1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
|
%%% perfectcut.sty
%%%%%%%%%%%%%%%%%%%
%%%
%%% Author: Guillaume Munch-Maccagnoni
%%% http://www.pps.univ-paris-diderot.fr/~munch/
%%%
%%% This work may be distributed and/or modified under the conditions of
%%% the LaTeX Project Public License, either version 1.3 of this license
%%% or (at your option) any later version. Refer to the README file.
%%%
%%%
\ProvidesPackage{perfectcut}[03/11/2014 Perfect Cut v2.0]
%%% Option processing
\newif\ifcut@mathstyle@
\cut@mathstyle@true
\newif\ifcut@realVert@
\cut@realVert@false
\newif\ifcut@fixxits@
\cut@fixxits@false
\DeclareOption{nomathstyle}{\cut@mathstyle@false}
\let\cutstyle\textstyle
\DeclareOption{realVert}{\cut@realVert@true}
\DeclareOption{fixxits}{\cut@fixxits@true}
\ProcessOptions*
%%% End option processing
\RequirePackage{graphicx}
\RequirePackage{calc}
\newmuskip\cutangleskip
\newmuskip\cutbarskip
\newmuskip\cutinterbarskip
\newmuskip\cutangleouterskip
\newif\ifcutdebug
%%% Exported commands
%%See end of file for a more detailed description of the commands
\newcommand{\perfectcut}[2]{\cut@{#1}{#2}}%% displays <#1||#2>
\newcommand{\perfectbra}[1]{\cut@bra{#1}}%% displays <#1|
\newcommand{\perfectket}[1]{\cut@ket{#1}}%% displays |#2>
\let\cutprimitive\perfectcut%backward compat
\let\cutbraprimitive\perfectbra%backward compat
\let\cutketprimitive\perfectket%backward compat
\newcommand{\perfectcase}[2]{\cut@case{#1}{#2}}%% displays [#1|#2]
\newcommand{\perfectbrackets}[1]{\cut@brackets{#1}}%% displays [#1]
\newcommand{\perfectparens}[1]{\cut@parens{#1}}%% displays (#1)
\newcommand{\perfectunary}[4]{\cut@customUnary{#1}{#2}{#3}{#4}}%% displays
%% #2#3#4 where #2 and #4 are delimiters. The size of the delimiters is
%% computed according to #1 which must be one of IncreaseHeight,
%% CurrentHeight, or CurrentHeightPlusOne.
\newcommand{\perfectbinary}[6]{\cut@customBinary{#1}{#2}{#3}{#4}{#5}{#6}}%%
%% displays #2#3#4#5#6 where #2, #4 and #6 are delimiters. The size of the
%% delimiters is computed according to #1 which must be one of IncreaseHeight,
%% CurrentHeight, or CurrentHeightPlusOne.
%% The following variables can be redefined in your preamble
\cutbarskip=5.0mu plus 8.0mu minus 2.0mu
\cutangleskip=0.0mu plus 8mu minus 1.0mu
\cutangleouterskip=0.0mu plus 8mu minus 0.0mu
\cutinterbarskip=1.4mu plus 0mu minus 0mu
\cutdebugfalse%% print the size after each \rangle?
%%% Various reimplementations of \left, \right and \middle.
%% \nthleft{4}\langle ==> fourth size of \langle; begins at 0
\newcommand{\nthleft}[2]{\cut@nthldelim{#1}{#2}}
\newcommand{\nthright}[2]{\cut@nthrdelim{#1}{#2}}
\newcommand{\nthmiddle}[2]{\cut@nthmdelim{#1}{#2}}
%% \matchleft{\big\langle}| ===> | of the same size as \big\langle obtained
%% by resizing the closest glyph
\newcommand{\matchleft}[2]{\cut@matchingldelim{#1}{#2}}
\newcommand{\matchright}[2]{\cut@matchingrdelim{#1}{#2}}
\newcommand{\matchmiddle}[2]{\cut@matchingmdelim{#1}{#2}}
%% \lenleft{3mm}\langle ===> \langle of size at least 3mm
%% (in math mode it is preferable to use math units such as 10mu,...
%% however only regular units are implemented now.)
\newcommand{\lenleft}[2]{\cut@lengthldelim{#1}#2}
\newcommand{\lenright}[2]{\cut@lengthrdelim{#1}#2}
\newcommand{\lenmiddle}[2]{\cut@lengthmdelim{#1}#2}
%% \reallenleft{3mm}\langle ===> \langle of size 3mm by resizing the
%% closest glyph
\newcommand{\reallenleft}[2]{\cut@reallengthldelim{#1}{#2}}
\newcommand{\reallenright}[2]{\cut@reallengthrdelim{#1}{#2}}
\newcommand{\reallenmiddle}[2]{\cut@reallengthmdelim{#1}{#2}}
%%% Preliminary commands
%% setting up mathstyle
\ifcut@mathstyle@
\RequirePackage{mathstyle}
\def\currentcutstyle{\currentmathstyle}
\else
\def\currentcutstyle{\cutstyle}
\fi
%% sets the behaviour of delimiters to always grow while evaluating #1
\newcommand{\cut@setshortfall}[1]{%
\skip0=\delimitershortfall%
\global\delimitershortfall=-0.1pt%that's the trick to get perfect growth
\count0=\delimiterfactor%
\global\delimiterfactor=901\relax%
\hbox{$\m@th\currentcutstyle#1$}%
\global\delimitershortfall=\skip0%
\global\delimiterfactor=\count0%
}
%% scale #2 to size #1 (length)
\newcommand{\cut@resizetoheight}[2]{%
\resizebox{!}{#1}{\hbox{$\m@th\currentcutstyle#2$}}%
}
\newsavebox\cut@boxi
\newsavebox\cut@boxj
%% scale #2 to the size of #1. Assumes that #1 goes above and below the base line.
\newcommand{\cut@resizetoheightof}[2]{%
\sbox{\cut@boxi}{$\m@th\currentcutstyle#1$}%
\sbox{\cut@boxj}{$\m@th\currentcutstyle#2$}%
\raisebox{-\dp\cut@boxi}{%
\resizebox{!}{\ht\cut@boxi+\dp\cut@boxi}{%
\raisebox{\dp\cut@boxj}{\usebox{\cut@boxj}}%
}%
}%
}
%% gives the delimiter #1 which is immediately bigger than #2
%% notice that \delimitershortfall is not modified so LaTeX can decide to give
%% a smaller one.
\newcommand{\cut@nextrdelim}[2]{\left.\hspace{-\nulldelimiterspace}\vphantom{#2}\right#1}
\newcommand{\cut@nextldelim}[2]{\left#1\vphantom{#2}\hspace{-\nulldelimiterspace}\right.}
\newcommand{\cut@nextmdelim}[2]{\left.\hspace{-\nulldelimiterspace}\middle#1\vphantom{#2}\hspace{-\nulldelimiterspace}\right.}
%% like the previous one but resized to exactly match argument #1
%% used in order to have vertical bars of the perfect size
\newcommand{\cut@matchingldelim}[2]{\mathopen{\cut@resizetoheightof{#1}{\cut@nextldelim{#2}{#1}}}}
\newcommand{\cut@matchingrdelim}[2]{\mathclose{\cut@resizetoheightof{#1}{\cut@nextrdelim{#2}{#1}}}}
\newcommand{\cut@matchingmdelim}[2]{\mathrel{\cut@resizetoheightof{#1}{\cut@nextmdelim{#2}{#1}}}}
%% gives the delimiter #2 which is immediately longer than #1 (length)
\newcommand{\cut@lengthldelim}[2]{\mathopen{\cut@setshortfall{\cut@nextldelim#2{\rule[-0.101pt]{0pt}{#1}}}}}
\newcommand{\cut@lengthrdelim}[2]{\mathclose{\cut@setshortfall{\cut@nextrdelim#2{\rule[-0.101pt]{0pt}{#1}}}}}
\newcommand{\cut@lengthmdelim}[2]{\mathrel{\cut@setshortfall{\cut@nextmdelim#2{\rule[-0.101pt]{0pt}{#1}}}}}
%% like the previous one but resized to exactly match #1 (length)
\newcommand{\cut@reallengthldelim}[2]{\mathopen{\cut@resizetoheight{#1}{\cut@nextldelim#2{\rule[-0.101pt]{0pt}{#1}}}}}
\newcommand{\cut@reallengthrdelim}[2]{\mathclose{\cut@resizetoheight{#1}{\cut@nextrdelim#2{\rule[-0.101pt]{0pt}{#1}}}}}
\newcommand{\cut@reallengthmdelim}[2]{\mathrel{\cut@resizetoheight{#1}{\cut@nextmdelim#2{\rule[-0.101pt]{0pt}{#1}}}}}
%I don't get anything about this bug which affects the
%alignment with respect to the math axis
\ifcut@fixxits@
\def\bugfix{}
\else
\def\bugfix{\cdot}
\fi
%% iterates #2 over itself #1 number of times
\newcommand{\cut@iter}[2]{%
\ifcase#1%
#2{\bugfix} % 0 = smallest. This dot is here to prevent a
% bug regarding vertical positioning.
\else%
\count0=#1%
\advance\count0 -1\relax%
\expandafter#2{\expandafter\cut@iter{\the\count0}#2}%
\fi%
}
%% \cut@nthdelim{n}{delim}{f} iterates f{delim} n time over itself after
%% resetting delimiter shortfall
\newcommand{\cut@nthdelim}[3]{
\def\cut@tempnextdelim{#3{#2}}%
\cut@setshortfall{\cut@iter{#1}\cut@tempnextdelim}%
}
%% \cut@nthxdelim gives the #1-th size of the delimiter #2
\newcommand{\cut@nthldelim}[2]{\mathopen{\cut@nthdelim{#1}{#2}{\cut@nextldelim}}}
\newcommand{\cut@nthrdelim}[2]{\mathclose{\cut@nthdelim{#1}{#2}{\cut@nextrdelim}}}
\newcommand{\cut@nthmdelim}[2]{\mathrel{\cut@nthdelim{#1}{#2}{\cut@nextmdelim}}}
%%%% now the main algorithm
\newcounter{cut@depth}
% lengths with names of the form \cut@height{depth}
\newcommand{\cut@localheight}{cut@height\thecut@depth}
\newcommand{\cut@newlocalheightcounter}{%
\@ifundefined{c@\cut@localheight}{\newcounter{\cut@localheight}}{}
}
% boxes with names of the form \cut@savebox{num}@{depth}
\newcommand{\cut@localsavebox}[1]{cut@savebox#1@\thecut@depth}
\newcommand{\cut@newlocalsavebox}[1]{%
\@ifundefined{\cut@localsavebox{#1}}{%
\expandafter\newsavebox\csname\cut@localsavebox{#1}\endcsname%
}{}%
}
\newcounter{cut@finalheight}
\newsavebox\cut@boxleft
\newsavebox\cut@boxright
%%% Definition of Cut primitives
%% Main loop. #1 determines how the height is incremented. #2 and #3 are saved
%% in cut@boxleft and cut@boxright. Computed height is stored in cut@finalheight
\newcommand{\cut@computeBinary@main}[3]{%
\setcounter{cut@finalheight}{0}%
{%
\addtocounter{cut@depth}{1}%
%defining variables
\cut@newlocalheightcounter%
\cut@newlocalsavebox{0}%
\cut@newlocalsavebox{1}%
%computing recursively
\setcounter{\cut@localheight}{-1}%
\expandafter\sbox\csname\cut@localsavebox{0}\endcsname%
{$\m@th\currentcutstyle#2$}%
\expandafter\sbox\csname\cut@localsavebox{1}\endcsname%
{$\m@th\currentcutstyle#3$}%
\addtocounter{\cut@localheight}{#1}%
%exporting values outside the local scope
\setcounter{cut@finalheight}{\value{\cut@localheight}}%
\global\sbox\cut@boxleft%
{\expandafter\usebox\csname\cut@localsavebox{0}\endcsname}%
\global\sbox\cut@boxright%
{\expandafter\usebox\csname\cut@localsavebox{1}\endcsname}%
\addtocounter{cut@depth}{-1}%
}%
}
%% Displays #1#2#3#4#5. Arguments #2 and #4 can contain other cut primitives.
%% Calls to cut primitives inside #2 and #4 will have a smaller height.
%% Arguments #1, #3 and #5 can access the current height in two different
%% forms via \cut@n and \count0.
\newcommand{\cut@computeBinary@IncreaseHeight}[5]{%
\cut@computeBinary@main{1}{#2}{#4}%
\@ifundefined{c@\cut@localheight}{}{% if #2 and #4 did not contain any cut primitive
\ifnum\value{cut@finalheight}>\value{\cut@localheight}%
\setcounter{\cut@localheight}{\value{cut@finalheight}}%
\fi%
}%end @ifundefined
\count0=\value{cut@finalheight}%
\edef\cut@n{\expandafter\the\count0}%
#1%
\usebox{\cut@boxleft}%
#3%
\usebox{\cut@boxright}%
#5%
}
%% Displays #1#2#3#4#5. Arguments #2 and #4 can contain other cut primitives.
%% Does not increase the current height computed by cut primitives inside #2
%% and #4.
%% Arguments #1, #3 and #5 can access the current height in two different
%% forms via \cut@n and \count0.
\newcommand{\cut@computeBinary@CurrentHeight}[5]{%
\cut@computeBinary@main{0}{#2}{#4}%
\ifnum\value{cut@finalheight}<0%
\setcounter{cut@finalheight}{0}%
\fi%
\@ifundefined{c@\cut@localheight}{}{% if #2 and #4 did not contain any cut primitive
\ifnum\value{cut@finalheight}>\value{\cut@localheight}%
\setcounter{\cut@localheight}{\value{cut@finalheight}}%
\fi%
}%end @ifundefined
\count0=\value{cut@finalheight}%
\edef\cut@n{\expandafter\the\count0}%
#1%
\usebox{\cut@boxleft}%
#3%
\usebox{\cut@boxright}%
#5%
}
%% Displays #1#2#3#4#5. Arguments #2 and #4 can contain other cut primitives.
%% Does not increase the current height computed by cut primitives inside #2
%% and #4 but the height to display is increased by 1.
%% Arguments #1, #3 and #5 can access the height height in two different
%% forms via \cut@n and \count0.
\newcommand{\cut@computeBinary@CurrentHeightPlusOne}[5]{%
\cut@computeBinary@main{0}{#2}{#4}
\@ifundefined{c@\cut@localheight}{}{% if #2 and #4 did not contain any cut primitive
\ifnum\value{cut@finalheight}>\value{\cut@localheight}%
\setcounter{\cut@localheight}{\value{cut@finalheight}}%
\fi%
}%end @ifundefined
\count0=\value{cut@finalheight}%
\advance\count0 1%
\edef\cut@n{\expandafter\the\count0}%
#1%
\usebox{\cut@boxleft}%
#3%
\usebox{\cut@boxright}%
#5%
}
%%% Implementation of the particular delimiters
%% special vertical bars
%% \vert adjusted to #1
\newcommand{\cut@matchvert}[1]{%
\setbox0=\hbox{$\matchmiddle{#1}\vert$}%
\mkern.6mu%
\kern -.5\wd0%
\copy0%
\kern -.5\wd0%
\mkern.6mu%
}
%% special double vertical bars
\newcommand{\cut@doublevert}[1]{%
\cut@matchvert{\nthleft{#1}\langle}
\mskip\cutinterbarskip%
\penalty \the\binoppenalty\relax%
\cut@matchvert{\nthleft{#1}\langle}
}
%% special double vertical bars (alternate)
\newcommand{\cut@Vert}[1]{%
\setbox0=\hbox{$\matchmiddle{\nthleft{#1}\langle}\Vert$}%
\mkern.8mu%
\kern -.3\wd0%
\copy0%
\kern -.3\wd0%
\mkern.8mu%
%\mkern-3.26mu%
%\matchmiddle{\nthleft{#1}\langle}\Vert%
%\mkern-3.26mu%
}
%% setting up realVert
\ifcut@realVert@
\let\cut@bars\cut@Vert
\else
\let\cut@bars\cut@doublevert
\fi
%% \perfectcut
%% <#1||#2>, increases height, inserts skips
\newcommand{\cut@}[2]{%
\cut@computeBinary@IncreaseHeight%
{\mskip\cutangleouterskip%
\nthleft{\cut@n}{\langle}%
\mskip\cutangleskip}%
{#1}%
{\mskip\cutbarskip%
\cut@bars{\cut@n}%
\mskip\cutbarskip}%
{#2}%
{\mskip\cutangleskip%
\nthright{\cut@n}{\rangle}%
\mskip\cutangleouterskip}%
}
%% \perfectbra
%% <#1|, increases height, inserts skips
\newcommand{\cut@bra}[1]{%
\cut@computeBinary@IncreaseHeight%
{\mskip\cutangleouterskip%
\nthleft{\cut@n}{\langle}%
\mskip\cutangleskip}%
{#1}%
{\mskip\cutbarskip%
\cut@matchvert{\nthleft{\cut@n}\langle}%
\mskip\cutangleouterskip}%
{}{}%only one argument
}
%% \perfectket
%% |#1>, increases height, inserts skips
\newcommand{\cut@ket}[1]{%
\cut@computeBinary@IncreaseHeight%
{\mskip\cutangleouterskip%
\cut@matchvert{\nthleft{\cut@n}\langle}%
\mskip\cutbarskip}%
{#1}%
{\mskip\cutangleskip%
\nthright{\cut@n}{\rangle}%
\mskip\cutangleouterskip}%
{}{}%only one argument
}
%% \perfectcase
%% [#1|#2], height is current height plus one, inserts skips
\newcommand{\cut@case}[2]{%
\cut@computeBinary@CurrentHeightPlusOne%
{\nthleft{\cut@n}[%
\mskip\cutangleskip}%
{#1}%
{\mskip\cutbarskip%
\cut@matchvert{\nthleft{\cut@n}[}%
\mskip\cutbarskip}%
{#2}%
{\mskip\cutangleskip%
\nthright{\cut@n}]}%
}
%% \perfectbrackets
%% [#1], height is current height plus one, inserts skips only inside
\newcommand{\cut@brackets}[1]{%
\cut@computeBinary@CurrentHeightPlusOne%
{\nthleft{\cut@n}[%
\mskip\cutangleskip}%
{#1}%
{\mskip\cutangleskip%
\nthright{\cut@n}]}%
{}{}%only one argument
}
%% \perfectparens
%% (#1), height is current height, inserts skips only inside
\newcommand{\cut@parens}[1]{%
\cut@computeBinary@CurrentHeight%
{\nthleft{\cut@n}(%
\mskip\cutangleskip}%
{#1}%
{\mskip\cutangleskip%
\nthright{\cut@n})}%
{}{}%only one argument
}
%% \perfectunary
%% #2#4#3 where #2 and #3 are delimiters. The size of the delimiters is computed
%% according to #1 which must be one of IncreaseHeight, CurrentHeight,
%% or CurrentHeightPlusOne.
\newcommand{\cut@customUnary}[4]{%
\csname cut@computeBinary@#1\endcsname%
{\nthleft{\cut@n}#2}%
{#4}%
{\nthright{\cut@n}#3}%
{}{}%
}%
%% \perfectbinary
%% #2#5#3#6#4 where #2, #3 and #4 are delimiters. The size of the delimiters is
%% computed according to #1 which must be one of IncreaseHeight, CurrentHeight,
%% or CurrentHeightPlusOne.
\newcommand{\cut@customBinary}[6]{%
\csname cut@computeBinary@#1\endcsname%
{\nthleft{\cut@n}#2}%
{#5}%
{\matchmiddle{\nthleft{\cut@n}#2}#3}%{{\nthmiddle{\cut@n}#4}}%
{#6}%
{\nthright{\cut@n}#4}%
}%
%% Example: The following displays a set {#1|#2} with delimiters of the
%% appropriate size if there are \perfectcommands inside #1 and #2.
%% \def\Set#1#2{\perfectbinary{IncreaseHeight}\{|\}{#1\mathrel{}}{\mathrel{}#2}}
%%% for testing purposes
\newcommand{\cut@testsize}[2]{
{#1 \[ \mathrm{\f@size\,pt:} \begin{array}{l}
\scriptscriptstyle{#2}\\
\scriptstyle{#2}\\
\textstyle{#2}
\end{array}\]}
}
\newcommand{\cut@test}[1]{%
\cut@testsize{\Large}{#1}%
\cut@testsize{\large}{#1}%
\cut@testsize{}{#1}%
\cut@testsize{\small}{#1}%
\cut@testsize{\footnotesize}{#1}%
\cut@testsize{\scriptsize}{#1}%
\cut@testsize{\tiny}{#1}%
}
\newcommand{\cut@testangles}{\cut@test{%
\cut@{\cut@{\cut@{\cut@{\cut@{a}{b}}{c}}{d}}{e}}{f}}%
}%
\newcommand{\cut@testverts}{
\def\line{\rule[-3ex]{0.5em}{3ex}}%
\def\v##1{\cut@doublevert{##1}\line}
\def\V##1{\cut@Vert{##1}\line}
\cut@test{%
\line\vert\line\v{0}\v{1}\v{2}\v{3}\v{4}\v{5}
\line\Vert\line\V{0}\V{1}\V{2}\V{3}\V{4}\V{5}
}}%
|