summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/tex/context/base/syst-con.mkiv
blob: f7d4150a6e26d9a408d47146e598964ac6569e4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
%D \module
%D   [       file=syst-con,
%D        version=2006.09.16, % real old stuff ... 2000.12.10
%D          title=\CONTEXT\ System Macros,
%D       subtitle=Conversions,
%D         author=Hans Hagen,
%D           date=\currentdate,
%D      copyright={PRAGMA / Hans Hagen \& Ton Otten}]
%C
%C This module is part of the \CONTEXT\ macro||package and is
%C therefore copyrighted by \PRAGMA. See mreadme.pdf for
%C details.

\registerctxluafile{syst-con}{1.001}

\unprotect

%D When the number of conversions grew, it did no longer make
%D sense to spread them over multiple files. So, instead of
%D defining these in \type {font-ini}, we now have a dedicated
%D module.

%D \macros
%D   {lchexnumber,uchexnumber,lchexnumbers,uchexnumbers}
%D
%D In addition to the uppercase hex conversion, as needed in
%D math families, we occasionally need a lowercase one, for
%D instance when we want to compose gbsong fontnames.
%D
%D The ugly indirectness is needed to get rid of \TEX\
%D induced spaces and \type {\relax}'s.
%D
%D \starttyping
%D [\uchexnumber{0}]
%D [\uchexnumber\scratchcounter]
%D [\uchexnumber\zerocount]
%D [\uchexnumber{\number0}]
%D [\uchexnumber{\number\scratchcounter}]
%D [\uchexnumber{\number\zerocount}]
%D [\uchexnumber{\the\scratchcounter}]
%D [\uchexnumber{\the\zerocount}]
%D [\expandafter\uchexnumber\expandafter{\number0}]
%D [\expandafter\uchexnumber\expandafter{\number\scratchcounter}]
%D [\expandafter\uchexnumber\expandafter{\number\zerocount}]
%D [\expandafter\uchexnumber\expandafter{\the\scratchcounter}]
%D [\expandafter\uchexnumber\expandafter{\the\zerocount}]
%D \stoptyping

\def\lchexnumber #1{\ctxlua{converters.lchexnumber(\number#1)}}
\def\uchexnumber #1{\ctxlua{converters.uchexnumber(\number#1)}}
\def\lchexnumbers#1{\ctxlua{converters.lchexnumbers(\number#1)}}
\def\uchexnumbers#1{\ctxlua{converters.uchexnumbers(\number#1)}}

\let\hexnumber\uchexnumber

%D \macros
%D   {octnumber}
%D
%D For unicode remapping purposes, we need octal numbers.

\def\octnumber#1{\ctxlua{converters.octnumber(\number#1)}}

%D \macros
%D   {hexstringtonumber,octstringtonumber}
%D
%D This macro converts a two character hexadecimal number into
%D a decimal number, thereby taking care of lowercase characters
%D as well.

\def\hexstringtonumber#1{\ctxlua{converters.hexstringtonumber("#1")}}
\def\octstringtonumber#1{\ctxlua{converters.octstringtonumber("#1")}}

%D \macros
%D   {rawcharacter}
%D
%D This macro can be used to produce proper 8 bit characters
%D that we sometimes need in backends and round||trips.

\def\rawcharacter#1{\ctxlua{converters.rawcharacter(\number#1)}}

%D \macros
%D   {twodigits, threedigits}
%D
%D These macros provides two or three digits always:

\def\twodigits  #1{\ifnum             #1<10     0\fi\number#1}
\def\threedigits#1{\ifnum#1<100 \ifnum#1<10 0\fi0\fi\number#1}

%D \macros{modulonumber}
%D
%D In the conversion macros described in \type {core-con} we
%D need a wrap||around method. The following solution is
%D provided by Taco.
%D
%D The \type {modulonumber} macro expands to the mathematical
%D modulo of a positive integer. It is crucial for it's
%D application that this macro is fully exandable.
%D
%D The expression inside the \type {\numexpr} itself is
%D somewhat bizarre because \ETEX\ uses a rounding
%D division instead of truncation. If \ETEX's division
%D would have behaved like \TEX's normal\type{\divide}, then
%D the expression could have been somewhat simpler, like
%D \type {#2-(#2/#1)*#1}. This works just as well, but a bit
%D more complex.

\def\modulonumber#1#2%
  {\the\numexpr#2-((((#2+(#1/2))/#1)-1)*#1)\relax}

%D \macros{modulatednumber}
%D
%D Modulo numbers run from zero to one less than the limit,
%D but for conversion sets, we need a value between 1 and the
%D limit. The \type{\modulatednumber} arranges that. This
%D macro also needs to be fully expandable, resulting in
%D two \type{\numexpr}s.

\def\modulatednumber#1#2%
  {\ifnum\the\numexpr\modulonumber{#1}{#2}\relax=0 #1%
   \else \the\numexpr\modulonumber{#1}{#2}\relax  \fi}

%D \macros
%D    {realnumber} % used?

\def\realnumber#1{\withoutpt\the\dimexpr#1\s!pt\relax} % brrr

%D \macros
%D    {setcalculatedsin,setcalculatedcos,setcalculatedtan}
%D
%D This saves some 2K in the format. At some point we will redo the
%D code that calls this. Beware: in \MKII\ this is a separate module.

% \let\calculatesin\gobbleoneargument
% \let\calculatecos\gobbleoneargument
% \let\calculatetan\gobbleoneargument

% \def\calculatedsin#1{\ctxlua{tex.sprint(tex.ctxcatcodes,math.sin(#1))}}
% \def\calculatedcos#1{\ctxlua{tex.sprint(tex.ctxcatcodes,math.cos(#1))}}
% \def\calculatedtan#1{\ctxlua{tex.sprint(tex.ctxcatcodes,math.tan(#1))}}

\def\setcalculatedsin#1#2{\edef#1{\ctxlua{tex.sprint(tex.ctxcatcodes,math.sind(#2))}}}
\def\setcalculatedcos#1#2{\edef#1{\ctxlua{tex.sprint(tex.ctxcatcodes,math.cosd(#2))}}}
\def\setcalculatedtan#1#2{\edef#1{\ctxlua{tex.sprint(tex.ctxcatcodes,math.tand(#2))}}}

\protect \endinput