1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
|
%--------------------------------------------
%
% Package pgfplots
%
% Provides a user-friendly interface to create function plots (normal
% plots, semi-logplots and double-logplots).
%
% It is based on Till Tantau's PGF package.
%
% Copyright 2007/2008 by Christian Feuersänger.
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
%--------------------------------------------
\newif\ifpgfplots@log@tick@isminor@tick@pos
% Checks whether the tick position given as #1.#2=log10(T) belongs to
% T=i*10^j with an integer i>1.
%
% If T=i*10^j, \ifpgfplots@log@tick@isminor@tick@pos will be set to true and
% \pgfmathresult will contain T.
%
% Otherwise, \ifpgfplots@log@tick@isminor@tick@pos will be set to false and
% pgfmathresult to #1.#2
%
% Arguments:
% #1.#2 the value log10(T)
%
% Implementation:
% if T = i*10^j, log10(T) = log10(i) + j.
% That means if log10(T) in \Z, we have T = 10^j. If not, we need to
% check wether i is an integer. Please note that log10(i) < 1.
%
% Further note: log(T) < 0 <=> j<0.
% In case j<0, we have
% #1.#2 = j + log(i)
% = - ( -j - log(i) )
% = - ( -j - 1 + (1-log(i)) )
% = #1 '.' #2 [ up to the '0.'
% that means #1 = j-1 and #2 = 1-log(i).
\def\pgfplots@is@log@tick@a@minor@tick@pos#1.#2\relax{%
\pgfmathapproxequalto@{#1.#2}{#1.0}%
\ifpgfmathcomparison
% in MOST cases, this here will be true:
\pgfplots@log@tick@isminor@tick@posfalse
\def\pgfmathresult{#1.#2}%
\else
% I guess this won't happen too often. In fact, it's a very
% special case.
\begingroup
\c@pgf@counta=#1\relax
\ifnum\c@pgf@counta<0
\advance\c@pgf@counta by-1
\pgfmathsubtract@{1}{0.#2}%
\expandafter\pgfplots@is@log@tick@a@minor@tick@pos@IDENTIFY@LOGi\pgfmathresult\relax
\ifpgfplots@log@tick@isminor@tick@pos
\aftergroup\pgfplots@log@tick@isminor@tick@postrue
\edef\pgfmathresult{\pgfmathresult e\the\c@pgf@counta}%
\else
\aftergroup\pgfplots@log@tick@isminor@tick@posfalse
\def\pgfmathresult{#1.#2}%
\fi
\else
\pgfplots@is@log@tick@a@minor@tick@pos@IDENTIFY@LOGi0.#2\relax
\ifpgfplots@log@tick@isminor@tick@pos
\aftergroup\pgfplots@log@tick@isminor@tick@postrue
\edef\pgfmathresult{\pgfmathresult e\the\c@pgf@counta}%
\else
\aftergroup\pgfplots@log@tick@isminor@tick@posfalse
\def\pgfmathresult{#1.#2}%
\fi
\fi
\pgfmath@smuggleone\pgfmathresult
\endgroup
\fi
}
% expects a positive number.
\def\pgfplots@is@log@tick@a@minor@tick@pos@IDENTIFY@LOGi0.#1\relax{%
\pgfplots@log@tick@isminor@tick@postrue
\pgfmathapproxequalto@{0.#1}{0.3010299956639}%
\ifpgfmathcomparison
\def\pgfmathresult{2}%
\else
\pgfmathapproxequalto@{0.#1}{0.4771212547196}%
\ifpgfmathcomparison
\def\pgfmathresult{3}%
\else
\pgfmathapproxequalto@{0.#1}{0.6020599913279}%
\ifpgfmathcomparison
\def\pgfmathresult{4}%
\else
\pgfmathapproxequalto@{0.#1}{0.698970004}%
\ifpgfmathcomparison
\def\pgfmathresult{5}%
\else
\pgfmathapproxequalto@{0.#1}{0.7781512503}%
\ifpgfmathcomparison
\def\pgfmathresult{6}%
\else
\pgfmathapproxequalto@{0.#1}{0.8450980400}%
\ifpgfmathcomparison
\def\pgfmathresult{7}%
\else
\pgfmathapproxequalto@{0.#1}{0.9030899869}%
\ifpgfmathcomparison
\def\pgfmathresult{8}%
\else
\pgfmathapproxequalto@{0.#1}{0.954242509439}%
\ifpgfmathcomparison
\def\pgfmathresult{9}%
\else
\pgfplots@log@tick@isminor@tick@posfalse
\fi
\fi
\fi
\fi
\fi
\fi
\fi
\fi
}
% Checks whether we need to create a separate 'tick scale label',
% a node with ' * 10^3' on the side of the axis:
%
% PRECONDITION:
% Axis limits for #1 are given. I need their values before any data
% scale transformation has been applied.
% If
% \pgfplots@#1min@unscaled@as@float
% and
% \pgfplots@#1max@unscaled@as@float
% exist; I will use these macros.
% Otherwise, I will use \pgfplots@#1min and \pgfplots@#1max;
% assuming that no data scale transformation is active.
% FIXME : does that need further attention?
\def\pgfplots@init@scaled@tick@for#1{%
\global\def\pgfplots@glob@TMPa{0}%
\begingroup
\ifcase\csname pgfplots@scaled@ticks@#1@choice\endcsname\relax
% CASE 0 : scaled #1 ticks=false: do nothing here.
\or
% CASE 1 : scaled #1 ticks=true:
%--------------------------------
% the \pgfplots@xmin@unscaled@as@float is set just before the data
% scale transformation is initialised.
%
% The variables are empty if there is no datascale transformation.
\expandafter\let\expandafter\pgfplots@cur@min@unscaled\csname pgfplots@#1min@unscaled@as@float\endcsname
\expandafter\let\expandafter\pgfplots@cur@max@unscaled\csname pgfplots@#1max@unscaled@as@float\endcsname
%
\ifx\pgfplots@cur@min@unscaled\pgfutil@empty
\edef\pgfplots@loc@TMPa{\csname pgfplots@#1min\endcsname}%
\expandafter\pgfmathfloatparsenumber\expandafter{\pgfplots@loc@TMPa}%
\let\pgfplots@cur@min@unscaled=\pgfmathresult
\edef\pgfplots@loc@TMPa{\csname pgfplots@#1max\endcsname}%
\expandafter\pgfmathfloatparsenumber\expandafter{\pgfplots@loc@TMPa}%
\let\pgfplots@cur@max@unscaled=\pgfmathresult
\fi
%
\expandafter\pgfmathfloat@decompose@E\pgfplots@cur@min@unscaled\relax\pgfmathfloat@a@E
\expandafter\pgfmathfloat@decompose@E\pgfplots@cur@max@unscaled\relax\pgfmathfloat@b@E
\ifnum\pgfmathfloat@b@E<\pgfmathfloat@a@E
\pgfmathfloat@b@E=\pgfmathfloat@a@E
\fi
\xdef\pgfplots@glob@TMPa{\pgfplots@scale@ticks@above@exponent}%
\expandafter\ifnum\pgfplots@glob@TMPa<\pgfmathfloat@b@E
% ok, scale it:
\multiply\pgfmathfloat@b@E by-1
\xdef\pgfplots@glob@TMPa{\the\pgfmathfloat@b@E}%
\else
\xdef\pgfplots@glob@TMPa{\pgfplots@scale@ticks@below@exponent}%
\expandafter\ifnum\pgfplots@glob@TMPa>\pgfmathfloat@b@E
% ok, scale it:
\multiply\pgfmathfloat@b@E by-1
\xdef\pgfplots@glob@TMPa{\the\pgfmathfloat@b@E}%
\else
% no scaling necessary:
\xdef\pgfplots@glob@TMPa{0}%
\fi
\fi
\or
% CASE 2 : scaled #1 ticks=base 10:
%--------------------------------
\c@pgf@counta=\csname pgfplots@scaled@ticks@#1@arg\endcsname\relax
%\multiply\c@pgf@counta by-1
\xdef\pgfplots@glob@TMPa{\the\c@pgf@counta}%
\or
% CASE 3 : scaled #1 ticks=real:
%--------------------------------
\pgfmathfloatparsenumber{\csname pgfplots@scaled@ticks@#1@arg\endcsname}%
\global\let\pgfplots@glob@TMPa=\pgfmathresult
\or
% CASE 4 : scaled #1 ticks=manual:
\expandafter\global\expandafter\let\expandafter\pgfplots@glob@TMPa\csname pgfplots@scaled@ticks@#1@arg\endcsname
\fi
\endgroup
\expandafter\let\csname pgfplots@tick@scale@#1\endcsname=\pgfplots@glob@TMPa%
}
% x-axis tick labels for #1th tick
% #1: the axis (x,y or z)
% #2: the value
% #3,#4+#5: arguments for \pgfplotspointonorientedsurfaceabwithbshift
% #5: ticknumber
\def\pgfplots@show@ticklabel#1#2(#3,#4+#5)#6{%
\begingroup%
\csname ifpgfplots@#1ticklabel@interval\endcsname
% Special case for the INTERVAL feature:
% we have to do additional work here.
\pgfmathparse{#3}%
\edef\pgfplots@show@ticklabel@coord@x@new{\pgfmathresult}%
\pgfmathparse{#4}%
\edef\pgfplots@show@ticklabel@coord@y@new{\pgfmathresult}%
%
\pgfplots@show@ticklabel@{#1}{#2}%
\let\nexttick=\tick
\ifx\pgfplots@show@ticklabel@LASTTICK\pgfutil@empty
% its the first call. Simply remember arguments and wait
% for interval boundary before proceeding.
\else
% acquire options of first interval boundary:
\pgfplots@show@ticklabel@LASTTICK
% compute new node position:
\pgfmathparse{0.5*(\pgfplots@show@ticklabel@coord@x + \pgfplots@show@ticklabel@coord@x@new)}%
\let\pgfplots@show@ticklabel@coord@x=\pgfmathresult%
\pgfmathparse{0.5*(\pgfplots@show@ticklabel@coord@y + \pgfplots@show@ticklabel@coord@y@new)}%
\let\pgfplots@show@ticklabel@coord@y=\pgfmathresult%
\let\ticknum=\pgfplots@show@ticklabel@num\relax%
\let\tick=\pgfplots@show@ticklabel@tick%
\pgfplots@show@ticklabel@@{#1}
{\pgfplotspointonorientedsurfaceabwithbshift{\pgfplots@show@ticklabel@coord@x}{\pgfplots@show@ticklabel@coord@y}{#5}}%
\fi
\xdef\pgfplots@show@ticklabel@LASTTICK{%
\noexpand\def\noexpand\pgfplots@show@ticklabel@tick{\nexttick}%
\noexpand\def\noexpand\pgfplots@show@ticklabel@coord@x{\pgfplots@show@ticklabel@coord@x@new}%
\noexpand\def\noexpand\pgfplots@show@ticklabel@coord@y{\pgfplots@show@ticklabel@coord@y@new}%
\noexpand\edef\noexpand\pgfplots@show@ticklabel@num{#6}%
}%
\else
\let\ticknum=#6\relax%
\pgfplots@show@ticklabel@{#1}{#2}%
\pgfplots@show@ticklabel@@{#1}{\pgfplotspointonorientedsurfaceabwithbshift{#3}{#4}{#5}}%
\fi
\endgroup
}
% #1: the axis (x,y or z)
% #2: the location where to place it.
\def\pgfplots@show@ticklabel@@#1#2{%
% Typeset the label!
\pgfinterruptboundingbox
% What makes this complicated is the 'ticklabel cs' feature.
% What we need is to compute the MAXIMUM LENGTH over each tick
% label IN DIRECTION OF THE OUTER NORMAL.
%
% This needs to
% 1. enable bounding box computation even in case of
% 'overlay',
% 2. projection of the bounding box in direction of the outer
% normal,
% 3. update of the bounding box if 'overlay' is not active.
\begingroup
%
% prepare step (1.):
\pgfkeysalso{%
/tikz/every node/.append code={%
\ifpgf@relevantforpicturesize
\gdef\pgfplots@show@ticklabel@@update@BB{1}%
\else
\gdef\pgfplots@show@ticklabel@@update@BB{0}%
\fi
\pgf@relevantforpicturesizetrue
}%
}%
%
% Compute and remember the position '#2':
\pgf@process{#2}%
\edef\pgfplots@ticklabel@at@x{\the\pgf@x}%
\edef\pgfplots@ticklabel@at@y{\the\pgf@y}%
%
% ok, generate the label!
\node at (\pgfplots@ticklabel@at@x,\pgfplots@ticklabel@at@y) {\csname pgfplots@#1ticklabel\endcsname};%
%
% compute the label's dimensions, step (2.):
\pgfplots@ticklabel@maxtickdimen@updateforcurrentpath
{#1}
{\pgf@x=\pgfplots@ticklabel@at@x\space\pgf@y=\pgfplots@ticklabel@at@y\space}%%
%
% prepare step (3.): update of bounding box:
\if\pgfplots@show@ticklabel@@update@BB1%
\xdef\pgfplots@glob@TMPa{%
\pgf@xa=\the\pgf@picminx\space
\pgf@xb=\the\pgf@picminy\space
\pgf@ya=\the\pgf@picmaxx\space
\pgf@yb=\the\pgf@picmaxy\space
\noexpand\pgf@protocolsizes{\pgf@xa}{\pgf@xb}%
\noexpand\pgf@protocolsizes{\pgf@ya}{\pgf@yb}%
\noexpand\pgf@resetpathsizes
}%
\else
\global\let\pgfplots@glob@TMPa=\relax
\fi
\endgroup
\endpgfinterruptboundingbox
\begingroup
\pgfplots@glob@TMPa
\endgroup
}%
% TICK LABEL DIMENSION CONTROL
%
% The following framework is supposed to accumulate the value for
% \pgfplotsvalueoflargesttickdimen.
%
% It works like this:
%
% \pgfplots@ticklabel@maxtickdimen@reset{#1}
% \pgfplots@ticklabel@maxtickdimen@prepare@for@normalvec{#1}{<normal vector>}
% ...
% \pgfplots@ticklabel@maxtickdimen@updateforcurrentpath{#1}
% \pgfplots@ticklabel@maxtickdimen@updateforcurrentpath{#1}
% \pgfplots@ticklabel@maxtickdimen@updateforcurrentpath{#1}
% ...
% \pgfplots@ticklabel@maxtickdimen@finish{#1}
%
% -> then, \pgfplotsvalueoflargesttickdimen expands to the largest
% distance from a tick's coordinate to its tick label bounding box in
% direction of the outer normal vector.
\def\pgfplots@ticklabel@maxtickdimen@reset#1{%
\expandafter\gdef\csname pgfplots@maxtickdimen@#1\endcsname{0pt}%
\expandafter\gdef\csname pgfplots@maxtickdimen@extrashift@#1\endcsname{0pt}%
}%
% Adds the extra shift '#2' along the normal vector for axis '#1'.
\def\pgfplots@ticklabel@maxtickdimen@extrashift#1#2{%
\begingroup
\afterassignment\pgfplots@gobble@until@relax
\pgf@xa=#2pt\relax
\advance\pgf@xa by\csname pgfplots@maxtickdimen@extrashift@#1\endcsname\relax
\expandafter\xdef\csname pgfplots@maxtickdimen@extrashift@#1\endcsname{\the\pgf@xa}%
\endgroup
}
% Finalizes the maxtickdimen computation.
%
% This applies any extra shifts (including '#1ticklabel shift').
\def\pgfplots@ticklabel@maxtickdimen@finish#1{%
\pgfkeysgetvalue{/pgfplots/#1ticklabel shift}\pgfmathresult
\ifx\pgfmathresult\pgfutil@empty
\else
\pgfplots@ticklabel@maxtickdimen@extrashift{#1}{\pgfkeysvalueof{/pgfplots/#1ticklabel shift}}%
\fi
\begingroup
\pgf@xa=\csname pgfplots@maxtickdimen@extrashift@#1\endcsname\relax
\advance\pgf@xa by \csname pgfplots@maxtickdimen@#1\endcsname\relax
\expandafter\xdef\csname pgfplots@maxtickdimen@#1\endcsname{\the\pgf@xa}%
\endgroup
}%
%
% #1: the axis (x,y or z)
% #2: the normal vector
\def\pgfplots@ticklabel@maxtickdimen@prepare@for@normalvec#1#2{%
\pgf@process{#2}%
\edef\pgfplots@loc@vector@to@outside{\pgf@x=\the\pgf@x\space\pgf@y=\the\pgf@y\space}%
% Identify the corner point of the ticklabel bounding box which
% shall be used:
\ifdim\pgf@x>0sp
\ifdim\pgf@y>0sp
% NORTH EAST
\def\pgfplots@loc@ticklabel@bb@corner{\pgf@x=\pgf@picmaxx\pgf@y=\pgf@picmaxy}%
\else
% SOUTH EAST
\def\pgfplots@loc@ticklabel@bb@corner{\pgf@x=\pgf@picmaxx\pgf@y=\pgf@picminy}%
\fi
\else
\ifdim\pgf@y>0sp
% NORTH WEST
\def\pgfplots@loc@ticklabel@bb@corner{\pgf@x=\pgf@picminx\pgf@y=\pgf@picmaxy}%
\else
% SOUTH WEST
\def\pgfplots@loc@ticklabel@bb@corner{\pgf@x=\pgf@picminx\pgf@y=\pgf@picminy}%
\fi
\fi
}%
% #1: the axis (x,y or z)
% #2: the point from where dimension shall be computed (the 'at'
% argument of the tick label)
\def\pgfplots@ticklabel@maxtickdimen@updateforcurrentpath#1#2{%
\pgfplotsscalarproductofvectors
{\pgfplots@loc@vector@to@outside}%
{\pgfpointdiff
{#2\pgf@pos@transform\pgf@x\pgf@y}%
{\pgfplots@loc@ticklabel@bb@corner}}%
\ifdim\pgf@x>\csname pgfplots@maxtickdimen@#1\endcsname\relax
\expandafter\xdef\csname pgfplots@maxtickdimen@#1\endcsname{\the\pgf@x}%
\fi
}%
% Expands to the largest distance of a tick position to its tick label
% bounding box in direction of the outer unit normal vector.
%
% It does also include the value of the 'ticklabel shift' key.
%
% This function assumes that
% \pgfplots@ticklabel@maxtickdimen@reset{#1}
% \pgfplots@ticklabel@maxtickdimen@prepare@for@normalvec{#1}{<normal vector>}
% ...
% \pgfplots@ticklabel@maxtickdimen@updateforcurrentpath{#1}
% \pgfplots@ticklabel@maxtickdimen@updateforcurrentpath{#1}
% \pgfplots@ticklabel@maxtickdimen@updateforcurrentpath{#1}
% ...
% \pgfplots@ticklabel@maxtickdimen@finish{#1}
% has been invoked completely.
%
% #1: either x,y or z. It denotes the axis for which the ticks are
% requested.
\def\pgfplotsvalueoflargesttickdimen#1{%
\csname pgfplots@maxtickdimen@#1\endcsname
}%
% Just like \pgfplotsqpointoutsideofaxis, but this one here uses the
% axis on which tick labels will be drawn.
%
% #1: one of x, y or z.
% #2: the coordinate on the tick axis designated by '#1'.
% #3: a scale (a dimen) in which the point is moved in direction of
% the outward normal vector of the axis.
%
% @see \pgfplotsqpointoutsideofaxis
\def\pgfplotsqpointoutsideofticklabelaxis#1#2#3{%
\pgfplotsqpointoutsideofaxis{\csname pgfplots@#1ticklabelaxisspec\endcsname}{#2}{#3}%
}%
\def\pgfplotsqpointoutsideofticklabelaxisrel#1#2#3{%
\pgfplotsqpointoutsideofaxisrel{\csname pgfplots@#1ticklabelaxisspec\endcsname}{#2}{#3}%
}%
\def\pgfplotsqpointoutsideofticklabelaxistransformed#1#2#3{%
\pgfplotsqpointoutsideofaxistransformed{\csname pgfplots@#1ticklabelaxisspec\endcsname}{#2}{#3}%
}%
% Expands to the three-character-identification for the axis
% containing tick labels for axis #1.
%
% #1: either x, y or z.
\def\pgfplotsticklabelaxisspec#1{\csname pgfplots@#1ticklabelaxisspec\endcsname}%
% The unit outer normal vector for axis #1.
% #1: one of x, y or z.
\def\pgfplotspointouternormalvectorofticklabelaxis#1{%
\pgfplotspointouternormalvectorofaxis{\csname pgfplots@#1ticklabelaxisspec\endcsname}%
}
% Defines \tick by applying any necessary math to the (possibly
% transformed) tick value #2.
%
% #1: axis (x or y)
% #2: tick value.
\def\pgfplots@show@ticklabel@#1#2{%
\csname ifpgfplots@apply@datatrafo@#1\endcsname
\pgfplotscoordmath{#1}{datascaletrafo inverse}{#2}%
\ifcase\csname pgfplots@scaled@ticks@#1@choice\endcsname
\or
\expandafter\pgfmathfloatshift@\expandafter{\pgfmathresult}{\csname pgfplots@tick@scale@#1\endcsname}%
\or
\expandafter\pgfmathfloatshift@\expandafter{\pgfmathresult}{\csname pgfplots@tick@scale@#1\endcsname}%
\or
\expandafter\pgfmathfloatdivide@\expandafter{\pgfmathresult}{\csname pgfplots@tick@scale@#1\endcsname}%
\or
% scaled #1 ticks=manual. Invoke manual tick scaling code:
\expandafter\let\expandafter\pgfplots@loc@TMPa\csname pgfplots@tick@scale@#1\endcsname
\begingroup
\pgfkeys{/pgf/fpu=true}%
\expandafter\pgfplots@loc@TMPa\expandafter{\pgfmathresult}%
\pgfmath@smuggleone\pgfmathresult
\endgroup
\pgfmathfloatparsenumber\pgfmathresult%
\fi
% .. and this here provides \tick as fixed point repr:
\expandafter\pgfmathfloattofixed\expandafter{\pgfmathresult}%
\let\tick=\pgfmathresult
\else
\edef\tick{#2}%
\pgfplots@if{pgfplots@#1islinear}{%
\ifnum\csname pgfplots@scaled@ticks@#1@choice\endcsname=0
\else
\pgfmathfloatparsenumber{#2}%
\ifnum\csname pgfplots@scaled@ticks@#1@choice\endcsname=3
\expandafter\pgfmathfloatdivide@\expandafter{\pgfmathresult}{\csname pgfplots@tick@scale@#1\endcsname}%
\else
\expandafter\pgfmathfloatshift@\expandafter{\pgfmathresult}{\csname pgfplots@tick@scale@#1\endcsname}%
\fi
\expandafter\pgfmathfloattofixed\expandafter{\pgfmathresult}%
\let\tick=\pgfmathresult
\fi
}{}%
\fi
\pgfplots@coord@inv@trafo@apply{#1}{\tick}%
\let\tick=\pgfmathresult
}%
\def\pgfplots@user@ticklabel@list@x{%
\pgfplotslistselectorempty\ticknum\of\pgfplots@xticklabels\to\tick
\tick
}
\def\pgfplots@user@ticklabel@list@y{%
\pgfplotslistselectorempty\ticknum\of\pgfplots@yticklabels\to\tick
\tick
}
\def\pgfplots@user@ticklabel@list@z{%
\pgfplotslistselectorempty\ticknum\of\pgfplots@zticklabels\to\tick
\tick
}
\def\pgfplots@user@extra@ticklabel@list@x{%
\pgfplotslistselectorempty\ticknum\of\pgfplots@extra@xticklabels\to\tick
\tick
}
\def\pgfplots@user@extra@ticklabel@list@y{%
\pgfplotslistselectorempty\ticknum\of\pgfplots@extra@yticklabels\to\tick
\tick
}
\def\pgfplots@user@extra@ticklabel@list@z{%
\pgfplotslistselectorempty\ticknum\of\pgfplots@extra@zticklabels\to\tick
\tick
}
% Check if a label does not cross the x-axis
\def\pgfplots@ytick@check@tickshow{%
\pgfplots@tickshowtrue
\if\pgfplots@yaxislinesnum2% center
\ifcase\pgfplots@xaxislinesnum\relax
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@ymin@reg}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@ymax@reg}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\or
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@ymin@reg}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{%
}%
\or
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@logical@ZERO@y pt}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\or
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@ymax@reg}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\fi
\fi
}
\def\pgfplots@ztick@check@tickshow{%
\pgfplots@tickshowtrue
\if\pgfplots@zaxislinesnum2% center
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@logical@ZERO@z pt}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\fi
}%
% Fills the macros
% \pgfplots@tick@LOWER@b \pgfplots@tick@end@a
% \pgfplots@tick@UPPER@b \pgfplots@tick@end@b
% with coordinates such that
% (\pgfplots@tick@LOWER@b,\pgfplots@tmpa) -- (\pgfplots@tick@end@a,\pgfplots@tmpa)
% produces a correct tick line.
%
% The '@b' variant is only used in case of \pgfplots@ytickposnum = 0
%
% #1 : the current axis (x or y).
% #2 : the current tick width
%
\def\pgfplots@prepare@tick@offsets@for@#1#2{%
%
% FIXME : this stuff was ok for 2D.
% For 3D, it works only for the cases of boxed axes or centered
% axis lines.
\ifcase\csname pgfplots@#1tickposnum\endcsname\relax
% both
%(\pgfplots@xcoordminTEX-\pgfplots@tick@offset, \pgfplots@tmpa) -- ++( #2, 0pt)
\edef\pgfplots@tick@LOWER@b{\csname pgfplots@\pgfplotspointonorientedsurfaceB min\endcsname}%
%
%(\pgfplots@xcoordmaxTEX+\pgfplots@tick@offset, \pgfplots@tmpa) -- ++(-#2, 0pt)
\edef\pgfplots@tick@UPPER@b{\csname pgfplots@\pgfplotspointonorientedsurfaceB max\endcsname}%
\or
% left
% (\pgfplots@xcoordminTEX-\pgfplots@tick@offset, \pgfplots@tmpa) -- ++( #2, 0pt);
\edef\pgfplots@tick@LOWER@b{\csname pgfplots@\pgfplotspointonorientedsurfaceB min\endcsname}%
\or
% center
% (\pgfplots@ZERO@x -\pgfplots@tick@offset, \pgfplots@tmpa) -- ++( #2, 0pt);
\edef\pgfplots@tick@LOWER@b{\csname pgfplots@logical@ZERO@\pgfplotspointonorientedsurfaceB \endcsname}%
\or
% right
% (\pgfplots@xcoordmaxTEX+\pgfplots@tick@offset, \pgfplots@tmpa) -- ++(-#2, 0pt);
\edef\pgfplots@tick@UPPER@b{\csname pgfplots@\pgfplotspointonorientedsurfaceB max\endcsname}%
\else
% FALL BACK. never used, I guess?
% (\pgfplots@xcoordminTEX-\pgfplots@tick@offset, \pgfplots@tmpa) -- ++( #2, 0pt);
\edef\pgfplots@tick@LOWER@b{\csname pgfplots@\pgfplotspointonorientedsurfaceB min\endcsname}%
\fi
%
\ifcase\csname pgfplots@#1tickalignnum\endcsname\relax
\def\pgfplots@tick@offset{0}%
\or
\edef\pgfplots@tick@offset{#2}%
\or
\pgfmathmultiply@{0.5}{#2}%
\let\pgfplots@tick@offset=\pgfmathresult%
\fi
%
\edef\pgfplots@tick@LOWER@shiftbeg{-\pgfplots@tick@offset}%
\pgfmathadd@{\pgfplots@tick@LOWER@shiftbeg}{#2}%
\let\pgfplots@tick@LOWER@shiftend=\pgfmathresult
%
\edef\pgfplots@tick@UPPER@shiftbeg{\pgfplots@tick@offset}%
\pgfmathsubtract@{\pgfplots@tick@UPPER@shiftbeg}{#2}%
\let\pgfplots@tick@UPPER@shiftend=\pgfmathresult
%
% Assemble the \pgfplots@drawticklines@for@placecomputedtick
% command.
\def\pgfplots@drawticklines@for@placecomputedtick{%
\if\pgfplots@drawticklines@for@placecomputedtick@LOWEROK1%
\pgfpathmoveto{\pgfplotspointonorientedsurfaceabwithbshift{\pgfplots@curtickpos}{\pgfplots@tick@LOWER@b}{\pgfplots@tick@LOWER@shiftbeg pt}}%
\pgfpathlineto{\pgfplotspointonorientedsurfaceabwithbshift{\pgfplots@curtickpos}{\pgfplots@tick@LOWER@b}{\pgfplots@tick@LOWER@shiftend pt}}%
\fi
\if\pgfplots@drawticklines@for@placecomputedtick@UPPEROK1%
\pgfpathmoveto{\pgfplotspointonorientedsurfaceabwithbshift{\pgfplots@curtickpos}{\pgfplots@tick@UPPER@b}{\pgfplots@tick@UPPER@shiftbeg pt}}%
\pgfpathlineto{\pgfplotspointonorientedsurfaceabwithbshift{\pgfplots@curtickpos}{\pgfplots@tick@UPPER@b}{\pgfplots@tick@UPPER@shiftend pt}}%
\fi
}%
%\message{place computed tick: LOWEROK=\pgfplots@drawticklines@for@placecomputedtick@LOWEROK; UPPEROK=\pgfplots@drawticklines@for@placecomputedtick@UPPEROK.}%
}%
\newif\ifpgfplots@needsminorloop
\def\pgfplots@draw@tick@scale@label@for#1{%
\csname ifpgfplots@#1islinear\endcsname
\begingroup
\def\pgfplots@temp@isbaseten{0}%
\ifcase\csname pgfplots@scaled@ticks@#1@choice\endcsname
\global\let\pgfplots@glob@TMPa=\pgfutil@empty
\or
\xdef\pgfplots@glob@TMPa{\csname pgfplots@tick@scale@#1\endcsname}%
\def\pgfplots@temp@isbaseten{1}%
\or
\xdef\pgfplots@glob@TMPa{\csname pgfplots@tick@scale@#1\endcsname}%
\def\pgfplots@temp@isbaseten{1}%
\or
\xdef\pgfplots@glob@TMPa{\csname pgfplots@tick@scale@#1\endcsname}%
% real:
\or
% manual:
\global\def\pgfplots@glob@TMPa{dummyargument}%
\fi
\if1\pgfplots@temp@isbaseten
\expandafter\c@pgf@counta\pgfplots@glob@TMPa\relax
\multiply\c@pgf@counta by-1
\ifnum\c@pgf@counta=0\relax
\global\let\pgfplots@glob@TMPa=\pgfutil@empty
\else
\xdef\pgfplots@glob@TMPa{\the\c@pgf@counta}%
\fi
\fi
\endgroup
\ifx\pgfplots@glob@TMPa\pgfutil@empty
\else
\begingroup
\pgfkeysgetvalue{/pgfplots/#1tick scale label code/.@cmd}\pgfplots@loc@TMPa
\ifx\pgfplots@loc@TMPa\pgfplots@empty@command@key
\else
\edef\pgfplots@tick@scale@labels{\noexpand\pgfplots@invoke@pgfkeyscode{/pgfplots/#1tick scale label code/.@cmd}{\pgfplots@glob@TMPa}}%
%
\pgfplots@change@pgfpoints@to@descriptioncs
%
\node[%
/pgfplots/every tick label,%
/pgfplots/every #1 tick label,%
/pgfplots/every #1 tick scale label]
{\pgfplots@tick@scale@labels};
\fi
\endgroup
\fi
\fi
}
% Check if the current tick position, stored in \pgfplots@tmpa,
% does not cross the y-axis.
%
% This is just a special case for centered axis lines.
\def\pgfplots@xtick@check@tickshow{%
\pgfplots@tickshowtrue
\if\pgfplots@xaxislinesnum2% center
\ifcase\pgfplots@yaxislinesnum\relax
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@xmin@reg}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@xmax@reg}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\or
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@xmin@reg}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\or
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@logical@ZERO@x pt}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\or
\pgfplotsmath@ifapproxequal@dim
{\pgfplots@tmpa}{\pgfplots@xmax@reg}
{\pgfplots@loc@tick@placement@tolerance}
{%
\pgfplots@tickshowfalse
}{}%
\fi
\fi
}
% Draws extra ticks including grid lines, tick lines and tick labels
% along the current oriented surface.
%
% See \pgfplots@drawticklines@onorientedsurf@ for a description of the
% oriented surface.
%
% #1 : tick position list
\def\pgfplots@draw@extra@ticks@onorientedsurf{%
\expandafter\pgfplots@draw@extra@ticks@onorientedsurf@\pgfplotspointonorientedsurfaceA
}%
% #1: axis (x or y)
% #2: tick position list
\def\pgfplots@draw@extra@ticks@onorientedsurf@#1#2{%
\begingroup
\def\pgfplots@scaled@ticks@x@choice{0}%
\def\pgfplots@scaled@ticks@y@choice{0}%
\def\pgfplots@scaled@ticks@z@choice{0}%
\csname pgfplots@#1minorticksfalse\endcsname
\csname pgfplots@#1minorgridsfalse\endcsname
\expandafter\let\expandafter\pgfplots@ticklabel@pos@orig\csname pgfplots@#1ticklabel@pos\endcsname%
\expandafter\let\expandafter\axis@TMP\csname pgfplots@extra@#1ticklabel\endcsname
\expandafter\let\csname pgfplots@#1ticklabel\endcsname=\axis@TMP
% \pgfplotsset{/pgfplots/every extra #1 tick}%
% use a scope here such that line width and draw color can be set.
\scope[/pgfplots/.cd,/pgfplots/every extra #1 tick]
\expandafter\let\expandafter\pgfplots@ticklabel@pos@\csname pgfplots@#1ticklabel@pos\endcsname
\ifx\pgfplots@ticklabel@pos@\pgfplots@ticklabel@pos@orig
\else
\pgfplots@init@ticklabelaxisspec
\fi
\pgfplots@prepare@tick@coordlists@for{#1}{#2}%
\pgfplots@drawgridlines@onorientedsurf%
\pgfplots@drawticklines@onorientedsurf%
\pgfplots@drawticklabels@onorientedsurf%
\endscope
\endgroup
}
% Computes final major and minor tick positions into global lists
% \pgfplots@prepared@tick@positions@major@x
% and
% \pgfplots@prepared@tick@positions@minor@x.
%
% Both lists contain entries of the form {<index>}{<logical position>}
% @see \pgfplots@prepared@tick@pos@unpack
%
% #1: the axis
% #2: the tick list.
%
% PRECONDITION:
% - \pgfplots@determinedefaultvalues has been executed.
% That means particularly that \pgfplots@[xy][min,max] are available in TeX point
% range (after datascaling and logs).
% POSTCONDITION:
% - the lists
% \pgfplots@prepared@tick@positions@major@x
% \pgfplots@prepared@tick@positions@major@tickindices@x
% \pgfplots@prepared@tick@positions@minor@x
% are ready.
\def\pgfplots@prepare@tick@coordlists@for#1#2{%
\begingroup
\expandafter\let\expandafter\ifpgfplots@islinear\csname ifpgfplots@#1islinear\endcsname
\expandafter\let\expandafter\ifpgfplots@minorticks\csname ifpgfplots@#1minorticks\endcsname
\expandafter\let\expandafter\ifpgfplots@minorgrids\csname ifpgfplots@#1minorgrids\endcsname
% these lists need to be global such that I can fill them inside
% of \foreach statements. And, yes: I have also added a TeX group
% on my own (but that's not the problem).
\global\pgfplotslistnewempty\pgfplots@prepared@tick@positions@major
%\global\pgfplotslistnewempty\pgfplots@prepared@tick@positions@major@tickindices
\global\pgfplotslistnewempty\pgfplots@prepared@tick@positions@minor
%
\pgfplots@prepare@tick@coordlists@for@handletolerance#1%
%
\edef\pgfplots@loc@TMPa{#2}%
\ifx\pgfplots@loc@TMPa\pgfutil@empty
\else
\ifpgfplots@minorticks
\pgfplots@needsminorlooptrue
\else
\ifpgfplots@minorgrids
\pgfplots@needsminorlooptrue
\else
\pgfplots@needsminorloopfalse
\fi
\fi
\pgfkeysgetvalue{/pgfplots/minor #1tick}\pgfplots@minor@tick@list
\ifx\pgfplots@minor@tick@list\pgfutil@empty
\else
\pgfplots@needsminorloopfalse
\fi
%
\ifpgfplots@needsminorloop
\ifpgfplots@islinear
\pgfkeysgetvalue{/pgfplots/minor #1 tick num}\pgfplots@minor@tick@num
\begingroup
\c@pgf@counta=\pgfplots@minor@tick@num\relax
\advance\c@pgf@counta by1\relax
\pgfplots@tmpa=\csname pgfplots@tick@distance@#1\endcsname pt %
\divide\pgfplots@tmpa by\c@pgf@counta
\edef\pgfmathresult{\pgf@sys@tonumber{\pgfplots@tmpa}}%
\pgfmath@smuggleone\pgfmathresult
\endgroup
\let\pgfplots@minor@tick@dist=\pgfmathresult
\else
\def\pgfplots@minor@tick@num{9}%
\fi
\fi
%
% Prepare the [xy]tick[min|max] key processing:
\let\pgfplots@checktickminmax=\pgfutil@empty
\expandafter\ifx\csname pgfplots@#1tickmin\endcsname\pgfutil@empty
\else
\expandafter\def\expandafter\pgfplots@checktickminmax\expandafter{%
\pgfplots@checktickminmax
\pgfplots@prepare@tick@coordlists@for@checktickmin#1%
}%
\fi
\expandafter\ifx\csname pgfplots@#1tickmax\endcsname\pgfutil@empty
\else
\expandafter\def\expandafter\pgfplots@checktickminmax\expandafter{%
\pgfplots@checktickminmax
\pgfplots@prepare@tick@coordlists@for@checktickmax#1%
}%
\fi
%
%
\gdef\pgfplots@glob@TMPa{0}%
\foreach \x in {#2} {%
\let\pgfplots@ticknum=\pgfplots@glob@TMPa
%
\pgfplots@prepare@tick@coordlists@for@assign\pgfplots@tmpa=\x
\csname pgfplots@#1tick@check@tickshow\endcsname
\pgfplots@prepare@tick@coordlists@for@checkdatalimits#1%
\pgfplots@checktickminmax
%
\ifpgfplots@tickshow
\edef\x{{\pgfplots@ticknum}{\x}}%
\expandafter\pgfplotslistpushbackglobal\x\to\pgfplots@prepared@tick@positions@major
%\expandafter\pgfplotslistpushbackglobal\pgfplots@ticknum\to\pgfplots@prepared@tick@positions@major@tickindices
\fi
% X-Axis ticks bottom and top
\ifpgfplots@needsminorloop
% SEE BELOW for the 'minor #1tick' feature -- it has a
% separate loop.
\foreach \pgfplots@i in {1,...,\pgfplots@minor@tick@num} {%
\ifpgfplots@islinear
\pgfmathmultiply@{\pgfplots@i}{\pgfplots@minor@tick@dist}%
\else
% in log:
% log( i*10^k ) = log\pgfplots@i + k\log10 -> draw ticks for i=1..9
\pgfplotscoordmath{#1}{log unsigned int}{\pgfplots@i}%
\pgfplotscoordmath{#1}{tofixed}{\pgfmathresult}%
\fi
\pgfplots@prepare@tick@coordlists@for@advance\pgfplots@tmpa by\pgfmathresult
\pgfplots@tickshowtrue
\pgfplots@prepare@tick@coordlists@for@checkdatalimits#1%
\pgfplots@checktickminmax
\ifpgfplots@tickshow
\pgfplots@prepare@tick@coordlists@for@tofixed\pgfplots@tmpa
\c@pgf@counta=\pgfplots@ticknum\relax
\advance\c@pgf@counta by\pgfplots@i\relax
\edef\x{{\the\c@pgf@counta}{\pgfmathresult}}%
\expandafter\pgfplotslistpushbackglobal\x\to\pgfplots@prepared@tick@positions@minor
\fi
}%
\fi
\pgfplotsutil@advancestringcounter\pgfplots@ticknum
% carry \ticknum outside of this scope:
\global\let\pgfplots@glob@TMPa=\pgfplots@ticknum
}%
%
\ifx\pgfplots@minor@tick@list\pgfutil@empty
\else
% handle the 'minor #1tick' feature:
\def\pgfplots@loc@TMPa{\foreach \x in }%
\expandafter\pgfplots@loc@TMPa\expandafter{\pgfplots@minor@tick@list} {%
\let\pgfplots@ticknum=\pgfplots@glob@TMPa
%
\pgfplots@prepare@tick@coordlists@for@assign\pgfplots@tmpa=\x
\pgfplots@tickshowtrue
\pgfplots@prepare@tick@coordlists@for@checkdatalimits#1%
\pgfplots@checktickminmax
\ifpgfplots@tickshow
\edef\x{{\pgfplots@ticknum}{\x}}%
\expandafter\pgfplotslistpushbackglobal\x\to\pgfplots@prepared@tick@positions@minor
\fi
\pgfplotsutil@advancestringcounter\pgfplots@ticknum
% carry \ticknum outside of this scope:
\global\let\pgfplots@glob@TMPa=\pgfplots@ticknum
}%
\fi
\fi
\endgroup
\expandafter\let\csname pgfplots@prepared@tick@positions@minor@#1\endcsname=\pgfplots@prepared@tick@positions@minor
\expandafter\let\csname pgfplots@prepared@tick@positions@major@#1\endcsname=\pgfplots@prepared@tick@positions@major
%\expandafter\let\csname pgfplots@prepared@tick@positions@major@tickindices@#1\endcsname=\pgfplots@prepared@tick@positions@major@tickindices
\global\let\pgfplots@prepared@tick@positions@major=\relax
%\global\let\pgfplots@prepared@tick@positions@major@tickindices=\relax
\global\let\pgfplots@prepared@tick@positions@minor=\relax
}%
% The following set of macros can be used to replace the TeX register
% arithmetics used to speed up the computations inside of
% \pgfplots@prepare@tick@coordlists@for by something different.
%
% FIXME : that is no clean programming! Perhaps a new math class
% should be used here, and implemented during the complete tick
% preparation!?
%
% Keep in mind that these tick positions are in "transformed
% range", i.e. they are expected to be in the range -16000...16000. At
% the time of this modification, only the smithchart lib needs special
% handling here... does this justify a re-design?
\def\pgfplots@prepare@tick@coordlists@for@assign#1=#2{%
#1=#2pt
}%
\def\pgfplots@prepare@tick@coordlists@for@advance#1by#2{%
\advance#1 by#2 pt %
}%
\def\pgfplots@prepare@tick@coordlists@for@tofixed#1{%
\edef\pgfmathresult{\pgf@sys@tonumber{#1}}%
}%
\def\pgfplots@prepare@tick@coordlists@for@handletolerance#1{%
\afterassignment\pgfplots@gobble@until@relax
\pgfplots@tmpa=\pgfkeysvalueof{/pgfplots/#1tick placement tolerance}pt\relax
\pgfplots@tmpa=\csname pgfplots@#1@inverseveclength\endcsname\pgfplots@tmpa
\edef\pgfplots@loc@tick@placement@tolerance{\the\pgfplots@tmpa}%
%
\advance\csname pgfplots@#1min@reg\endcsname by-\pgfplots@tmpa
\advance\csname pgfplots@#1max@reg\endcsname by\pgfplots@tmpa
}%
\def\pgfplots@prepare@tick@coordlists@for@checktickmin#1{%
\ifdim\pgfplots@tmpa<\csname pgfplots@#1tickmin\endcsname pt
\pgfplots@tickshowfalse
\fi
}%
\def\pgfplots@prepare@tick@coordlists@for@checktickmax#1{%
\ifdim\pgfplots@tmpa>\csname pgfplots@#1tickmax\endcsname pt
\pgfplots@tickshowfalse
\fi
}%
\def\pgfplots@prepare@tick@coordlists@for@checkdatalimits#1{%
\ifdim\pgfplots@tmpa<\csname pgfplots@#1min@reg\endcsname
\pgfplots@tickshowfalse
\else
\ifdim\pgfplots@tmpa>\csname pgfplots@#1max@reg\endcsname
\pgfplots@tickshowfalse
\fi
\fi
}%
% Unpacks entries of the \pgfplots@prepared@tick@positions@* lists.
%
% Defines \pgfplots@tick to be the actual tick position and
% \pgfplots@ticknum to be its index.
%
% Usage:
% \expandafter\pgfplots@prepared@tick@pos@unpack\entry
\def\pgfplots@prepared@tick@pos@unpack#1#2{%
\def\pgfplots@tick{#2}%
\def\pgfplots@ticknum{#1}%
}
% Draws grid lines at the a-positions of the currently set oriented
% surface.
%
% Tick positions are taken out of the already precomputed list
% \pgfplots@prepared@tick@positions@major@...
%
% See \pgfplots@drawticklines@onorientedsurf@ for a description of the
% oriented surface.
%
% #1 : the verbatim axis name (either 'x' or 'y')
% #2 : the index of the axis (either 0 or 1)
\def\pgfplots@drawgridlines@onorientedsurf{%
\expandafter\pgfplots@drawgridlines@onorientedsurf@\pgfplotspointonorientedsurfaceA
}%
\def\pgfplots@drawgridlines@onorientedsurf@#1{%
\pgfplots@if{pgfplots@shownothingof@\pgfplotspointonorientedsurfaceB}{%
\relax
}{%
\begingroup
\pgfplots@ifgridlines@onorientedsurf@should@be@drawn{%
\expandafter\let\expandafter\pgfplots@prepared@tick@positions@major@\csname pgfplots@prepared@tick@positions@major@#1\endcsname
\expandafter\let\expandafter\pgfplots@prepared@tick@positions@minor@\csname pgfplots@prepared@tick@positions@minor@#1\endcsname
\pgfplots@loop@CONTINUEfalse
\pgfplots@if{pgfplots@#1majorgrids}{\pgfplots@loop@CONTINUEtrue}{}%
\pgfplots@if{pgfplots@#1minorgrids}{\pgfplots@loop@CONTINUEtrue}{}%
\ifpgfplots@loop@CONTINUE
% I support only ONE layer for both, minor and major
% grid lines -- no distinction! I am lazy... FIXME
\pgfplotsgetlayerforstyle{%
every axis grid,%
every minor grid,%
every axis #1 grid,%
every major grid,%
every minor #1 grid,%
every major #1 grid%
}%
\pgfplotsonlayer{\pgfplotsretval}{#1 grid style}%
\scope
\pgfplots@drawgridlines@INSTALLCLIP@onorientedsurf#1%
%
\pgfplots@if{pgfplots@#1minorgrids}{%
\draw[%
/pgfplots/every axis grid,
/pgfplots/every minor grid,
/pgfplots/every axis #1 grid,
/pgfplots/every minor #1 grid]%
\pgfextra
\pgfplotslistforeach\pgfplots@prepared@tick@positions@minor@\as\pgfplots@curgridpos{%
\expandafter\pgfplots@prepared@tick@pos@unpack\pgfplots@curgridpos
\pgfplots@drawgridlines@onorientedsurf@fromto\pgfplots@tick
}%
\endpgfextra;
}{}%
%
\pgfplots@if{pgfplots@#1majorgrids}{%
\draw[%
/pgfplots/every axis grid,
/pgfplots/every major grid,
/pgfplots/every axis #1 grid,
/pgfplots/every major #1 grid]%
\pgfextra
\pgfplotslistforeach\pgfplots@prepared@tick@positions@major@\as\pgfplots@curgridpos{%
\expandafter\pgfplots@prepared@tick@pos@unpack\pgfplots@curgridpos
\pgfplots@drawgridlines@onorientedsurf@fromto\pgfplots@tick
}%
\endpgfextra;
}{}%
%
\endscope
\endpgfplotsonlayer
\fi
}{}%
\endgroup
}%
}
% Should draw a single grid line on the actual oriented surface.
% #1 the value of the grid line.
%
% PRECONDITION
% \pgfplots@ticknum contains the index of the current tick.
\def\pgfplots@drawgridlines@onorientedsurf@fromto#1{%
\pgfpathmoveto{\pgfplotspointonorientedsurfaceab{#1}{\csname pgfplots@\pgfplotspointonorientedsurfaceB min\endcsname}}%
\pgfpathlineto{\pgfplotspointonorientedsurfaceab{#1}{\csname pgfplots@\pgfplotspointonorientedsurfaceB max\endcsname}}%
}%
% Draws ticks on the currently active "oriented surface".
%
% The oriented surface is two dimensional and has been initialised
% with \pgfplotspointonorientedsurfaceabsetupfor*** somehow.
%
% The idea is now the following:
% - the tick positions change along the FIRST coordinate of this
% surface:
%
% x ---- x ---- x ---- x
% --> FIRST -->
%
% - the tick lines are drawn along the SECOND coordinate of this
% surface:
%
% | ---- | ---- | ---- | | SECOND
% | | | | v
%
% for example,
% \pgfplotspointonorientedsurfaceab@setupfor@xyZ{1}
% \pgfplots@drawticklines@onorientedsurf
% will draw ticks at x-positions designated by \pgfplots@xtick. The
% small tick lines will be drawn along the y axis. For each processed
% point, the z coordinate will be fixed to '1'.
%
% Another example:
% \pgfplotspointonorientedsurfaceab@setupfor@yxZ{-1}
% \pgfplots@drawticklines@onorientedsurf
% will draw ticks at y-positions designated by \pgfplots@ytick. The
% small tick lines will be drawn along the x axis. For each processed
% point, the z coordinate will be fixed to '-1'.
%
% Tick positions are taken out of the already precomputed list
% \pgfplots@prepared@tick@positions@major@...
\def\pgfplots@drawticklines@onorientedsurf{%
\expandafter\pgfplots@drawticklines@onorientedsurf@\pgfplotspointonorientedsurfaceA
}%
\def\pgfplots@drawticklines@INSTALLCLIP@onorientedsurf#1{%
\pgfplots@drawtickgridlines@INSTALLCLIP@onorientedsurf{#1}%
}%
\def\pgfplots@drawgridlines@INSTALLCLIP@onorientedsurf#1{%
\pgfplots@drawtickgridlines@INSTALLCLIP@onorientedsurf{#1}%
}%
% Avoids tick lines which are too thick by introducing a clipping
% region. Tick lines (and grid lines) won't extend to the left or
% right of axis #1.
\def\pgfplots@drawtickgridlines@INSTALLCLIP@onorientedsurf#1{%
\pgfinterruptboundingbox%
\begingroup
% the case ||e_b|| == 0 should never happen here! Should be
% caught before entering this routine.
\let\pgfplots@loc@LENGTH=\pgfmathresult
\expandafter\let\expandafter\pgfplots@loc@MIN\csname pgfplots@\pgfplotspointonorientedsurfaceB min\endcsname
\expandafter\let\expandafter\pgfplots@loc@MAX\csname pgfplots@\pgfplotspointonorientedsurfaceB max\endcsname
\pgfpathmoveto{\pgfplotspointonorientedsurfaceabwithbshift{\csname pgfplots@#1min\endcsname}{\pgfplots@loc@MIN}{-5cm}}%
\pgfpathlineto{\pgfplotspointonorientedsurfaceabwithbshift{\csname pgfplots@#1max\endcsname}{\pgfplots@loc@MIN}{-5cm}}%
\pgfpathlineto{\pgfplotspointonorientedsurfaceabwithbshift{\csname pgfplots@#1max\endcsname}{\pgfplots@loc@MAX}{5cm}}%
\pgfpathlineto{\pgfplotspointonorientedsurfaceabwithbshift{\csname pgfplots@#1min\endcsname}{\pgfplots@loc@MAX}{5cm}}%
\pgfusepath{clip}%
\endgroup
\endpgfinterruptboundingbox%
}%
\def\pgfplots@drawticklines@onorientedsurf@#1{%
\pgfplots@if{pgfplots@shownothingof@\pgfplotspointonorientedsurfaceB}{%
\relax
}{%
\begingroup
\pgfplots@ifaxisline@B@onorientedsurf@should@be@drawn{0}{%
\def\pgfplots@drawticklines@for@placecomputedtick@LOWEROK{1}%
}{%
\def\pgfplots@drawticklines@for@placecomputedtick@LOWEROK{0}%
}%
\pgfplots@ifaxisline@B@onorientedsurf@should@be@drawn{1}{%
\def\pgfplots@drawticklines@for@placecomputedtick@UPPEROK{1}%
}{%
\def\pgfplots@drawticklines@for@placecomputedtick@UPPEROK{0}%
}%
\if\pgfkeysvalueof{/pgfplots/\pgfplotspointonorientedsurfaceB\space dir/value}r%
% local special handling for reversed axes: exchange
% meaning of 'left' and 'right' here.
%
% the rest of the pgfplots code does that automatically because
% there, tickposnum is relevant to determine the axes
% which contains tick labels. And this algorithm checks
% for reversed axes implicitly.
%
\if1\csname pgfplots@\pgfplotspointonorientedsurfaceA tickposnum\endcsname
\expandafter\def\csname pgfplots@\pgfplotspointonorientedsurfaceA tickposnum\endcsname{3}%
\else
\if3\csname pgfplots@\pgfplotspointonorientedsurfaceA tickposnum\endcsname
\expandafter\def\csname pgfplots@\pgfplotspointonorientedsurfaceA tickposnum\endcsname{1}%
\fi
\fi
\fi
\ifcase\csname pgfplots@\pgfplotspointonorientedsurfaceA tickposnum\endcsname\relax
% both
\or
% lower
\def\pgfplots@drawticklines@for@placecomputedtick@UPPEROK{0}%
\or
% center
\def\pgfplots@drawticklines@for@placecomputedtick@UPPEROK{0}%
\or
% upper
\def\pgfplots@drawticklines@for@placecomputedtick@LOWEROK{0}%
\else
% never used?
\def\pgfplots@drawticklines@for@placecomputedtick@UPPEROK{0}%
\fi
\expandafter\let\expandafter\pgfplots@prepared@tick@positions@major@\csname pgfplots@prepared@tick@positions@major@#1\endcsname
\expandafter\let\expandafter\pgfplots@prepared@tick@positions@minor@\csname pgfplots@prepared@tick@positions@minor@#1\endcsname
%
% There is only ONE layer for both, minor and major
% tick lines -- no distinction!
\pgfplotsgetlayerforstyle{%
every tick,%
every minor tick,%
every #1 tick,%
every major tick,%
every minor #1 tick,%
every major #1 tick%
}%
\pgfplotsonlayer{\pgfplotsretval}{#1tick style}%
\scope
\pgfplots@drawticklines@INSTALLCLIP@onorientedsurf#1
%
\pgfplots@if{pgfplots@#1minorticks}{%
\draw[%
/pgfplots/every tick,
/pgfplots/every minor tick,
/pgfplots/every #1 tick,
/pgfplots/every minor #1 tick]%
\pgfextra
\pgfmathparse{\pgfplots@subtickwidth}%
\let\pgfplots@subtickwidth@=\pgfmathresult
\let\pgfplots@subtickwidth@=\pgfmathresult
\let\pgfplots@subtickwidth=\pgfmathresult
\pgfplots@prepare@tick@offsets@for@{#1}{\pgfplots@subtickwidth@}%
\pgfplotslistforeach\pgfplots@prepared@tick@positions@minor@\as\pgfplots@curtickpos{%
\expandafter\pgfplots@prepared@tick@pos@unpack\pgfplots@curtickpos
\let\pgfplots@curtickpos=\pgfplots@tick
\pgfplotspointouternormalvectorofaxissetv{}{\pgfplots@curtickpos}%
\pgfplots@drawticklines@for@placecomputedtick
}%
\endpgfextra;
}{}%
%
\pgfplots@if{pgfplots@#1majorticks}{%
\draw[%
/pgfplots/every tick,
/pgfplots/every major tick,
/pgfplots/every #1 tick,
/pgfplots/every major #1 tick]%
\pgfextra
\pgfmathparse{\pgfplots@tickwidth}%
\let\pgfplots@tickwidth@=\pgfmathresult
\let\pgfplots@tickwidth@=\pgfmathresult
\let\pgfplots@tickwidth=\pgfmathresult
\pgfplots@prepare@tick@offsets@for@{#1}{\pgfplots@tickwidth@}%
\pgfplotslistforeach\pgfplots@prepared@tick@positions@major@\as\pgfplots@curtickpos{%
\expandafter\pgfplots@prepared@tick@pos@unpack\pgfplots@curtickpos
\let\pgfplots@curtickpos=\pgfplots@tick
\pgfplotspointouternormalvectorofaxissetv{}{\pgfplots@curtickpos}%
\pgfplots@drawticklines@for@placecomputedtick
}%
\endpgfextra;
}{}%
%
\endscope
\endpgfplotsonlayer
\endgroup
}%
}
% Draws tick labels at the positions of the currently set oriented
% surface.
%
% Tick positions are taken out of the already precomputed list
% \pgfplots@prepared@tick@positions@major@...
%
% For 2D axes, this task is relatively simple:
% we iterate through every prepared major tick position and place a
% tick label. Open points, however, are the question whether to use
% the RIGHT or the LEFT axis line on the current oriented surface:
%
% direction 'b' (second oriented)
% |-------------------------|
% | |
% | |
% | |direction 'a' (first oriented)
% | |
% | |
% | |
% |-------------------------|
% Left Right
%
% Given the axis line which shall contain the labels, we have to
% decide how to align the tick label nodes: on the left or on the
% right? Of course, we want to align them such that they are "outside"
% of the figure! That's simple as well: "Left axis line => outside
% means left", "Right axis line => outside means right".
%
% That's all, basically.
%
% For 3D axes, all these points are basically ... the same!
% Now it can happen that the current oriented surface shall
% not contain ANY tick label. In that case, we do nothing.
% Furthermore, the "outside" direction (i.e. the anchoring of the
% label nodes) is a little bit more difficult.
%
%
% See \pgfplots@drawticklines@onorientedsurf@ for a description of the
% oriented surface.
\def\pgfplots@drawticklabels@onorientedsurf{%
\expandafter\pgfplots@drawticklabels@onorientedsurf@\pgfplotspointonorientedsurfaceA
}
\def\pgfplots@drawticklabels@onorientedsurf@#1{%
\begingroup
\expandafter\let\expandafter\pgfplots@prepared@tick@positions@major@\csname pgfplots@prepared@tick@positions@major@#1\endcsname
% check whether
% - we need to place tick labels on the LEFT side,
% - we need to place tick labels on the RIGHT side,
% - we don't need tick labels for the current surface at all:
\pgfplotspointonorientedsurfaceabmatchaxisline{\csname pgfplots@#1ticklabelaxisspec\endcsname}{\pgfplots@ticklabelside}%
\ifx\pgfplots@ticklabelside\pgfutil@empty
% SKIP. The current oriented surface shall not get tick labels
% for #1.
\else
\pgfplots@if{pgfplots@#1majorticks}{%
\pgfplots@if{pgfplots@#1islinear}{%
\pgfplots@init@scaled@tick@for{#1}%
}{\relax}%
\begingroup
\pgfplotsgetlayerforstyle{every tick label,every #1 tick label}%
\pgfplotsonlayer\pgfplotsretval{#1tick label style}%
\pgfkeysalso{/tikz/every node/.append style={/pgfplots/every tick label,/pgfplots/every #1 tick label}}%
\pgfplots@drawticklabels@onorientedsurf@prepareanchor#1%
%
\pgfplotsmath@ifzero{\csname pgfplots@\pgfplotspointonorientedsurfaceB @veclength\endcsname}{%
\def\pgfplots@tick@offset{0}%
}{%
\ifcase\csname pgfplots@#1tickalignnum\endcsname\relax
\def\pgfmathresult{0}%
\or
\pgfmathparse{\pgfplots@tickwidth}%
\or
\pgfmathmultiply{0.5}{\pgfplots@tickwidth}%
\fi
\let\pgfplots@tick@offset=\pgfmathresult
\pgfplots@ticklabel@maxtickdimen@extrashift{#1}{\pgfplots@tick@offset}%
%\pgfmathmultiply@{\pgfplots@tick@offset}{\csname pgfplots@\pgfplotspointonorientedsurfaceB @inverseveclength\endcsname}%
\let\pgfplots@tick@offset=\pgfmathresult
}%
%
\if2\csname pgfplots@#1axislinesnum\endcsname % Centered axis lines?
\expandafter\let\expandafter\pgfplots@tick@origin\csname pgfplots@logical@ZERO@\pgfplotspointonorientedsurfaceB\endcsname%
% FIXME : that stuff here does not respect
% '[xyz]tickpos num' keys!
\pgfplots@tickposchoiceb%<-- backw. compat, is usually empty.
\if r\pgfkeysvalueof{/pgfplots/\pgfplotspointonorientedsurfaceB\space dir/value}%
% special handling for reversed axes.
\pgfmathmultiply{-1}{\pgfplots@tick@offset}%
\let\pgfplots@tick@offset=\pgfmathresult
\fi
\edef\pgfplots@tick@offset{-\pgfplots@tick@offset}%
%\pgfmathsubtract@{\pgfplots@tick@origin}{\pgfplots@tick@offset}%
\else
\if0\pgfplots@ticklabelside
\expandafter\let\expandafter\pgfplots@tick@origin\csname pgfplots@\pgfplotspointonorientedsurfaceB min\endcsname%
\pgfplots@tickposchoiceb%<-- backw. compat, is usually empty.
%\pgfmathsubtract@{\pgfplots@tick@origin}{\pgfplots@tick@offset}%
\edef\pgfplots@tick@offset{-\pgfplots@tick@offset}%
\else
\if1\pgfplots@ticklabelside
\expandafter\let\expandafter\pgfplots@tick@origin\csname pgfplots@\pgfplotspointonorientedsurfaceB max\endcsname%
\pgfplots@tickposchoicea%<-- backw. compat, is usually empty.
%\pgfmathadd@{\pgfplots@tick@origin}{\pgfplots@tick@offset}%
\else
% FIXME : ticklabelside == 2 is, in principle,
% a valid choice. It is the case handled with
% "if 2 == pgfplots@#1axislinesnum" above,
% isn't it!?
\expandafter\let\expandafter\pgfplots@tick@origin\csname pgfplots@logical@ZERO@\pgfplotspointonorientedsurfaceB\endcsname%
% FIXME : is that correct!?
\pgfplots@tickposchoiceb%<-- backw. compat, is usually empty.
%\pgfmathsubtract@{\pgfplots@tick@origin}{\pgfplots@tick@offset}%
%\edef\pgfplots@tick@offset{-\pgfplots@tick@offset}%
%
\if2\pgfplots@ticklabelside
\else
% Should never happen.
\pgfplots@error{Internal logic error during tick label placement (got placement character '\pgfplots@ticklabelside').
Please report this as a bug or verify your input arguments to #1ticklabel pos.}%
\fi
\fi
\fi
\fi
%\let\pgfplots@tick@origin=\pgfmathresult%
\edef\pgfplots@tick@offset{\pgfplots@tick@offset pt}%
%
% make sure the \pgfmathlogtologten method works even for
% non-standard 'log basis #1':
\def\pgfmathlogtologten@{\pgfplotscoordmath{#1}{log to log 10}}%
%
\xdef\pgfplots@show@ticklabel@LASTTICK{}%
\pgfplotslistforeachungrouped\pgfplots@prepared@tick@positions@major@\as\pgfplots@curtickpos{%
\expandafter\pgfplots@prepared@tick@pos@unpack\pgfplots@curtickpos
\let\pgfplots@curtickpos=\pgfplots@tick
%\expandafter\pgfplotslistpopfront\csname pgfplots@prepared@tick@positions@major@tickindices@#1\endcsname\to\pgfplots@ticknum
\pgfplotspointouternormalvectorofaxissetv{}{\pgfplots@curtickpos}%
\pgfplots@show@ticklabel
{#1}{\pgfplots@curtickpos}(\pgfplots@curtickpos,\pgfplots@tick@origin+\pgfplots@tick@offset)%
{\pgfplots@ticknum}%
}%
\pgfplots@ticklabel@maxtickdimen@finish{#1}%
\endpgfplotsonlayer
\endgroup
\pgfplots@draw@tick@scale@label@for #1%
}%
{\relax}% if...@major==false
\fi
\endgroup
}
% This here does the main work for any tick label ANCHORING.
%
% FIXME : the new 'near ticklabel' anchors are now the default method
% to place tick labels.
%
% This feature here can be used to disable this anchoring, i.e. set
% 'ticklabel anchor=tikz' to use a stupid heuristics.
%
% There are actually two choices:
% Choice 1: near ticklabel
% This choice places tick labels fully automatic outside of the
% figure, all on a line which is parallel to the axis which
% contains the corresponding tick labels.
%
% Since we are currently working on a restricted surface, we have
% three direction related to that surface:
% 'a': this is the direction in which tick positions are known.
% 'b': the 'orthogonal' axis to 'a' which is also in the surface.
% 'n': the surface normal.
% Now, the idea for tick labels is to place them at
% SCALE_b * b + SCALE_n * n,
% where the SCALE_[bn] numbers are choosen such that the label is
% outside of the axis.
%
% The offset is simply added to the transformation matrix (as a
% shift).
%
% Choice 2: tikz.
% This is more or less a backwards compatibility feature. It does
% not change the transformation matrix. It simply sets the 'at' key
% of each node to the tick position and prepares the correct anchors
% for the TikZ '\node' commands.
% That's all here.
%
% PRECONDITION:
% - called inside of \pgfplots@drawticklabels@onorientedsurf@
% POSTCONDITION:
% - defines
% - \pgfplots@tickposchoicea
% if called, sets keys such that tick labels are RIGHT (TOP) of
% the axis,
%
% - \pgfplots@tickposchoiceb
% if called, sets keys such that tick labels are LEFT
% (BOTTOM) of the axis,
\def\pgfplots@drawticklabels@onorientedsurf@prepareanchor#1{%
\if\csname pgfplots@ticklabel@anchor@#1\endcsname0%
% auto is the same as 'near ticklabel':
\expandafter\def\csname pgfplots@ticklabel@anchor@#1\endcsname{1}%
\fi
\ifcase\csname pgfplots@ticklabel@anchor@#1\endcsname%
% 0: doesn't happen, see above.
\or
% 1: near ticklabel.
% The following code contains automatically
% aligned tick labels (especially for 3D axes).
% see the manual for the |near ticklabel| anchors.
\pgfkeys{/tikz/anchor=near #1ticklabel}%
%
% process the (optional) ticklabel distance:
\begingroup
\pgfkeysgetvalue{/pgfplots/#1ticklabel shift}\pgfmathresult
\ifx\pgfmathresult\pgfutil@empty
\else
\afterassignment\pgfplots@gobble@until@relax
\pgf@xa=\pgfkeysvalueof{/pgfplots/#1ticklabel shift}pt\relax
\multiply\pgf@xa by-1 % the direction vector points to the INSIDE. the shift should have opposite sign.
\edef\pgfmathresult{\pgf@sys@tonumber\pgf@xa}%
\fi
\pgfmath@smuggleone\pgfmathresult
\endgroup
\let\pgfplots@loc@TMPc=\pgfmathresult
\ifx\pgfplots@loc@TMPc\pgfutil@empty
\else
\pgfplotspointouternormalvectorofaxis@ifdependson@v{\pgfplotsticklabelaxisspec{#1}}{%
\tikzset{every node/.append code={%
\tikz@addtransform{%
\pgftransformshift{%
\pgfplotspointouternormalvectorofticklabelaxis{#1}%
\pgfqpointscale{-\pgfplots@loc@TMPc}{}%
}%
}%
}%
}%
}{%
\pgftransformshift{%
\pgfplotspointouternormalvectorofticklabelaxis{#1}%
\pgfqpointscale{-\pgfplots@loc@TMPc}{}%
}%
}%
\fi
%
% these things are irrelevant here:
\let\pgfplots@tickposchoicea=\pgfutil@empty
\let\pgfplots@tickposchoiceb=\pgfutil@empty
\or
% 2: tikz.
% We simply prepare the default anchor.
% Actually, this code is just for backwards compatibility -
% there may be people who prefer to set anchors. The
% 'near ticklabel' implementation is much more general, however.
\if\pgfplotspointonorientedsurfaceB x
\def\pgfplots@tickposchoicea{\tikzset{right}}%
\def\pgfplots@tickposchoiceb{\tikzset{left}}%
\else
\if\pgfplotspointonorientedsurfaceB y
\def\pgfplots@tickposchoicea{\tikzset{above}}%
\def\pgfplots@tickposchoiceb{\tikzset{below}}%
\else
\def\pgfplots@tickposchoicea{\tikzset{anchor=north east}}%
\def\pgfplots@tickposchoiceb{\tikzset{anchor=south east}}%
\fi
\fi
\fi
\pgfplots@ticklabel@maxtickdimen@prepare@for@normalvec
{#1}%
{\pgfplotspointouternormalvectorofticklabelaxis{#1}}%
}%
\newif\ifpgfplots@checkuniform@isfirst
% Checks whether the argument to xtick or ytick is a UNIFORM tick
% sequence.
%
% A uniform tick sequence is 0,...,10 and 3,4,5 and -5,-4,-2 but
% NOT 0,2,4 or 4,10.
%
% Furthermore, any NON-integer tick arguments are also assumed to be
% NOT uniform.
%
% INPUT:
% #1: a tick argument (i.e. something which can be put to
% \foreach \x in {#1})
%
% OUTPUT:
% \pgfplots@isuniformticktrue
% or
% \pgfplots@isuniformtickfalse
% depending on the check.
% This variable will be set globally.
\def\pgfplots@checkisuniformLOGtick#1{%
\begingroup
\global\pgfplots@isuniformticktrue
\pgfplots@checkuniform@isfirsttrue
\foreach \x in {#1}{%
\pgfmathmultiply@\x\reciproclogten
\let\cur=\pgfmathresult
% check whether
% \cur - last == 1 (last = \pgfplots@glob@TMPb)
\ifpgfplots@checkuniform@isfirst
\global\pgfplots@checkuniform@isfirstfalse
\else
\pgfmathsubtract@\cur\pgfplots@glob@TMPb%
\pgfmathapproxequalto@\pgfmathresult{1.0}%
\ifpgfmathcomparison
\else
\global\pgfplots@isuniformtickfalse
\breakforeach
\fi
\fi
\global\let\pgfplots@glob@TMPb=\cur
}%
\endgroup
}
% Checks whether the linear tick sequence #1 is a uniform tick.
%
% It also assigns pgfplots@tick@distance@#1 as the distance.
%
% see \pgfplots@checkisuniformLOGtick for details.
%
% #1: a tick sequence (expanded)
% #2: a macro which will be filled with the tick distance. This is
% only valid if \pgfplots@isuniformticktrue.
\def\pgfplots@checkisuniformLINEARtick#1#2{%
\begingroup
\global\pgfplots@isuniformticktrue
\pgfplots@checkuniform@isfirsttrue
\global\let\pgfplots@glob@TMPb=\pgfutil@empty
\global\def\pgfplots@glob@TMPa{1}%
\foreach \x in {#1}{%
\ifx\pgfplots@glob@TMPb\pgfutil@empty
\else
\pgfmathsubtract@\x\pgfplots@glob@TMPb
\ifpgfplots@checkuniform@isfirst
% remember first distance h = x_1 - x_0
\global\let\pgfplots@glob@TMPa=\pgfmathresult
\global\pgfplots@checkuniform@isfirstfalse
\else
% check whether x_i - x_{i-1} = h
\pgfmathapproxequalto@\pgfmathresult\pgfplots@glob@TMPa%
\ifpgfmathcomparison
\else
\global\pgfplots@isuniformtickfalse
\breakforeach
\fi
\fi
\fi
\global\let\pgfplots@glob@TMPb=\x%
}%
\endgroup
\let#2=\pgfplots@glob@TMPa
}
% helper method which computes log10*\x foreach \x in {#1}.
% The result will be \xdef'ed into #2.
%
% #1: the ticks
% #2: the output macro
% #3: the axis
\def\pgfplots@compute@tick@times@logten#1\to#2#3{%
\global\let#2=\pgfutil@empty
\foreach \pgfplots@loc@TMPb in {#1} {%
\pgfplotscoordmath{#3}{log to display log}{\pgfplots@loc@TMPb}%
\pgfplotscoordmath{#3}{tofixed}{\pgfmathresult}%
\ifx#2\pgfutil@empty
\xdef#2{\pgfmathresult}%
\else
\xdef#2{#2,\pgfmathresult}%
\fi
}%
}
% Computes tick positions using the current axis limits.
%
% Parameters:
% /pgfplots/max space between ticks
% Determines the maximum space which is not filled by at least one
% tick label (approximate, there is some rounding internally)
% /pgfplots/try min ticks
% see manual
%
% Idea:
% We want ticks at each
% { i*H, i in \Z }.
% Of course, there shouldn't be TOO MUCH ticks.
%
% Our heuristics is to set
% desirednumticks = round(ACTUAL WIDTH / (max space between ticks) )
% and generate H = (axis range) / (desirednumticks).
%
% Since not all step sizes H look well, restrict H to a set of allowed
% step sizes such as
% { 1, 1/2, 1/5, 1/10 },
% or, to be more precise:
% { 1*10^e, 2*10^e, 5*10^e }
% -> round to the nearest matching number!
% This yields H (for example as 2*10^e). Then, compute i*H, i \in \Z
%
% The data scaling transformation T(x) makes things more complicated.
% Now, T(x) = q * x - p and we need to check for problems with large
% numbers:
% - q* H = ( T(Max) - T(Min) ) / desirednumticks = q * (Max - Min) / desirednumticks.
% - Using floating point arithmetics, (Max-Min)/desirednumticks (unscaled!)
% is analysed to restrict H to {1*10^e, 2*10^e, 5*10^e}.
% - So, we get q * H (we can't use the 'p' shift of the affine trafo here).
% - The next problem is to compute { I*H, I in \Z } because
% I = trunc( Min / H ) = trunc( ( T(Min) + p ) / (q*H) ).
% This can be seen by Min = I*H + rest and thus T(Min) = I*q*H + q*rest -p.
% The Problem: (T(min)+p ) / (q*H) can be TOO BIG for pgfmath.
% -> for the data scaling case, I will use floating point
% arithmetics to compute that last step.
% I will acquire \pgfplots@[xy]min@unscaled@as@float here.
%
%
%
%
%
% For log-plots,
% H in { j*log(10), j=1,2,3,... }
% where the usual case should be j = 1.
%
% Then, the resulting tick is
% TICK={MIN,MIN+H,...,MAX}
% where
% MIN = I*H
% is chosen such that
% axis minimum limit = I*H + rest; |rest| < H.
%
% Again, log plots follow a slightly different approach: here,
% MIN = I * log(10)
% is chosen such that
% axis minimum limit = I*log(10) + rest; |rest| < log(10)
% while H = j*log(10), j>=1.
%
%
% PRECONDITION:
% - limits are correct
% - axis width/height is set correctly
%
% POSTCONDITION:
% - Tick for axis #1 is assigned
% - \ifpgfplots@determinedefaultvalues@needs@check@uniformtick is set
%
% REMARKS:
% - this algorithms works also if the data range has been transformed
% with a LINEAR transformation.
% ATTENTION: as of 2008-05-15, the scaling trafo is AFFINE LINEAR.
% That means we have to eliminate the 'affine' shifting before the
% algorithms works correctly.
\def\pgfplots@assign@default@tick@foraxis#1{%
\begingroup
% Shortcut-names:
\expandafter\let\expandafter\ifpgfplots@is@datascaled\csname ifpgfplots@apply@datatrafo@#1\endcsname
% Attention here: use UNSHIFTET scalings, see remark above
\expandafter\let\expandafter\ifpgfplots@cur@is@linear\csname ifpgfplots@#1islinear\endcsname
%
\let\desirednumticks=\c@pgf@countd
\let\Wr=\pgf@xc
\Wr=\csname pgfplotspoint#1axislength\endcsname\relax
% r = max place without ticks in pt -> choose desirednumticks >= W/r
\divide\Wr by\axisdefaulttickwidth\relax
\afterassignment\pgfplots@gobble@until@relax
\desirednumticks=\the\Wr\relax
\advance\desirednumticks by1
\csname ifpgfplots@#1islinear\endcsname
\ifnum\axisdefaulttryminticks>\desirednumticks\relax
\desirednumticks=\axisdefaulttryminticks\relax
\fi
\else
\ifnum\pgfplots@default@try@minticks@log>\desirednumticks\relax
\desirednumticks=\pgfplots@default@try@minticks@log\relax
\fi
\expandafter\ifx\csname pgfplots@#1tickten\endcsname\pgfutil@empty
\else
% log plot and tickten-option: provide special processing.
\edef\pgfplots@loc@TMPa{\csname pgfplots@#1tickten\endcsname}%
\expandafter\pgfplots@compute@tick@times@logten\pgfplots@loc@TMPa\to\pgfplots@glob@TMPa{#1}%
\expandafter\let\csname pgfplots@#1tick\endcsname=\pgfplots@glob@TMPa
\fi
\fi
\ifpgfplots@cur@is@linear
\else
\pgfplotscoordmath{#1}{parsenumber}{1}%
\let\pgfplots@loc@TMPa=\pgfmathresult
\pgfplotscoordmath{#1}{log from display log}{\pgfplots@loc@TMPa}%
\pgfplotscoordmath{#1}{tofixed}{\pgfmathresult}%
\let\pgfplots@loc@log@from@display@log@scale=\pgfmathresult
%
\pgfplotscoordmath{#1}{log to display log}{\pgfplots@loc@TMPa}%
\pgfplotscoordmath{#1}{tofixed}{\pgfmathresult}%
\let\pgfplots@loc@log@to@display@log@scale=\pgfmathresult
\fi
%
\expandafter\ifx\csname pgfplots@#1tick\endcsname\pgfutil@empty
% Ok, we have either log or linear axis and need default
% ticks MIN,MIN+H,...,MAX.
\let\MINH=\pgf@xa
\let\H=\pgf@xb
\let\MAX=\pgf@ya
\let\MIN=\pgf@yb
% compute step size 'H':
\MAX=\csname pgfplots@#1max\endcsname pt %
\advance\MAX by0.001pt % avoid round errors
%\expandafter\MIN\the\c@pgf@counta pt
\MIN=\csname pgfplots@#1min\endcsname pt %
\H=\MAX
\advance\H by-\MIN
\ifdim\H<0pt \H=-1\H \fi
%\message{Axis limit #1: [\the\MIN:\the\MAX], diff = \the\H.^^J}%
\c@pgf@counta=\desirednumticks
\advance\c@pgf@counta by-1 %
\divide\H by\c@pgf@counta
%\message{determining ticks for #1-axis: Wr := (width/max space between ticks) = \the\Wr, desirednumticks=max(\axisdefaulttryminticks, trunc(Wr)) = \the\desirednumticks, H#1=(axis range/(desirednumticks-1)) = \the\H^^J}%
%
% SEARCH for the NEXT FEASABLE H.
\edef\Hmacro{\pgf@sys@tonumber\H}%
\ifpgfplots@cur@is@linear
% CASE LINEAR AXIS
\ifpgfplots@is@datascaled
% This here works if the scaling trafo is linear.
\pgfplotscoordmath{#1}{datascaletrafo noshift inverse}{\Hmacro}%
\let\Hmacro=\pgfmathresult
\else
\pgfmathfloatparsenumber{\Hmacro}%
\let\Hmacro=\pgfmathresult
\fi
%\message{Got T^{-1}(H#1) = \Hmacro^^J}%
%
\pgfplots@assign@default@tick@foraxis@normalizetickdist#1\Hmacro
\let\Hmacro=\pgfmathresult
%
%\message{snapped-to-nicest = \Hmacro^^J}%
\aftergroup\pgfplots@isuniformticktrue
% The following code is carried out in floating point
% arithmetics because it requires large data ranges.
%
% I want to compute MIN@new := I*H where I is chosen
% such that MIN = I*H + rest with rest < H.
% The problem is the possibly large range of MIN. I
% can't work completely in the transformed datarange,
% so numbers get too large.
%
% So, compute I := int( MIN / H ) (integer truncation)
% in float arithmetics and then MIN@new := I*H
\pgfmathfloatdivide@{\csname pgfplots@#1min@unscaled@as@float\endcsname}{\Hmacro}%
\pgfmathfloatint@{\pgfmathresult}%
\pgfmathfloatmultiply@{\pgfmathresult}{\Hmacro}%
\let\MIN@new=\pgfmathresult
% Ok, we are ready.
% Now, convert everything into the fixed point data
% range:
\ifpgfplots@is@datascaled
\pgfplotscoordmath{#1}{datascaletrafo}{\MIN@new}%
\MIN=\pgfmathresult pt
\pgfplotscoordmath{#1}{datascaletrafo noshift}{\Hmacro}%
\H=\pgfmathresult pt
\else
\pgfmathfloattofixed\MIN@new
\MIN=\pgfmathresult pt
\pgfmathfloattofixed\Hmacro
\H=\pgfmathresult pt
\fi
%
% And, since we have used finite precision, I is most
% likely to be large. So: subtract one H. In the worst
% case, this produces one tick position too much (but
% it won't be printed).
\advance\MIN by-\H\relax
\else
% CASE LOG AXIS
%
% search for the "best" H= j* log(10), j an integer.
%
% And prefer j=1 if that is possible (otherwise minor
% ticks are not useful).
\pgfmath@basic@multiply@{\Hmacro}{\pgfplots@loc@log@from@display@log@scale}%
\let\Hmacrobaseten=\pgfmathresult
\expandafter\H\pgfmathresult pt
%\message{ [ H / log(10) = \pgfmathresult ]}%
\ifdim\H<2pt
\H=1pt
\else
\ifnum\H<1pt
\H=1pt
\else
\expandafter\pgfmathfloor\expandafter{\pgfmathresult}%
\expandafter\H\pgfmathresult pt
\fi
\fi
\ifdim\H=1pt
\aftergroup\pgfplots@isuniformticktrue
\pgfplots@isuniformticktrue
\else
\aftergroup\pgfplots@isuniformtickfalse
\pgfplots@isuniformtickfalse
\fi
%\message{final H=\pgf@sys@tonumber{\H} * log(10)}%
\H=\pgfplots@loc@log@to@display@log@scale\H
% Now, we want to activate the Tick set
% {lowest, lowest+H, ..., highest}
%
% Where
% lowest = I * log(10) + rest, |rest| < log(10).
% this is conceptionally different from the approach for
% linear axes, because H = j*log(10).
%
% remember the original xmin in MINH:
\MINH=\MIN
%
% and compute I and I*log(10) here:
\MIN=\pgfplots@loc@log@from@display@log@scale \MIN
\edef\pgfmathresult{\pgf@sys@tonumber{\MIN}}%
\pgfmathsetcount{\c@pgf@counta}{\pgfmathresult}%
\ifdim\MIN<0pt
% the truncation rounds TOWARDS 0 which is not what I want.
\advance\c@pgf@counta by-1
\fi
\MIN=\pgfplots@loc@log@to@display@log@scale pt
\multiply\MIN by\c@pgf@counta
\ifpgfplots@isuniformtick
\else
% This here is a special case to move the first tick
% near the lower axis limit.
%
% "Near" means either directly above or directly below ymin.
%
% My application example is as follows:
% Let H = 2*log(10).
% Furthermore, ymin = 3e-6, ymax= 8e-2. That means we can choose either
% 10^{-5}, 10^{-3}, 10^{-1}
% or
% 10^{-4}, 10^{-2}
% as ticks. Well, I prefer the first one.
%
% HEURISTICS: start as near to ymin as possible!
%
% We check here if we can come nearer to ymin if we
% shift the current tick by log(10):
% if( ymin - I * log(10) < 0.5*H -> use I+1, that means add log(10).
%
% that's equivalent to
% 2*(ymin - I * log(10)) - H < 0.
\advance\MINH by-\MIN
\multiply\MINH by2
\advance\MINH by-\H
%
\ifdim\MINH<0pt
\advance\MIN \pgfplots@loc@log@to@display@log@scale pt
\fi
\fi
\fi
\MINH=\MIN
\advance\MINH by\H
% Ok, now it can happen that only ONE tick label is placed in
% this range.
% That's useless, so check for it.
%
% That's the case if
% MIN < ORIGMIN && MAX < MIN+2 H
% MIN < ORIGMIN by construction (ok, MIN <= ORIGMIN by
% construction, but I don't care about this case).
% So: check only the second condition.
%\message{Got MIN=\pgf@sys@tonumber\MIN; H=\pgf@sys@tonumber\H; MAX=\pgf@sys@tonumber\MAX.^^J}%
\def\pgfplots@tick@returnval@ready{0}%
\pgfplots@tmpa=\MINH
\advance\pgfplots@tmpa by\H
\ifdim\MAX<\pgfplots@tmpa
\pgfplots@if{pgfplots@#1islinear}{%
\begingroup
\def\pgfplots@tick@returnval@ready{1}%
\pgfutil@ifundefined{pgfplots@assign@default@tick@foraxis@recurselevel}{%
\def\pgfplots@assign@default@tick@foraxis@recurselevel{1}%
}{%
\pgfplotsutil@advancestringcounter\pgfplots@assign@default@tick@foraxis@recurselevel
}%
\ifnum\pgfplots@assign@default@tick@foraxis@recurselevel<15
\c@pgf@counta=\axisdefaulttryminticks\relax
\advance\c@pgf@counta by1
\edef\axisdefaulttryminticks{\the\c@pgf@counta}%
%\message{**TOO FEW TICK LABELS FOR #1. RECURSION with try min ticks=\axisdefaulttryminticks.**^^J}%
% recurse.
\pgfplots@assign@default@tick@foraxis{#1}%
\expandafter\global\expandafter\let\expandafter\pgfplots@glob@TMPa\csname pgfplots@#1tick\endcsname
\expandafter\global\expandafter\let\expandafter\pgfplots@glob@TMPb\csname pgfplots@tick@distance@#1\endcsname
\else
\pgfplots@warning{Tick computation for direction #1 failed; there are always too few tick labels (try min ticks has already been advanced to \axisdefaulttryminticks)}%
\def\pgfplots@tick@returnval@ready{0}%
\fi
\pgfmath@smuggleone\pgfplots@tick@returnval@ready
\endgroup
}{%
% Case logarithmic axes and too few ticks.
\aftergroup\pgfplots@isuniformtickfalse
% ok, do something special.
%
% The idea is now to place ticks at
% 10^{i*h} with properly choosen 'h'.
%
% So: apply basically the SAME code as above for linear
% axis, just everything log 10! And keep in mind that all
% coordinates are actually given as natural logarithms.
\MIN\csname pgfplots@#1min\endcsname pt
\H=\MAX
\advance\H by-\MIN
\ifdim\H<0pt \H=-1\H \fi
\H=\pgfplots@loc@log@from@display@log@scale \H
%\message{Axis limit #1: [\the\MIN:\the\MAX], diff/log(10) = \the\H.}%
\c@pgf@counta=\desirednumticks\relax
\advance\c@pgf@counta by-1
\ifnum\c@pgf@counta>2
% subtract one more. This algorithm here produces more
% ticks than the normal one which is designed for 10^i
\advance\c@pgf@counta by-1
\fi
\divide\H by\c@pgf@counta\relax
%\message{determining ticks for #1-axis: Wr := (width/max space between ticks) = \the\Wr, desirednumticks=max(\axisdefaulttryminticks, trunc(Wr)) = \the\desirednumticks, H#1=(axis range/(desirednumticks-1)) = \the\H}%
%
% SEARCH for the NEXT FEASABLE H.
\edef\Hmacro{\pgf@sys@tonumber\H}%
\pgfmathfloatparsenumber{\Hmacro}%
\pgfplots@assign@default@tick@foraxis@normalizetickdist#1\pgfmathresult
%
\expandafter\pgfmathfloattofixed\expandafter{\pgfmathresult}%
\let\Hmacro=\pgfmathresult
\H=\Hmacro pt %
% Ok, our step size h for 10^{i*h} is ready!
%\message{determined step size 10^{\Hmacro}}%
% Now, we want to activate the Tick set {10^{i*H}, i in \Z}
% compute I such that
% 10^{min} = 10^{I * H + rest}; |rest| < H
% -> I = round(xmin/H)
% -> MIN = I * H
% BUT EVERYTHING to log(10) basis!
\MIN=\pgfplots@loc@log@from@display@log@scale \MIN
\pgfmathlog@invoke@expanded\pgfmathdivide@{%
{\pgf@sys@tonumber\MIN}%
{\Hmacro}%
}%
\pgfmathsetcount{\c@pgf@counta}{\pgfmathresult}%
\ifdim\MIN<0pt
% the truncation rounds TOWARDS 0 which is not what I want.
\advance\c@pgf@counta by-1
\fi
\MIN=\H\relax
\multiply\MIN by\c@pgf@counta\relax
%
% convert back to basis 'e':
\MIN=\pgfplots@loc@log@to@display@log@scale\MIN\relax
\H=\pgfplots@loc@log@to@display@log@scale\H\relax
\MINH=\MIN\relax
\advance\MINH by\H\relax
}%
\fi
%\message{final H=\the\H.}%
\if0\pgfplots@tick@returnval@ready
\xdef\pgfplots@glob@TMPb{\pgf@sys@tonumber{\H}}%
\advance\MAX by0.5\H % avoid rounding inaccuracies:
\xdef\pgfplots@glob@TMPa{\pgf@sys@tonumber{\MIN},\pgf@sys@tonumber{\MINH},...,\pgf@sys@tonumber{\MAX}}%
\fi
\aftergroup\pgfplots@determinedefaultvalues@needs@check@uniformtickfalse
\else
\expandafter\global\expandafter\let\expandafter\pgfplots@glob@TMPa\csname pgfplots@#1tick\endcsname
\gdef\pgfplots@glob@TMPb{}% will be computed later, in 'check uniform tick'
\aftergroup\pgfplots@determinedefaultvalues@needs@check@uniformticktrue
\fi
\endgroup
\expandafter\let\csname pgfplots@#1tick\endcsname=\pgfplots@glob@TMPa
\expandafter\let\csname pgfplots@tick@distance@#1\endcsname=\pgfplots@glob@TMPb
%\message{pgfplots.sty: #1tick set to \csname pgfplots@#1tick\endcsname [#1min=\csname pgfplots@#1min\endcsname, #1max=\csname pgfplots@#1max\endcsname].}%
}
% Takes the distance between adjacent ticks as floating point number
% and returns a normalized tick distance.
%
%
% The idea is to get "nice" (human readable) distances instead of
% strange fractions or real numbers.
%
% The result will be assigned to \pgfmathresult (in float).
%
% #1 the axis (x or y or z)
% #2 the unnormalized tick distance computed so far
%
% Example:
% \pgfmathfloatparsenumber{x}{1234}
% \pgfplots@assign@default@tick@foraxis@normalizetickdist{x}{\pgfmathresult}
% \pgfmathfloatotfixed\pgfmathresult
% -->
%
% \pgfmathresult={1200}
% or something like that.
\def\pgfplots@assign@default@tick@foraxis@normalizetickdist#1#2{%
\begingroup
\let\H=\pgf@xb
\expandafter\pgfmathfloat@decompose#2\relax\pgfmathfloat@a@S\H\pgfmathfloat@a@E
% modify the mantisse:
\ifdim\H<2pt
\ifdim\H<1.5pt
\H=1.0pt
\else
\H=2.0pt
\fi
\else
\ifdim\H<4.9999pt
\ifdim\H<3.5pt
\H=2.0pt\relax
\else
\H=5.0pt\relax
\fi
\else
\ifdim\H<7.5pt
\H=5.0pt\relax
\else
\H=1.0pt\relax
\advance\pgfmathfloat@a@E by1
\fi
\fi
\fi
\pgfmathfloatcreate{\the\pgfmathfloat@a@S}{\pgf@sys@tonumber{\H}}{\the\pgfmathfloat@a@E}%
\pgfmath@smuggleone\pgfmathresult
\endgroup
}%
% Helper method for
% \pgfplots@apply@data@scale@trafo@to@options@for
% #1: the ticks
% #2: the trafo routine (not necessarily a single macro, but should
% take one arg)
% #3: the output macro name
\long\def\pgfplots@apply@data@scale@trafo@to@user@ticks#1#2\to#3{%
\let#3=\pgfutil@empty
\foreach \pgfplots@loc@TMPb in {#1} {%
\pgfmathfloatparsenumber{\pgfplots@loc@TMPb}%
#2{\pgfmathresult}%
\ifx#3\pgfutil@empty
\xdef#3{\pgfmathresult}%
\else
\xdef#3{#3,\pgfmathresult}%
\fi
}%
%
}%
% Helper method for
% \pgfplots@apply@data@scale@trafo@to@options@for
% #1: the ticks ALREADY IN FLOAT FORMAT
% #2: the trafo macro name
% #3: the output macro name
\long\def\pgfplots@apply@data@scale@trafo@to@user@ticks@isfloat#1#2\to#3{%
\let#3=\pgfutil@empty
\foreach \pgfplots@loc@TMPb in {#1} {%
#2{\pgfplots@loc@TMPb}%
\ifx#3\pgfutil@empty
\xdef#3{\pgfmathresult}%
\else
\xdef#3{#3,\pgfmathresult}%
\fi
}%
%
}%
% Adds a further, temporary anchor to every node which will be
% processed. The anchor will be named '#2'. It is placed such that
% 1. the node's center is on a line in direction of the inwards normal
% vector of the #1 ticklabel axis and the 'at' position of the node,
% 2. the node does not intrude the axis.
%
% In effect, one of the node's standard anchors (north, east, ... )
% will be placed on the line
% \draw[blue,thick,->] (xticklabel cs:0,0) -- (xticklabel cs:1,0);
%
% This command is identical to calling
% \pgfplotsdeclareborderanchorforaxis{#1}{<three-char-string-of-#1-ticklabel-axis>}{#2}
%
% @REMARKS:
% - it is -by no means- necessary that any ticks or tick labels are
% drawn or defined for this method.
% - in fact, tick labels use such an anchor (the 'near #1ticklabel'
% anchor is defined in this way)
\def\pgfplotsdeclareborderanchorforticklabelaxis#1#2{%
\pgfplotsdeclareborderanchorforaxis{#1}{\pgfplotsticklabelaxisspec{#1}}{#2}%
}
|