summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/context/modules/mkiv/m-matrix.mkiv
blob: 9cac6967277a5b46fe5cec9878d3456d017224d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
%D \module
%D   [       file=m-matrix,
%D        version=2014.11.04, % already a year older
%D          title=\CONTEXT\ Extra Modules,
%D       subtitle=Matrices,
%D         author={Jeong Dalyoung \& Hans Hagen},
%D           date=\currentdate,
%D      copyright={PRAGMA ADE \& \CONTEXT\ Development Team}]
%C
%C This module is part of the \CONTEXT\ macro||package and is
%C therefore copyrighted by \PRAGMA. See mreadme.pdf for
%C details.

%D This code is based on a post by Dalyoung on the context list. After that
%D we turned it into a module and improved the code a bit. Feel free to ask
%D us for more. Once we're satisfied, a more general helper l-matrix could
%D be made. Dalyoung does the clever bits, and Hans only cleanes up and
%D optimizes a bit.

% \registerctxluafile{l-matrix}{} % not yet

\startmodule[matrix]

\startluacode

local settings_to_hash = utilities.parsers.settings_to_hash
local formatters       = string.formatters
local copy             = table.copy
local insert           = table.insert
local remove           = table.remove
local random           = math.random

local context          = context

local matrix      = { }
moduledata.matrix = matrix

local f_matrix_slot = formatters["%s_{%s%s}"]

function matrix.symbolic(sym, x, y, nx ,ny) -- symMatrix("a", "m", "n")
    local nx = nx or 2
    local ny = ny or nx
    local function filled(i,y)
        local mrow = { }
        for j=1,nx do
            mrow[#mrow+1] = f_matrix_slot(sym,i,j)
        end
        mrow[#mrow+1] = "\\cdots"
        mrow[#mrow+1] = f_matrix_slot(sym,i,y)
        return mrow
    end
    local function dummy()
        local mrow = { }
        for j=1,nx do
            mrow[#mrow+1] = "\\vdots"
        end
        mrow[#mrow+1] = "\\ddots"
        mrow[#mrow+1] = "\\vdots"
        return mrow
    end
    --
    local mm = { }
    for i=1,ny do
        mm[i] = filled(i,y)
    end
    mm[#mm+1] = dummy()
    mm[#mm+1] = filled(x,y)
    return mm
end

-- todo: define a matrix at the tex end so that we have more control

-- local fences = {
--     parentheses = { left = "\\left(\\,", right = "\\,\\right)" },
--     brackets    = { left = "\\left[\\,", right = "\\,\\right]" },
--     bars        = { left = "\\left|\\,", right = "\\,\\right|" },
-- }

local fences = {
    parentheses = { "matrix:parentheses" },
    brackets    = { "matrix:brackets" },
    bars        = { "matrix:bars" },
}

-- one can add more fences

fences.bar         = fences.bars
fences.parenthesis = fences.parentheses
fences.bracket     = fences.brackets

-- one can set the template

matrix.template    = "%0.3F"

function matrix.typeset(m,options)
    if type(m) == "table" then
        local options  = settings_to_hash(options or "")
        local whatever = options.determinant == "yes" and fences.bars or fences.parentheses
        if options.fences then
            whatever = fences[options.fences] or whatever
        elseif options.determinant then
         -- whatever = fences.brackets
            whatever = fences.bars
        end
        local template = options.template or matrix.template
        if template == "yes" then
            template = matrix.template
        elseif template == "no" then
            template = false
        elseif tonumber(template) then
            template = "%0." .. template .. "F"
        end
        context.startnamedmatrix(whatever)
            if type(m[1]) ~= "table" then
                m = { copy(m) }
            end
            for i=1, #m do
                local mi = m[i]
                for j=1,#mi do
                    context.NC()
                    local n = mi[j]
                    if template and tonumber(n) then
                        context(template,n)
                    else
                        context(mi[j])
                    end
                end
                context.NR()
            end
        context.stopnamedmatrix()
    elseif m then
        context(m)
    end
end

function matrix.swaprows(t,i,j)
    local ti = t[i]
    if not ti then
        return "error: no row"
    end
    local tj = t[j]
    if not tj then
        return "error: no row"
    end
    t[i], t[j] = tj, ti
    return t
end

-- interchange two columns (i-th, j-th)

function matrix.swapcolumns(t, i, j)
    local t1 = t[1]
    if not t1 then
        return "error: no rows"
    end
    local n = #t1
    if i > n or j > n then
        return "error: no column"
    end
    for k = 1, #t do
        local tk = t[k]
        tk[i], tk[j] = tk[j], tk[i]
    end
    return t
end

matrix.swapC = matrix.swapcolumns
matrix.swapR = matrix.swaprows
matrix.swap  = matrix.swaprows

-- replace i-th row with factor * (i-th row)

function matrix.multiply(m,i,factor)
    local mi = m[i]
    for k=1,#mi do
        mi[k] = factor * mi[k]
    end
    return m
end

-- scalar product "factor * m"

function matrix.scalar(m, factor)
    for i=1,#m do
        local mi = m[i]
        for j=1,#mi do
            mi[j] = factor * mi[j]
        end
    end
    return m
end

-- replace i-th row with i-th row + factor * (j-th row)

function matrix.sumrow(m,i,j,factor)
    local mi = m[i]
    local mj = m[j]
    for k=1,#mi do
        mi[k] = mi[k] + factor * mj[k]
    end
end

-- transpose of a matrix

function matrix.transpose(m)
    local t = { }
    for j=1,#m[1] do
        local r = { }
        for i=1,#m do
            r[i] = m[i][j]
        end
        t[j] = r
    end
    return t
end

-- inner product of two vectors

function matrix.inner(u,v)
    local nu = #u
    if nu == 0 then
        return 0
    end
    local nv = #v
    if nv ~= nu then
       return "error: size mismatch"
    end
    local result = 0
    for i=1,nu do
        result = result + u[i] * v[i]
    end
    return result
end

-- product of two matrices

function matrix.product(m1,m2)
    if #m1[1] == #m2 then
        local product = { }
        for i=1,#m1 do
            local m1i  = m1[i]
            local mrow = { }
            for j=1,#m2[1] do
                local temp = 0
                for k=1,#m1[1] do
                    temp = temp + m1i[k] * m2[k][j]
                end
                mrow[j] = temp
            end
            product[i] = mrow
        end
        return product
    else
        return "error: size mismatch"
    end
end

local function uppertri(m,sign)
    local temp = copy(m)
    for i=1,#temp-1 do
        local pivot = temp[i][i]
        if pivot == 0 then
            local pRow = i +1
            while temp[pRow][i] == 0 do
                pRow = pRow + 1
                if pRow > #temp then -- if there is no nonzero number
                    return temp
                end
            end
            temp[i], temp[pRow] = temp[pRow], temp[i]
            if sign then
                sign = -sign
            end
        end
        local mi = temp[i]
        for k=i+1, #temp do
            local factor = -temp[k][i]/mi[i]
            local mk = temp[k]
            for l=i,#mk do
                mk[l] = mk[l] + factor * mi[l]
            end
        end
    end
    if sign then
        return temp, sign
    else
        return temp
    end
end

matrix.uppertri = uppertri

local function determinant(m)
    if #m == #m[1] then
        local d = 1
        local t, s = uppertri(m,1)
        for i=1,#t do
            d = d * t[i][i]
        end
        return s*d
    else
        return "error: not a square matrix" -- not context(..)
    end
end

matrix.determinant = determinant

local function rowechelon(m,r)
    local temp = copy(m)
    local pRow = 1
    local pCol = 1
    while pRow <=  #temp  do
        local pivot = temp[pRow][pCol]
        if  pivot == 0 then
            local i = pRow
            local n = #temp
            while temp[i][pCol] == 0 do
                i = i + 1
                if i > n then
                    -- no nonzero number in a column
                    pCol = pCol + 1
                    if pCol > #temp[pRow] then
                        -- there is no nonzero number in a row
                        return temp
                    end
                    i = pRow
                end
            end
            temp[pRow], temp[i] = temp[i], temp[pRow]
        end
        local row = temp[pRow]
        pivot = row[pCol]
        for l=pCol,#row do
            row[l] = row[l]/pivot
        end

        if r == 1 then
            -- make the "reduced row echelon form"
            local row = temp[pRow]
            for k=1,pRow-1 do
                local current = temp[k]
                local factor  = -current[pCol]
                local mk      = current
                for l=pCol,#mk do
                    mk[l] = mk[l] + factor * row[l]
                end
            end
        end
        -- just make the row echelon form
        local row = temp[pRow]
        for k=pRow+1, #temp do
            local current = temp[k]
            local factor  = -current[pCol]
            local mk      = current
             for l=pCol,#mk do
                mk[l] = mk[l] + factor * row[l]
            end
        end
        pRow = pRow + 1
        pCol = pCol + 1

        if pRow > #temp or pCol > #temp[1] then
            pRow = #temp + 1
        end
    end
    return temp
end

matrix.rowechelon = rowechelon
matrix.rowEchelon = rowechelon

-- make matrices until its determinant is not 0

function matrix.make(m,n,low,high) -- m and n swapped
    if not n then
        n = 10
    end
    if not m then
        m = 10
    end
    if not low then
        low = 0
    end
    if not high then
        high = 10
    end
    local t = { }
    for i=1,m do
        t[i] = { }
    end
    while true do
        for i=1,m do
            local ti = t[i]
            for j=1,n do
                ti[j] = random(low,high)
            end
        end
        if n ~= m or determinant(t,1) ~= 0 then
            return t
        end
    end
end

-- extract submatrix by using

local function submatrix(t,i,j)
    local rows    = #t
    local columns = #t[1]
    local sign    = 1 -- not used
    if i <= rows and j <= columns then
        local c = copy(t)
        remove(c,i)
        for k=1,rows-1 do
            remove(c[k],j)
        end
        return c
    else
        return "error: out of bound"
    end
end

matrix.submatrix = submatrix

-- calculating determinant using Laplace Expansion

function matrix.laplace(t) -- not sure if this is the most effient but
    local factors = { 1 }  -- it's not used for number crunching anyway
    local data    = copy(t)
    local det     = 0
    while #data > 0 do
        local mat = { }
        local siz = #data[1]
        if siz == 0 then
            return "error: no determinant"
        elseif siz == 1 then
            det = data[1][1]
            return det
        end
        for i=1,siz do
            mat[i] = data[1]
            remove(data,1)
        end
        local factor = remove(factors,1)
        local m1 = mat[1]
        if siz == 2 then
            local m2 = mat[2]
            det = det + factor * (m1[1]*m2[2] - m1[2]*m2[1])
        else
            for j=1,#m1 do
                local m1j = m1[j]
                if m1j ~= 0 then
                    insert(factors, (-1)^(j+1) * factor * m1j)
                    local m = submatrix(mat,1,j)
                    for k, v in next, m do
                         insert(data,v)
                    end
                end
            end
        end
    end
    return det
end

--  solve the linear equation m X = c

local function solve(m,c)
    local n = #m
    if n ~= #c then
     -- return "error: size mismatch"
        return nil
    end
    local newm = copy(m)
    local temp = copy(c)
    local solution = copy(c)
    for i=1,n do
        insert(newm[i],temp[i])
    end
    newm = uppertri(newm, 0)
    for k = n,1,-1 do
        local val = 0
        local new = newm[k]
        for j = k+1, n do
            val = val + new[j] * solution[j]
        end
        if new[k] == 0 then
         -- return "error: no unique solution"
            return nil
        else
            solution[k] =  (new[n+1] - val)/new[k]
        end
    end
    return solution
end

matrix.solve = solve

-- find the inverse matrix of m

local function inverse(m)
    local n = #m
    local temp = copy(m)
    if n ~= #m[1] then
        return temp
    end
    for i=1,n do
        for j=1,n do
            insert(temp[i],j == i and 1 or 0)
        end
    end
    temp = rowechelon(temp,1)
    for i=1,n do
        for j=1,n do
            remove(temp[i], 1)
        end
    end
    return temp
end

matrix.inverse = inverse

\stopluacode

\stopmodule

\unexpanded\def\ctxmodulematrix#1{\ctxlua{moduledata.matrix.#1}}

\continueifinputfile{m-matrix.mkiv}

\usemodule[m-matrix]
\usemodule[art-01]

\starttext

\startluacode
document.DemoMatrixA = {
    { 0, 2,  4, -4, 1 },
    { 0, 0,  2,  3, 4 },
    { 2, 2, -6,  2, 4 },
    { 2, 0, -6,  9, 7 },
    { 2, 3,  4,  5, 6 },
    { 6, 6, -6,  6, 6 },
}

document.DemoMatrixB = {
    { 0, 2,  4, -4, 1 },
    { 0, 0,  2,  3, 4 },
    { 2, 2, -6,  3, 4 },
    { 2, 0, -6,  9, 7 },
    { 2, 2, -6,  2, 4 },
}

document.DemoMatrixC = {
    {  3, 3, -1,  3 },
    { -1, 4,  1,  3 },
    {  5, 4,  0,  2 },
    {  2, 4,  0, -1 },
}
\stopluacode

\startbuffer[demo]
\typebuffer
\startalignment[middle]
    \dontleavehmode\inlinebuffer
\stopalignment
\stopbuffer

\setuphead[section][before={\testpage[5]\blank[2*big]}]

\startsubject[title={A symbolic matrix}]

\startbuffer
\ctxmodulematrix{typeset(moduledata.matrix.symbolic("a", "m", "n"))}
\ctxmodulematrix{typeset(moduledata.matrix.symbolic("a", "m", "n", 4, 8))}
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={Generate a new $m \times n$ matrix}]

\startbuffer
\startluacode
    moduledata.matrix.typeset(moduledata.matrix.make(4,3, 0,5))
    context.qquad()
    moduledata.matrix.typeset(moduledata.matrix.make(5,5,-1,5))
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={Swap two rows (2 and 4)}]

\startbuffer
\startluacode
    moduledata.matrix.typeset(document.DemoMatrixA)
    context("$\\qquad \\Rightarrow \\qquad$")
    moduledata.matrix.typeset(moduledata.matrix.swaprows(document.DemoMatrixA,2,4))
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={Swap two columns (2 and 4)}]

\startbuffer
\startluacode
    moduledata.matrix.typeset(document.DemoMatrixA)
    context("$\\qquad \\Rightarrow \\qquad$")
    moduledata.matrix.typeset(moduledata.matrix.swapcolumns(document.DemoMatrixA,2, 4))
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={Multiply 3 to row 2($3 \times r_2$)}]

\startbuffer
\startluacode
    moduledata.matrix.typeset(document.DemoMatrixA)
    context("$\\qquad \\Rightarrow \\qquad$")
    moduledata.matrix.typeset(moduledata.matrix.multiply(document.DemoMatrixA,2,3))
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={Add 4 times of row 3 to row 2($r_2 + 4 \times r_3$)}]

\startbuffer
\startluacode
    moduledata.matrix.typeset(document.DemoMatrixA)
    context("$\\qquad \\Rightarrow \\qquad$")
    moduledata.matrix.sumrow(document.DemoMatrixA,2,3,4)
    moduledata.matrix.typeset(document.DemoMatrixA)
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={Transpose a matrix}]
\startbuffer
\startluacode
    moduledata.matrix.typeset(document.DemoMatrixA)
    context("$\\qquad \\Rightarrow \\qquad$")
    moduledata.matrix.typeset(moduledata.matrix.transpose(document.DemoMatrixA))
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={The inner product of two vectors}]

\startbuffer
\startluacode
    context("$<1,2,3> \\cdot <3,1,2> \\ =\\ $ ")
    context( moduledata.matrix.inner({ 1, 2, 3 }, { 3, 1, 2 }))
\stopluacode
\stopbuffer

\getbuffer[demo]

\startluacode
context("$<1,2,3> \\cdot <3,1,2, 4> \\ =\\ $ ")
context(moduledata.matrix.inner({ 1, 2, 3 }, { 3, 1, 2, 4 }))
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={The product of two matrices}]

\startbuffer
\startluacode
    context("$\\ $")
    moduledata.matrix.typeset(document.DemoMatrixB)
    context("$\\cdot$")
    moduledata.matrix.typeset(document.DemoMatrixA)
    context("$ = $")
    moduledata.matrix.typeset(moduledata.matrix.product
        (document.DemoMatrixB,document.DemoMatrixB))
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={An Upper Triangular Matrix}]

\startbuffer
\startluacode
    moduledata.matrix.typeset(document.DemoMatrixB)
    context("$\\qquad \\Rightarrow \\qquad$")
    moduledata.matrix.typeset(moduledata.matrix.uppertri(document.DemoMatrixB))
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={Determinant: using triangulation}]

\startbuffer
\startluacode
    local m = {
        { 1, 2,  4 },
        { 0, 0,  2 },
        { 2, 2, -6 },
        { 2, 2, -6 },
    }
    moduledata.matrix.typeset(m, {fences="bars"})
    context("$\\qquad = \\qquad$")
    moduledata.matrix.determinant(m)
\stopluacode
\stopbuffer

\getbuffer[demo]

\startbuffer
\startluacode
    moduledata.matrix.typeset(document.DemoMatrixC, { fences = "bars" })
    context("$\\qquad = \\qquad$")
    context(moduledata.matrix.determinant(document.DemoMatrixC))
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={Determinant: using Laplace Expansion}]

\startbuffer
\startluacode
    moduledata.matrix.typeset(document.DemoMatrixC, { fences = "bars" })
    context("$\\qquad = \\qquad$")
    context(moduledata.matrix.laplace(document.DemoMatrixC))
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={Example of Laplace Expansion using submatrix function}]

\startbuffer
\startluacode
    local m = {
        { 1, 5, 4, 2 },
        { 5, 2, 0, 4 },
        { 2, 2, 1, 1 },
        { 1, 0, 0, 5 },
    }
    local options = {fences = "bars"}

    moduledata.matrix.typeset(m,options)
    context("\\par $=$")
    for j = 1, #m[1] do
        local mm =  moduledata.matrix.submatrix(m, 1, j)
        local factor = (-1)^(1+j) *(m[1][j])
        context("\\ ($%d$) \\cdot ", factor)
        moduledata.matrix.typeset(mm, options)
        if j < #m[1] then
            context("\\ $+$ ")
        end
    end
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={Row echelon form}]

\startbuffer
\startluacode
    local m = {
        { 1, 3, -2,  0, 2,  0,  0 },
        { 2, 6, -5, -2, 4, -3, -1 },
        { 0, 0,  5, 10, 0, 15,  5 },
        { 2, 6,  0,  8, 4, 18,  6 },
    }
    moduledata.matrix.typeset(m)
    context("$\\Rightarrow$")
    moduledata.matrix.typeset(moduledata.matrix.rowechelon(m,1))
\stopluacode

\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={Solving linear equation}]

\startbuffer
\startluacode
    local m = {
        {  1,  3, -2,  0 },
        {  2,  0,  1,  2 },
        {  6, -5, -2,  4 },
        { -3, -1,  5, 10 },
    }

    local c = { 5, 2, 6, 8 }

    moduledata.matrix.typeset(moduledata.matrix.solve(m,c))
    context.blank()
    moduledata.matrix.typeset(moduledata.matrix.solve(m,c), { template = 6 })
    context.blank()
    moduledata.matrix.typeset(moduledata.matrix.solve(m,c), { template = "no" })
    context.blank()
    moduledata.matrix.typeset(moduledata.matrix.solve(m,c), { template = "%0.3f" })
    context.blank()
    moduledata.matrix.typeset(moduledata.matrix.solve(m,c), { template = "%0.4F" })
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\startsubject[title={Inverse matrix}]

\startbuffer
\startluacode
    local m = {
        { 1, 1, 1 },
        { 0, 2, 3 },
        { 3, 2, 1 },
    }
    context("$A =\\quad$")
    moduledata.matrix.typeset(m)
    context("$\\qquad A^{-1} = \\quad$")
    moduledata.matrix.typeset(moduledata.matrix.inverse(m))
    context("\\blank\\ ")
    moduledata.matrix.typeset(m)
    context("$\\cdot$")
    moduledata.matrix.typeset(moduledata.matrix.inverse(m))
    context("$ = $")
    moduledata.matrix.typeset(moduledata.matrix.product(m, moduledata.matrix.inverse(m)))
\stopluacode
\stopbuffer

\getbuffer[demo]

\stopsubject

\stoptext