1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
|
% \iffalse
% +AMDG This document was begun on 1E June 11EE, the vigil
% of the Nativity of St. John the Baptist, and it is humbly
% dedicated to him and to the Immaculate Heart of Mary, for
% their prayers, and to the Sacred Heart of Jesus, for His
% mercy.
%
% This document is copyright 2015 by Donald P. Goodman, and is
% released publicly under the LaTeX Project Public License. The
% distribution and modification of this work is constrained by the
% conditions of that license. See
% http://www.latex-project.org/lppl.txt
% for the text of the license. This document is released
% under version 1.3 of that license, and this work may be distributed
% or modified under the terms of that license or, at your option, any
% later version.
%
% This work has the LPPL maintenance status 'maintained'.
%
% The Current Maintainer of this work is Donald P. Goodman
% (dgoodmaniii@gmail.com).
%
% This work consists of the files shapes.dtx and
% shapes.ins, along with the generated file shapes.mp
% and shapes.pdf, and the README.
% \fi
% \iffalse
%<*driver>
\documentclass{ltxdoc}
\usepackage{docmfp}
\usepackage{url}
\usepackage[typeone]{dozenal}
\usepackage{verbatim}
\usepackage{mflogo}
\usepackage[everymp={input shapes;},latex]{gmp}
\usepackage{makeidx}
\makeindex
\long\def\demonstrate#1#2{%
\bigskip%
\hrule%
\hbox to\linewidth{%
\hbox to0.65\linewidth{%
\vbox to1.4in{\vfil#1\vfil}%
}\hbox to0.35\linewidth{%
\vbox to1.4in{\vfil#2\vfil}%
}%
}%
\hrule%
\bigskip%
}
\begin{document}
\DocInput{shapes.dtx}
\end{document}
%</driver>
% \fi
% \title{The \texttt{shapes} Macros, v1.0}
% \author{Donald P.\ Goodman III}
% \date{\today}
%
% \maketitle
% \begin{abstract}\noindent
% The |shapes| macros for \MP\ provide regular polygons,
% their corresponding reentrant stars, and images
% demonstrating fractions. These macros are quite
% configurable.
% \end{abstract}
%
% \tableofcontents
%
% \section{Introduction}
%
% The |shapes| macros are not revolutionary, and in fact are
% quite simple; however, I spent some time generalizing them
% for a text I'm currently working on, and so I thought they
% might be useful for the general populace. They are
% divided into two main groups: regular polygons and their
% corresponding reentrant star shapes; and fractionals,
% circles divided into a certain number of parts with the
% desired fraction filled in.
%
% This document was typeset in accordance with the
% |docstrip| utility, which allows the automatic extraction
% of code and documentation from the same document.
%
% \section{Prerequisites and Conventions}
%
% Some prerequesites for using this package are \MP\ itself
% (obviously). If you're using the package with \LaTeX, the
% |gmp| package would probably be helpful; be sure to use
% the |latex| package option.
% These should be packaged in any
% reasonably modern \LaTeX\ system, such as \TeX Live or
% Mik\TeX.
%
% This documentation assumes nothing about your personal
% \TeX\ or \MP\ environment. Con\TeX t and the various
% forms of Lua\TeX\ have \MP\ built-in; with pdf\LaTeX, the
% author's choice, one can use the |gmp| package to
% include the source directly in one's document (that's
% what's been done in this documentation) or develop a
% simple script to compile them afterwards and include them
% in the source via |\includegraphics| (probably the
% quickest option, since compilation is done in advance).
% Here, we simply post the plain vanilla \MP\ code, and let
% you work out those details however you prefer.
%
% \section{The Shapes Macros}
%
% We begin with the simple shapes macros, which are about as
% basic as they can be.
%
% All of these shapes default to
% circles with a one inch diameter, so you can scaled them
% with that kept in mind.
%
% The simplest case is with a regular
% polygon, like so:
%
% \demonstrate{%
% \hbox{|modfig(6,0);|}
% \hbox{|draw modfigure;|}
% }{%
% \begin{mpost}
% modfig(6,0); draw modfigure;
% \end{mpost}
% }%
%
% Of course, these drawn figures can be manipulated in the
% usual ways:
%
% \demonstrate{%
% \hbox{|modfig(6,0);|}
% \hbox{|draw modfigure rotated (45) withcolor red;|}
% }{%
% \begin{mpost}
% modfig(6,0); draw modfigure rotated (45) withcolor red;
% \end{mpost}
% }%
%
% The two arguments to |modfig| are simple: the first tells
% the number of sides desired, while the second means
% \emph{no numbers are printed} if 0, and \emph{print
% numbers} if 1:
%
% \demonstrate{%
% \hbox{|modfig(8,1);|}
% \hbox{|draw modfigure;|}
% }{%
% \begin{mpost}
% modfig(8,1); draw modfigure;
% \end{mpost}
% }%
%
% If you don't want the circle to be printed, simply tell
% \MP\ with |modcircle := false;| and it will not print it:
%
% \demonstrate{%
% \hbox{|modcircle := false;|}
% \hbox{|modfig(8,1);|}
% \hbox{|draw modfigure;|}
% }{%
% \begin{mpost}
% modcircle := false;
% modfig(8,1); draw modfigure;
% \end{mpost}
% }%
%
% |modcircle| defaults to |true|.
%
% Notice that |modfig| doesn't care if there's a circle or
% not; if you want numbers on the vertices, it will print
% them there.
%
% You can adjust the width of the lines by specifying
% |modcirclepen| and |modshapepen|:
%
% \demonstrate{%
% \hbox{|modcirclepen := pencircle scaled 3;|}
% \hbox{|modshapepen := pencircle scaled 2;|}
% \hbox{|modfig(4,0);|}
% \hbox{|draw modfigure;|}
% }{%
% \begin{mpost}
% modcirclepen := pencircle scaled 3;
% modshapepen := pencircle scaled 2;
% modfig(4,0); draw modfigure;
% \end{mpost}
% }%
%
% Both |modcirclepen| and |modshapepen| default to
% |pencircle scaled 1|.
%
% We can do essentially the same thing with reentrant star
% figures with |modstar|. Unlike |modfig|, |modstar| takes
% \emph{three} arguments: the number of vertices, whether
% or not you want those vertices numbered, and how many
% points you want to skip as you go around the circle.
%
% \demonstrate{%
% \hbox{|modstar(11,1,3);|}
% \hbox{|draw modfigure;|}
% }{%
% \begin{mpost}
% modstar(11,1,3); draw modfigure;
% \end{mpost}
% }%
%
% Note that the third argument actually skips $n - 1$
% points, not $n$ points. But all the same parameters we
% saw when looking at |modfig| will still work in the same
% way:
%
% \demonstrate{%
% \hbox{|modcirclepen := pencircle scaled 1;|}
% \hbox{|modshapepen := pencircle scaled 2;|}
% \hbox{|modstar(11,1,4);|}
% \hbox{|draw modfigure;|}
% }{%
% \begin{mpost}
% modcirclepen := pencircle scaled 1;
% modshapepen := pencircle scaled 2;
% modstar(11,1,4); draw modfigure;
% \end{mpost}
% }%
%
% And that's about all there is to it.
%
% \section{Fraction Images}
% \label{sect:fraimg}
%
% The following macros are useful for demonstrating the
% nature and size of fractions in a visible way. The name
% of the game here is |fraccirc|, which takes two arguments:
% the number of parts to be filled, and the number of parts
% in the whole:
%
% \demonstrate{%
% \hbox{|fraccirc(7)(12);|}
% \hbox{|draw thefrac;|}
% }{%
% \begin{mpost}
% fraccirc(7)(12);
% draw thefrac;
% \end{mpost}
% }
%
% Note that, due to the internal implementation, these two
% arguments must each be enclosed in their own parentheses.
%
% We can adjust these things as appropriate. For example,
% we can fill with blue rather than red, and use thicker
% lines:
%
% \demonstrate{%
% \hbox{|fracfillcolor := blue;|}
% \hbox{|fraccirclepen := pencircle scaled 1;|}
% \hbox{|fractionpen := pencircle scaled 2;|}
% \hbox{|fraccirc(4)(7);|}
% \hbox{|draw thefrac;|}
% }{%
% \begin{mpost}
% fracfillcolor := blue;
% fraccirclepen := pencircle scaled 1;
% fractionpen := pencircle scaled 2;
% fraccirc(4)(7);
% draw thefrac;
% \end{mpost}
% }
%
% As the above example suggests, |fracfillcolor| gives the
% color with which the portion of the fraction should be
% filled; it defaults to |red|. |fraccirclepen| is the pen
% used to draw the circle around the fraction; it defaults
% to |pencircle scaled 1.5|. Finally, |fractionpen| is the
% pen used to draw the partition and the circle immediately
% surrounding them; it defaults to |pencircle scaled 1|.
%
% \section{Implementation}
% \label{sect:implem}
%
% \begin{macrocode}
color fracfillcolor; fracfillcolor := red;
pen fraccirclepen; fraccirclepen := pencircle scaled 1.5;
pen fractionpen; fractionpen := pencircle scaled 1;
def fraccirc(suffix x)(expr y) =
radius := 1in;
ticklen := radius/24;
path circ; circ := fullcircle scaled radius;
pair p[]; pair q[]; pair r[]; pair s[];
p[0] := (0,0) shifted (0,radius/2);
q[0] := p[0] shifted (0,ticklen);
r[0] := p[0] shifted (0,-ticklen);
s[0] := r[0];
picture thefrac;
picture addition;
thefrac := image(pickup fraccirclepen; draw circ;);
addition := image(pickup fractionpen; draw p[0]--q[0];);
addto thefrac also addition;
for i=1 upto 12:
p[i] := p[i-1] rotatedaround ((0,0),-30);
q[i] := q[i-1] rotatedaround ((0,0),-30);
addition := image(pickup fractionpen; draw p[i]--q[i];);
addto thefrac also addition;
endfor;
addition := image(pickup fractionpen; draw (0,0)--r[0];);
addto thefrac also addition;
pair t; pair q;
addition := image(
t = r[0] rotatedaround ((0,0),-((360/y)*x)/2);
q = r[0] rotatedaround ((0,0),-((360/y)*x));
fill r[0]--(0,0)--q..t..cycle withcolor fracfillcolor;
draw r[0]--(0,0)--q..t..cycle;
);
addto thefrac also addition;
for i=1 upto y:
r[i] := r[i-1] rotatedaround ((0,0),-(360/y));
s[i] := r[i-1] rotatedaround ((0,0),-(360/y)/2);
addition := image(%
pickup fractionpen;%
draw (0,0)--r[i];
draw r[i-1]..s[i]..r[i];
);
addto thefrac also addition;
endfor;
enddef;
% put in the pens for the modular shapes
boolean modcircle; modcircle := true;
pen modcirclepen; modcirclepen := pencircle scaled 1;
pen modshapepen; modshapepen := pencircle scaled 1;
def modstar(expr numpoints,numbers,numstar) =
picture modfigure;
if (modcircle = true):
modfigure := image(draw fullcircle scaled 1in withpen modcirclepen;);
else:
modfigure := image();
fi;
pickup modshapepen;
pair p[]; pair q[];
picture addition;
p[0] = (0,0.5in);
q[0] = (0,0.6in);
if (numbers = 1):
addition := image(label("0",q[0]));
addto modfigure also addition;
fi
for i=1 upto numpoints:
p[i] = p[i-1] rotatedaround ((0,0),-(360/numpoints));
q[i] = q[i-1] rotatedaround ((0,0),-(360/numpoints));
if (numbers = 1):
if (i <> numpoints):
addition := image(label(decimal i,q[i]));
addto modfigure also addition;
fi
fi
endfor
for i=0 upto numpoints:
if (i < numstar):
addition := image(%
draw p[i]--p[i+numstar];
draw p[i]--p[numpoints - numstar + i];
);
addto modfigure also addition;
elseif (i >= (numstar*2)):
addition := image(draw p[i-numstar]--p[i]);
addto modfigure also addition;
fi
endfor
addto modfigure also addition;
enddef;
def modfig(expr numpoints,numbers) =
picture modfigure;
if (modcircle = true):
modfigure := image(draw fullcircle scaled 1in withpen modcirclepen);
else:
modfigure := image();
fi
pair p[]; pair q[];
picture addition;
pickup modshapepen;
p[0] = (0,0.5in);
q[0] = (0,0.6in);
if (numbers = 1):
addition := image(label("0",q[0]));
addto modfigure also addition;
fi
for i=1 upto numpoints:
p[i] = p[i-1] rotatedaround ((0,0),-(360/numpoints));
q[i] = q[i-1] rotatedaround ((0,0),-(360/numpoints));
addition := image(draw p[i-1]--p[i]);
addto modfigure also addition;
if (numbers = 1):
if (i <> numpoints):
addition := image(label(decimal i,q[i]));
addto modfigure also addition;
fi
fi
endfor;
enddef;
% \end{macrocode}
|