1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
|
%% \CharacterTable
%% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
%% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
%% Digits \0\1\2\3\4\5\6\7\8\9
%% Exclamation \! Double quote \" Hash (number) \#
%% Dollar \$ Percent \% Ampersand \&
%% Acute accent \' Left paren \( Right paren \)
%% Asterisk \* Plus \+ Comma \,
%% Minus \- Point \. Solidus \/
%% Colon \: Semicolon \; Less than \<
%% Equals \= Greater than \> Question mark \?
%% Commercial at \@ Left bracket \[ Backslash \\
%% Right bracket \] Circumflex \^ Underscore \_
%% Grave accent \` Left brace \{ Vertical bar \|
%% Right brace \} Tilde \~}
%%
%\iffalse
%
% (c) Copyright 2007-2008 Apostolos Syropoulos
% This program can be redistributed and/or modified under the
% terms of the LaTeX Project Public License Distributed from
% http://www.latex-project.org/lppl.txt; either
% version 1.3c of the License, or any later version.
%
% This work has the LPPL maintenance status `maintained'.
%
% Please report errors or suggestions for improvement to
%
% Apostolos Syropoulos (asyropoulos@yahoo.com)
%
%\fi
% \CheckSum{1797}
% \iffalse This is a Metacomment
%
%<xgreek, >\ProvidesFile{xgreek.sty}
%
%<xgreek, > [2008/06/22 v2.0 Package `xgreek.sty']
%
% \begin{macrocode}
%<*driver>
\documentclass{ltxdoc}
\GetFileInfo{xgreek.drv}
\usepackage{xunicode,xltxtra}
\usepackage{fontspec}
\begin{document}
\setmainfont[Mapping=tex-text,Script=Greek,
SmallCapsFeatures={Contextuals=Alts}]{Universal Modern}
\setmonofont{UM Typewriter}
\setsansfont[Mapping=tex=text]{GFS Neohellenic}
\DocInput{xgreek.dtx}
\end{document}
%</driver>
% \end{macrocode}
% \fi
%\StopEventually{}
%\title{The \textsf{xgreek} package}
%\author{Apostolos Syropoulos\\
% Xanthi, Greece\\
% \texttt{asyropoulos@yahoo.com}}
% \date{2008/06/22}
%\maketitle
% \begin{abstract}
% The \textsf{xgreek} package provides rudimentary support for Greek language
% typesetting with \XeLaTeX. In particular, it provides support for modern Greek (either
% monotonic or polytonic) and ancient Greek.
%\end{abstract}
%
%\section{Introduction}
%
% The \textsf{xgreek} package provides rudimentary support for Greek language
% typesetting with \XeLaTeX. Users will be able to typeset documents in either
% modern Greek (monotonic or polytonic) or ancient Greek by selecting the appropriate
% package option. The default ``language'' is monotonic Greek.
%
%
% \section{The Source Code}
% According to the Unicode standard
%\begin{center}
%|http://www.unicode.org/Public/UNIDATA/UnicodeData.txt|
%\end{center}
% the uppercase form of \textsc{greek small letter epsilon with tonos} is
% \textsc{greek capital letter eta with tonos}. This is certainly wrong. The main reason
% is that accents are not part of the letter as for example is the case with
% \textsc{latin small letter k with caron}. Since, \XeLaTeX\ blindly follows the Unicode
% standard, commands like |\MakeUppercase| produce wrong output. For this reason
% we first need to set up the correct |\uccode|s and |\lccode|s.
% \begin{macrocode}
%<*xgreek>
\message{Package `xgreek' version 2.0 by Apostolos Syropoulos}
\global\lccode"0386="03AC \global\uccode"0386="0391
\global\lccode"0388="03AD \global\uccode"0388="0395
\global\lccode"0389="03AC \global\uccode"0389="0397
\global\lccode"038A="03AF \global\uccode"038A="0399
\global\lccode"038C="03CC \global\uccode"038C="039F
\global\lccode"038E="03CD \global\uccode"038E="03A5
\global\lccode"038F="03CE \global\uccode"038F="03A9
\global\lccode"0390="0390 \global\uccode"0390="03AA
\global\lccode"0391="03B1 \global\uccode"0391="0391
\global\lccode"0392="03B2 \global\uccode"0392="0392
\global\lccode"0393="03B3 \global\uccode"0393="0393
\global\lccode"0394="03B4 \global\uccode"0394="0394
\global\lccode"0395="03B5 \global\uccode"0395="0395
\global\lccode"0396="03B6 \global\uccode"0396="0396
\global\lccode"0397="03B7 \global\uccode"0397="0397
\global\lccode"0398="03B8 \global\uccode"0398="0398
\global\lccode"0399="03B9 \global\uccode"0399="0399
\global\lccode"039A="03BA \global\uccode"039A="039A
\global\lccode"039B="03BB \global\uccode"039B="039B
\global\lccode"039C="03BC \global\uccode"039C="039C
\global\lccode"039D="03BD \global\uccode"039D="039D
\global\lccode"039E="03BE \global\uccode"039E="039E
\global\lccode"039F="03BF \global\uccode"039F="039F
\global\lccode"03A0="03C0 \global\uccode"03A0="03A0
\global\lccode"03A1="03C1 \global\uccode"03A1="03A1
\global\lccode"03A3="03C3 \global\uccode"03A3="03A3
\global\lccode"03A4="03C4 \global\uccode"03A4="03A4
\global\lccode"03A5="03C5 \global\uccode"03A5="03A5
\global\lccode"03A6="03C6 \global\uccode"03A6="03A6
\global\lccode"03A7="03C7 \global\uccode"03A7="03A7
\global\lccode"03A8="03C8 \global\uccode"03A8="03A8
\global\lccode"03A9="03C9 \global\uccode"03A9="03A9
\global\lccode"03AA="03CA \global\uccode"03AA="03AA
\global\lccode"03AB="03CB \global\uccode"03AB="03AB
\global\lccode"03AC="03AC \global\uccode"03AC="0391
\global\lccode"03AD="03AD \global\uccode"03AD="0395
\global\lccode"03AE="03AE \global\uccode"03AE="0397
\global\lccode"03AF="03AF \global\uccode"03AF="0399
\global\lccode"03B0="03B0 \global\uccode"03B0="03AB
\global\lccode"03B1="03B1 \global\uccode"03B1="0391
\global\lccode"03B2="03B2 \global\uccode"03B2="0392
\global\lccode"03B3="03B3 \global\uccode"03B3="0393
\global\lccode"03B4="03B4 \global\uccode"03B4="0394
\global\lccode"03B5="03B5 \global\uccode"03B5="0395
\global\lccode"03B6="03B6 \global\uccode"03B6="0396
\global\lccode"03B7="03B7 \global\uccode"03B7="0397
\global\lccode"03B8="03B8 \global\uccode"03B8="0398
\global\lccode"03B9="03B9 \global\uccode"03B9="0399
\global\lccode"03BA="03BA \global\uccode"03BA="039A
\global\lccode"03BB="03BB \global\uccode"03BB="039B
\global\lccode"03BC="03BC \global\uccode"03BC="039C
\global\lccode"03BD="03BD \global\uccode"03BD="039D
\global\lccode"03BE="03BE \global\uccode"03BE="039E
\global\lccode"03BF="03BF \global\uccode"03BF="039F
\global\lccode"03C0="03C0 \global\uccode"03C0="03A0
\global\lccode"03C1="03C1 \global\uccode"03C1="03A1
\global\lccode"03C2="03C2 \global\uccode"03C2="03A3
\global\lccode"03C3="03C3 \global\uccode"03C3="03A3
\global\lccode"03C4="03C4 \global\uccode"03C4="03A4
\global\lccode"03C5="03C5 \global\uccode"03C5="03A5
\global\lccode"03C6="03C6 \global\uccode"03C6="03A6
\global\lccode"03C7="03C7 \global\uccode"03C7="03A7
\global\lccode"03C8="03C8 \global\uccode"03C8="03A8
\global\lccode"03C9="03C9 \global\uccode"03C9="03A9
\global\lccode"03CA="03CA \global\uccode"03CA="03AA
\global\lccode"03CB="03CB \global\uccode"03CB="03AB
\global\lccode"03CC="03CC \global\uccode"03CC="039F
\global\lccode"03CD="03CD \global\uccode"03CD="03A5
\global\lccode"03CE="03CE \global\uccode"03CE="03A9
\global\lccode"03D0="03D0 \global\uccode"03D0="0392
\global\lccode"03D1="03D1 \global\uccode"03D1="0398
\global\lccode"03D2="03C5 \global\uccode"03D2="03A5
\global\lccode"03D3="03CD \global\uccode"03D3="03A5
\global\lccode"03D4="03CB \global\uccode"03D4="03AB
\global\lccode"03D5="03C6 \global\uccode"03D5="03A6
\global\lccode"03D6="03C0 \global\uccode"03D6="03A0
\global\lccode"03DA="03DB \global\uccode"03DA="03DA
\global\lccode"03DB="03DB \global\uccode"03DB="03DA
\global\lccode"03DC="03DD \global\uccode"03DC="03DC
\global\lccode"03DD="03DD \global\uccode"03DD="03DC
\global\lccode"03DE="03DF \global\uccode"03DE="03DE
\global\lccode"03DF="03DF \global\uccode"03DF="03DE
\global\lccode"03E0="03E1 \global\uccode"03E0="039A
\global\lccode"03E0="03E1 \global\uccode"03E1="03A1
\global\lccode"03F0="03BA \global\uccode"03F0="039A
\global\lccode"03F1="03C1 \global\uccode"03F1="03A1
\global\lccode"03F2="03F2 \global\uccode"03F2="03F9
\global\lccode"03F9="03F2 \global\uccode"03F9="03F9
\global\lccode"1F00="1F00 \global\uccode"1F00="0391
\global\lccode"1F01="1F01 \global\uccode"1F01="0391
\global\lccode"1F02="1F02 \global\uccode"1F02="0391
\global\lccode"1F03="1F03 \global\uccode"1F03="0391
\global\lccode"1F04="1F04 \global\uccode"1F04="0391
\global\lccode"1F05="1F05 \global\uccode"1F05="0391
\global\lccode"1F06="1F06 \global\uccode"1F06="0391
\global\lccode"1F07="1F07 \global\uccode"1F07="0391
\global\lccode"1F08="1F00 \global\uccode"1F08="0391
\global\lccode"1F09="1F01 \global\uccode"1F09="0391
\global\lccode"1F0A="1F02 \global\uccode"1F0A="0391
\global\lccode"1F0B="1F03 \global\uccode"1F0B="0391
\global\lccode"1F0C="1F04 \global\uccode"1F0C="0391
\global\lccode"1F0D="1F05 \global\uccode"1F0D="0391
\global\lccode"1F0E="1F06 \global\uccode"1F0E="0391
\global\lccode"1F0F="1F07 \global\uccode"1F0F="0391
\global\lccode"1F10="1F10 \global\uccode"1F10="0395
\global\lccode"1F11="1F11 \global\uccode"1F11="0395
\global\lccode"1F12="1F12 \global\uccode"1F12="0395
\global\lccode"1F13="1F13 \global\uccode"1F13="0395
\global\lccode"1F14="1F14 \global\uccode"1F14="0395
\global\lccode"1F15="1F15 \global\uccode"1F15="0395
\global\lccode"1F18="1F10 \global\uccode"1F18="0395
\global\lccode"1F19="1F11 \global\uccode"1F19="0395
\global\lccode"1F1A="1F12 \global\uccode"1F1A="0395
\global\lccode"1F1B="1F13 \global\uccode"1F1B="0395
\global\lccode"1F1C="1F14 \global\uccode"1F1C="0395
\global\lccode"1F1D="1F15 \global\uccode"1F1D="0395
\global\lccode"1F20="1F20 \global\uccode"1F20="0397
\global\lccode"1F21="1F21 \global\uccode"1F21="0397
\global\lccode"1F22="1F22 \global\uccode"1F22="0397
\global\lccode"1F23="1F23 \global\uccode"1F23="0397
\global\lccode"1F24="1F24 \global\uccode"1F24="0397
\global\lccode"1F25="1F25 \global\uccode"1F25="0397
\global\lccode"1F26="1F26 \global\uccode"1F26="0397
\global\lccode"1F27="1F27 \global\uccode"1F27="0397
\global\lccode"1F28="1F20 \global\uccode"1F28="0397
\global\lccode"1F29="1F21 \global\uccode"1F29="0397
\global\lccode"1F2A="1F22 \global\uccode"1F2A="0397
\global\lccode"1F2B="1F23 \global\uccode"1F2B="0397
\global\lccode"1F2C="1F24 \global\uccode"1F2C="0397
\global\lccode"1F2D="1F25 \global\uccode"1F2D="0397
\global\lccode"1F2E="1F26 \global\uccode"1F2E="0397
\global\lccode"1F2F="1F27 \global\uccode"1F2F="0397
\global\lccode"1F30="1F30 \global\uccode"1F30="0399
\global\lccode"1F31="1F31 \global\uccode"1F31="0399
\global\lccode"1F32="1F32 \global\uccode"1F32="0399
\global\lccode"1F33="1F33 \global\uccode"1F33="0399
\global\lccode"1F34="1F34 \global\uccode"1F34="0399
\global\lccode"1F35="1F35 \global\uccode"1F35="0399
\global\lccode"1F36="1F36 \global\uccode"1F36="0399
\global\lccode"1F37="1F37 \global\uccode"1F37="0399
\global\lccode"1F38="1F30 \global\uccode"1F38="0399
\global\lccode"1F39="1F31 \global\uccode"1F39="0399
\global\lccode"1F3A="1F32 \global\uccode"1F3A="0399
\global\lccode"1F3B="1F33 \global\uccode"1F3B="0399
\global\lccode"1F3C="1F34 \global\uccode"1F3C="0399
\global\lccode"1F3D="1F35 \global\uccode"1F3D="0399
\global\lccode"1F3E="1F36 \global\uccode"1F3E="0399
\global\lccode"1F3F="1F37 \global\uccode"1F3F="0399
\global\lccode"1F40="1F40 \global\uccode"1F40="039F
\global\lccode"1F41="1F41 \global\uccode"1F41="039F
\global\lccode"1F42="1F42 \global\uccode"1F42="039F
\global\lccode"1F43="1F43 \global\uccode"1F43="039F
\global\lccode"1F44="1F44 \global\uccode"1F44="039F
\global\lccode"1F45="1F45 \global\uccode"1F45="039F
\global\lccode"1F48="1F40 \global\uccode"1F48="039F
\global\lccode"1F49="1F41 \global\uccode"1F49="039F
\global\lccode"1F4A="1F42 \global\uccode"1F4A="039F
\global\lccode"1F4B="1F43 \global\uccode"1F4B="039F
\global\lccode"1F4C="1F44 \global\uccode"1F4C="039F
\global\lccode"1F4D="1F45 \global\uccode"1F4D="039F
\global\lccode"1F50="1F50 \global\uccode"1F50="03A5
\global\lccode"1F51="1F51 \global\uccode"1F51="03A5
\global\lccode"1F52="1F52 \global\uccode"1F52="03A5
\global\lccode"1F53="1F53 \global\uccode"1F53="03A5
\global\lccode"1F54="1F54 \global\uccode"1F54="03A5
\global\lccode"1F55="1F55 \global\uccode"1F55="03A5
\global\lccode"1F56="1F56 \global\uccode"1F56="03A5
\global\lccode"1F57="1F57 \global\uccode"1F57="03A5
\global\lccode"1F59="1F51 \global\uccode"1F59="03A5
\global\lccode"1F5B="1F53 \global\uccode"1F5B="03A5
\global\lccode"1F5D="1F55 \global\uccode"1F5D="03A5
\global\lccode"1F5F="1F57 \global\uccode"1F5F="03A5
\global\lccode"1F60="1F60 \global\uccode"1F60="03A9
\global\lccode"1F61="1F61 \global\uccode"1F61="03A9
\global\lccode"1F62="1F62 \global\uccode"1F62="03A9
\global\lccode"1F63="1F63 \global\uccode"1F63="03A9
\global\lccode"1F64="1F64 \global\uccode"1F64="03A9
\global\lccode"1F65="1F65 \global\uccode"1F65="03A9
\global\lccode"1F66="1F66 \global\uccode"1F66="03A9
\global\lccode"1F67="1F67 \global\uccode"1F67="03A9
\global\lccode"1F68="1F60 \global\uccode"1F68="03A9
\global\lccode"1F69="1F61 \global\uccode"1F69="03A9
\global\lccode"1F6A="1F62 \global\uccode"1F6A="03A9
\global\lccode"1F6B="1F63 \global\uccode"1F6B="03A9
\global\lccode"1F6C="1F64 \global\uccode"1F6C="03A9
\global\lccode"1F6D="1F65 \global\uccode"1F6D="03A9
\global\lccode"1F6E="1F66 \global\uccode"1F6E="03A9
\global\lccode"1F6F="1F67 \global\uccode"1F6F="03A9
\global\lccode"1F70="1F70 \global\uccode"1F70="0391
\global\lccode"1F71="1F71 \global\uccode"1F71="0391
\global\lccode"1F72="1F72 \global\uccode"1F72="0395
\global\lccode"1F73="1F73 \global\uccode"1F73="0395
\global\lccode"1F74="1F74 \global\uccode"1F74="0397
\global\lccode"1F75="1F75 \global\uccode"1F75="0397
\global\lccode"1F76="1F76 \global\uccode"1F76="0399
\global\lccode"1F77="1F77 \global\uccode"1F77="0399
\global\lccode"1F78="1F78 \global\uccode"1F78="039F
\global\lccode"1F79="1F79 \global\uccode"1F79="039F
\global\lccode"1F7A="1F7A \global\uccode"1F7A="03A5
\global\lccode"1F7B="1F7B \global\uccode"1F7B="03A5
\global\lccode"1F7C="1F7C \global\uccode"1F7C="03A9
\global\lccode"1F7D="1F7D \global\uccode"1F7D="03A9
\global\lccode"1F80="1F80 \global\uccode"1F80="1FBC
\global\lccode"1F81="1F81 \global\uccode"1F81="1FBC
\global\lccode"1F82="1F82 \global\uccode"1F82="1FBC
\global\lccode"1F83="1F83 \global\uccode"1F83="1FBC
\global\lccode"1F84="1F84 \global\uccode"1F84="1FBC
\global\lccode"1F85="1F85 \global\uccode"1F85="1FBC
\global\lccode"1F86="1F86 \global\uccode"1F86="1FBC
\global\lccode"1F87="1F87 \global\uccode"1F87="1FBC
\global\lccode"1F88="1F80 \global\uccode"1F88="1FBC
\global\lccode"1F89="1F81 \global\uccode"1F89="1FBC
\global\lccode"1F8A="1F82 \global\uccode"1F8A="1FBC
\global\lccode"1F8B="1F83 \global\uccode"1F8B="1FBC
\global\lccode"1F8C="1F84 \global\uccode"1F8C="1FBC
\global\lccode"1F8D="1F85 \global\uccode"1F8D="1FBC
\global\lccode"1F8E="1F86 \global\uccode"1F8E="1FBC
\global\lccode"1F8F="1F87 \global\uccode"1F8F="1FBC
\global\lccode"1F90="1F90 \global\uccode"1F90="1FCC
\global\lccode"1F91="1F91 \global\uccode"1F91="1FCC
\global\lccode"1F92="1F92 \global\uccode"1F92="1FCC
\global\lccode"1F93="1F93 \global\uccode"1F93="1FCC
\global\lccode"1F94="1F94 \global\uccode"1F94="1FCC
\global\lccode"1F95="1F95 \global\uccode"1F95="1FCC
\global\lccode"1F96="1F96 \global\uccode"1F96="1FCC
\global\lccode"1F97="1F97 \global\uccode"1F97="1FCC
\global\lccode"1F98="1F90 \global\uccode"1F98="1FCC
\global\lccode"1F99="1F91 \global\uccode"1F99="1FCC
\global\lccode"1F9A="1F92 \global\uccode"1F9A="1FCC
\global\lccode"1F9B="1F93 \global\uccode"1F9B="1FCC
\global\lccode"1F9C="1F94 \global\uccode"1F9C="1FCC
\global\lccode"1F9D="1F95 \global\uccode"1F9D="1FCC
\global\lccode"1F9E="1F96 \global\uccode"1F9E="1FCC
\global\lccode"1F9F="1F97 \global\uccode"1F9F="1FCC
\global\lccode"1FA0="1FA0 \global\uccode"1FA0="1FFC
\global\lccode"1FA1="1FA1 \global\uccode"1FA1="1FFC
\global\lccode"1FA2="1FA2 \global\uccode"1FA2="1FFC
\global\lccode"1FA3="1FA3 \global\uccode"1FA3="1FFC
\global\lccode"1FA4="1FA4 \global\uccode"1FA4="1FFC
\global\lccode"1FA5="1FA5 \global\uccode"1FA5="1FFC
\global\lccode"1FA6="1FA6 \global\uccode"1FA6="1FFC
\global\lccode"1FA7="1FA7 \global\uccode"1FA7="1FFC
\global\lccode"1FA8="1FA0 \global\uccode"1FA8="1FFC
\global\lccode"1FA9="1FA1 \global\uccode"1FA9="1FFC
\global\lccode"1FAA="1FA2 \global\uccode"1FAA="1FFC
\global\lccode"1FAB="1FA3 \global\uccode"1FAB="1FFC
\global\lccode"1FAC="1FA4 \global\uccode"1FAC="1FFC
\global\lccode"1FAD="1FA5 \global\uccode"1FAD="1FFC
\global\lccode"1FAE="1FA6 \global\uccode"1FAE="1FFC
\global\lccode"1FAF="1FA7 \global\uccode"1FAF="1FFC
\global\lccode"1FB0="1FB0 \global\uccode"1FB0="1FB8
\global\lccode"1FB1="1FB1 \global\uccode"1FB1="1FB9
\global\lccode"1FB2="1FB2 \global\uccode"1FB2="1FBC
\global\lccode"1FB3="1FB3 \global\uccode"1FB3="1FBC
\global\lccode"1FB4="1FB4 \global\uccode"1FB4="1FBC
\global\lccode"1FB6="1FB6 \global\uccode"1FB6="0391
\global\lccode"1FB7="1FB7 \global\uccode"1FB7="1FBC
\global\lccode"1FB8="1FB0 \global\uccode"1FB8="1FB8
\global\lccode"1FB9="1FB1 \global\uccode"1FB9="1FB9
\global\lccode"1FBA="1F70 \global\uccode"1FBA="0391
\global\lccode"1FBB="1F71 \global\uccode"1FBB="0391
\global\lccode"1FBC="1FB3 \global\uccode"1FBC="1FBC
\global\lccode"1FBD="1FBD \global\uccode"1FBD="1FBD
\global\lccode"1FC2="1FC2 \global\uccode"1FC2="1FCC
\global\lccode"1FC3="1FC3 \global\uccode"1FC3="1FCC
\global\lccode"1FC4="1FC4 \global\uccode"1FC4="1FCC
\global\lccode"1FC6="1FC6 \global\uccode"1FC6="0397
\global\lccode"1FC7="1FC7 \global\uccode"1FC7="1FCC
\global\lccode"1FC8="1F72 \global\uccode"1FC8="0395
\global\lccode"1FC9="1F73 \global\uccode"1FC9="0395
\global\lccode"1FCA="1F74 \global\uccode"1FCA="0397
\global\lccode"1FCB="1F75 \global\uccode"1FCB="0397
\global\lccode"1FCC="1FC3 \global\uccode"1FCC="1FCC
\global\lccode"1FD0="1FD0 \global\uccode"1FD0="1FD8
\global\lccode"1FD1="1FD1 \global\uccode"1FD1="1FD9
\global\lccode"1FD2="1FD2 \global\uccode"1FD2="03AA
\global\lccode"1FD3="1FD3 \global\uccode"1FD3="03AA
\global\lccode"1FD6="1FD6 \global\uccode"1FD6="0399
\global\lccode"1FD7="1FD7 \global\uccode"1FD7="03AA
\global\lccode"1FD8="1FD0 \global\uccode"1FD8="1FD8
\global\lccode"1FD9="1FD1 \global\uccode"1FD9="1FD9
\global\lccode"1FDA="1F76 \global\uccode"1FDA="0399
\global\lccode"1FDB="1F77 \global\uccode"1FDB="0399
\global\lccode"1FE0="1FE0 \global\uccode"1FE0="1FE8
\global\lccode"1FE1="1FE1 \global\uccode"1FE1="1FE9
\global\lccode"1FE2="1FE2 \global\uccode"1FE2="03AB
\global\lccode"1FE3="1FE3 \global\uccode"1FE3="03AB
\global\lccode"1FE4="1FE4 \global\uccode"1FE4="03A1
\global\lccode"1FE5="1FE5 \global\uccode"1FE5="1FEC
\global\lccode"1FE6="1FE6 \global\uccode"1FE6="03A5
\global\lccode"1FE7="1FE7 \global\uccode"1FE7="03AB
\global\lccode"1FE8="1FE0 \global\uccode"1FE8="1FE8
\global\lccode"1FE9="1FE1 \global\uccode"1FE9="1FE9
\global\lccode"1FEA="1F7A \global\uccode"1FEA="03A5
\global\lccode"1FEB="1F7B \global\uccode"1FEB="03A5
\global\lccode"1FEC="1FE5 \global\uccode"1FEC="1FEC
\global\lccode"1FF2="1FF2 \global\uccode"1FF2="1FFC
\global\lccode"1FF3="1FF3 \global\uccode"1FF3="1FFC
\global\lccode"1FF4="1FF4 \global\uccode"1FF4="1FFC
\global\lccode"1FF6="1FF6 \global\uccode"1FF6="03A9
\global\lccode"1FF7="1FF7 \global\uccode"1FF7="1FFC
\global\lccode"1FF8="1F78 \global\uccode"1FF8="039F
\global\lccode"1FF9="1F79 \global\uccode"1FF9="039F
\global\lccode"1FFA="1F7C \global\uccode"1FFA="03A9
\global\lccode"1FFB="1F7D \global\uccode"1FFB="03A9
\global\lccode"1FFC="1FF3 \global\uccode"1FFC="1FFC
% \end{macrocode}
% Next we define the various strings that correspond to the standard \LaTeX\ captions.
% We first define the strings for monotonic Greek.
% \begin{macrocode}
\def\prefacename{Πρόλογος}%
\def\refname{Αναφορές}%
\def\abstractname{Περίληψη}%
\def\bibname{Βιβλιογραφία}%
\def\chaptername{Κεφάλαιο}%
\def\appendixname{Παράρτημα}%
\def\contentsname{Περιεχόμενα}%
\def\listfigurename{Κατάλογος σχημάτων}%
\def\listtablename{Κατάλογος πινάκων}%
\def\indexname{Ευρετήριο}%
\def\figurename{Σχήμα}%
\def\tablename{Πίνακας}%
\def\partname{Μέρος}%
\def\enclname{Συνημμένα}%
\def\ccname{Κοινοποίηση}%
\def\headtoname{Προς}%
\def\pagename{Σελίδα}%
\def\seename{βλέπε}%
\def\alsoname{βλέπε επίσης}%
\def\proofname{Απόδειξη}%
\def\glossaryname{Γλωσσάρι}%
% \end{macrocode}
% Macro |\polytonicn@mes| is invoked when polytonic Greek is the main language of the document.
% \begin{macrocode}
\def\polytonicn@mes{%
\def\refname{Ἀναφορὲς}%
\def\indexname{Εὑρετήριο}%
\def\figurename{Σχῆμα}%
\def\headtoname{Πρὸς}%
\def\alsoname{βλέπε ἐπίσης}%
\def\proofname{Ἀπόδειξη}%
}
% \end{macrocode}
% Macro |\@ncientn@mes| is invoked when ancient Greek is the main language of the document.
% \begin{macrocode}
\def\@ncientn@mes{%
\def\prefacename{Προοίμιον}%
\def\refname{Αναφοραί}%
\def\abstractname{Περίληψις}%
\def\bibname{Βιβλιογραφία}%
\def\chaptername{Κεφάλαιον}%
\def\appendixname{Παράρτημα}%
\def\contentsname{Περιεχόμενα}%
\def\listfigurename{Κατάλογος σχημάτων}%
\def\listtablename{Κατάλογος πινάκων}%
\def\indexname{Εὑρετήριον}%
\def\figurename{Σχήμα}%
\def\tablename{Πίναξ}%
\def\partname{Μέρος}%
\def\enclname{Συνημμένως}%
\def\ccname{Κοινοποίησις}%
\def\headtoname{Πρὸς}%
\def\pagename{Σελὶς}%
\def\seename{ὃρα}%
\def\alsoname{ὃρα ὡσαύτως}%
\def\proofname{Ἀπόδειξις}%
\def\glossaryname{Γλωσσάριον}%
\def\refname{Ἀναφοραὶ}%
\def\indexname{Εὑρετήριο}%
\def\figurename{Σχῆμα}%
\def\headtoname{Πρὸς}%
}
% \end{macrocode}
% We redefine |\today| so as to produce dates in Greek. The
% names of months are defined by the macro |\gr@month|.
% \begin{macrocode}
\def\gr@month{%
\ifcase\month\or Ιανουαρίου\or Φεβρουαρίου\or Μαρτίου\or Απριλίου\or
Μαΐου\or Ιουνίου\or Ιουλίου\or Αυγούστου\or
Σεπτεμβρίου\or Οκτωβρίου\or Νοεμβρίου\or Δεκεμβρίου\fi}
\def\today{\number\day \space \gr@month\space \number\year}
% \end{macrocode}
% When either polytonic Greek or ancient Greek is the main language of the document,
% then the macro |\gr@c@month| becomes active.
% \begin{macrocode}
\def\gr@c@month{%
\ifcase\month\or Ἰανουαρίου\or Φεβρουαρίου\or Μαρτίου\or Ἀπριλίου\or
Μαΐου\or Ἰουνίου\or Ἰουλίου\or Αὐγούστου\or Σεπτεμβρίου\or
Ὀκτωβρίου\or Νοεμβρίου\or Δεκεμβρίου\fi}
% \end{macrocode}
% Now that we have defined the language dependant macros, we can safely define the various
% supported options. Note we follow the standard mechanims to load hyphenation patterns.
% \begin{macrocode}
\DeclareOption{monogreek}{%
\language\l@monogreek%
}
\DeclareOption{polygreek}{%
\language\l@polygreek%
\polytonicn@mes%
\let\gr@month\gr@c@month%
}
\DeclareOption{ancientgreek}{%
\language\l@ancientgreek%
\@ncientn@mes%
\let\gr@month\gr@c@month%
}
\ExecuteOptions{monogreek}
\ProcessOptions
% \end{macrocode}
% The following commands take care of the basic rules of typography.
% \begin{macrocode}
\frenchspacing
\let\@afterindentfalse\@afterindenttrue
\@afterindenttrue
% \end{macrocode}
% Before we proceed let us define a few macros, which allow one to access characters
% that are not usually easily accessible such as the sampi or koppa symbols.
% \begin{macrocode}
\def\anwtonos{\char"0374\relax}
\def\katwtonos{\char"0375\relax}
\def\koppa{\char"03DF\relax}
\def\stigma{\char"03DA\relax}
\def\sampi{\char"03E1\relax}
\def\Digamma{\char"03DC\relax}
\def\ddigamma{\char"03DD\relax}
\def\euro{\char"20AC\relax}
\def\permill{\char"2030\relax}
% \end{macrocode}
% Now we are going to define the macros that typeset alphabetic Greek numerals. The code
% is borrowed from the greek option for the babel package.
% \begin{macro}{\gr@ill@value}
% When the argument of |\greeknumeral| has a value outside of the
% acceptable bounds ($0 < x < 999999$) a warning will be issued
% (and nothing will be printed).
% \begin{macrocode}
\def\gr@ill@value#1{%
\PackageWarning{xgreek}{Illegal value (#1) for greeknumeral}}
% \end{macrocode}
% \end{macro}
% \begin{macro}{\anw@true}
% \begin{macro}{\anw@false}
% \begin{macro}{\anw@print}
% When a a large number with three \emph{trailing} zero's is to be
% printed those zeros \emph{and} the numeric mark need to be
% discarded. As each `digit' is processed by a separate macro
% \emph{and} because the processing needs to be expandable we need
% some helper macros that help remember to \emph{not} print the
% numeric mark (|\anwtonos|).
%
% The command |\anw@false| switches the printing of the numeric
% mark off by making |\anw@print| expand to nothing. The command
% |\anw@true| (re)enables the printing of the numeric marc. These
% macro's need to be robust in order to prevent improper expansion
% during writing to files or during |\uppercase|.
% \begin{macrocode}
\DeclareRobustCommand\anw@false{%
\DeclareRobustCommand\anw@print{}}
\DeclareRobustCommand\anw@true{%
\DeclareRobustCommand\anw@print{\anwtonos}}
\anw@true
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\greeknumeral}
% The command |\greeknumeral| needs to be \emph{fully} expandable
% in order to get the right information in auxiliary
% files. Therefore we use a big |\if|-construction to check the
% value of the argument and start the parsing at the right level.
% \begin{macrocode}
\def\greeknumeral#1{%
% \end{macrocode}
% If the value is negative or zero nothing is printed and a warning
% is issued.
% \begin{macrocode}
\ifnum#1<\@ne\space\gr@ill@value{#1}%
\else
\ifnum#1<10\expandafter\gr@num@i\number#1%
\else
\ifnum#1<100\expandafter\gr@num@ii\number#1%
\else
% \end{macrocode}
% We use the available shorthands for 1.000 (|\@m|) and 10.000
% (|\@M|) to save a few tokens.
% \begin{macrocode}
\ifnum#1<\@m\expandafter\gr@num@iii\number#1%
\else
\ifnum#1<\@M\expandafter\gr@num@iv\number#1%
\else
\ifnum#1<100000\expandafter\gr@num@v\number#1%
\else
\ifnum#1<1000000\expandafter\gr@num@vi\number#1%
\else
% \end{macrocode}
% If the value is too large, nothing is printed and a warning
% is issued.
% \begin{macrocode}
\space\gr@ill@value{#1}%
\fi
\fi
\fi
\fi
\fi
\fi
\fi
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\Greeknumeral}
% The command |\Greeknumeral| prints uppercase greek numerals.
% The parsing is performed by the macro |\greeknumeral|.
% \begin{macrocode}
\def\Greeknumeral#1{%
\expandafter\MakeUppercase\expandafter{\greeknumeral{#1}}}
% \end{macrocode}
% \end{macro}
%
% The alphabetic numbering system is not the only numbering system employed by Greeks.
% In fact, Greeks used various systems that are now known as {\em acrophonic} numbering
% systems. Most scholars are familiral with the acrophonic Attic numbering system and the
% the command |\atticnum| can be used to generate acrophonic Attic numerals.
% The acrophonic Attic numbering system, like the Roman one, employs
% letters to denote important numbers. Multiple occurrence of a letter denote
% a multiple of the ``important'' number, e.g., the letter Ι denotes 1, so
% ΙΙΙ denotes 3. Here are the basic digits used in the acrophonic Attic numbering
% system:
% \begin{itemize}
% \item Ι denotes the number one (1)
% \item Π denotes the number five (5)
% \item Δ denotes the number ten (10)
% \item Η denotes the number one hundred (100)
% \item Χ denotes the number one thousand (1000)
% \item Μ denotes the number ten thousands (10000)
%\end{itemize}
% Moreover, the letters Δ, Η, Χ, and Μ under the letter ^^^^^10143 (a form of Π)
% denote five times their original value. In particular, the symbol ^^^^^10144, denotes
% the number 50, the symbol ^^^^^10145 denotes the number 500, the symbol ^^^^^10146
% denotes the number 5000, and the symbol ^^^^^10147 denotes the number 50,000. It
% must be noted that the numbering system does not provide negative numerals or a symbol for
% zero.
%\begin{macro}{\@@atticnum}
% Now, we turn our attention to the definition of the macro
% |\@@atticnum|. This macro uses one integer variable (or counter in
% \TeX's jargon.)
% \begin{macrocode}
\newcount\@attic@num
% \end{macrocode}
% The macro |\@@atticnum| is also defined as a robust command.
% \begin{macrocode}
\DeclareRobustCommand*{\@@atticnum}[1]{%
% \end{macrocode}
% After assigning to variable |\@attic@num| the value of the macro's argument,
% we make sure that the argument is in the expected range, i.e., it is greater
% than zero, and less or equal to $249999$. In case it isn't, we simply
% produce a |\space|, warn the user about it and quit. Although, the
% |\atticnum| macro is capable to produce an Athenian numeral for even greater
% intergers, the following argument by Claudio Beccari convised me to place
% this above upper limit:
% \begin{quote}
% According to psychological perception studies (that ancient Athenians
% and Romans perfectly knew without needing to study Freud and Jung)
% living beings (which includes at least all vertebrates, not only
% humans) can perceive up to four randomly set objects of the same kind
% without the need of counting, the latter activity being a specific
% acquired ability of human kind; the biquinary numbering notation
% used by the Athenians and the Romans exploits this natural
% characteristic of human beings.
% \end{quote}
% \begin{macrocode}
\@attic@num#1\relax
\ifnum\@attic@num<\@ne%
\space%
\PackageWarning{xgreek}{%
Illegal value (\the\@attic@num) for acrophonic Attic numeral}%
\else\ifnum\@attic@num>249999%
\space%
\PackageWarning{xgreek}{%
Illegal value (\the\@attic@num) for acrophonic Attic numeral}%
\else
% \end{macrocode}
% Having done all the necessary checks, we are now ready to do the actual
% computation. If the number is greater than $49999$, then it certainly
% has at least one ^^^^^10147 ``digit''. We find all such digits by continuously
% subtracting $50000$ from |\@attic@num|, until |\@attic@num| becomes less than
% $50000$.
% \begin{macrocode}
\@whilenum\@attic@num>49999\do{%
^^^^^10147\advance\@attic@num-50000}%
% \end{macrocode}
% We now check for tens of thousands.
% \begin{macrocode}
\@whilenum\@attic@num>9999\do{%
M\advance\@attic@num-\@M}%
% \end{macrocode}
% Since a number can have only one ^^^^^10146 ``digit'' (equivalent to 5000), it
% is easy to check it out and produce the corresponding numeral in case it does
% have one.
% \begin{macrocode}
\ifnum\@attic@num>4999%
^^^^^10146\advance\@attic@num-5000%
\fi\relax
% \end{macrocode}
% Next, we check for thousands, the same way we checked for tens of thousands.
% \begin{macrocode}
\@whilenum\@attic@num>999\do{%
Χ\advance\@attic@num-\@m}%
% \end{macrocode}
% Like the five thousands, a numeral can have at most one ^^^^^10145 ``digit''
% (equivalent to 500).
% \begin{macrocode}
\ifnum\@attic@num>499%
^^^^^10145\advance\@attic@num-500%
\fi\relax
% \end{macrocode}
% It is time to check hundreds, which follow the same pattern as thousands
% \begin{macrocode}
\@whilenum\@attic@num>99\do{%
Η\advance\@attic@num-100}%
% \end{macrocode}
% A numeral can have only one ^^^^^10144 ``digit'' (equivalent to 50).
% \begin{macrocode}
\ifnum\@attic@num>49%
^^^^^10144\advance\@attic@num-50%
\fi\relax
% \end{macrocode}
% Let's check now decades.
% \begin{macrocode}
\@whilenum\@attic@num>9\do{%
Δ\advance\@attic@num by-10}%
% \end{macrocode}
% We check for five and, finally, for the digits 1, 2, 3, and 4.
% \begin{macrocode}
\@whilenum\@attic@num>4\do{%
Π\advance\@attic@num-5}%
\ifcase\@attic@num\or Ι\or ΙΙ\or ΙΙΙ\or ΙΙΙΙ\fi%
\fi\fi}
% \end{macrocode}
%\end{macro}
%
%\begin{macro}{\@atticnum}
% The command |\@atticnum| has one argument, which
% is a counter. It calls the command |\@@atticnum| to process the value of
% the counter.
% \begin{macrocode}
\def\@atticnum#1{%
\expandafter\@@atticnum\expandafter{\the#1}}
% \end{macrocode}
%\end{macro}
%\begin{macro}{\atticnum}
% The command |\atticnum| is a wrapper that declares
% a new counter in a local scope, assigns to it the argument of the command
% and calls the macro |\@atticnum|. This way the command can process correctly
% either a number or a counter.
% \begin{macrocode}
\def\atticnum#1{%
\@attic@num#1\relax
\@atticnum{\@attic@num}}
% \end{macrocode}
%\end{macro}
%
% \begin{macro}{\greek@alph}
% \begin{macro}{\greek@Alph}
% Here we redefine the macros |\@alph| and |\@Alph|. First we define some placeholders
% \begin{macrocode}
\let\latin@alph\@alph
\let\latin@Alph\@Alph
% \end{macrocode}
% Then we define the Greek versions; the additional |\expandafter|s
% are needed in order to make sure the table of contents will be
% correct, e.g., when we have appendixes.
% \begin{macrocode}
\def\greek@alph#1{\expandafter\greeknumeral\expandafter{\the#1}}
\def\greek@Alph#1{\expandafter\Greeknumeral\expandafter{\the#1}}
% \end{macrocode}
% By default use Greek alphabetic enumerals instaed of Latin numerals to enumerate items in an
% enumeration environment.
% \begin{macrocode}
\let\@alph\greek@alph
\let\@Alph\greek@Alph
% \end{macrocode}
% If for some reason, we need to have the Latin numerals, then we just have to invoke command
% |\nogreekalph|. And if we want to switch back, then we have to use the |\greekalph|
% command:
% \begin{macrocode}
\def\nogreekalph{%
\let\@alph\latin@alph
\let\@Alph\latin@Alph}
\def\greekalph{%
\let\@alph\greek@alph
\let\@Alph\greek@Alph}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% What is left now is the definition of a set of macros to produce
% the various digits.
% \begin{macro}{\gr@num@i}
% \begin{macro}{\gr@num@ii}
% \begin{macro}{\gr@num@iii}
% As there is no representation for $0$ in this system the zeros
% are simply discarded. When we have a large number with three
% \emph{trailing} zero's also the numeric mark is discarded.
% Therefore these macros need to pass the information to each other
% about the (non-)translation of a zero.
% \begin{macrocode}
\def\gr@num@i#1{%
\ifcase#1\or α\or β\or γ\or δ\or ε\or \stigma\or ζ\or η\or θ\fi
\ifnum#1=\z@\else\anw@true\fi\anw@print}
\def\gr@num@ii#1{%
\ifcase#1\or ι\or κ\or λ\or μ\or ν\or ξ\or ο\or π\or \koppa\fi
\ifnum#1=\z@\else\anw@true\fi\gr@num@i}
\def\gr@num@iii#1{%
\ifcase#1\or ρ\or σ\or τ\or υ\or φ\or χ\or ψ\or ω\or \sampi\fi
\ifnum#1=\z@\anw@false\else\anw@true\fi\gr@num@ii}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\gr@num@iv}
% \begin{macro}{\gr@num@v}
% \begin{macro}{\gr@num@vi}
% The first three `digits' always have the numeric mark, except
% when one is discarded because it's value is zero.
% \begin{macrocode}
\def\gr@num@iv#1{%
\ifnum#1=\z@\else\katwtonos\fi
\ifcase#1\or α\or β\or γ\or δ\or ε\or \stigma\or ζ\or η\or θ\fi
\gr@num@iii}
\def\gr@num@v#1{%
\ifnum#1=\z@\else\katwtonos\fi
\ifcase#1\or ι\or κ\or λ\or μ\or ν\or ξ\or ο\or π\or \koppa\fi
\gr@num@iv}
\def\gr@num@vi#1{%
\katwtonos
\ifcase#1\or ρ\or σ\or τ\or υ\or φ\or χ\or ψ\or ω\or \sampi\fi
\gr@num@v}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \begin{macro}{\setlanguage}
% We provide the |\setlanguage| command which
% activates the hypehnation patterns of some other language. It is similar
% to babel's |\selectlanguage|, but we opted to use a new name to avoid any name conflicts.
% Valid arguments include |monogreek|, |polygreek|, and |ancientgreek|.
% \begin{macrocode}
\def\setlanguage#1{%
\expandafter\ifx\csname l@#1\endcsname\relax%
\typeout{^^J Error: No hyphenation pattern for language #1 loaded,}%
\typeout{ default hyphenation patterns are used.^^J}%
\language=0%
\else\language=\csname l@#1\endcsname\fi}
% \end{macrocode}
% \end{macro}
% The macros |\grtoday| and |\Grtoday| produces the current date, only that the
% month and the day are shown as greek numerals instead of arabic
% as it is usually the case. In addition, the two commands differ in that the
% later produces the Greek numerals in uppercase.
% \begin{macrocode}
\def\grtoday{%
\expandafter\greeknumeral\expandafter{\the\day}\space
\gr@c@month \space
\expandafter\greeknumeral\expandafter{\the\year}}
\def\Grtoday{%
\expandafter\Greeknumeral\expandafter{\the\day}\space
\gr@c@month \space
\expandafter\Greeknumeral\expandafter{\the\year}}
%</xgreek>
% \end{macrocode}
%
% \Finale
|