1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
|
%% $Id: pst-func.tex 355 2010-06-21 10:02:44Z herbert $
%%
%% This is file `pst-func.tex',
%%
%% IMPORTANT NOTICE:
%%
%% Package `pst-func.tex'
%%
%% Herbert Voss <hvoss@tug.org>
%%
%% This program can be redistributed and/or modified under the terms
%% of the LaTeX Project Public License Distributed from CTAN archives
%% in directory macros/latex/base/lppl.txt.
%%
%% DESCRIPTION:
%% `pst-func' is a PSTricks package to plot special functions
%%
%% For a ChangeLog go the the end
%%
\csname PSTfuncLoaded\endcsname
\let\PSTfuncLoaded\endinput
% Requires PSTricks, pst-node, pst-xkey
\ifx\PSTricksLoaded\endinput\else \input pstricks.tex\fi
\ifx\PSTnodesLoaded\endinput\else \input pst-plot.tex\fi
\ifx\PSTmathLoaded\endinput \else \input pst-math.tex\fi
\ifx\PSTricksAddLoaded\endinput\else\input pstricks-add.tex\fi
\ifx\PSTXKeyLoaded\endinput\else \input pst-xkey.tex \fi
%
\edef\PstAtCode{\the\catcode`\@} \catcode`\@=11\relax
% interface to the `xkeyval' package
\pst@addfams{pst-func}
%
\def\fileversion{0.69}
\def\filedate{2010/06/21}
\message{`PST-func' v\fileversion, \filedate\space (hv)}
%
\pstheader{pst-func.pro}
%\pstheader{pst-math.pro}% for GAMMALN
%
% Shortcuts ....
\def\ChebyshevT{ tx@FuncDict begin ChebyshevT end }
\def\ChebyshevU{ tx@FuncDict begin ChebyshevU end }
%
\define@key[psset]{pst-func}{xShift}[0]{\def\psk@xShift{#1}}
\psset[pst-func]{xShift=0}
%
\define@key[psset]{pst-func}{cosCoeff}[0]{\def\psk@cosCoeff{#1}}
\define@key[psset]{pst-func}{sinCoeff}[1]{\def\psk@sinCoeff{#1}}
\psset[pst-func]{cosCoeff=0,sinCoeff=1} % coeff=a0 a1 a2 a3 ...
%
\def\psFourier{\@ifnextchar[{\psFourier@i}{\psFourier@i[]}}
\def\psFourier@i[#1]#2#3{{%
\pst@killglue
\psset{#1}
\psplot[algebraic=false]{#2}{#3}{%
/type (cos) def
/Fourier {
aload length /n exch def
n -1 roll 2 div n 1 roll % a0/2
n 1 sub -1 0 {
/i exch def
i x mul 180 mul 3.141592 div
type (sin) eq {sin}{cos} ifelse
mul n 1 roll
} for
n 1 sub -1 1 { pop add } for
} def
[\psk@cosCoeff] Fourier
/type (sin) def
[0 \psk@sinCoeff] Fourier add
}%
}\ignorespaces}
%
\define@key[psset]{pst-func}{coeff}[0 1]{\def\psk@coeff{#1}}
\define@key[psset]{pst-func}{Derivation}[0]{\def\psk@Derivation{#1}}
\define@boolkey[psset]{pst-func}[Pst@]{markZeros}[true]{}
\define@key[psset]{pst-func}{epsZero}[0.1]{\def\psk@epsZero{#1}}
\define@key[psset]{pst-func}{dZero}[0.1]{\def\psk@dZero{#1}}
\define@key[psset]{pst-func}{zeroLineTo}[-1]{\def\psk@zeroLineTo{#1}}
\define@key[psset]{pst-func}{zeroLineColor}[black]{\pst@getcolor{#1}\psk@zeroLineColor}
\newdimen\psk@zeroLineWidth
\define@key[psset]{pst-func}{zeroLineWidth}[0.5\pslinewidth]{\pssetlength\psk@zeroLineWidth{#1}}
\define@key[psset]{pst-func}{zeroLineStyle}[dashed]{%
\@ifundefined{psls@#1}%
{\@pstrickserr{Line style `#1' not defined}\@eha}%
{\edef\psk@zeroLineStyle{#1}}%
}
\psset[pst-func]{%
coeff=0 1, % coeff=a0 a1 a2 a3 ...
Derivation=0, % 0 is the original function
markZeros=false,% no dots for the zeros
epsZero=0.1, % the distance between two zero points
dZero=0.1, % the distance of the x value for scanning the function
zeroLineTo=-1, % a line to the value of the lineTo's Derivation (-1= none)
zeroLineStyle=dashed,%
zeroLineWidth=0.5\pslinewidth,%
zeroLineColor=black}%
%
\def\psPolynomial{\pst@object{psPolynomial}}
\def\psPolynomial@i#1#2{%
\pst@killglue%
\begingroup%
\use@par%
\@nameuse{beginplot@\psplotstyle}%
\gdef\psplot@init{}%
\@nameuse{testqp@\psplotstyle}%
\addto@pscode{%
tx@FuncDict begin
/coeff [ \psk@coeff ] def
/x0 #1 def /x1 #2 def
/dx x1 x0 sub \psk@plotpoints\space div def
/Derivation \psk@Derivation\space def
/x x0 def
\ifPst@markZeros
5 dict begin % hold all local!
gsave
\pst@number\psk@zeroLineWidth SLW
\pst@usecolor\psk@zeroLineColor
\psk@epsZero\space \psk@dZero\space FindZeros
aload length { % zero array is on stack
/xZero exch def
xZero \pst@number\psxunit mul /xPixel exch def
\psk@dotsize
\@nameuse{psds@\psk@dotstyle}%
xPixel 0 Dot
\psk@zeroLineTo\space 0 ge { % line to function \psk@lineTo
xPixel 0 moveto
xZero coeff \psk@zeroLineTo\space FuncValue
\pst@number\psyunit mul xPixel exch L
\@nameuse{psls@\psk@zeroLineStyle}
} if
} repeat
grestore
end
\fi
/xy {
x \psk@xShift\space sub coeff Derivation FuncValue \pst@number\psyunit mul
x \pst@number\psxunit mul exch
} def
xy moveto
}%
\if@pst% lines and dots
\psPolynomial@iii%
\else% curves
\psPolynomial@ii%
\fi%
\endgroup
\ignorespaces}
%
\def\psPolynomial@ii{%
\addto@pscode{%
xy \@nameuse{beginqp@\psplotstyle}
\psk@plotpoints {
xy \@nameuse{doqp@\psplotstyle}
/x x dx add def
} repeat
xy \@nameuse{doqp@\psplotstyle}
end
}%
\@nameuse{endqp@\psplotstyle}%
}
\def\psPolynomial@iii{% curves
\addto@pscode{%
mark
/n 2 def
\psk@plotpoints {
xy
n 2 roll
/n n 2 add def
/x x dx add def
} repeat
/x x1 def
xy
n 2 roll
end
}%
\@nameuse{endplot@\psplotstyle}%
}
%
% Bessel 2004-06-08
% Manuel Luque, Herbert Voss
% Look at the end for some more documentation about the algorithm
%
\define@key[psset]{pst-func}{constI}[1]{\def\psk@constI{#1 }}
\define@key[psset]{pst-func}{constII}[0]{\def\psk@constII{#1 }}
\psset{constI=1,constII=0}
%
\def\psBessel{\@ifnextchar[{\psBessel@i}{\psBessel@i[]}}
\def\psBessel@i[#1]#2#3#4{{%%% #2 = n
\pst@killglue
\psset{plotpoints=500}%
\psset{#1}%
\parametricplot{#3}{#4}{%
/J1 0 def
/k { 57.29577951 mul } def
/xBessel t k def
0 0.1 180 {
/tB exch k def
/J1 J1 0.1 xBessel
tB sin mul tB #2\space mul sub cos mul add def
} for
t J1 180 div \psk@constI mul \psk@constII add
}%
}\ignorespaces}
%
\define@key[psset]{pst-func}{sigma}[0.5]{\def\psk@sigma{#1 }}
\define@key[psset]{pst-func}{mue}[0]{\def\psk@mue{#1 }}
\define@key[psset]{pst-func}{nue}[1]{\def\psk@nue{#1 }}
\psset[pst-func]{sigma=0.5,mue=0,nue=1}
%
\def\psGauss{\@ifnextchar[{\psGauss@i}{\psGauss@i[]}}
\def\psGauss@i[#1]#2#3{{%
\pst@killglue%
\psset{plotpoints=200}%
\psset{#1}%
\psplot[algebraic=false]{#2}{#3}{%
Euler x \psk@mue sub dup mul 2 div \psk@sigma dup mul div neg exp
1.0 \psk@sigma div TwoPi sqrt div mul%
}%
}\ignorespaces}
%
\define@key[psset]{pst-func}{Simpson}[5]{\def\psk@Simpson{#1 }}
\psset[pst-func]{Simpson=5}
%
\def\psGaussI{\pst@object{psGaussI}}
\def\psGaussI@i#1#2{%
\begin@OpenObj%
\addto@pscode{
/a #1 def
/dx #2 #1 sub \psk@plotpoints\space div def
/b a dx add def
/scx { \pst@number\psxunit mul } def
/scy { \pst@number\psyunit mul } def
tx@FuncDict begin
/C 1 \psk@sigma div TwoPi sqrt div def
/SFunc {% x on Stack
Euler exch \psk@mue\space sub dup mul 2 div \psk@sigma\space dup mul div neg exp C mul
} def
end
a scx 0 moveto
\psk@plotpoints 1 sub {
a b \psk@Simpson % a b M on Stack
tx@FuncDict begin Simpson I end % y value on stack
scy b scx exch lineto
/b b dx add def
} repeat
stroke
}%
\end@OpenObj%
}
%
\def\psSi{\pst@object{psSi}}
\def\psSi@i#1#2{%
\begin@OpenObj%
\addto@pscode{
/x #1 def
/dx #2 #1 sub \psk@plotpoints\space div def
/scx { \pst@number\psxunit mul } def
/scy { \pst@number\psyunit mul } def
x scx x tx@FuncDict begin Si end scy moveto
\psk@plotpoints 1 sub {
x dup scx exch tx@FuncDict begin Si end scy lineto
/x x dx add def
} repeat
stroke
}%
\end@OpenObj%
}
\def\pssi{\pst@object{pssi}}
\def\pssi@i#1#2{%
\begin@OpenObj%
\addto@pscode{
/x #1 def
/dx #2 #1 sub \psk@plotpoints\space div def
/scx { \pst@number\psxunit mul } def
/scy { \pst@number\psyunit mul } def
x scx x tx@FuncDict begin si end scy moveto
\psk@plotpoints 1 sub {
x dup scx exch tx@FuncDict begin si end scy lineto
/x x dx add def
} repeat
stroke
}%
\end@OpenObj%
}
%
\def\psCi{\pst@object{psCi}}
\def\psCi@i#1#2{%
\begin@OpenObj%
\addto@pscode{
/x #1 def
/dx #2 #1 sub \psk@plotpoints\space div def
/scx { \pst@number\psxunit mul } def
/scy { \pst@number\psyunit mul } def
x scx x tx@FuncDict begin Ci end scy moveto
\psk@plotpoints 1 sub {
x dup scx exch tx@FuncDict begin Ci end scy lineto
/x x dx add def
} repeat
stroke
}%
\end@OpenObj%
}
\def\psci{\pst@object{psci}}
\def\psci@i#1#2{%
\begin@OpenObj%
\addto@pscode{
/x #1 def
/dx #2 #1 sub \psk@plotpoints\space div def
/scx { \pst@number\psxunit mul } def
/scy { \pst@number\psyunit mul } def
x scx x tx@FuncDict begin ci end scy moveto
\psk@plotpoints 1 sub {
x dup scx exch tx@FuncDict begin ci end scy lineto
/x x dx add def
} repeat
stroke
}%
\end@OpenObj%
}
%
\define@key[psset]{pst-func}{PSfont}[Times-Roman]{\def\psk@PSfont{/#1 }}
\define@key[psset]{pst-func}{valuewidth}[10]{\pst@getint{#1}\psk@valuewidth }
\define@key[psset]{pst-func}{fontscale}[10]{\pst@checknum{#1}\psk@fontscale }
\define@key[psset]{pst-func}{decimals}[-1]{\pst@getint{#1}\psk@decimals }
\psset[pst-func]{PSfont=Times-Roman,fontscale=10,valuewidth=10,decimals=-1}
%
\def\psPrintValue{\pst@object{psPrintValue}}
\def\psPrintValue@i#1{\expandafter\psPrintValue@ii#1,,\@nil}
\def\psPrintValue@ii#1,#2,#3\@nil{% #1,#2 only for algebraic code
\begin@SpecialObj
\addto@pscode{
gsave \psk@PSfont findfont \psk@fontscale scalefont setfont
\ifPst@algebraic
/x #1 def
/Func (#2) tx@AlgToPs begin AlgToPs end cvx def
Func
\else #1 \fi
\psk@decimals -1 gt { 10 \psk@decimals exp dup 3 1 roll mul cvi exch div } if
\psk@valuewidth string cvs /Output exch def % save output
\ifPst@comma % do we have to change dot to comma
0 1 Output length 1 sub {
/Index exch def
Output Index get 46 eq { Output Index 44 put } if
} for
\fi
\psk@xShift\space 0 moveto Output show grestore
}%
\end@SpecialObj%
}
\define@boolkey[psset]{pst-func}[Pst@]{round}[true]{}%
\define@boolkey[psset]{pst-func}[Pst@]{science}[true]{%
\ifPst@science\def\psk@Scin{true }\else\def\psk@Scin{false }\fi}
\psset[pst-func]{science=false,round=false}
\def\psPrintValueNew{\pst@object{psPrintValueNew}}
\def\psPrintValueNew@i#1{\expandafter\psPrintValueNew@ii#1,,\@nil}
\def\psPrintValueNew@ii#1,#2,#3\@nil{% #1,#2 only for algebraic code
\begin@SpecialObj
\addto@pscode{ % thanks to Buddy Ledger
/mfont { \psk@PSfont findfont \psk@fontscale scalefont setfont } bind def
/mfontexp { \psk@PSfont findfont \psk@fontscale 1.2 div scalefont setfont } bind def
/s1 { /Symbol findfont \psk@fontscale scalefont setfont } bind def
\ifPst@algebraic
/x #1 def
/Func (#2) tx@AlgToPs begin AlgToPs end cvx def
Func
\else #1 \fi
/value ED
\psk@Scin {
value 0 ne { value log floor cvi /expon ED }{ /expon 0 def } ifelse
value 10 expon exp div
\psk@decimals -1 gt { 10 \psk@decimals exp dup 3 1 roll mul
\ifPst@round round \else cvi \fi exch div } if
\psk@decimals 0 eq { cvi } if /numb ED
expon \psk@valuewidth string cvs /expon exch def
numb \psk@valuewidth string cvs /Output exch def
\ifPst@comma % do we have to change dot to comma
0 1 Output length 1 sub {
/Index exch def
Output Index get 46 eq { Output Index 44 put } if
} for
\fi
/txspc \psk@fontscale 4 div def
\psk@xShift\space 0 moveto mfont Output show
txspc 0 rmoveto s1 (\string\264) show
txspc 0 rmoveto mfont (10) show
txspc 2 div txspc 1.5 mul rmoveto mfontexp expon show }
{ value
\psk@decimals -1 gt { 10 \psk@decimals exp dup 3 1 roll mul
\ifPst@round round \else cvi \fi exch div } if
\psk@decimals 0 eq { cvi } if %inserted to handle decimals=0
\psk@valuewidth string cvs /Output ED
\ifPst@comma % do we have to change dot to comma
0 1 Output length 1 sub {
/Index exch def
Output Index get 46 eq { Output Index 44 put } if
} for
\fi
\psk@xShift\space 0 moveto mfont Output show
} ifelse
}%
\end@SpecialObj%
}
%
% Integrals 2006-01-16
% Jose-Emilio Vila-Forcen, Herbert Voss
%
\def\psCumIntegral{\pst@object{psCumIntegral}}
\def\psCumIntegral@i#1#2#3{%
\begin@OpenObj%
\addto@pscode{
/a #1 def
/dx #2 #1 sub \psk@plotpoints\space div def
/b a dx add def
/scx { \pst@number\psxunit mul } def
/scy { \pst@number\psyunit mul } def
tx@FuncDict begin /SFunc { #3 } def end
a scx 0 moveto
\psk@plotpoints 1 sub {
a b \psk@Simpson % a b M on Styack
tx@FuncDict begin Simpson I end % y value on stack
scy b scx exch lineto
/b b dx add def
} repeat
% stroke
}%
% \psk@fillstyle%
% \pst@stroke%
\end@OpenObj%
}
%
\def\psIntegral{\pst@object{psIntegral}}
\def\psIntegral@i#1#2(#3,#4)#5{%
\begin@OpenObj%
\addto@pscode{
/a #3 def
/dx #4 #3 sub \psk@plotpoints\space div def
/b #4 def
/aa #1 def
/dd #2 #1 sub \psk@plotpoints\space div def
/t aa dd add def
/scx { \pst@number\psxunit mul } def
/scy { \pst@number\psyunit mul } def
tx@FuncDict begin /SFunc { t #5 } def end
a b \psk@Simpson % a b M on Stack
tx@FuncDict begin Simpson I end % y value on stack
scy t scx exch moveto
/t t dd add def
\psk@plotpoints 1 sub {
a b \psk@Simpson % a b M on Stack
tx@FuncDict begin Simpson I end % y value on stack
scy t scx exch lineto
/t t dd add def
} repeat
% stroke
}%
% \psk@fillstyle%
% \pst@stroke%
\end@OpenObj%
}
%
\def\psConv{\@ifnextchar[{\psConv@i}{\psConv@i[]}}
\def\psConv@i[#1]#2#3(#4,#5)#6#7{%
\psIntegral[#1]{#2}{#3}(#4,#5){pop pop x #6\space x t neg add #7\space mul}%
}%
%
\define@boolkey[psset]{pst-func}[Pst@]{printValue}[true]{}
\define@key[psset]{pst-func}{barwidth}[1]{\def\psFunc@barwidth{#1 }}% a factor, not a dimen
\psset[pst-func]{printValue=false,barwidth=1}
%
\def\psBinomial{\pst@object{psBinomial}}
\def\psBinomial@i#1#2{\psBinomial@ii#1,,,\@nil{#2}}%
\def\psBinomial@ii#1,#2,#3,#4\@nil#5{%
\def\pst@tempA{#2}%
\ifx\pst@tempA\@empty
\psBinomial@iii{0}{#1}{#1}{#5}%
\else
\def\pst@tempA{#3}%
\ifx\pst@tempA\@empty\psBinomial@iii{#1}{#2}{#2}{#5}%
\else\psBinomial@iii{#1}{#2}{#3}{#5}\fi
\fi}%
\def\psBinomial@iii#1#2#3#4{%
\begin@OpenObj%
\addto@pscode{
/scx { \pst@number\psxunit mul } def
/scy { \pst@number\psyunit mul } def
/m #1 def
/n #2 def
/N #3 def
/p #4 def
/dx \psFunc@barwidth 2 div def
/q 1 p sub def
/kOld dx neg m add def
kOld scx 0 moveto % starting point
0 1 m 1 sub {
/k exch def % save loop variable
k 0 eq
{ /Y q N exp def }
{ /Y Y N k sub 1 add mul k div p mul q div def }
ifelse
} for
m 1 n { % n-m+1 times
/k exch def % save loop variable
k 0 eq
{ /Y q N exp def }
{ /Y Y N k sub 1 add mul k div p mul q div def }
ifelse % recursive definition
kOld scx Y scy L k dx add scx Y scy L
\ifPst@markZeros k dx add scx 0 L kOld 1 add scx 0 L \fi
\ifPst@printValue
gsave \psk@PSfont findfont \psk@fontscale scalefont setfont
Y \psk@valuewidth string cvs
k scx \psk@fontscale 2 div add
Y scy \pst@number\pslabelsep add moveto
90 rotate show grestore
\fi
/kOld kOld 1 add def
} for
\ifPst@markZeros\else k dx add scx 0 L \fi % last line down to x-axis
}%
% \psk@fillstyle%
% \pst@stroke%
\end@OpenObj%
}%
%
\def\psBinomialN{\pst@object{psBinomialN}}
\def\psBinomialN@i#1#2{%
\leavevmode
\pst@killglue
\begingroup
\use@par
\init@pscode
\def\cplotstyle{curve}%
\ifx\psplotstyle\cplotstyle \@nameuse{beginplot@\psplotstyle} \fi%
\addto@pscode{
\ifx\psplotstyle\cplotstyle /Curve true def \else /Curve false def \fi
/scx { \pst@number\psxunit mul } def
/scy { \pst@number\psyunit mul } def
/N #1 def
/p #2 def % probability
/q 1 p sub def
/E N p mul def
/sigma E q mul sqrt def % variant
/dx 1.0 sigma div 2 div def
/xOld dx neg E sub sigma div def
/xEnd xOld neg dx add scx def
Curve
{ /Coors [xOld dx sub scx 0] def }% saves the coordinates for curve
{ xOld scx 0 moveto } % starting point
ifelse
0 1 N { % N times
/k exch def % save loop variable
k 0 eq
{ /Y q N exp def }
{ /Y Y N k sub 1 add mul k div p mul q div def }
ifelse % recursive definition
/x k E sub sigma div dx add def
/y Y sigma mul def % normalize
Curve
{ x dx sub scx y scy Coors aload length 2 add array astore /Coors exch def}
{ xOld scx y scy L x scx y scy L
\ifPst@markZeros x scx 0 L \fi %
} ifelse
\ifPst@printValue
gsave \psk@PSfont findfont \psk@fontscale scalefont setfont
y \psk@valuewidth string cvs
x dx sub scx \psk@fontscale 2 div add
y scy \pst@number\pslabelsep add moveto
90 rotate show grestore
\fi
/xOld x def
} for
Curve { [ xEnd 0 Coors aload pop } if % showpoints on top of the stack
}%
\ifx\psplotstyle\cplotstyle\@nameuse{endplot@\psplotstyle}\else%
\psk@fillstyle%
\pst@stroke%
\fi%
\use@pscode%
\endgroup%
\ignorespaces%
}
%
\def\psPoisson{\pst@object{psPoisson}}% with contributions from Gerry Coombes
\def\psPoisson@i#1#2{\psPoisson@ii#1,,\@nil{#2}}%
\def\psPoisson@ii#1,#2,#3\@nil#4{%
\def\pst@tempA{#2}%
\ifx\pst@tempA\@empty\psPoisson@iii{0}{#1}{#4}\else
\psPoisson@iii{#1}{#2}{#4}\fi}%
\def\psPoisson@iii#1#2#3{% M N lambda
\begin@OpenObj%
\addto@pscode{
/scx { \pst@number\psxunit mul } def
/scy { \pst@number\psyunit mul } def
/M #1 def
/N #2 def
/lambda #3 def
/elambda Euler #3 neg exp def % e^-lambda
/dx \psFunc@barwidth 2 div def
/kOld dx neg M add def % addition of M here
kOld scx 0 moveto % starting point
/Y elambda def % start value
0 1 M 1 sub { % skip over first M-1 rectangles
/k exch def % whilst recursing probabilities
k 0 eq { /Y elambda def }{ /Y Y lambda mul k div def } ifelse
} for % nothing happens if M=0
M 1 N { % N-M+1 times
/k exch def % save loop variable
k 0 eq { /Y elambda def }{ /Y Y lambda mul k div def } ifelse
kOld scx Y scy L k dx add scx Y scy L
\ifPst@markZeros k dx add scx 0 L \fi
\ifPst@printValue
gsave \psk@PSfont findfont \psk@fontscale scalefont setfont
Y \psk@valuewidth string cvs
k scx \psk@fontscale 2 div add
Y scy \pst@number\pslabelsep add moveto
90 rotate show grestore
\fi
/kOld kOld 1 add def
\ifPst@markZeros kOld scx 0 moveto \fi
} for
\ifPst@markZeros \else k dx add scx 0 L \fi % last line down to x-axis
}%
% \psk@fillstyle
% \pst@stroke
\end@OpenObj%
}
%
\define@key[psset]{pst-func}{alpha}[0.5]{\pst@checknum{#1}\psk@alpha }
\define@key[psset]{pst-func}{beta}[0.5]{\pst@checknum{#1}\psk@beta }
\psset[pst-func]{alpha=0.5,beta=0.5}
%
\def\psGammaDist{\pst@object{psGammaDist}}
\def\psGammaDist@i#1#2{%
\ifdim#1pt<\z@ \psframebox*{\color{red}!!!\#1 must be greater than 0!!!}
\else
\addbefore@par{plotpoints=500,alpha=0.5,beta=0.5}%
\begin@OpenObj
\psplot[algebraic=false]{#1}{#2}{
\psk@beta x mul \psk@alpha exp x div Euler \psk@beta neg x mul \psk@alpha GAMMALN sub exp mul}
\end@OpenObj%
\fi%
\ignorespaces%
}
%
\def\psBetaDist{\pst@object{psBetaDist}}
\def\psBetaDist@i#1#2{%
\ifdim#1pt<\z@ \psframebox*{\color{red}!!!\#1 must be greater than 0!!!}
\else
\addbefore@par{plotpoints=200,alpha=1,beta=1}%
\begin@OpenObj
\psplot[algebraic=false]{#1}{#2}{
\psk@beta \psk@alpha add GAMMA
\psk@beta GAMMA \psk@alpha GAMMA mul div
1 x sub \psk@beta 1.0 sub exp mul
x \psk@alpha 1.0 sub exp mul }
\end@OpenObj%
\fi%
\ignorespaces%
}
%
\def\psChiIIDist{\pst@object{psChiIIDist}}
\def\psChiIIDist@i#1#2{%
\addbefore@par{plotpoints=500,nue=1}%
\begin@OpenObj
% \ifdim\psk@nue pt<\z@ \psframebox*{\color{red}!!!nue must be greater than 0!!!}
% \else
\psplot[algebraic=false]{#1}{#2}{%
x 2 div \psk@nue 2 div exp x div Euler -0.5 x mul \psk@nue 2 div GAMMALN sub exp mul }%
% \fi%
\end@OpenObj%
\ignorespaces%
}
%
\def\psTDist{\pst@object{psTDist}}
\def\psTDist@i#1#2{%
\leavevmode
\pst@killglue
\begingroup
\addbefore@par{plotpoints=500}%
\use@par
\ifdim\psk@nue pt<\z@ \psframebox*{\color{red}!!!nue must be greater than 0!!!}
\else
\psplot[algebraic=false]{#1}{#2}{
1 x 2 exp \psk@nue div 1 add \psk@nue 1 add 2 div exp div
\psk@nue Pi mul sqrt div
Euler \psk@nue 1 add 2 div GAMMALN \psk@nue 2 div GAMMALN sub exp mul
}%
\fi%
\endgroup%
\ignorespaces%
}
%
\def\psFDist{\pst@object{psFDist}}
\def\psFDist@i#1#2{%
\ifdim#1pt<\z@ \psframebox*{\color{red}!!!\#1 must be greater than 0!!!}
\else
\leavevmode
\pst@killglue
\begingroup
\addbefore@par{plotpoints=500,mue=1}%
\use@par
\psplot[algebraic=false]{#1}{#2}{
x \psk@mue mul \psk@nue div dup \psk@mue 2 div exp x div
exch 1 add \psk@mue \psk@nue add 2 div exp div
Euler \psk@mue \psk@nue add 2 div GAMMALN
\psk@mue 2 div GAMMALN sub \psk@nue 2 div GAMMALN sub exp mul
}%
\endgroup%
\fi%
\ignorespaces%
}
%
\define@key[psset]{pst-func}{m}[0]{\def\psk@cauchy@m{#1 }}
\define@key[psset]{pst-func}{b}[1]{\def\psk@cauchy@b{#1 }}
\psset[pst-func]{m=0,b=1}
%
\def\psCauchy{\pst@object{psCauchy}}
\def\psCauchy@i#1#2{{%
\pst@killglue%
\addbefore@par{plotpoints=200}%
\use@par%
\psplot[algebraic=false]{#1}{#2}{
\psk@cauchy@b dup dup mul x \psk@cauchy@m sub dup mul add div Pi div
}%
}\ignorespaces}
%
\def\psCauchyI{\pst@object{psCauchyI}}
\def\psCauchyI@i#1#2{{%
\pst@killglue%
\addbefore@par{plotpoints=200}%
\use@par%
\psplot[algebraic=false]{#1}{#2}{
x \psk@cauchy@m sub \psk@cauchy@b div ATAN1 DegtoRad Pi div 0.5 add
}%
}\ignorespaces}
%
\def\psWeibull{\pst@object{psWeibull}}
\def\psWeibull@i#1#2{%
\addbefore@par{plotpoints=500,alpha=1,beta=1}%
\begin@OpenObj
\def\pst@tempA{#1}%
\ifdim#1pt<\z@ \psline(#1,0)(0,0)\def\pst@tempA{0}\fi
\psplot[algebraic=false]{\pst@tempA}{#2}{
\psk@alpha \psk@beta \psk@alpha neg exp mul % alpha*beta^(-alpha)
x \psk@alpha 1 sub exp % x^(alpha-1)
mul
Euler x \psk@beta div \psk@alpha exp neg exp % e^(-(x/beta)^alpha))
mul }
\end@OpenObj%
\ignorespaces%
}
\def\psWeibullI{\pst@object{psWeibullI}}
\def\psWeibullI@i#1#2{%
\addbefore@par{plotpoints=500,alpha=1,beta=1}%
\begin@OpenObj
\def\pst@tempA{#1}%
\ifdim#1pt<\z@ \psline(#1,0)(0,0)\def\pst@tempA{0}\fi
\psplot[algebraic=false]{\pst@tempA}{#2}{
1
Euler x \psk@beta div \psk@alpha exp neg exp % e^(-(x/beta)^alpha))
sub
}
\end@OpenObj%
\ignorespaces%
}
%
\define@boolkey[psset]{pst-func}[Pst@]{Gini}[true]{}
\psset[pst-func]{Gini=false}
%
\def\psLorenz{\pst@object{psLorenz}}
\def\psLorenz@i#1{{%
\readdata{\L@Data}{#1}%
\if@star\addto@par{fillstyle=solid,fillcolor=\pslinecolor}\fi
\use@par%
\def\Lorenz@code{
[ \L@Data\space counttomark dup
1 sub /m ED 2 div cvi /n ED
] dup /xyValues ED
mark exch % [ [x y x y ...]
aload pop % [ x y x y x y ... ]
n { exch div m 1 roll /m m 2 sub def } repeat
n array astore /yxdiv ED
% xyValues == % [0.5 0.025 0.4 0.475 0.09 0.27 0.01 0.23]
% yxdiv == % [23.0 3.0 1.1875 0.05]
% yxdiv bubblesort == % [0.05 1.1875 3.0 23.0]
/X [0] def
/Y [0] def
0 1 n 1 sub {
/Index ED
X aload pop xyValues Index 2 mul get X Index get add
Index 2 add array astore /X ED
Y aload pop xyValues Index 2 mul 1 add get Y Index get add
Index 2 add array astore /Y ED
} for
% X == % [0 0.5 0.9 0.99 1.0]
% Y == % [0 0.025 0.5 0.77 1.0]
0 1 n { /Index ED X Index get Y Index get } for
\if@star 1 0 0 0 \fi
\ifPst@Gini
0
0 1 n 1 sub { /Index ED
Y Index 1 add get
xyValues Index 2 mul 1 add get 0.5 mul sub
xyValues Index 2 mul get mul
add
} for
2 mul 1 sub neg
gsave \psk@PSfont findfont \psk@fontscale scalefont setfont
\psk@decimals -1 gt { 10 \psk@decimals exp dup 3 1 roll mul cvi exch div } if
\psk@valuewidth string cvs /Output exch def % save output
\ifPst@comma % do we have to change dot to comma
0 1 Output length 1 sub {
/Index exch def
Output Index get 46 eq { Output Index 44 put } if
} for
\fi
\psk@xShift\space -30 moveto (Gini: ) show
Output show grestore
\fi
}% filling the area under the curve.
\if@star\listplot*{\Lorenz@code}\else\listplot{\Lorenz@code}\fi%
}\ignorespaces}
%
% Superellipese / Lamefunction
\define@key[psset]{pst-func}{radiusA}[1]{\pst@getlength{#1}\pst@radiusA}
\define@key[psset]{pst-func}{radiusB}[1]{\pst@getlength{#1}\pst@radiusB}
\psset[pst-func]{radiusA=1,radiusB=1}
%
\def\psLame{\pst@object{psLame}}
\def\psLame@i#1{%
\leavevmode
\pst@killglue
\begingroup
\addbefore@par{plotpoints=200}%
\use@par
\parametricplot{0}{360}{%
t cos dup mul 1 #1\space div exp \pst@radiusA \pst@number\psxunit div mul
t 90 gt { t 270 lt { neg } if } if
t sin dup mul 1 #1\space div exp \pst@radiusB \pst@number\psyunit div mul
t 180 gt { neg } if }
\endgroup\ignorespaces}
%
% For polar plots
%\define@boolkey[psset]{pst-func}[PstAdd@]{polarplot}[true]{}
%\psset[pst-func]{polarplot=false}
%
\define@key[psset]{pst-func}{stepFactor}[0.67]{\pst@checknum{#1}\psk@stepFactor }
\psset[pst-func]{stepFactor=0.67}
%
\def\psplotImp{\pst@object{psplotImp}}% 20060420
\def\psplotImp@i(#1,#2)(#3,#4){%
\@ifnextchar[{\psplotImp@ii(#1,#2)(#3,#4)}{\psplotImp@ii(#1,#2)(#3,#4)[]}}
\def\psplotImp@ii(#1,#2)(#3,#4)[#5]#6{%
\begin@OpenObj%
\addto@pscode{
/xMin #1 def
/xMax #3 def
/yMin #2 def
/yMax #4 def
#5 % additional PS code
\ifPst@polarplot
/@PolarAlgPlot (#6) tx@addDict begin AlgParser end cvx def
/Func {
/phi y x atan def
/r x y Pyth def
\ifPst@algebraic @PolarAlgPlot \else #6 \fi } def
\else
/Func \ifPst@algebraic (#6) tx@addDict begin AlgParser end cvx \else { #6 } \fi def
\fi
/xPixel xMax xMin sub \pst@number\psxunit mul round cvi def
/yPixel yMax yMin sub \pst@number\psyunit mul round cvi def
/dx xMax xMin sub xPixel div def
/dy yMax yMin sub yPixel div def
/setpixel {
dy div exch
dx div exch
\pst@number\pslinewidth 2 div 0 360 arc fill } bind def
%
/VZ true def % suppose that F(x,y)>=0
/x xMin def /y yMin def Func 0.0 lt { /VZ false def } if % erster Wert
xMin dx \psk@stepFactor\space mul xMax {
/x exch def
yMin dy \psk@stepFactor\space mul yMax {
/y exch def
Func 0 lt
{ VZ { x y setpixel /VZ false def} if }
{ VZ {}{ x y setpixel /VZ true def } ifelse } ifelse
} for
} for
%
/x xMin def /y yMin def Func 0.0 lt { /VZ false def } if % erster Wert
yMin dy \psk@stepFactor\space mul yMax {
/y exch def
xMin dx \psk@stepFactor\space mul xMax {
/x exch def
Func 0 lt
{ VZ { x y setpixel /VZ false def} if }
{ VZ {}{ x y setpixel /VZ true def } ifelse } ifelse
} for
} for
}%
\end@OpenObj%
}
%
\def\psVolume{\pst@object{psVolume}}% 2007-06-23
\def\psVolume@i(#1,#2)#3#4{%
\leavevmode
\pst@killglue
\begingroup
\use@par
\psplot[algebraic=false,fillstyle=none]{#1}{#2}{#4}% original function
\psplot[algebraic=false,fillstyle=none]{#1}{#2}{#4 neg}% mirrored at the x-axis
\multido{\iA=1+1}{#3}{% run it #3 times with increment \A
\pscustom{% to get a closed filled ellipse
\code{ % the PS code
/dX #2 #1 sub #3 div def % delta x, the step
/Start dX \iA\space 1 sub mul #1 add def % xStart
/End Start dX add def % xEnd=xStart+dX
/Height End Start add 2 div /x ED #4 def } % height=f(x)
% x is the mean between Start+End
\psellipticarc(!Start 0)(! Height 8 div Height){90}{270}
% draw the first falf of the ellipse
\rlineto(! dX 0)% draw a line in x-direction
\psellipticarc(!End 0)(! Height 8 div Height){270}{90}
% draw the other half of the ellipse
\rlineto(!dX neg 0)}}% draw a line in negative x-direction
\psset{fillstyle=none}
\psellipse(#2,0)(!#2 dup #1 sub #3 div 2 div sub /x ED #4 dup
8 div exch)% draw again the ellipse to get the borderline.
\psset{plotstyle=line,linestyle=dashed,
plotpoints=40,dotstyle=*,dotsize=0.5pt}
\psplot[algebraic=false]{#1}{#2}{#4}\psplot{#1}{#2}{#4 neg}
% draw again the curves to get the borderline
\endgroup%
\ignorespaces%
}
\def\txFunc@BezierCurve{ tx@FuncDict begin BezierCurve Points end }
\def\txFunc@BezierShowPoints{ tx@Dict begin /Points ED BezierShowPoints end }
\def\pst@BezierType{2 } % the default
%
\def\psBezier#1{% % allowed order is 1 ... 9
\ifnum#1>0 \ifnum#1<10 \def\pst@BezierType{#1 }\fi\fi%
\pst@object{psBezier}}
\def\psBezier@i{%
\pst@getarrows{%
\addbefore@par{plotpoints=200}%
\begin@OpenObj
\pst@getcoors[\psBezier@ii%
}}
\def\psBezier@ii{%
\addto@pscode{%
\psk@plotpoints % step for Bezier T=0,0+epsilon,0+i*epsilon,...,1
\pst@BezierType % type of the Bezier curve 2,3,4,...
\txFunc@BezierCurve
\ifshowpoints \txFunc@BezierShowPoints \else pop \fi
}%
\end@OpenObj}
%
\def\tx@Bernstein{ tx@FuncDict begin Bernstein end }
\define@boolkey[psset]{pst-func}[Pst@]{envelope}[true]{}
\psset[pst-func]{envelope=false}
%
\def\psBernstein{\pst@object{psBernstein}}% \psBernstein[options](t1,t2)(i,n)
\def\psBernstein@i(#1,#2){%
\@ifnextchar({\psBernstein@ii(#1,#2)}{\psBernstein@ii(0,1)(#1,#2)}}
%
\def\psBernstein@ii(#1,#2)(#3,#4){% (tStart,tEnd)(i,n)
\addbefore@par{plotpoints=200}%
\begin@OpenObj
\addto@pscode{%
/ScreenCoor { \tx@ScreenCoor } def
#1\space #2\space
1.0 \psk@plotpoints\space div % step=1/plotpoints
#3\space #4\space
% on stack we have tStart tEnd epsilon i n
\ifPst@envelope true \else false \fi
\tx@Bernstein
}%
\end@OpenObj}
%
\def\psThomae{\pst@object{psThomae}}
\def\psThomae@i(#1,#2)#3{%
\addbefore@par{dotsize=1pt}
\begin@ClosedObj
\addto@pscode{
1 1 #3 {
dup
/ipSave ED % save loop value
/ip ED % dito
1 1 #3 {
dup
/iqSave ED % sabve loop value
/iq ED % dito
{
iq 0 le { exit } if
ip iq mod
/ip iq def
/iq ED
} loop
ip 1 eq {
/xVal ipSave iqSave div def
xVal #1 ge { xVal #2 le {
\psk@dotsize
\@nameuse{psds@\psk@dotstyle}
\pst@usecolor\pslinecolor xVal 1 iqSave div \tx@ScreenCoor
2 copy moveto Dot } if } if
} if
} for
} for
}%
\end@ClosedObj%
}
%
\def\psCplot{\def\pst@par{}\pst@object{psCplot}}
\def\psCplot@i#1#2#3#4{% start | end | complex variables | function
\pst@killglue
\begingroup
\use@par
\@nameuse{beginplot@\psplotstyle}%
\addto@pscode{%
\psplot@init
/x #1 def
/x1 #2 def
/dx x1 x sub \psk@plotpoints div def
#3
/xy {
% x
tx@FuncDict begin
#4 aload pop \pst@number\psyunit mul exch \pst@number\psxunit mul exch
end
} def}%
\gdef\psplot@init{}%
\@pstfalse
\@nameuse{testqp@\psplotstyle}%
\if@pst
\psplot@ii
\else
\psplot@iii
\fi
\endgroup
\ignorespaces}
%
\catcode`\@=\PstAtCode\relax
%
%% END: pst-func.tex
\endinput
%
|