1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
|
// Asymptote mathematics routines
int quadrant(real degrees)
{
return floor(degrees/90) % 4;
}
// Roots of unity.
pair unityroot(int n, int k=1)
{
return expi(2pi*k/n);
}
real csc(real x) {return 1/sin(x);}
real sec(real x) {return 1/cos(x);}
real cot(real x) {return tan(pi/2-x);}
real acsc(real x) {return asin(1/x);}
real asec(real x) {return acos(1/x);}
real acot(real x) {return pi/2-atan(x);}
real frac(real x) {return x-(int)x;}
pair exp(explicit pair z) {return exp(z.x)*expi(z.y);}
pair log(explicit pair z) {return log(abs(z))+I*angle(z);}
// Return an Nx by Ny unit square lattice with lower-left corner at (0,0).
picture grid(int Nx, int Ny, pen p=currentpen)
{
picture pic;
for(int i=0; i <= Nx; ++i) draw(pic,(i,0)--(i,Ny),p);
for(int j=0; j <= Ny; ++j) draw(pic,(0,j)--(Nx,j),p);
return pic;
}
bool polygon(path p)
{
return cyclic(p) && piecewisestraight(p);
}
// Return the intersection time of the extension of the line segment PQ
// with the plane perpendicular to n and passing through Z.
real intersect(triple P, triple Q, triple n, triple Z)
{
real d=n.x*Z.x+n.y*Z.y+n.z*Z.z;
real denom=n.x*(Q.x-P.x)+n.y*(Q.y-P.y)+n.z*(Q.z-P.z);
return denom == 0 ? infinity : (d-n.x*P.x-n.y*P.y-n.z*P.z)/denom;
}
// Return any point on the intersection of the two planes with normals
// n0 and n1 passing through points P0 and P1, respectively.
// If the planes are parallel return (infinity,infinity,infinity).
triple intersectionpoint(triple n0, triple P0, triple n1, triple P1)
{
real Dx=n0.y*n1.z-n1.y*n0.z;
real Dy=n0.z*n1.x-n1.z*n0.x;
real Dz=n0.x*n1.y-n1.x*n0.y;
if(abs(Dx) > abs(Dy) && abs(Dx) > abs(Dz)) {
Dx=1/Dx;
real d0=n0.y*P0.y+n0.z*P0.z;
real d1=n1.y*P1.y+n1.z*P1.z+n1.x*(P1.x-P0.x);
real y=(d0*n1.z-d1*n0.z)*Dx;
real z=(d1*n0.y-d0*n1.y)*Dx;
return (P0.x,y,z);
} else if(abs(Dy) > abs(Dz)) {
Dy=1/Dy;
real d0=n0.z*P0.z+n0.x*P0.x;
real d1=n1.z*P1.z+n1.x*P1.x+n1.y*(P1.y-P0.y);
real z=(d0*n1.x-d1*n0.x)*Dy;
real x=(d1*n0.z-d0*n1.z)*Dy;
return (x,P0.y,z);
} else {
if(Dz == 0) return (infinity,infinity,infinity);
Dz=1/Dz;
real d0=n0.x*P0.x+n0.y*P0.y;
real d1=n1.x*P1.x+n1.y*P1.y+n1.z*(P1.z-P0.z);
real x=(d0*n1.y-d1*n0.y)*Dz;
real y=(d1*n0.x-d0*n1.x)*Dz;
return (x,y,P0.z);
}
}
// Given a real array A, return its partial sums.
real[] partialsum(real[] A)
{
real[] B=new real[A.length];
real sum=0;
for(int i=0; i < A.length; ++i) {
sum += A[i];
B[i]=sum;
}
return B;
}
// Given a real array A, return its partial dx-weighted sums.
real[] partialsum(real[] A, real[] dx)
{
real[] B=new real[A.length];
real sum=0;
for(int i=0; i < A.length; ++i) {
sum += A[i]*dx[i];
B[i]=sum;
}
return B;
}
// If strict=false, return whether i > j implies x[i] >= x[j]
// If strict=true, return whether i > j implies x[i] > x[j]
bool increasing(real[] x, bool strict=false)
{
real[] xp=copy(x);
xp.delete(0);
xp.push(0);
bool[] b=strict ? (xp > x) : (xp >= x);
b[x.length-1]=true;
return all(b);
}
// Return the indices of consecutive true-element segments of bool[] b.
int[][] segment(bool[] b)
{
int[][] segment;
bool[] n=copy(b);
n.delete(0);
n.push(!b[b.length-1]);
int[] edge=(b != n) ? sequence(1,b.length) : null;
edge.insert(0,0);
int stop=edge[0];
for(int i=0; i < edge.length-1;) {
int start=stop;
stop=edge[++i];
if(b[start])
segment.push(sequence(start,stop-1));
}
return segment;
}
real[] zero(int n)
{
return sequence(new real(int) {return 0;},n);
}
real[][] zero(int n, int m)
{
real[][] M=new real[n][];
for(int i=0; i < n; ++i)
M[i]=sequence(new real(int) {return 0;},m);
return M;
}
real[][] operator + (real[][] a, real[][] b)
{
int n=a.length;
real[][] m=new real[n][];
for(int i=0; i < n; ++i)
m[i]=a[i]+b[i];
return m;
}
real[][] operator - (real[][] a, real[][] b)
{
int n=a.length;
real[][] m=new real[n][];
for(int i=0; i < n; ++i)
m[i]=a[i]-b[i];
return m;
}
private string incommensurate=
"Multiplication of incommensurate matrices is undefined";
real[] operator * (real[] b, real[][] a)
{
int nb=b.length;
if(nb != a.length)
abort(incommensurate);
int na0=a[0].length;
real[] m=new real[na0];
for(int j=0; j < na0; ++j) {
real sum;
for(int k=0; k < nb; ++k)
sum += b[k]*a[k][j];
m[j]=sum;
}
return m;
}
real[][] operator * (real[][] a, real b)
{
int n=a.length;
real[][] m=new real[n][];
for(int i=0; i < n; ++i)
m[i]=a[i]*b;
return m;
}
real[][] operator * (real b, real[][] a)
{
return a*b;
}
real[][] operator / (real[][] a, real b)
{
return a*(1/b);
}
bool square(real[][] m)
{
int n=m.length;
for(int i=0; i < n; ++i)
if(m[i].length != n) return false;
return true;
}
bool rectangular(real[][] m)
{
int n=m.length;
if(n > 0) {
int m0=m[0].length;
for(int i=1; i < n; ++i)
if(m[i].length != m0) return false;
}
return true;
}
bool rectangular(pair[][] m)
{
int n=m.length;
if(n > 0) {
int m0=m[0].length;
for(int i=1; i < n; ++i)
if(m[i].length != m0) return false;
}
return true;
}
bool rectangular(triple[][] m)
{
int n=m.length;
if(n > 0) {
int m0=m[0].length;
for(int i=1; i < n; ++i)
if(m[i].length != m0) return false;
}
return true;
}
// draw the (infinite) line going through P and Q, without altering the
// size of picture pic.
void drawline(picture pic=currentpicture, pair P, pair Q, pen p=currentpen)
{
pic.add(new void (frame f, transform t, transform, pair m, pair M) {
// Reduce the bounds by the size of the pen.
m -= min(p); M -= max(p);
// Calculate the points and direction vector in the transformed space.
pair z=t*P;
pair v=t*Q-z;
// Handle horizontal and vertical lines.
if(v.x == 0) {
if(m.x <= z.x && z.x <= M.x)
draw(f,(z.x,m.y)--(z.x,M.y),p);
} else if(v.y == 0) {
if(m.y <= z.y && z.y <= M.y)
draw(f,(m.x,z.y)--(M.x,z.y),p);
} else {
// Calculate the maximum and minimum t values allowed for the
// parametric equation z + t*v
real mx=(m.x-z.x)/v.x, Mx=(M.x-z.x)/v.x;
real my=(m.y-z.y)/v.y, My=(M.y-z.y)/v.y;
real tmin=max(v.x > 0 ? mx : Mx, v.y > 0 ? my : My);
real tmax=min(v.x > 0 ? Mx : mx, v.y > 0 ? My : my);
if(tmin <= tmax)
draw(f,z+tmin*v--z+tmax*v,p);
}
},true);
}
real interpolate(real[] x, real[] y, real x0, int i)
{
int n=x.length;
if(n == 0) abort("Zero data points in interpolate");
if(n == 1) return y[0];
if(i < 0) {
real dx=x[1]-x[0];
return y[0]+(y[1]-y[0])/dx*(x0-x[0]);
}
if(i >= n-1) {
real dx=x[n-1]-x[n-2];
return y[n-1]+(y[n-1]-y[n-2])/dx*(x0-x[n-1]);
}
real D=x[i+1]-x[i];
real B=(x0-x[i])/D;
real A=1.0-B;
return A*y[i]+B*y[i+1];
}
// Linearly interpolate data points (x,y) to (x0,y0), where the elements of
// real[] x are listed in ascending order and return y0. Values outside the
// available data range are linearly extrapolated using the first derivative
// at the nearest endpoint.
real interpolate(real[] x, real[] y, real x0)
{
return interpolate(x,y,x0,search(x,x0));
}
private string nopoint="point not found";
// Return the nth intersection time of path g with the vertical line through x.
real time(path g, real x, int n=0)
{
real[] t=times(g,x);
if(t.length <= n) abort(nopoint);
return t[n];
}
// Return the nth intersection time of path g with the horizontal line through
// (0,z.y).
real time(path g, explicit pair z, int n=0)
{
real[] t=times(g,z);
if(t.length <= n) abort(nopoint);
return t[n];
}
// Return the nth y value of g at x.
real value(path g, real x, int n=0)
{
return point(g,time(g,x,n)).y;
}
// Return the nth x value of g at y=z.y.
real value(path g, explicit pair z, int n=0)
{
return point(g,time(g,(0,z.y),n)).x;
}
// Return the nth slope of g at x.
real slope(path g, real x, int n=0)
{
pair a=dir(g,time(g,x,n));
return a.y/a.x;
}
// Return the nth slope of g at y=z.y.
real slope(path g, explicit pair z, int n=0)
{
pair a=dir(g,time(g,(0,z.y),n));
return a.y/a.x;
}
// A quartic complex root solver based on these references:
// http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html
// Neumark, S., Solution of Cubic and Quartic Equations, Pergamon Press
// Oxford (1965).
pair[] quarticroots(real a, real b, real c, real d, real e)
{
real Fuzz=100000*realEpsilon;
// Remove roots at numerical infinity.
if(abs(a) <= Fuzz*(abs(b)+Fuzz*(abs(c)+Fuzz*(abs(d)+Fuzz*abs(e)))))
return cubicroots(b,c,d,e);
// Detect roots at numerical zero.
if(abs(e) <= Fuzz*(abs(d)+Fuzz*(abs(c)+Fuzz*(abs(b)+Fuzz*abs(a)))))
return cubicroots(a,b,c,d);
real ainv=1/a;
b *= ainv;
c *= ainv;
d *= ainv;
e *= ainv;
pair[] roots;
real[] T=cubicroots(1,-2c,c^2+b*d-4e,d^2+b^2*e-b*c*d);
if(T.length == 0) return roots;
real t0=T[0];
pair[] sum=quadraticroots((1,0),(b,0),(t0,0));
pair[] product=quadraticroots((1,0),(t0-c,0),(e,0));
if(abs(sum[0]*product[0]+sum[1]*product[1]+d) <
abs(sum[0]*product[1]+sum[1]*product[0]+d))
product=reverse(product);
for(int i=0; i < 2; ++i)
roots.append(quadraticroots((1,0),-sum[i],product[i]));
return roots;
}
|