
                  pen drawpen=currentpen, real dr=3,
                  real mindiameter=mincirclediameter);

"rectangular block with rounded corners:"
     block roundrectangle(object body, pair center=(0,0),
                          pen fillpen=invisible, pen drawpen=currentpen,
                          real ds=5, real dw=0, real minwidth=minblockwidth,
                          real minheight=minblockheight);

"rectangular block with beveled edges:"
     block bevel(object body, pair center=(0,0), pen fillpen=invisible,
                 pen drawpen=currentpen, real dh=5, real dw=5,
                 real minwidth=minblockwidth, real minheight=minblockheight);


   To draw paths joining the pairs in `point' with right-angled lines,
use the routine: 
path path(pair point[] ... flowdir dir[]);
 The entries in `dir' identify whether successive segments between the
pairs specified by `point' should be drawn in the `Horizontal' or
`Vertical' direction.

   Here is a simple flowchart example (see also the example
`controlsystem.asy'):

size(0,300);

import flowchart;

block block1=rectangle(Label("Example",magenta),
		       pack(Label("Start:",heavygreen),"",Label("$A:=0$",blue),
			    "$B:=1$"),(-0.5,3),palegreen,paleblue,red);
block block2=diamond(Label("Choice?",blue),(0,2),palegreen,red);
block block3=roundrectangle("Do something",(-1,1));
block block4=bevel("Don't do something",(1,1));
block block5=circle("End",(0,0));

draw(block1);
draw(block2);
draw(block3);
draw(block4);
draw(block5);

add(new void(picture pic, transform t) {
    blockconnector operator --=blockconnector(pic,t);
    //    draw(pic,block1.right(t)--block2.top(t));
    block1--Right--Down--Arrow--block2;
    block2--Label("Yes",0.5,NW)--Left--Down--Arrow--block3;
    block2--Right--Label("No",0.5,NE)--Down--Arrow--block4;
    block4--Down--Left--Arrow--block5;
    block3--Down--Right--Arrow--block5;
  });




File: asymptote.info,  Node: contour,  Next: contour3,  Prev: flowchart,  Up: Base modules

8.36 `contour'
==============

This package draws contour lines.  To construct contours corresponding
to the values in a real array `c' for a function `f' on `box(a,b)', use
the routine
guide[][] contour(real f(real, real), pair a, pair b,
                  real[] c, int nx=ngraph, int ny=nx,
                  interpolate join=operator --, int subsample=1);
 The integers `nx' and `ny' define the resolution.  The default
resolution, `ngraph x ngraph' (here `ngraph' defaults to `100') can be
increased for greater accuracy.  The default interpolation operator is
`operator --' (linear). Spline interpolation (`operator ..') may
produce smoother contours but it can also lead to overshooting.  The
`subsample' parameter indicates the number of interior points that
should be used to sample contours within each `1 x 1' box; the default
value of `1' is usually sufficient.

   To construct contours for an array of data values on a uniform
two-dimensional lattice on `box(a,b)', use
guide[][] contour(real[][] f, pair a, pair b, real[] c,
                  interpolate join=operator --, int subsample=1);

   To construct contours for an array of data values on a nonoverlapping
regular mesh specified by the two-dimensional array `z',
guide[][] contour(pair[][] z, real[][] f, real[] c,
                  interpolate join=operator --, int subsample=1);

 To construct contours for an array of values `f' specified at
irregularly positioned points `z', use the routine
guide[][] contour(pair[] z, real[] f, real[] c,
                  interpolate join=operator --, int subsample=1);
 The contours themselves can be drawn with one of the routines
void draw(picture pic=currentpicture, Label[] L=new Label[],
          guide[][] g, pen p=currentpen);

void draw(picture pic=currentpicture, Label[] L=new Label[],
          guide[][] g, pen[] p);

   The following simple example draws the contour at value `1' for the
function z=x^2+y^2, which is a unit circle:

import contour;
size(75);

real f(real a, real b) {return a^2+b^2;}
draw(contour(f,(-1,-1),(1,1),new real[] {1}));



The next example draws and labels multiple contours for the function
z=x^2-y^2 with the resolution `100 x 100', using a dashed pen for
negative contours and a solid pen for positive (and zero) contours:

import contour;

size(200);

real f(real x, real y) {return x^2-y^2;}
int n=10;
real[] c=new real[n];
for(int i=0; i < n; ++i) c[i]=(i-n/2)/n;

pen[] p=sequence(new pen(int i) {
    return (c[i] >= 0 ? solid : dashed)+fontsize(6pt);
  },c.length);

Label[] Labels=sequence(new Label(int i) {
    return Label(c[i] != 0 ? (string) c[i] : "",Relative(unitrand()),(0,0),
                 UnFill(1bp));
  },c.length);

draw(Labels,contour(f,(-1,-1),(1,1),c),p);



The next example illustrates how contour lines can be drawn on color
density images:

import graph;
import palette;
import contour;

size(10cm,10cm,IgnoreAspect);

pair a=(0,0);
pair b=(2pi,2pi);

real f(real x, real y) {return cos(x)*sin(y);}

int N=200;
int Divs=10;
int divs=2;

defaultpen(1bp);
pen Tickpen=black;
pen tickpen=gray+0.5*linewidth(currentpen);
pen[] Palette=BWRainbow();

bounds range=image(f,Automatic,a,b,N,Palette);

// Major contours

real[] Cvals=uniform(range.min,range.max,Divs);
draw(contour(f,a,b,Cvals,N,operator --),Tickpen);

// Minor contours
real[] cvals;
for(int i=0; i < Cvals.length-1; ++i)
  cvals.append(uniform(Cvals[i],Cvals[i+1],divs)[1:divs]);
draw(contour(f,a,b,cvals,N,operator --),tickpen);

xaxis("$x$",BottomTop,LeftTicks,above=true);
yaxis("$y$",LeftRight,RightTicks,above=true);

palette("$f(x,y)$",range,point(NW)+(0,0.5),point(NE)+(0,1),Top,Palette,
        PaletteTicks(N=Divs,n=divs,Tickpen,tickpen));



Finally, here is an example that illustrates the construction of
contours from irregularly spaced data:

import contour;

size(200);

int n=100;

real f(real a, real b) {return a^2+b^2;}

srand(1);

real r() {return 1.1*(rand()/randMax*2-1);}

pair[] points=new pair[n];
real[] values=new real[n];

for(int i=0; i < n; ++i) {
  points[i]=(r(),r());
  values[i]=f(points[i].x,points[i].y);
}

draw(contour(points,values,new real[]{0.25,0.5,1},operator ..),blue);



In the above example, the contours of irregularly spaced data are
constructed by first creating a triangular mesh from an array `z' of
pairs:

int[][] triangulate(pair[] z);

size(200);
int np=100;
pair[] points;

real r() {return 1.2*(rand()/randMax*2-1);}

for(int i=0; i < np; ++i)
  points.push((r(),r()));

int[][] trn=triangulate(points);

for(int i=0; i < trn.length; ++i) {
  draw(points[trn[i][0]]--points[trn[i][1]]);
  draw(points[trn[i][1]]--points[trn[i][2]]);
  draw(points[trn[i][2]]--points[trn[i][0]]);
}

for(int i=0; i < np; ++i)
  dot(points[i],red);



The example `Gouraudcontour' illustrates how to produce color density
images over such irregular triangular meshes.  `Asymptote' uses a
robust version of Paul Bourke's Delaunay triangulation algorithm based
on the public-domain exact arithmetic predicates written by Jonathan
Shewchuk.


File: asymptote.info,  Node: contour3,  Next: slopefield,  Prev: contour,  Up: Base modules

8.37 `contour3'
===============

This package draws surfaces described as the null space of real-valued
functions of (x,y,z) or real[][][] matrices.  Its usage is illustrated
in the example file `magnetic.asy'.


File: asymptote.info,  Node: slopefield,  Next: ode,  Prev: contour3,  Up: Base modules

8.38 `slopefield'
=================

To draw a slope field for the differential equation dy/dx=f(x,y) (or
dy/dx=f(x)), use:
picture slopefield(real f(real,real), pair a, pair b,
                   int nx=nmesh, int ny=nx,
                   real tickfactor=0.5, pen p=currentpen,
                   arrowbar arrow=None);
 Here, the points `a' and `b' are the lower left and upper right
corners of the rectangle in which the slope field is to be drawn, `nx'
and `ny' are the respective number of ticks in the x and y directions,
`tickfactor' is the fraction of the minimum cell dimension to use for
drawing ticks, and `p' is the pen to use for drawing the slope fields.
The return value is a picture that can be added to `currentpicture' via
the `add(picture)' command.

   The function 
path curve(pair c, real f(real,real), pair a, pair b);
 takes a point (`c') and a slope field-defining function `f' and
returns, as a path, the curve passing through that point. The points
`a' and `b' represent the rectangular boundaries over which the curve
is interpolated.

   Both `slopefield' and `curve' alternatively accept a function `real
f(real)' that depends on x only, as seen in this example:

import slopefield;

size(200);

real func(real x) {return 2x;}
add(slopefield(func,(-3,-3),(3,3),20,Arrow));
draw(curve((0,0),func,(-3,-3),(3,3)),red);




File: asymptote.info,  Node: ode,  Prev: slopefield,  Up: Base modules

8.39 `ode'
==========

The `ode' module, illustrated in the example `odetest.asy', implements
a number of explicit numerical integration schemes for ordinary
differential equations.


File: asymptote.info,  Node: Options,  Next: Interactive mode,  Prev: Base modules,  Up: Top

9 Command-line options
**********************

Type `asy -h' to see the full list of command-line options supported by
`Asymptote':

Usage: ../asy [options] [file ...]

Options (negate by replacing - with -no):

-V,-View              View output; command-line only
-a,-align C|B|T|Z     Center, Bottom, Top, or Zero page alignment [C]
-antialias n          Antialiasing width for rasterized output [2]
-arcballradius pixels Arcball radius [750]
-auto3D               Automatically activate 3D scene [true]
-autobillboard        3D labels always face viewer by default [true]
-autoimport string    Module to automatically import
-autoplain            Enable automatic importing of plain [true]
-autoplay             Autoplay 3D animations [false]
-autorotate           Enable automatic PDF page rotation [false]
-batchMask            Mask fpu exceptions in batch mode [false]
-batchView            View output in batch mode [false]
-bw                   Convert all colors to black and white [false]
-cd directory         Set current directory; command-line only
-cmyk                 Convert rgb colors to cmyk [false]
-c,-command string    Command to autoexecute
-compact              Conserve memory at the expense of speed [false]
-d,-debug             Enable debugging messages [false]
-divisor n            Garbage collect using purge(divisor=n) [2]
-doubleclick ms       Emulated double-click timeout [200]
-embed                Embed rendered preview image [true]
-exitonEOF            Exit interactive mode on EOF [true]
-fitscreen            Fit rendered image to screen [true]
-framerate frames/sec Animation speed [30]
-globalwrite          Allow write to other directory [false]
-gray                 Convert all colors to grayscale [false]
-h,-help              Show summary of options; command-line only
-historylines n       Retain n lines of history [1000]
-iconify              Iconify rendering window [false]
-inlineimage          Generate inline embedded image [false]
-inlinetex            Generate inline TeX code [false]
-interactiveMask      Mask fpu exceptions in interactive mode [true]
-interactiveView      View output in interactive mode [true]
-interactiveWrite     Write expressions entered at the prompt to stdout [true]
-k,-keep              Keep intermediate files [false]
-keepaux              Keep intermediate LaTeX .aux files [false]
-level n              Postscript level [3]
-l,-listvariables     List available global functions and variables [false]
-localhistory         Use a local interactive history file [false]
-loop                 Loop 3D animations [false]
-m,-mask              Mask fpu exceptions; command-line only
-maxtile pair         Maximum rendering tile size [(0,0)]
-maxviewport pair     Maximum viewport size [(2048,2048)]
-multiline            Input code over multiple lines at the prompt [false]
-multipleView         View output from multiple batch-mode files [false]
-multisample n        Multisampling width for screen images [4]
-O,-offset pair       PostScript offset [(0,0)]
-f,-outformat format  Convert each output file to specified format
-o,-outname name      Alternative output directory/filename
-p,-parseonly         Parse file [false]
-pdfreload            Automatically reload document in pdfviewer [false]
-pdfreloaddelay usec  Delay before attempting initial pdf reload [750000]
-position pair        Initial 3D rendering screen position [(0,0)]
-prc                  Embed 3D PRC graphics in PDF output [true]
-prompt string        Prompt [> ]
-prompt2 string       Continuation prompt for multiline input  [..]
-q,-quiet             Suppress welcome message [false]
-render n             Render 3D graphics using n pixels per bp (-1=auto) [-1]
-resizestep step      Resize step [1.2]
-reverse              reverse 3D animations [false]
-rgb                  Convert cmyk colors to rgb [false]
-safe                 Disable system call [true]
-scroll n             Scroll standard output n lines at a time [0]
-spinstep deg/sec     Spin speed [60]
-svgemulation         Emulate unimplemented SVG shading [false]
-tabcompletion        Interactive prompt auto-completion [true]
-tex engine           latex|pdflatex|xelatex|tex|pdftex|context|none [latex]
-thick                Render thick 3D lines [true]
-thin                 Render thin 3D lines [true]
-threads              Use POSIX threads for 3D rendering [true]
-toolbar              Show 3D toolbar in PDF output [true]
-s,-translate         Show translated virtual machine code [false]
-twice                Run LaTeX twice (to resolve references) [false]
-twosided             Use two-sided 3D lighting model for rendering [true]
-u,-user string       General purpose user string
-v,-verbose           Increase verbosity level (can specify multiple times) [0]
-version              Show version; command-line only
-wait                 Wait for child processes to finish before exiting [false]
-warn string          Enable warning; command-line only
-where                Show where listed variables are declared [false]
-zoomfactor factor    Zoom step factor [1.05]
-zoomstep step        Mouse motion zoom step [0.1]

 All boolean options can be negated by prepending `no' to the option
name.

   If no arguments are given, `Asymptote' runs in interactive mode
(*note Interactive mode::). In this case, the default output file is
`out.eps'.

   If `-' is given as the file argument, `Asymptote' reads from
standard input.

   If multiple files are specified, they are treated as separate
`Asymptote' runs.

   If the string `autoimport' is nonempty, a module with this name is
automatically imported for each run as the final step in loading module
`plain'.

   Default option values may be entered as `Asymptote' code in a
configuration file named `config.asy' (or the file specified by the
environment variable `ASYMPTOTE_CONFIG' or `-config' option).
`Asymptote' will look for this file in its usual search path (*note
Search paths::). Typically the configuration file is placed in the
`.asy' directory in the user's home directory (`%USERPROFILE%\.asy'
under `MSDOS').  Configuration variables are accessed using the long
form of the option names:
import settings;
outformat="pdf";
batchView=false;
interactiveView=true;
batchMask=false;
interactiveMask=true;
 Command-line options override these defaults. Most configuration
variables may also be changed at runtime.  The advanced configuration
variables `dvipsOptions', `hyperrefOptions', `convertOptions',
`gsOptions', `psviewerOptions', `pdfviewerOptions', and `glOptions'
allow specialized options to be passed as a string to the respective
applications or libraries. The default value of `hyperrefOptions' is
`setpagesize=false,unicode,pdfborder=0 0 0'.

   If you insert
import plain;
settings.autoplain=true;
 at the beginning of the configuration file, it can contain arbitrary
`Asymptote' code.

   The default output format is EPS for the (default) `latex' and `tex'
tex engine and PDF for the `pdflatex', `xelatex', and `context' tex
engines.  Alternative output formats may be produced using the `-f'
option (or `outformat' setting). To produce SVG output, first install
`dvisvgm' (version 0.8.7 or later) from
`http://dvisvgm.sourceforge.net/down.html' and be sure to use the
`latex' or `tex' tex engine.

   `Asymptote' can also produce any output format supported by the
`ImageMagick' `convert' program (version 6.3.5 or later recommended; an
`Invalid Parameter' error message indicates that the `MSDOS' utility
`convert' is being used instead of the one that comes with
`ImageMagick').  The optional setting `-render n' requests an output
resolution of `n' pixels per `bp'. Antialiasing is controlled by the
parameter `antialias', which by default specifies a sampling width of 2
pixels.  To give other options to `convert', use the `convertOptions'
setting or call convert manually. This example emulates how `Asymptote'
produces antialiased `tiff' output at one pixel per `bp':
asy -o - venn | convert -alpha Off -density 144x144 -geometry 50%x eps:- venn.tiff

   If the option `-nosafe' is given, `Asymptote' runs in unsafe mode.
This enables the `int system(string s)' and `int system(string[] s)'
calls, allowing one to execute arbitrary shell commands. The default
mode, `-safe', disables this call.

   A `PostScript' offset may be specified as a pair (in `bp' units)
with the `-O' option:
asy -O 0,0 file
 The default offset is zero. The default value of the page alignment
setting `align' is `Center'.

   The `-c' (`command') option may be used to execute arbitrary
`Asymptote' code on the command line as a string. It is not necessary
to terminate the string with a semicolon. Multiple `-c' options are
executed in the order they are given. For example
asy -c 2+2 -c "sin(1)" -c "size(100); draw(unitsquare)"
 produces the output
4
0.841470984807897
 and draws a unitsquare of size `100'.

   The `-u' (`user') option may be used to specify arbitrary
`Asymptote' settings on the command line as a string. It is not
necessary to terminate the string with a semicolon. Multiple `-u'
options are executed in the order they are given. Command-line code like
`-u x=sqrt(2)' can be executed within a module like this:
real x;
usersetting();
write(x);

   When the `-l' (`listvariables') option is used with file arguments,
only global functions and variables defined in the specified file(s)
are listed.

   Additional debugging output is produced with each additional `-v'
option:
`-v'
     Display top-level module and final output file names.

`-vv'
     Also display imported and included module names and final `LaTeX'
     and `dvips' processing information.

`-vvv'
     Also output `LaTeX' bidirectional pipe diagnostics.

`-vvvv'
     Also output knot guide solver diagnostics.

`-vvvvv'
     Also output `Asymptote' traceback diagnostics.


File: asymptote.info,  Node: Interactive mode,  Next: GUI,  Prev: Options,  Up: Top

10 Interactive mode
*******************

Interactive mode is entered by executing the command `asy' with no file
arguments. When the `-multiline' option is disabled (the default), each
line must be a complete `Asymptote' statement (unless explicitly
continued by a final backslash character `\'); it is not necessary to
terminate input lines with a semicolon.  If one assigns
`settings.multiline=true', interactive code can be entered over
multiple lines; in this mode, the automatic termination of interactive
input lines by a semicolon is inhibited. Multiline mode is useful for
cutting and pasting `Asymptote' code directly into the interactive
input buffer.

   Interactive mode can be conveniently used as a calculator:
expressions entered at the interactive prompt (for which a
corresponding `write' function exists) are automatically evaluated and
written to `stdout'.  If the expression is non-writable, its type
signature will be printed out instead. In either case, the expression
can be referred to using the symbol `%' in the next line input at the
prompt.  For example:
> 2+3
5
> %*4
20
> 1/%
0.05
> sin(%)
0.0499791692706783
> currentpicture
<picture currentpicture>
> %.size(200,0)
>

   The `%' symbol, when used as a variable, is shorthand for the
identifier `operator answer', which is set by the prompt after each
written expression evaluation.

   The following special commands are supported only in interactive mode
and must be entered immediately after the prompt:

`help'
     view the manual;

`erase'
     erase `currentpicture'; 

`reset'
     reset the `Asymptote' environment to its initial state, except for
     changes to the settings module (*note settings::), the current
     directory (*note cd::), and breakpoints (*note Debugger::); 

`input FILE'
     does an interactive reset, followed by the command `include FILE'.
     If the file name `FILE' contains nonalphanumeric characters,
     enclose it with quotation marks.  A trailing semi-colon followed
     by optional `Asymptote' commands may be entered on the same line.  

`quit'
     exit interactive mode (`exit' is a synonym; the abbreviation `q'
     is also accepted unless there exists a top-level variable named
     `q').  A history of the most recent 1000 (this number can be
     changed with the `historylines' configuration variable) previous
     commands will be retained in the file `.asy/history' in the user's
     home directory (unless the command-line option `-localhistory' was
     specified, in which case the history will be stored in the file
     `.asy_history' in the current directory).


   Typing `ctrl-C' interrupts the execution of `Asymptote' code and
returns control to the interactive prompt.

   Interactive mode is implemented with the GNU `readline' library,
with command history and auto-completion. To customize the key
bindings, see:
`http://cnswww.cns.cwru.edu/php/chet/readline/readline.html'

   The file `asymptote.py' in the `Asymptote' system directory provides
an alternative way of entering `Asymptote' commands interactively,
coupled with the full power of `Python'. Copy this file to your `Python
path' and then execute from within `Python' the commands
from asymptote import *
g=asy()
g.size(200)
g.draw("unitcircle")
g.send("draw(unitsquare)")
g.fill("unitsquare, blue")
g.clip("unitcircle")
g.label("\"$O$\", (0,0), SW")


File: asymptote.info,  Node: GUI,  Next: PostScript to Asymptote,  Prev: Interactive mode,  Up: Top

11 Graphical User Interface
***************************

In the event that adjustments to the final figure are required, the
preliminary Graphical User Interface (GUI) `xasy' included with
`Asymptote' allows you to move graphical objects and draw new ones.
The modified figure can then be saved as a normal `Asymptote' file.

* Menu:

* GUI installation::            Installing `xasy'
* GUI usage::


File: asymptote.info,  Node: GUI installation,  Next: GUI usage,  Up: GUI

11.1 GUI installation
=====================

As `xasy' is written in the interactive scripting language `Python/TK',
it requires `Python' (`http://www.python.org'), the `Python Imaging
Library' (`http://www.pythonware.com/products/pil/'), and the `tkinter'
package (included with `Python' under `Microsoft Windows') be
installed. `Fedora Linux' users can either install `tkinter' with the
commands
yum install tkinter
yum install tk-devel
 or manually install the `tkinter', `tix', `tk', and `tk-devel'
packages.

   Pictures are deconstructed into the PNG image format, which supports
full alpha channel transparency. Under `Microsoft Windows', this
requires `Python 2.6.2' and the `Python Imaging Library':

     `http://www.python.org/ftp/python/2.6.2/python-2.6.2.msi'

     `http://effbot.org/downloads/PIL-1.1.7.win32-py2.6.exe'.
   On `UNIX' systems, place
`http://effbot.org/downloads/Imaging-1.1.7.tar.gz' in the `Asymptote'
source directory, and type (as the root user):
tar -zxf Imaging-1.1.7.tar.gz
cd Imaging-1.1.7
python setup.py install


File: asymptote.info,  Node: GUI usage,  Prev: GUI installation,  Up: GUI

11.2 GUI usage
==============

A wheel mouse is convenient for raising and lowering objects within
`xasy', to expose the object to be moved. If a wheel mouse is not
available, mouse `Button-2' can be used to repeatedly lower an object
instead. When run from the command line, `xasy' accepts a command line
option `-x n', which sets the initial magnification to `n'.

   Deconstruction of compound objects (such as arrows) can be prevented
by enclosing them within the commands
void begingroup(picture pic=currentpicture);
void endgroup(picture pic=currentpicture);
 By default, the elements of a picture or frame will be grouped
together on adding them to a picture. However, the elements of a frame
added to another frame are not grouped together by default: their
elements will be individually deconstructed (*note add::).


File: asymptote.info,  Node: PostScript to Asymptote,  Next: Help,  Prev: GUI,  Up: Top

12 `PostScript' to `Asymptote'
******************************

The excellent `PostScript' editor `pstoedit' (version 3.50 or later;
available from `http://sourceforge.net/projects/pstoedit/') includes an
`Asymptote' backend. Unlike virtually all other `pstoedit' backends,
this driver includes native clipping, even-odd fill rule, `PostScript'
subpath, and full image support. Here is an example: `asy -V
/usr/local/share/doc/asymptote/examples/venn.asy'
pstoedit -f asy venn.eps test.asy
asy -V test

If the line widths aren't quite correct, try giving `pstoedit' the
`-dis' option.  If the fonts aren't typeset correctly, try giving
`pstoedit' the `-dt' option.


File: asymptote.info,  Node: Help,  Next: Debugger,  Prev: PostScript to Asymptote,  Up: Top

13 Help
*******

A list of frequently asked questions (FAQ) is maintained at

     `http://asymptote.sourceforge.net/FAQ'
   Questions on installing and using `Asymptote' that are not addressed
in the FAQ should be sent to the `Asymptote' forum:

     `http://sourceforge.net/projects/asymptote/forums/forum/409349'
   Including an example that illustrates what you are trying to do will
help you get useful feedback.  `LaTeX' problems can often be diagnosed
with the `-vv' or `-vvv' command-line options.  Contributions in the
form of patches or `Asymptote' modules can be posted here:

     `http://sourceforge.net/tracker/?atid=685685&group_id=120000'
   To receive announcements of upcoming releases, please subscribe to
`Asymptote' at

     `http://freshmeat.net/projects/asy'
   If you find a bug in `Asymptote', please check (if possible) whether
the bug is still present in the latest `Subversion' developmental code
(*note Subversion::) before submitting a bug report. New bugs can be
submitted using the Bug Tracking System at

     `http://sourceforge.net/projects/asymptote'
   To see if the bug has already been fixed, check bugs with Status
`Closed' and recent lines in

     `http://asymptote.sourceforge.net/ChangeLog'
   `Asymptote' can be configured with the optional GNU library
`libsigsegv', available from `http://libsigsegv.sourceforge.net', which
allows one to distinguish user-generated `Asymptote' stack overflows
(*note stack overflow::) from true segmentation faults (due to internal
C++ programming errors; please submit the `Asymptote' code that
generates such segmentation faults along with your bug report).


File: asymptote.info,  Node: Debugger,  Next: Credits,  Prev: Help,  Up: Top

14 Debugger
***********

Asymptote now includes a line-based (as opposed to code-based) debugger
that can assist the user in following flow control. To set a break
point in file `file' at line `line', use the command

void stop(string file, int line, code s=quote{});
 The optional argument `s' may be used to conditionally set the variable
`ignore' in `plain_debugger.asy' to `true'. For example, the first 10
instances of this breakpoint will be ignored (the variable `int
count=0' is defined in `plain_debugger.asy'):
stop("test",2,quote{ignore=(++count <= 10);});

   To set a break point in file `file' at the first line containing the
string `text', use

void stop(string file, string text, code s=quote{});
 To list all breakpoints, use: 
void breakpoints();
 To clear a breakpoint, use: 
void clear(string file, int line);
 To clear all breakpoints, use:
void clear();

   The following commands may be entered at the debugging prompt:

``h''
     help; 

``c''
     continue execution;

``i''
     step to the next instruction;

``s''
     step to the next executable line;

``n''
     step to the next executable line in the current file;

``f''
     step to the next file;

``r''
     return to the file associated with the most recent breakpoint;

``t''
     toggle tracing (`-vvvvv') mode;

``q''
     quit debugging and end execution;

``x''
     exit the debugger and run to completion.

   Arbitrary `Asymptote' code may also be entered at the debugging
prompt; however, since the debugger is implemented with `eval',
currently only top-level (global) variables can be displayed or
modified.

   The debugging prompt may be entered manually with the call
void breakpoint(code s=quote{});


File: asymptote.info,  Node: Credits,  Next: Index,  Prev: Debugger,  Up: Top

15 Acknowledgments
******************

Financial support for the development of `Asymptote' was generously
provided by the Natural Sciences and Engineering Research Council of
Canada, the Pacific Institute for Mathematical Sciences, and the
University of Alberta Faculty of Science.

   We also would like to acknowledge the previous work of John D. Hobby,
author of the program `MetaPost' that inspired the development of
`Asymptote', and Donald E. Knuth, author of TeX and `MetaFont' (on
which `MetaPost' is based).

   The authors of `Asymptote' are Andy Hammerlindl, John Bowman, and
Tom Prince. Sean Healy designed the `Asymptote' logo. Other
contributors include Michail Vidiassov, Radoslav Marinov, Orest Shardt,
Chris Savage, Philippe Ivaldi, Olivier Guibe', Jacques Pienaar, Mark
Henning, Steve Melenchuk, Martin Wiebusch, and Stefan Knorr.


File: asymptote.info,  Node: Index,  Prev: Credits,  Up: Top

Index
*****