blob: e34d382a588749efe983b1a2d2532d38b75723f6 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
% Licence : Released under the LaTeX Project Public License v1.3c
% or later, see http://www.latex-project.org/lppl.txtf
\newcommand{\EquaBaseL}[5][]{%type ax=d ou b=cx
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\ifx\bla#2\bla%on teste si le paramètre #2 est vide:
% si oui, on est dans le cas b=cx. Eh bien on échange :)
% Mais attention si les deux paramètres a et c sont vides...
\EquaBaseL[#1]{#4}{}{}{#3}
\else
% si non, on est dans le cas ax=d
\xintifboolexpr{#2=0}{%
\xintifboolexpr{#5=0}{%
L'équation $0\useKV[ClesEquation]{Lettre}=0$ a une infinité de solution.}{L'équation $0\useKV[ClesEquation]{Lettre}=\num{#5}$ n'a aucune solution.}%
}{%\else
\xintifboolexpr{#5=0}{L'équation $\num{#2}\useKV[ClesEquation]{Lettre}=0$ a une unique solution : $\useKV[ClesEquation]{Lettre}=0$.}{%\else
\begin{align*}%
\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}}{\num{#2}\useKV[ClesEquation]{Lettre}}&=\num{#5}\\
\xintifboolexpr{#2=1}{}{%
\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\phantom{\useKV[ClesEquation]{Lettre}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\\}
\useKV[ClesEquation]{Lettre}&=\frac{\num{#5}}{\num{#2}}%\\
\ifboolKV[ClesEquation]{Entier}{%
\SSimpliTest{#5}{#2}%
\ifboolKV[ClesEquation]{Simplification}{%
\ifthenelse{\boolean{Simplification}}{\\\useKV[ClesEquation]{Lettre}&=\SSimplifie{#5}{#2}}{}%\\
}{}
}{}
%\ifboolKV[ClesEquation]{Fleches}{%
%\stepcounter{Nbequa}}%
%{\ifboolKV[ClesEquation]{FlecheDiv}{\stepcounter{Nbequa}}{}
%}
\end{align*}
\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{\useKV[ClesEquation]{Lettre}=\num{#5}}{\num{#2}\useKV[ClesEquation]{Lettre}=\num{#5}}$ a une unique solution : $\displaystyle\useKV[ClesEquation]{Lettre}=\opdiv*{#5}{#2}{numequa}{resteequa}\opcmp{resteequa}{0}\ifopeq\opexport{numequa}{\numequa}\num{\numequa}\else\ifboolKV[ClesEquation]{Simplification}{\SSimplifie{#5}{#2}}{\frac{\num{#5}}{\num{#2}}}\fi$.%
}{}
}
}
\fi
}
\newcommand{\EquaDeuxL}[5][]{%type ax+b=d ou b=cx+d$
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\ifx\bla#2\bla%On échange en faisant attention à ne pas boucler : c doit être non vide
\EquaDeuxL[#1]{#4}{#5}{#2}{#3}
\else%cas ax+b=d
\xintifboolexpr{#2=0}{%
\xintifboolexpr{#3=#5}{%b=d
L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}%
{%b<>d
L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
}%
}{%ELSE
\xintifboolexpr{#3=0}{%ax+b=d
\EquaBaseL[#1]{#2}{}{}{#5}%
}{%ax+b=d$ Ici
\begin{align*}
\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\num{#5}\\
\phantom{\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{-\num{#3}}{+\num{\fpeval{0-#3}}}}\\
\xdef\Coeffa{#2}\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\
\xintifboolexpr{\Coeffa=1}{}{\\}
\xintifboolexpr{\Coeffa=1}{%
}{%\ifnum\cmtd>1
\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{#2<0}{(\num{#2})}{\num{#2}}}\\
\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
}
\ifboolKV[ClesEquation]{Entier}{%
\SSimpliTest{\Coeffb}{\Coeffa}%
\ifboolKV[ClesEquation]{Simplification}{%
\ifthenelse{\boolean{Simplification}}{%
\\\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\SSimplifie{\Coeffb}{\Coeffa}%
}{}%\\
}{}
}{}
\end{align*}
\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\num{#5}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.
}{}
}
}
\fi
}
\newcommand{\EquaTroisL}[5][]{%ax+b=cx ou ax=cx+d
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\ifx\bla#3\bla%on inverse en faisant attention à la boucle #3<->#5
\ifx\bla#5\bla%
%% paramètre oublié
\else
\EquaTroisL[#1]{#4}{#5}{#2}{}%
\fi
\else
\xintifboolexpr{#2=0}{%b=cx
\EquaBaseL[#1]{#4}{}{}{#3}
}{%
\xintifboolexpr{#4=0}{%ax+b=0
\EquaDeuxL[#1]{#2}{#3}{}{0}
}{%ax+b=cx
\xintifboolexpr{#2=#4}{%
\xintifboolexpr{#3=0}{%ax=ax
L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une infinité de solution.}%
{%ax+b=ax
L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ n'a aucune solution.%
}%
}{%% Cas délicat
\xintifboolexpr{#2>#4}{%ax+b=cx avec a>c
\begin{align*}
\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\
\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{-\num{#4}\useKV[ClesEquation]{Lettre}}{+\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\
\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=0\\
\phantom{\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{\mathrel{=}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\
\xdef\Coeffb{\fpeval{0-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\num{\Coeffb}%\\
\xintifboolexpr{\Coeffa=1}{}{\\}
\xintifboolexpr{\Coeffa=1}{%
}{%\ifnum\cmtd>1
\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\
\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
}
\ifboolKV[ClesEquation]{Entier}{%
\SSimpliTest{\Coeffb}{\Coeffa}%
\ifboolKV[ClesEquation]{Simplification}{%
\ifthenelse{\boolean{Simplification}}{\\%
\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\SSimplifie{\Coeffb}{\Coeffa}%\\
}{}
}{}
}{}
\end{align*}
\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}
}{%ax+b=cx+d avec a<c % Autre cas délicat
\begin{align*}%
\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\\
\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
\xdef\Coeffb{#3}\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\
\xintifboolexpr{\Coeffa=1}{}{\\}
\xintifboolexpr{\Coeffa=1}{%
}{%\ifnum\cmtd>1
\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}&\phantom{=}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\
\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\phantom{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\
}
\ifboolKV[ClesEquation]{Entier}{%
\SSimpliTest{\Coeffb}{\Coeffa}%
\ifboolKV[ClesEquation]{Simplification}{%
\ifthenelse{\boolean{Simplification}}{\\%
\SSimplifie{\Coeffb}{\Coeffa}&=\phantom{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\
}{}
}{}
}{}
\end{align*}
\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.}{}%
}%
}%
}%
}%
\fi
}%\\
% \\
\newcommand{\ResolEquationL}[5][]{%
\useKVdefault[ClesEquation]%
\setKV[ClesEquation]{#1}%
\xintifboolexpr{#2=0}{%
\xintifboolexpr{#4=0}{%
\xintifboolexpr{#3=#5}{%b=d
L'équation $\num{#3}=\num{#5}$ a une infinité de solution.}%
{%b<>d
L'équation $\num{#3}=\num{#5}$ n'a aucune solution.%
}%
}%
{%0x+b=cx+d$
\EquaDeuxL[#1]{#4}{#5}{}{#3}%
}%
}{%
\xintifboolexpr{#4=0}{%ax+b=0x+d
\EquaDeuxL[#1]{#2}{#3}{}{#5}%
}
{%ax+b=cx+d$
\xintifboolexpr{#3=0}{%
\xintifboolexpr{#5=0}{%ax=cx
\EquaTroisL[#1]{#2}{0}{#4}{}%
}%
{%ax=cx+d
\EquaTroisL[#1]{#4}{#5}{#2}{}%
}%
}%
{\xintifboolexpr{#5=0}{%ax+b=cx
\EquaTroisL[#1]{#2}{#3}{#4}{}%
}%
{%ax+b=cx+d -- ici
\xintifboolexpr{#2=#4}{%
\xintifboolexpr{#3=#5}{%b=d
L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une infinité de solution.}%
{%b<>d
L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ n'a aucune solution.%
}%
}{
%% Cas délicat
\xintifboolexpr{#2>#4}{%ax+b=cx+d avec a>c
\begin{align*}
\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\mathcolor{Cdecomp}{\xintifboolexpr{#4>0}{{}-{}\num{#4}\useKV[ClesEquation]{Lettre}}{\phantom{{}={}}+{}\num{\fpeval{0-#4}}\useKV[ClesEquation]{Lettre}}}\\
\xdef\Coeffa{\fpeval{#2-#4}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{#5>0}{\phantom{{}+{}}\num{#5}}{-\num{\fpeval{0-#5}}}\\
\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}&\phantom{{}={}\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#3>0}{{}-{}\num{#3}}{{}+{}\num{\fpeval{0-#3}}}}\\
\xdef\Coeffb{\fpeval{#5-#3}}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\xintifboolexpr{\Coeffb>0}{\phantom{{}+{}}\num{\Coeffb}}{{}-{}\num{\fpeval{0-\Coeffb}}}%\\
\xintifboolexpr{\Coeffa=1}{}{\\}
\xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\phantom{\useKV[ClesEquation]{Lettre}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\phantom{{}={}}\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\
\phantom{\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}}\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\frac{\num{\Coeffb}}{\num{\Coeffa}}%\\
}
\ifboolKV[ClesEquation]{Entier}{%
\SSimpliTest{\Coeffb}{\Coeffa}%
\ifboolKV[ClesEquation]{Simplification}{%
\ifthenelse{\boolean{Simplification}}{\\%
\useKV[ClesEquation]{Lettre}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&=\phantom{\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{\Coeffb>0}{{}+{}}{}}\SSimplifie{\Coeffb}{\Coeffa}%\\
}{}
}{}
}{}
\end{align*}
\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
}{}
}{%ax+b=cx+d avec a<c % Autre cas délicat
\begin{align*}%
\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\phantom{\xintifboolexpr{#3>0}{{}+{}\num{#3}}{{}-{}\num{\fpeval{0-#3}}}}&\xintifboolexpr{#4<0}{\phantom{={}}}{}\mathcolor{Cdecomp}{\xintifboolexpr{#2>0}{{}-{}\num{#2}\useKV[ClesEquation]{Lettre}}{{}+{}\num{\fpeval{0-#2}}\useKV[ClesEquation]{Lettre}}}\\
\xdef\Coeffa{\fpeval{#4-#2}}\xintifboolexpr{#3>0}{\num{#3}}{-\num{\fpeval{0-#3}}}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}\\
\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{{}-{}\num{#5}}{{}+{}\num{\fpeval{0-#5}}}}&\phantom{{}={}\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}}\mathcolor{Cdecomp}{\xintifboolexpr{#5>0}{-\num{#5}}{+\num{\fpeval{0-#5}}}}\\
\xdef\Coeffb{\fpeval{#3-#5}}\num{\Coeffb}&=\xintifboolexpr{\Coeffa=1}{}{\num{\Coeffa}}\useKV[ClesEquation]{Lettre}%\\
\xintifboolexpr{\Coeffa=1}{}{\\}
\xintifboolexpr{\Coeffa=1}{}{%\ifnum\cmtd>1
\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}&\xintifboolexpr{\Coeffa<0}{\phantom{{}={}}}{\phantom{=}}\mathcolor{Cdecomp}{\mathrel{\div}\xintifboolexpr{\Coeffa<0}{(\num{\Coeffa})}{\num{\Coeffa}}}\\
\frac{\num{\Coeffb}}{\num{\Coeffa}}&=\useKV[ClesEquation]{Lettre}%\\
}
\ifboolKV[ClesEquation]{Entier}{%
\SSimpliTest{\Coeffb}{\Coeffa}%
\ifboolKV[ClesEquation]{Simplification}{%
\ifthenelse{\boolean{Simplification}}{\\\SSimplifie{\Coeffb}{\Coeffa}&=\useKV[ClesEquation]{Lettre}}{}%\\
}{}
}{}
\end{align*}
\ifboolKV[ClesEquation]{Solution}{L'équation $\xintifboolexpr{#2=1}{}{\num{#2}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#3>0}{+\num{#3}}{-\num{\fpeval{0-#3}}}=\xintifboolexpr{#4=1}{}{\num{#4}}\useKV[ClesEquation]{Lettre}\xintifboolexpr{#5>0}{+\num{#5}}{-\num{\fpeval{0-#5}}}$ a une unique solution : \opdiv*{\Coeffb}{\Coeffa}{solution}{resteequa}\opcmp{resteequa}{0}$\useKV[ClesEquation]{Lettre}=\displaystyle\ifopeq\opexport{solution}{\solution}\num{\solution}\else\ifboolKV[ClesEquation]{Entier}{\SSimplifie{\Coeffb}{\Coeffa}}{\frac{\num{\Coeffb}}{\num{\Coeffa}}}\fi$.%
}{}%
}%
}%
}%
}%
}%
}%
}%
|