blob: adf247ff73b1f44ba4dce92e6426d4b90e198fba (
plain)
1
2
3
4
5
6
7
8
9
10
|
\[
\begin{gathered}
f( \in ,\delta s) = \frac{1}{\xi }\phi _{v} (\lambda _{v} ,k,\beta ^{2} ) \hfill \\
\phi _{v} (\lambda _{v} ,k,\beta ^{2} ) = \frac{1}{{2\pi i}}\int_{{c - i\infty }}^{{c + i\infty }} {\phi (s)e^{{\lambda s}} ds} \hfill \\
\phi (s) = \text{exp }[\kappa(1 + \beta ^{2} \gamma )]\text{ exp }[\psi (s)] \hfill \\
\lambda _{u} = k\left[ {\frac{{ \in - \bar \in }}{\xi } - \gamma ' - \beta ^{2} } \right] \hfill \\
\end{gathered}
\]
|