summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/generic/pgf/graphdrawing/lua/pgf/gd/force/SpringElectricalWalshaw2000.lua
blob: 5f7978da4ebe5f89ef8064c50890208e6fefce1b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
-- Copyright 2011 by Jannis Pohlmann
-- Copyright 2012 by Till Tantau
--
-- This file may be distributed and/or modified
--
-- 1. under the LaTeX Project Public License and/or
-- 2. under the GNU Public License
--
-- See the file doc/generic/pgf/licenses/LICENSE for more information

-- @release $Header$




local SpringElectricalWalshaw2000 = {}

-- Imports
local declare = require("pgf.gd.interface.InterfaceToAlgorithms").declare




---

declare {
  key       = "spring electrical Walshaw 2000 layout",
  algorithm = SpringElectricalWalshaw2000,

  preconditions = {
    connected = true,
    loop_free = true,
    simple    = true,
  },

  old_graph_model = true,

  summary = [["
    Implementation of a spring electrical graph drawing algorithm based on
    a paper by Walshaw.
  "]],
  documentation = [["
    \begin{itemize}
      \item
        C. Walshaw.
        \newblock A multilevel algorithm for force-directed graph drawing.
        \newblock In J. Marks, editor, \emph{Graph Drawing}, Lecture Notes in
          Computer Science, 1984:31--55, 2001.
    \end{itemize}

    The following modifications compared to the original algorithm were applied:
    %
    \begin{itemize}
      \item An iteration limit was added.
      \item The natural spring length for all coarse graphs is computed based
        on the formula presented by Walshaw, so that the natural spring
        length of the original graph (coarse graph 0) is the same as
        the value requested by the user.
      \item Users can define custom node and edge weights.
      \item Coarsening stops when $|V(G_i+1)|/|V(G_i)| < p$ where $p = 0.75$.
      \item Coarsening stops when the maximal matching is empty.
      \item The runtime of the algorithm is improved by use of a quadtree
        data structure like Hu does in his algorithm.
      \item A limiting the number of levels of the quadtree is not implemented.
    \end{itemize}
  "]]
}

-- TODO Implement the following keys (or whatever seems appropriate
-- and doable for this algorithm):
--   - /tikz/desired at
--   - /tikz/influence cutoff distance
--   - /tikz/spring stiffness (could this be the equivalent to the electric
--       charge of nodes?
--   - /tikz/natural spring dimension per edge
--
-- TODO Implement the following features:
--   - clustering of nodes using color classes
--   - different cluster layouts (vertical line, horizontal line,
--     normal cluster, internally fixed subgraph)



local Vector      = require "pgf.gd.deprecated.Vector"

local QuadTree    = require "pgf.gd.force.QuadTree"
local CoarseGraph = require "pgf.gd.force.CoarseGraph"


local lib = require "pgf.gd.lib"


function SpringElectricalWalshaw2000:run()

  -- Setup parameters
  local options = self.digraph.options

  self.iterations = options['iterations']
  self.cooling_factor = options['cooling factor']
  self.initial_step_length = options['initial step length']
  self.convergence_tolerance = options['convergence tolerance']

  self.natural_spring_length = options['node distance']
  self.spring_constant = options['spring constant']

  self.approximate_repulsive_forces = options['approximate remote forces']
  self.repulsive_force_order = options['electric force order']

  self.coarsen = options['coarsen']
  self.downsize_ratio = options['downsize ratio']
  self.minimum_graph_size = options['minimum coarsening size']

  -- Adjust types
  self.downsize_ratio = math.max(0, math.min(1, self.downsize_ratio))
  self.graph_size = #self.graph.nodes
  self.graph_density = (2 * #self.graph.edges) / (#self.graph.nodes * (#self.graph.nodes - 1))

  -- validate input parameters
  assert(self.iterations >= 0, 'iterations (value: ' .. self.iterations .. ') need to be greater than 0')
  assert(self.cooling_factor >= 0 and self.cooling_factor <= 1, 'the cooling factor (value: ' .. self.cooling_factor .. ') needs to be between 0 and 1')
  assert(self.initial_step_length >= 0, 'the initial step length (value: ' .. self.initial_step_length .. ') needs to be greater than or equal to 0')
  assert(self.convergence_tolerance >= 0, 'the convergence tolerance (value: ' .. self.convergence_tolerance .. ') needs to be greater than or equal to 0')
  assert(self.natural_spring_length >= 0, 'the natural spring dimension (value: ' .. self.natural_spring_length .. ') needs to be greater than or equal to 0')
  assert(self.spring_constant >= 0, 'the spring constant (value: ' .. self.spring_constant .. ') needs to be greater or equal to 0')
  assert(self.downsize_ratio >= 0 and self.downsize_ratio <= 1, 'the downsize ratio (value: ' .. self.downsize_ratio .. ') needs to be between 0 and 1')
  assert(self.minimum_graph_size >= 2, 'the minimum coarsening size of coarse graphs (value: ' .. self.minimum_graph_size .. ') needs to be greater than or equal to 2')

  -- initialize node weights
  for _,node in ipairs(self.graph.nodes) do
    if node:getOption('electric charge') ~= nil then
      node.weight = node:getOption('electric charge')
    else
      node.weight = 1
    end

    -- a node is charged if its weight derives from the default setting
    -- of 1 (where it has no influence on the forces)
    node.charged = node.weight ~= 1
  end

  -- initialize edge weights
  for _,edge in ipairs(self.graph.edges) do
    edge.weight = 1
  end


  -- initialize the coarse graph data structure. note that the algorithm
  -- is the same regardless whether coarsening is used, except that the
  -- number of coarsening steps without coarsening is 0
  local coarse_graph = CoarseGraph.new(self.graph)

  -- check if the multilevel approach should be used
  if self.coarsen then
    -- coarsen the graph repeatedly until only minimum_graph_size nodes
    -- are left or until the size of the coarse graph was not reduced by
    -- at least the downsize ratio configured by the user
    while coarse_graph:getSize() > self.minimum_graph_size
      and coarse_graph:getRatio() < (1 - self.downsize_ratio)
    do
      coarse_graph:coarsen()
    end
  end

  -- compute the natural spring length for the coarsest graph in a way
  -- that will result in the desired natural spring length in the
  -- original graph
  local spring_length = self.natural_spring_length / math.pow(math.sqrt(4/7), coarse_graph:getLevel())

  if self.coarsen then
    -- generate a random initial layout for the coarsest graph
    self:computeInitialLayout(coarse_graph.graph, spring_length)

    -- undo coarsening step by step, applying the force-based sub-algorithm
    -- to every intermediate coarse graph as well as the original graph
    while coarse_graph:getLevel() > 0 do
      -- interpolate the previous coarse graph
      coarse_graph:interpolate()

      -- update the natural spring length so that, for the original graph,
      -- it equals the natural spring dimension configured by the user
      spring_length = spring_length * math.sqrt(4/7)

      -- apply the force-based algorithm to improve the layout
      self:computeForceLayout(coarse_graph.graph, spring_length)
    end
  else
    -- generate a random initial layout for the coarsest graph
    self:computeInitialLayout(coarse_graph.graph, spring_length)

    -- apply the force-based algorithm to improve the layout
    self:computeForceLayout(coarse_graph.graph, spring_length)
  end
end



function SpringElectricalWalshaw2000:computeInitialLayout(graph, spring_length)
  -- TODO how can supernodes and fixed nodes go hand in hand?
  -- maybe fix the supernode if at least one of its subnodes is
  -- fixated?

  -- fixate all nodes that have a 'desired at' option. this will set the
  -- node.fixed member to true and also set node.pos.x and node.pos.y
  self:fixateNodes(graph)

  if #graph.nodes == 2 then
    if not (graph.nodes[1].fixed and graph.nodes[2].fixed) then
      local fixed_index = graph.nodes[2].fixed and 2 or 1
      local loose_index = graph.nodes[2].fixed and 1 or 2

      if not graph.nodes[1].fixed and not graph.nodes[2].fixed then
        -- both nodes can be moved, so we assume node 1 is fixed at (0,0)
        graph.nodes[1].pos.x = 0
        graph.nodes[1].pos.y = 0
      end

      -- position the loose node relative to the fixed node, with
      -- the displacement (random direction) matching the spring length
      local direction = Vector.new{x = lib.random(1, 2), y = lib.random(1, 2)}
      local distance = 3 * spring_length * self.graph_density * math.sqrt(self.graph_size) / 2
      local displacement = direction:normalized():timesScalar(distance)

      graph.nodes[loose_index].pos = graph.nodes[fixed_index].pos:plus(displacement)
    else
      -- both nodes are fixed, initial layout may be far from optimal
    end
  else
    -- function to filter out fixed nodes
    local function nodeNotFixed(node) return not node.fixed end

    -- use the random positioning technique
    local function positioning_func(n)
      local radius = 3 * spring_length * self.graph_density * math.sqrt(self.graph_size) / 2
      return lib.random(-radius, radius)
    end

    -- compute initial layout based on the random positioning technique
    for _,node in ipairs(graph.nodes) do
      if not node.fixed then
        node.pos.x = positioning_func(1)
        node.pos.y = positioning_func(2)
      end
    end
  end
end



function SpringElectricalWalshaw2000:computeForceLayout(graph, spring_length)
  -- global (=repulsive) force function
  local function accurate_repulsive_force(distance, weight)
    return - self.spring_constant * weight * math.pow(spring_length, self.repulsive_force_order + 1) / math.pow(distance, self.repulsive_force_order)
  end

  -- global (=repulsive, approximated) force function
  local function approximated_repulsive_force(distance, mass)
    return - mass * self.spring_constant * math.pow(spring_length, self.repulsive_force_order + 1) / math.pow(distance, self.repulsive_force_order)
  end

  -- local (spring) force function
  local function attractive_force(distance, d, weight, charged, repulsive_force)
    -- for charged nodes, never subtract the repulsive force; we want ALL other
    -- nodes to be attracted more / repulsed less (not just non-adjacent ones),
    -- depending on the charge of course
    if charged then
      return (distance - spring_length) / d - accurate_repulsive_force(distance, weight)
    else
      return (distance - spring_length) / d - (repulsive_force or 0)
    end
  end

  -- define the Barnes-Hut opening criterion
  function barnes_hut_criterion(cell, particle)
    local distance = particle.pos:minus(cell.center_of_mass):norm()
    return cell.width / distance <= 1.2
  end

  -- fixate all nodes that have a 'desired at' option. this will set the
  -- node.fixed member to true and also set node.pos.x and node.pos.y
  self:fixateNodes(graph)

  -- adjust the initial step length automatically if desired by the user
  local step_length = self.initial_step_length == 0 and spring_length or self.initial_step_length

  -- convergence criteria
  local converged = false
  local i = 0

  while not converged and i < self.iterations do

    -- assume that we are converging
    converged = true
    i = i + 1

    -- build the quadtree for approximating repulsive forces, if desired
    local quadtree = nil
    if self.approximate_repulsive_forces then
      quadtree = self:buildQuadtree(graph)
    end

    local function nodeNotFixed(node) return not node.fixed end

    -- iterate over all nodes
    for _,v in ipairs(graph.nodes) do
      if not v.fixed then
        -- vector for the displacement of v
        local d = Vector.new(2)

        -- repulsive force induced by other nodes
        local repulsive_forces = {}

        -- compute repulsive forces
        if self.approximate_repulsive_forces then
          -- determine the cells that have an repulsive influence on v
          local cells = quadtree:findInteractionCells(v, barnes_hut_criterion)

          -- compute the repulsive force between these cells and v
          for _,cell in ipairs(cells) do
            -- check if the cell is a leaf
            if #cell.subcells == 0 then
              -- compute the forces between the node and all particles in the cell
              for _,particle in ipairs(cell.particles) do
                -- build a table that contains the particle plus all its subparticles
                -- (particles at the same position)
                local real_particles = lib.copy(particle.subparticles)
                table.insert(real_particles, particle)

                for _,real_particle in ipairs(real_particles) do
                  local delta = real_particle.pos:minus(v.pos)

                  -- enforce a small virtual distance if the node and the cell's
                  -- center of mass are located at (almost) the same position
                  if delta:norm() < 0.1 then
                    delta:update(function (n, value) return 0.1 + lib.random() * 0.1 end)
                  end

                  -- compute the repulsive force vector
                  local repulsive_force = approximated_repulsive_force(delta:norm(), real_particle.mass)
                  local force = delta:normalized():timesScalar(repulsive_force)

                  -- remember the repulsive force for the particle so that we can
                  -- subtract it later when computing the attractive forces with
                  -- adjacent nodes
                  repulsive_forces[real_particle.node] = repulsive_force

                  -- move the node v accordingly
                  d = d:plus(force)
                end
              end
            else
              -- compute the distance between the node and the cell's center of mass
              local delta = cell.center_of_mass:minus(v.pos)

              -- enforce a small virtual distance if the node and the cell's
              -- center of mass are located at (almost) the same position
              if delta:norm() < 0.1 then
                delta:update(function (n, value) return 0.1 + lib.random() * 0.1 end)
              end

              -- compute the repulsive force vector
              local repulsive_force = approximated_repulsive_force(delta:norm(), cell.mass)
              local force = delta:normalized():timesScalar(repulsive_force)

              -- TODO for each neighbor of v, check if it is in this cell.
              -- if this is the case, compute the quadtree force for the mass
              -- 'node.weight / cell.mass' and remember this as the repulsive
              -- force of the neighbor;  (it is not necessarily at
              -- the center of mass of the cell, so the result is only an
              -- approximation of the real repulsive force generated by the
              -- neighbor)

              -- move the node v accordingly
              d = d:plus(force)
            end
          end
        else
          for _,u in ipairs(graph.nodes) do
            if u.name ~= v.name then
              -- compute the distance between u and v
              local delta = u.pos:minus(v.pos)

              -- enforce a small virtual distance if the nodes are
              -- located at (almost) the same position
              if delta:norm() < 0.1 then
                delta:update(function (n, value) return 0.1 + lib.random() * 0.1 end)
              end

              -- compute the repulsive force vector
              local repulsive_force = accurate_repulsive_force(delta:norm(), u.weight)
              local force = delta:normalized():timesScalar(repulsive_force)

              -- remember the repulsive force so we can later subtract them
              -- when computing the attractive forces
              repulsive_forces[u] = repulsive_force

              -- move the node v accordingly
              d = d:plus(force)
            end
          end
        end

        -- compute attractive forces between v and its neighbors
        for _,edge in ipairs(v.edges) do
          local u = edge:getNeighbour(v)

          -- compute the distance between u and v
          local delta = u.pos:minus(v.pos)

          -- enforce a small virtual distance if the nodes are
          -- located at (almost) the same position
          if delta:norm() < 0.1 then
            delta:update(function (n, value) return 0.1 + lib.random() * 0.1 end)
          end

          -- compute the spring force between them
          local attr_force = attractive_force(delta:norm(), #v.edges, u.weight, u.charged, repulsive_forces[u])
          local force = delta:normalized():timesScalar(attr_force)

          -- move the node v accordingly
          d = d:plus(force)
        end

        -- remember the previous position of v
        old_position = v.pos:copy()

        if d:norm() > 0 then
          -- reposition v according to the force vector and the current temperature
          v.pos = v.pos:plus(d:normalized():timesScalar(math.min(step_length, d:norm())))
        end

        -- we need to improve the system energy as long as any of
        -- the node movements is large enough to assume we're far
        -- away from the minimum system energy
        if v.pos:minus(old_position):norm() > spring_length * self.convergence_tolerance then
          converged = false
        end
      end
    end

    -- update the step length using the conservative cooling scheme
    step_length = self.cooling_factor * step_length
  end
end



-- Fixes nodes at their specified positions.
--
function SpringElectricalWalshaw2000:fixateNodes(graph)
  local number_of_fixed_nodes = 0

  for _,node in ipairs(graph.nodes) do
    -- read the 'desired at' option of the node
    local coordinate = node:getOption('desired at')

    if coordinate then
      -- parse the coordinate
      node.pos.x = coordinate.x
      node.pos.y = coordinate.y

      -- mark the node as fixed
      node.fixed = true

      number_of_fixed_nodes = number_of_fixed_nodes + 1
    end
  end
  if number_of_fixed_nodes > 1 then
     self.growth_direction = "fixed"  -- do not grow, orientation is now fixed
  end
end



function SpringElectricalWalshaw2000:buildQuadtree(graph)
  -- compute the minimum x and y coordinates of all nodes
  local min_pos = graph.nodes[1].pos
  for _,node in ipairs(graph.nodes) do
    min_pos = Vector.new(2, function (n) return math.min(min_pos[n], node.pos[n]) end)
  end

  -- compute maximum x and y coordinates of all nodes
  local max_pos = graph.nodes[1].pos
  for _,node in ipairs(graph.nodes) do
    max_pos = Vector.new(2, function (n) return math.max(max_pos[n], node.pos[n]) end)
  end

  -- make sure the maximum position is at least a tiny bit
  -- larger than the minimum position
  if min_pos:equals(max_pos) then
    max_pos = max_pos:plus(Vector.new(2, function (n)
      return 0.1 + lib.random() * 0.1
    end))
  end

  -- make sure to make the quadtree area slightly larger than required
  -- in theory; for some reason Lua will otherwise think that nodes with
  -- min/max x/y coordinates are outside the box... weird? yes.
  min_pos = min_pos:minusScalar(1)
  max_pos = max_pos:plusScalar(1)

  -- create the quadtree
  quadtree = QuadTree.new(min_pos.x, min_pos.y,
                          max_pos.x - min_pos.x,
                          max_pos.y - min_pos.y)

  -- insert nodes into the quadtree
  for _,node in ipairs(graph.nodes) do
    local particle = QuadTree.Particle.new(node.pos, node.weight)
    particle.node = node
    quadtree:insert(particle)
  end

  return quadtree
end



-- done

return SpringElectricalWalshaw2000