1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
%D \module
%D [ file=syst-con,
%D version=2006.09.16, % real old stuff ... 2000.12.10
%D title=\CONTEXT\ System Macros,
%D subtitle=Conversions,
%D author=Hans Hagen,
%D date=\currentdate,
%D copyright={PRAGMA ADE \& \CONTEXT\ Development Team}]
%C
%C This module is part of the \CONTEXT\ macro||package and is
%C therefore copyrighted by \PRAGMA. See mreadme.pdf for
%C details.
\registerctxluafile{syst-con}{}
\unprotect
%D \macros{lchexnumber,uchexnumber,lchexnumbers,uchexnumbers}
%D
%D In addition to the uppercase hex conversion, as needed in math families, we
%D occasionally need a lowercase one.
\def\lchexnumber #1{\clf_lchexnumber \numexpr#1\relax}
\def\uchexnumber #1{\clf_uchexnumber \numexpr#1\relax}
\def\lchexnumbers#1{\clf_lchexnumbers\numexpr#1\relax}
\def\uchexnumbers#1{\clf_uchexnumbers\numexpr#1\relax}
\let\hexnumber\uchexnumber
%D \macros{octnumber}
%D
%D For \UNICODE\ remapping purposes, we need octal numbers.
\def\octnumber#1{\clf_octnumber\numexpr#1\relax}
%D \macros{hexstringtonumber,octstringtonumber}
%D
%D This macro converts a two character hexadecimal number into a decimal number,
%D thereby taking care of lowercase characters as well.
\def\hexstringtonumber#1{\clf_hexstringtonumber\numexpr#1\relax}
\def\octstringtonumber#1{\clf_octstringtonumber\numexpr#1\relax}
%D \macros{rawcharacter}
%D
%D This macro can be used to produce proper 8 bit characters that we sometimes need
%D in backends and round||trips.
\def\rawcharacter#1{\clf_rawcharacter\numexpr#1\relax}
%D \macros{twodigits, threedigits}
%D
%D These macros provides two or three digits always:
\def\twodigits #1{\ifnum #1<10 0\fi\number#1}
\def\threedigits#1{\ifnum#1<100 \ifnum#1<10 0\fi0\fi\number#1}
%D \macros{modulonumber}
%D
%D In the conversion macros described in \type {core-con} we need a wrap||around
%D method. The following solution is provided by Taco.
%D
%D The \type {modulonumber} macro expands to the mathematical modulo of a positive
%D integer. It is crucial for it's application that this macro is fully exandable.
%D
%D The expression inside the \type {\numexpr} itself is somewhat bizarre because
%D \ETEX\ uses a rounding division instead of truncation. If \ETEX's division would
%D have behaved like \TEX's normal\type {\divide}, then the expression could have
%D been somewhat simpler, like \type {#2-(#2/#1)*#1}. This works just as well, but a
%D bit more complex.
\def\modulonumber#1#2{\the\numexpr#2-((((#2+(#1/2))/#1)-1)*#1)\relax}
%D \macros{modulatednumber}
%D
%D Modulo numbers run from zero to one less than the limit, but for conversion sets,
%D we need a value between 1 and the limit. The \type {\modulatednumber} arranges
%D that. This macro also needs to be fully expandable, resulting in two \type
%D {\numexpr}s.
\def\modulatednumber#1#2%
{\ifnum\the\numexpr\modulonumber{#1}{#2}\relax=0 #1%
\else \the\numexpr\modulonumber{#1}{#2}\relax \fi}
%D \macros{setcalculatedsin,setcalculatedcos,setcalculatedtan}
\protected\def\setcalculatedsin#1#2{\edef#1{\clf_sind#2}}
\protected\def\setcalculatedcos#1#2{\edef#1{\clf_cosd#2}}
\protected\def\setcalculatedtan#1#2{\edef#1{\clf_tand#2}}
%D \macros{formatted,format}
\def\formatted#1{\ctxcommand{format(#1)}} % not clf
\protected\def\format #1{\ctxcommand{format(#1)}} % not clf
%D The \type {\modulatednumber} and \type {\realnumber} macros have been removed.
\protect \endinput
|