summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/luatex/optex/base/more-macros.opm
blob: d5ce88c1a67630fb995efa07a2c037380ea491ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
%% This is part of the OpTeX project, see http://petr.olsak.net/optex

\_codedecl \eoldef {OpTeX useful macos <2020-05-22>} % preloaded in format

   \_doc -----------------------------
   We define \`\opinput` `{<file name>}` macro which
   does `\input {<file name>}` but the catcodes are set to normal catcodes
   (like \OpTeX/ initializes them) and the catcodes setting is returned back to
   the current values when the file is read. You can use `\opinput`
   in any situation inside the document and you will be sure that the file
   is read correctly with correct catcode settings.

   To achieve this, we declare \`\optexcatcodes` catcode table
   and \`\plaintexcatcodes`. They save the commonly used catcode tables.
   Note that `\catcodetable` is a part of \LuaTeX/ extension.
   The catcodetable stack is implemented by \OpTeX/ macros.
   The \`\setctable` `<catcode table>` pushes 
   current catcode table to the stack and activates catcodes from
   the `<catcode table>`. The \`\restorectable` returns to the saved catcodes
   from the catcode table stack.

   The `\opinput` works inside the catcode table stack. It reads `\optexcatcodes`
   table and stores it to \`\_tmpcatcodes`  table.
   This table is actually used during `\input` (maybe catcodes are
   changed here). Finally, `\_restoretable` pops the stacks and returns
   to the catcodes used before `\opinput` is run.
   \_cod -----------------------------

\_def\_opinput #1{\_setctable\_optexcatcodes
   \_savecatcodetable\_tmpcatcodes \_catcodetable\_tmpcatcodes
   \_input {#1}\_relax\_restorectable}

\_newcatcodetable \_optexcatcodes
\_newcatcodetable \_plaintexcatcodes
\_newcatcodetable \_tmpcatcodes

\_public \optexcatcodes \plaintexcatcodes \opinput ;

\_savecatcodetable\_optexcatcodes
{\_catcode`_=8 \savecatcodetable\plaintexcatcodes}

   \_doc -----------------------------
   The implementation of the catcodetable stack follows. 

   The current catcodes are
   managed in the `\catcodetable0`. If the `\setctable` is used first (or at
   the outer level of the stack), then the `\catcodetable0` is pushed to the
   stack and the current table is re-set to the given `<catcode table>`.
   The numbers of these tables are stacked to the \`\_ctablelist` macro.
   The `\restorectable` reads the last saved catcode table number from the
   `\_ctablelist` and uses it.
   \_cod -----------------------------

\_newcount\_currctable \_currctable=0
\_catcodetable0

\_def\_setctable#1{\_edef\_ctablelist{{\_the\_currctable}\_ctablelist}%
   \_catcodetable#1\_relax \_currctable=#1\_relax
}
\_def\_restorectable{\_ea\_restorectableA\_ctablelist\_relax}
\_def\_restorectableA#1#2\_relax{%
   \_ifx^#2^\_opwarning
      {You can't use \_noindent\restorectable without previous \_string\setctable}%
   \_else \_def\_ctablelist{#2}\_catcodetable#1\_relax \_currctable=#1\_relax \_fi
}
\_def\_ctablelist{.}

\_public \setctable \restorectable ;

   \_doc -----------------------------
   When a special macro is defined with different catcodes then
   \`\normalcatcodes` can be used at the end of such definition. 
   The normal catcodes are restored.
   The macro reads
   catcodes from `\optecatodes` table and sets it to the main catcode table 0.
   \_cod -----------------------------

\_def\_normalcatcodes {\_catcodetable\_optexcatcodes \_savecatcodetable0 \_catcodetable0 }
\_public \normalcatodes ; 

   \_doc -----------------------------
   The \`\load` `[<filename-list>]` loads files specfied in
   comma separated `<filename-list>`. The first space (after comma)
   is ignored using the trick `#1#2,`: first parameter is unseparated.
   The `\load` macro saves information about loaded files by setting
   `\_load:<filename>` as a defined macro.

   If the \`\_afterload` macro is defined then it is run after `\_opinput`.
   The catcode setting should be here. Note that catcode setting done in the
   loaded file is forgotten after the `\opinput`.
   \_cod -----------------------------

\_def \_load [#1]{\_loadA #1,,,\_end}
\_def \_loadA #1#2,{\_ifx,#1 \_ea \_loadE \_else \_loadB{#1#2}\_ea\_loadA\_fi}
\_def \_loadB #1{%
   \_ifcsname _load:#1\_endcsname \_else
      \_isfile {#1.opm}\_iftrue \_opinput {#1.opm}\_else \_opinput {#1}\_fi
      \_sxdef{_load:#1}{}%
      \_trycs{_afterload}{}\_let\_afterload=\_undefined
   \_fi
}
\_def \_loadE #1\_end{}
\_public \load ;

   \_doc -----------------------------
   The declarator \`\optdef``\macro [<opt default>] <params>{<replacement text>}` 
   defines the `\macro` with the optional parameter followed by normal parameters
   declared in `<params>`. The optional parameter must be used as the first
   first parameter in brackets `[...]`. If it isn't used then <opt default>
   is taken into account. The `<replacement text>` can use `\the\opt`
   because optional parameter is saved to the \`\opt` tokens register.
   Note the difference from \LaTeX/ concept where the optional parameter is
   in `#1`. \OpTeX/ uses `#1` as the first normal parameter (if declared).

   The \`\_nospaceafter` ignores the following optional space at expand
   processor level using the negative `\romannumeral` trick.
   \_cod -----------------------------

\_def\_optdef#1[#2]{% 
   \_def#1{\_opt={#2}\_isnextchar[{\_cs{_oA:\_string#1}}{\_cs{_oB:\_string#1}}}% 
   \_sdef{_oA:\_string#1}[##1]{\_opt={##1}\_cs{_oB:\_string#1\_nospaceafter}}% 
   \_sdef{_oB:\_string#1\_nospaceafter}% 
} 
\_def\_nospaceafter#1{\_ea#1\_romannumeral-`\.}
\_newtoks\_opt

\_public \opt \optdef ; 

   \_doc -----------------------------
   The declarator \`\eoldef``\macro #1{<replacement text>}` defines a `\macro`
   which scans its parameter to the end of the current line.
   This is the parameter `#1` which can be used in the `<replacement text>`.
   The catcode of the `\endlinechar` is reset temporarily when the parameter is scanned. 

   The macro defined by `\eoldef` cannot be used with its parameter inside
   other macros because the catcode dancing is not possible here. But the
   \`\bracedparam``\macro{<parameter>}` can be used here. The `\bracedparam`
   is a prefix that re-sets temporarily the `\macro` to a `\macro` with
   normal one parameter.

   The \`\skiptoeol` macro reads the text to the end of the current line 
   and ignores it.
   \_cod -----------------------------

\_def\_eoldef #1{\_def #1{\_begingroup \_catcode`\^^M=12 \_eoldefA #1}%
   \_ea\_def\_csname _\_csstring #1:M\_endcsname}
\_catcode`\^^M=12 %
\_def\_eoldefA #1#2^^M{\_endgroup\_csname _\_csstring #1:M\_endcsname{#2}}%
\_normalcatcodes %

\_eoldef\_skiptoeol#1{}
\_def\_bracedparam#1{\_ifcsname _\_csstring #1:M\_endcsname
    \_csname _\_csstring #1:M\_ea \_endcsname
    \_else \_csname __in\_csstring #1:M\_ea \_endcsname \_fi
} 
\_public \eoldef \skiptoeol \bracedparam ;

   \_doc -----------------------------
   \`\scantoeol``\macro <text to end of line>` scans the
   `<text to end of line>` in verbatim mode and runs the
   `\macro{<text to end of line>}`. The `\macro`
   can be defined `\def\macro#1{...\scantextokens{#1}...}`.
   The new tokenization of the parameter is processed when the parameter is used,
   no when the parameter is scanned. This principle is used in definition
   of \^`\chap`, \^`\sec`, \^`\secc` and \^`\_Xtoc` macros.
   It means that user can write \code{\\sec text `&` text} for example.
   Inline verbatim works in title sections.

   The verbatim scanner of `\scatoeol` keeps category 7 for `^` in
   order to be able to use `^^J` as comment character which means that
   the next line continues.
   \_cod -----------------------------

\_def\_scantoeol#1{\def\_tmp{#1}\_begingroup \_setscancatcodes \_scantoeolA}
\_def\_setscancatcodes{\_setverb \_catcode`\^^M=12\_catcode`\^=7\_catcode`\ =10\_catcode`\^^J=14 }
\_catcode`\^^M=12 %
\_def\_scantoeolA#1^^M{\_endgroup \_tmp{#1}}%
\_normalcatcodes %

\_public \scantoeol ;

   \_doc -----------------------------
   The \`\replstring``\macro{<textA>}{<textB>}`
   replaces all occurrences of `<textA>` by `<textB>` in the `\macro` body.
   The `\macro` must be defined without parameters. The occurrences of
   `<textA>` are not replaced if they are \"hidden" in braces, for example
   `...{...<textA>...}...`. The category codes in the `<textA>` must exactly
   match.

   How it works: `\replstring\foo{<textA>}{<textB>}` prepares
   `\_replacestringsA#1<textA>{...}` and runs
   `\_replacestringsA<foo-body>?<textA>!<textA>`.
   So, `#1` includes the first part of <foo-body> before first <textA>.
   It is saved to \`\_tmptoks` and `\_replacestringsB` is run in a loop.
   It finishes processing or appends the next part to `\_tmptoks` separated by
   <textB> and continues loop. The final part of the macro removes the last `?`
   from resulting `\_tmptoks` and defines a new version of the `\foo`.
   \_cod -----------------------------

\_newtoks\_tmptoks
\_catcode`!=3 \_catcode`?=3
\_def\_replstring #1#2#3{%  \replstring #1{stringA}{stringB}
   \_long\_def\_replacestringsA##1#2{\_tmptoks{##1}\_replacestringsB}%
   \_long\_def\_replacestringsB##1#2{\_ifx!##1\_relax \_else \_toksapp\_tmptoks{#3##1}%
                                     \_ea\_replacestringsB\_fi}%
   \_ea\_replacestringsA #1?#2!#2%
   \_long\_def\_replacestringsA##1?{\_tmptoks{##1}\_edef#1{\_the\_tmptoks}}%
   \_ea\_replacestringsA \_the\_tmptoks}
\_normalcatcodes

\_public \replstring ;

   \_doc -----------------------------
   The \`\catcode` primitive is redefined here. Why?
   There is very common cases like \code{\\catcode`}`<something>`
   or `\catcode"<number>` but these characters
   \code{\`} or \code{"} can be set as active (typically by `\verbchar` macro).
   Nothing problematic happens if re-defined `\catcode` is used in this case.

   If you really need primitive `\catcode` then you can use `\_catcode`.
   \_cod -----------------------------

\_def\catcode#1{\_catcode \_if`\_noexpand#1\_ea`\_else\_if"\_noexpand#1"\_else
   \_if'\_noexpand#1'\_else \_ea\_ea\_ea\_ea\_ea\_ea\_ea#1\_fi\_fi\_fi}

   \_doc -----------------------------
   The \`\removespaces` `<text with spaces >{}` expands to <textwithoutspaces>.
   \nl
   The 	`\_ea`\`\ignorept``\the<dimen>` expands to a decimal
   number `\the<dimen>` but without `pt` unit.
   \_cod -----------------------------

\_def\_removespaces #1 {\_isempty{#1}\_iffalse #1\_ea\_removespaces\_fi}
\_ea\_def \_ea\_ignorept \_ea#\_ea1\_detokenize{pt}{#1}

\public \removespaces \ignorept ;

   \_doc -----------------------------
   You can use expandable \`\bp``{<dimen>}` convertor from
   \TeX/ `<dimen>` (or from an expression accepted by
   `\dimexpr` primitive) to a decimal value in big points
   (used as natural unit in the PDF format). So, you can write, for example:
   \begtt
   \pdfliteral{q \_bp{.3\hsize-2mm} \_bp{2mm} m 0 \_bp{-4mm} l S Q}
   \endtt
   You can use expandable \`\expr``{<expression>}` for analogical purposes.
   It expands to the value of the `<expression>` at expand processor level
   with \`\_decdigits` digits after the decimal point.
   The `<expression>` can include `+-*/()` and decimal numbers in common syntax.

   The usage of prefixed versions \`\_expr` or \`\_bp` is more recommended
   because a user can re-define the control sequences `\expr` or `\bp`.
   \_cod -----------------------------

\_def\_decdigits{3} % digits after decimal point in \_bp and \_expr outputs.
\_def\_pttopb{%
   \_directlua{tex.print(string.format('\_pcent.\_decdigits f',
               token.scan_dimen()/65781.76))}%  pt to bp conversion
}
\def\_bp#1{\_ea\_pttopb\_dimexpr#1\_relax}
\def\_expr#1{\_directlua{tex.print(string.format('\_pcent.\_decdigits f',#1))}}

\_public \expr \bp ;

   \_doc ------------------
   The pair {\`\_doc` ... \`\_cod`} is used for documenting macros and to
   printing the technical documentation of the \OpTeX/. The syntax is:
   {\begtt \catcode`\<=13
   \_doc <ignored text>
   <documentation>
   \_cod <ignored text>
   \endtt
   }
   The `<documentation>` (and `<ignored text>` too) must be `<balanced text>`. 
   It means that you cannot document only the `{` but you must document the `}` too.
   \_cod ------------------

\_long\_def\_doc #1\_cod {\_skiptoeol}

\_endcode % -------------------------------------

2020-05-22 robust \catcode newly defined in order \catcode\string.... be possible
2020-05-03 \load macro introduced
2020-03-15 released