1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
%D \module
%D [ file=math-arr,
%D version=2007.07.19,
%D title=\CONTEXT\ Math Macros,
%D subtitle=Arrows,
%D author={Hans Hagen \& Taco Hoekwater \& Aditya Mahajan},
%D date=\currentdate,
%D copyright=\PRAGMA]
%C
%C This module is part of the \CONTEXT\ macro||package and is
%C therefore copyrighted by \PRAGMA. See mreadme.pdf for
%C details.
\writestatus{loading}{ConTeXt Math Macros / Arrows}
\unprotect
%D These will be generalized! Is it still needed in \MKIV?
\def\exmthfont#1{\symbolicsizedfont#1\plusone{MathExtension}}
\def\domthfrac#1#2#3#4#5#6#7%
{\begingroup
\mathsurround\zeropoint
\setbox0\hbox{$#1 #6$}%
\setbox2\hbox{$#1 #7$}%
\dimen0\wd0
\ifdim\wd2>\dimen0 \dimen0\wd2 \fi
\setbox4\hbox to \dimen0{\exmthfont#2#3\leaders\hbox{#4}\hss#5}%
\mathord{\vcenter{{\offinterlineskip
\hbox to \dimen0{\hss\box0\hss}%
\kern \ht4%
\hbox to \dimen0{\hss\copy4\hss}%
\kern \ht4%
\hbox to \dimen0{\hss\box2\hss}}}}%
\endgroup}
\def\domthsqrt#1#2#3#4#5%
{\begingroup
\mathsurround\zeropoint
\setbox0\hbox{$#1 #5$}%
\dimen0=1.05\ht0 \advance\dimen0 1pt \ht0 \dimen0
\dimen0=1.05\dp0 \advance\dimen0 1pt \dp0 \dimen0
\dimen0\wd0
\setbox4\hbox to \dimen0{\exmthfont#2\leaders\hbox{#3}\hfill#4}%
\delimitershortfall=0pt
\nulldelimiterspace=0pt
\setbox2\hbox{$\left\delimiter"0270370 \vrule height\ht0 depth \dp0 width0pt
\right.$}%
\mathord{\vcenter{\hbox{\copy2
\rlap{\raise\dimexpr\ht2-\ht4\relax\copy4}\copy0}}}%
\endgroup}
\def\mthfrac#1#2#3#4#5{\mathchoice
{\domthfrac\displaystyle \textface {#1}{#2}{#3}{#4}{#5}}
{\domthfrac\textstyle \textface {#1}{#2}{#3}{#4}{#5}}
{\domthfrac\scriptstyle \scriptface {#1}{#2}{#3}{#4}{#5}}
{\domthfrac\scriptscriptstyle\scriptscriptface{#1}{#2}{#3}{#4}{#5}}}
\def\mthsqrt#1#2#3{\mathchoice
{\domthsqrt\displaystyle \textface {#1}{#2}{#3}}
{\domthsqrt\textstyle \textface {#1}{#2}{#3}}
{\domthsqrt\scriptstyle \textface {#1}{#2}{#3}}
{\domthsqrt\scriptscriptstyle\textface {#1}{#2}{#3}}}
% temp here
%D We next define extensible arrows. Extensible arrows are arrows that
%D change their length according to the width of the text to be placed
%D above and below the arrow. Since we need to define a lot of arrows,
%D we first define some helper macros. The basic idea is to measure
%D the width of the box to be placed above and below the arrow, and
%D make the \quotation{body} of the arrow as long as the bigger of the
%D two widths.
\def\mtharrfactor{1}
\def\mtharrextra {0}
\def\domthxarr#1#2#3#4#5% hm, looks like we do a double mathrel
{\begingroup
\def\mtharrfactor{1}%
\def\mtharrextra {0}%
\processaction[#1] % will be sped up
[ \v!none=>\def\mtharrfactor{0},
\v!small=>\def\mtharrextra{10},
\v!medium=>\def\mtharrextra{15},
\v!big=>\def\mtharrextra{20},
\v!normal=>,
\v!default=>,
\v!unknown=>\doifnumberelse{#1}{\def\mtharrextra{#1}}\donothing]%
\mathsurround\zeropoint
\muskip0=\thirdoffourarguments #2mu
\muskip2=\fourthoffourarguments #2mu
\muskip4=\firstoffourarguments #2mu
\muskip6=\secondoffourarguments #2mu
\muskip0=\mtharrfactor\muskip0 \advance\muskip0 \mtharrextra mu
\muskip2=\mtharrfactor\muskip2 \advance\muskip2 \mtharrextra mu
\setbox0\hbox{$\scriptstyle
\mkern\muskip4\relax
\mkern\muskip0\relax
#5\relax
\mkern\muskip2\relax
\mkern\muskip6\relax
$}%
\setbox4\hbox{#3\displaystyle}%
\dimen0\wd0
\ifdim\wd4>\dimen0 \dimen0\wd4 \fi
\setbox2\hbox{$\scriptstyle
\mkern\muskip4\relax
\mkern\muskip0\relax
#4\relax
\mkern\muskip2\relax
\mkern\muskip6\relax
$}%
\ifdim\wd2>\dimen0 \dimen0\wd2 \fi
\setbox4\hbox to \dimen0{#3\displaystyle}%
\mathrel{\mathop{\hbox to \dimen0{\hss\copy4\hss}}\limits^{\box0}_{\box2}}
\endgroup}
\let\domthxarrsingle\domthxarr
%D There are some arrows which are created by stacking two arrows. The next
%D macro helps in defining such \quotation{double arrows}.
\def\domthxarrdouble#1#2#3#4#5#6#7% opt l r sp rs top bot
{\mathrel
{\scratchdimen.32ex\relax % was .22, todo: make configurable
\setbox0\hbox{$\domthxarr{#1}{#2}{#4}{\phantom{#6}}{#7}$}%
\setbox2\hbox{$\domthxarr{#1}{#3}{#5}{#6}{\phantom{#7}}$}%
\raise\scratchdimen\box0
\kern-\wd2
\lower\scratchdimen\box2}}
%D \macros{definematharrow}
%D
%D Macro for defining new arrows. We can define two types of
%D arrows|<|single arrows and double arrows. Single arrows are defined
%D as
%D
%D \starttyping
%D \definematharrow [xrightarrow] [0359] [\rightarrowfill]
%D \stoptyping
%D
%D The first argument is the name of the arrow (\tex{xrightarrow} in
%D this case.) The second argument consists of a set of 4 numbers and
%D specify the spacing correction in math units~\type{mu}. These
%D numbers define:
%D
%D \startlines
%D 1st number: arrow||tip correction
%D 2nd number: arrow||tip correction
%D 3rd number: space (multiplied by \tex{matharrfactor} and advanced by \tex{matharrextra})
%D 4th number: space (multiplied by \tex{matharrfactor} and advanced by \tex{matharrextra})
%D \stoplines
%D
%D The third argument is the name of the extensible fill. The third
%D argument is optional when the arrow is redefined later (this is
%D useful for font specific tweaking of the skips.) For example,
%D
%D \startbuffer
%D \math{\xrightarrow{above}}
%D \definematharrow[xrightarrow][0000]
%D \math{\xrightarrow{above}}
%D \definematharrow[xrightarrow][55{50}{50}]
%D \math{\xrightarrow{above}}
%D \stopbuffer
%D \typebuffer gives {\getbuffer}
%D
%D The double arrows are defined as follows
%D
%D \starttyping
%D \definematharrow [xrightleftharpoons] [3095,0359]
%D [\rightharpoonupfill,\leftharpoondownfill]
%D \stoptyping
%D
%D The second and the third set of arguments consist of comma
%D separated values. The first element of the second argument
%D (\type{3095}) corresponds to the spacing correction of top arrow
%D fill (\tex{rightarrowupfill}). Similarly, \type{0359} corresponds
%D to bottom arrow fill \tex{leftharpoondownfill}). Stacking them on
%D top of each other we get $\xrightleftharpoons[big]{above}{below}$.
%D The following math arrows are defined
%D
%D \placetable[none]{}{\starttable[|l|m|]
%D \NC \tex{xrightarrow } \NC \xrightarrow [big] \NC \NR
%D \NC \tex{xleftarrow } \NC \xleftarrow [big] \NC \NR
%D \NC \tex{xequal } \NC \xequal [big] \NC \NR
%D \NC \tex{xRightarrow } \NC \xRightarrow [big] \NC \NR
%D \NC \tex{xLeftarrow } \NC \xLeftarrow [big] \NC \NR
%D \NC \tex{xLeftrightarrow } \NC \xLeftrightarrow [big] \NC \NR
%D \NC \tex{xleftrightarrow } \NC \xleftrightarrow [big] \NC \NR
%D \NC \tex{xmapsto } \NC \xmapsto [big] \NC \NR
%D \NC \tex{xtwoheadrightarrow } \NC \xtwoheadrightarrow [big] \NC \NR
%D \NC \tex{xtwoheadleftarrow } \NC \xtwoheadleftarrow [big] \NC \NR
%D \NC \tex{xrightharpoondown } \NC \xrightharpoondown [big] \NC \NR
%D \NC \tex{xrightharpoonup } \NC \xrightharpoonup [big] \NC \NR
%D \NC \tex{xleftharpoondown } \NC \xleftharpoondown [big] \NC \NR
%D \NC \tex{xleftharpoonup } \NC \xleftharpoonup [big] \NC \NR
%D \NC \tex{xhookleftarrow } \NC \xhookleftarrow [big] \NC \NR
%D \NC \tex{xhookrightarrow } \NC \xhookrightarrow [big] \NC \NR
%D \NC \tex{xleftrightharpoons } \NC \xleftrightharpoons [big] \NC \NR
%D \NC \tex{xrightleftharpoons } \NC \xrightleftharpoons [big] \NC \NR
%D \stoptable}
\def\definematharrow
{\doquadrupleargument\dodefinematharrow}
\def\dodefinematharrow[#1][#2][#3][#4]% name type[none|both] template command
{\iffourthargument
\executeifdefined{dodefine#2arrow}\gobblethreearguments{#1}{#3}{#4}%
\else\ifthirdargument
\dodefinebotharrow{#1}{#2}{#3}%
\else\ifsecondargument
\redefinebotharrow{#1}{#2}{#3}%
\fi\fi\fi}
\def\redefinebotharrow#1#2#3% real dirty, this overload!
{\doifdefined{#1}
{\pushmacro\dohandlemtharrow
\def\dohandlemtharrow[##1][##2]{\setvalue{#1}{\dohandlemtharrow[#2][##2]}}%
% == \def\dohandlemtharrow[##1][##2]{\dodefinebotharrow{#1}{#2}{##2}}%
\getvalue{#1}%
\popmacro\dohandlemtharrow}}
\def\dodefinebotharrow#1#2#3%
{\setvalue{#1}{\dohandlemtharrow[#2][#3]}}
\def\dohandlemtharrow
{\dotripleempty\doxmtharrow}
\def\doxmtharrow[#1][#2][#3]% #3 == optional arg
{\def\dodoxmtharrow{\dododoxmtharrow[#1,\empty,\empty][#2,\empty,\empty][#3]}% {##1}{##2}
\dodoublegroupempty\dodoxmtharrow}
\def\dododoxmtharrow[#1,#2,#3][#4,#5,#6][#7]#8#9% [3] is the optional arg
{\edef\!!stringa{#2}%
\ifx\!!stringa\empty
\ifsecondargument
\mathrel{\domthxarrsingle{#7}{#1}{#4}{#8}{#9}}%
\else
\mathrel{\domthxarrsingle{#7}{#1}{#4}{}{#8}}%
\fi
\else
\ifsecondargument
\mathrel{\domthxarrdouble{#7}{#1}{#2}{#4}{#5}{#8}{#9}}%
\else
\mathrel{\domthxarrdouble{#7}{#1}{#2}{#4}{#5}{}{#8}}%
\fi
\fi}
% Adapted from amsmath.
%D \macros{mtharrowfill,defaultmtharrowfill}
%D
%D To extend the arrows we need to define a \quotation{math arrow
%D fill}. This command takes 8 arguments: the first four correspond
%D the second argument of \tex{definematharrow} explained above. The
%D other three specify the tail, body and head of the arrow. The last
%D argument specifies the math-mode in which the arrow is drawn.
%D \tex{defaultmtharrowfill} has values tweaked to match Latin Modern
%D fonts. For fonts that are significantly different (e.g. cows) a
%D different set of values need to be determined.
\def\mtharrowfill#1#2#3#4#5#6#7#8%
{$\mathsurround 0pt
\thickmuskip0mu\medmuskip\thickmuskip\thinmuskip\thickmuskip
\relax#8#5%
\mkern-#1mu
\cleaders\hbox{$#8\mkern -#2mu#6\mkern -#3mu$}\hfill
\mkern-#4mu#7$}
\def\defaultmtharrowfill{\mtharrowfill 7227}
%D We now define some arrow fills that will be used for defining the
%D arrows. Plain \TEX\ already defines \tex{leftarrowfill} and
%D \tex{rightarrowfill}. The \tex{defaultmtharrowfill} command defines an
%D arrowfill that takes an argument (so that it can also be used
%D with over and under arrows). However the Plain \TEX\ definitions of
%D \tex{leftarrowfill} and \tex{rightarrowfill} do not take this extra
%D argument. To be backward compatible with Plain \TEX, we define two
%D arrowfills: \tex{specrightarrowfill} which takes an extra argument, and
%D \tex{rightarrowfill} which does not.
\def\specrightarrowfill {\defaultmtharrowfill \relbar \relbar \rightarrow}
\def\specleftarrowfill {\defaultmtharrowfill \leftarrow \relbar \relbar}
\def\rightarrowfill {\specrightarrowfill \textstyle}
\def\leftarrowfill {\specleftarrowfill \textstyle}
\def\equalfill {\defaultmtharrowfill \Relbar \Relbar \Relbar}
\def\Rightarrowfill {\defaultmtharrowfill \Relbar \Relbar \Rightarrow}
\def\Leftarrowfill {\defaultmtharrowfill \Leftarrow \Relbar \Relbar}
\def\Leftrightarrowfill {\defaultmtharrowfill \Leftarrow \Relbar \Rightarrow}
\def\leftrightarrowfill {\defaultmtharrowfill \leftarrow \relbar \rightarrow}
\def\mapstofill {\defaultmtharrowfill{\mapstochar\relbar} \relbar \rightarrow}
\def\twoheadrightarrowfill{\defaultmtharrowfill \relbar \relbar \twoheadrightarrow}
\def\twoheadleftarrowfill {\defaultmtharrowfill \twoheadleftarrow \relbar \relbar}
\def\rightharpoondownfill {\defaultmtharrowfill \relbar \relbar \rightharpoondown}
\def\rightharpoonupfill {\defaultmtharrowfill \relbar \relbar \rightharpoonup}
\def\leftharpoondownfill {\defaultmtharrowfill \leftharpoondown \relbar \relbar}
\def\leftharpoonupfill {\defaultmtharrowfill \leftharpoonup \relbar \relbar}
\def\hookleftfill {\defaultmtharrowfill \leftarrow \relbar{\relbar\joinrel\rhook}}
\def\hookrightfill {\defaultmtharrowfill{\lhook\joinrel\relbar}\relbar \rightarrow}
\def\relfill {\defaultmtharrowfill \relbar \relbar \relbar}
\def\triplerelbar {\mathrel\equiv}
\def\triplerelfill{\defaultmtharrowfill\triplerelbar\triplerelbar\triplerelbar}
\def\singlebond{{\xrel}} % or \def\singlebond{{\xrel[2]}}
\def\doublebond{{\xequal}}
\def\triplebond{{\xtriplerel}}
%D Now we define most commonly used arrows. These include arrows
%D defined in \filename{amsmath.sty}, \filename{extarrows.sty},
%D \filename{extpfel.sty} and \filename{mathtools.sty} packages for
%D \LATEX\ (plus a few more).
\definematharrow [xrightarrow] [0359] [\specrightarrowfill]
\definematharrow [xleftarrow] [3095] [\specleftarrowfill]
\definematharrow [xequal] [0099] [\equalfill]
\definematharrow [xRightarrow] [0359] [\Rightarrowfill]
\definematharrow [xLeftarrow] [3095] [\Leftarrowfill]
\definematharrow [xLeftrightarrow] [0099] [\Leftrightarrowfill]
\definematharrow [xleftrightarrow] [0099] [\leftrightarrowfill]
\definematharrow [xmapsto] [3599] [\mapstofill]
\definematharrow [xtwoheadrightarrow] [5009] [\twoheadrightarrowfill]
\definematharrow [xtwoheadleftarrow] [0590] [\twoheadleftarrowfill]
\definematharrow [xrightharpoondown] [0359] [\rightharpoondownfill]
\definematharrow [xrightharpoonup] [0359] [\rightharpoonupfill]
\definematharrow [xleftharpoondown] [3095] [\leftharpoondownfill]
\definematharrow [xleftharpoonup] [3095] [\leftharpoonupfill]
\definematharrow [xhookleftarrow] [3095] [\hookleftfill]
\definematharrow [xhookrightarrow] [0395] [\hookrightfill]
\definematharrow [xrel] [0099] [\relfill]
\definematharrow [xtriplerel] [0099] [\triplerelfill]
\definematharrow [xrightoverleftarrow] [0359,3095] [\specrightarrowfill,\specleftarrowfill]
\definematharrow [xleftrightharpoons] [3399,3399] [\leftharpoonupfill,\rightharpoondownfill]
\definematharrow [xrightleftharpoons] [3399,3399] [\rightharpoonupfill,\leftharpoondownfill]
%D These arrows can be used as follows:
%D
%D \startbuffer
%D \startformula \xrightarrow{stuff on top}\stopformula
%D \startformula \xrightarrow{}{stuff on top}\stopformula
%D \startformula \xrightarrow{stuff below}{}\stopformula
%D \startformula \xrightarrow{stuff below}{stuff on top}\stopformula
%D
%D \startformula \xleftarrow [none]{stuff below}{stuff on top}\stopformula
%D \startformula \xleftarrow [small]{stuff below}{stuff on top}\stopformula
%D \startformula \xleftarrow [medium]{stuff below}{stuff on top}\stopformula
%D \startformula \xleftarrow [big]{stuff below}{stuff on top}\stopformula
%D \stopbuffer
%D
%D \typebuffer which gives \getbuffer
%D \macros{definemathoverarrow,defineunderarrow}
%D
%D These macros for define math-overarrows are adapted from
%D \filename{amsmath.sty}
\def\definemathoverarrow
{\dotripleargument\dodefinemathoverarrow}
\def\dodefinemathoverarrow[#1][#2][#3]%
{\ifthirdargument
\setvalue{#1}{\dohandlemathoverarrow[#2][#3]}%
\else
\setvalue{#1}{\dohandlemathoverarrow[\zeropoint][#2]}%
\fi}
\def\dohandlemathoverarrow[#1][#2]%
{\mathpalette{\dodohandlemathoverarrow{#1}{#2}}}
%D Note: \filename{math-pln.tex} has \type{\kern-\onepoint} and
%D \filename{amsmath.sty} does not. We keep the kern amount
%D configurable. This is useful for harpoons.
\def\dodohandlemathoverarrow#1#2#3#4%
{\vbox{\ialign{##\crcr
#2#3\crcr
\noalign{\kern#1\nointerlineskip}%
$\mathsurround\zeropoint\hfil#3#4\hfil$\crcr}}}
%D Now the under arrows
\def\definemathunderarrow
{\dotripleargument\dodefinemathunderarrow}
%D For underarrows the default kern is 0.3ex
\def\dodefinemathunderarrow[#1][#2][#3]%
{\ifthirdargument
\setvalue{#1}{\dohandlemathunderarrow[#2][#3]}%
\else
\setvalue{#1}{\dohandlemathunderarrow[0.3ex][#2]}%
\fi}
\def\dohandlemathunderarrow[#1][#2]%
{\mathpalette{\dodohandlemathunderarrow{#1}{#2}}}
\def\dodohandlemathunderarrow#1#2#3#4%
{\vtop{\ialign{##\crcr
$\mathsurround\zeropoint\hfil#3#4\hfil$\crcr
\noalign{\nointerlineskip\kern#1}%
#2#3\crcr}}}
%D Now we define the arrows
\definemathoverarrow [overleftarrow] [\specleftarrowfill]
\definemathoverarrow [overrightarrow] [\specrightarrowfill]
\definemathoverarrow [overleftrightarrow] [\leftrightarrowfill]
\definemathoverarrow [overtwoheadrightarrow] [\twoheadrightarrowfill]
\definemathoverarrow [overtwoheadleftarrow] [\twoheadleftarrowfill]
\definemathoverarrow [overrightharpoondown] [1pt] [\rightharpoondownfill]
\definemathoverarrow [overrightharpoonup] [\rightharpoonupfill]
\definemathoverarrow [overleftharpoondown] [1pt] [\leftharpoondownfill]
\definemathoverarrow [overleftharpoonup] [\leftharpoonupfill]
\definemathunderarrow [underleftarrow] [\specleftarrowfill]
\definemathunderarrow [underrightarrow] [\specrightarrowfill]
\definemathunderarrow [underleftrightarrow] [\leftrightarrowfill]
\definemathunderarrow [undertwoheadrightarrow][\twoheadrightarrowfill]
\definemathunderarrow [undertwoheadleftarrow] [\twoheadleftarrowfill]
\definemathunderarrow [underrightharpoondown] [\rightharpoondownfill]
\definemathunderarrow [underrightharpoonup] [\rightharpoonupfill]
\definemathunderarrow [underleftharpoondown] [\leftharpoondownfill]
\definemathunderarrow [underleftharpoonup] [\leftharpoonupfill]
%D These can be used as follows:
%D
%D \startbuffer
%D $\overleftarrow{A}$ $\overleftarrow{ABC}$
%D $a_{\overleftarrow{A}}$ $b_{\overleftarrow{ABC}}$
%D \stopbuffer
%D \typebuffer which gives \getbuffer
%D TODO: Possibly have a single arrow command define all the arrows.
\protect \endinput
|