1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
|
% \iffalse meta-comment
% An Infrastructure for Presenting Semantic Macros in sTeX
% Copyright (C) 2004-2007 Michael Kohlhase, all rights reserved
% This file is released under the LaTeX Project Public License (LPPL)
%
% The original of this file is in the public repository at
% http://github.com/KWARC/sTeX/
% \fi
%
% \iffalse
%<package>\NeedsTeXFormat{LaTeX2e}[1999/12/01]
%<package>\ProvidesPackage{cmath}[2016/04/07 v0.1 inline content math]
%
%<*driver>
\documentclass{ltxdoc}
\usepackage{url,array,float,amstext,alltt}
\usepackage{modules,cmath,stex-logo}
\usepackage[show]{ed}
\usepackage[hyperref=auto,style=alphabetic]{biblatex}
\addbibresource{kwarcpubs.bib}
\addbibresource{extpubs.bib}
\addbibresource{kwarccrossrefs.bib}
\addbibresource{extcrossrefs.bib}
\usepackage{ctangit}
\usepackage{hyperref}
\makeindex
\floatstyle{boxed}
\newfloat{exfig}{thp}{lop}
\floatname{exfig}{Example}
\def\tracissue#1{\cite{sTeX:online}, \hyperlink{http://trac.kwarc.info/sTeX/ticket/#1}{issue #1}}
\begin{document}\DocInput{cmath.dtx}\end{document}
%</driver>
% \fi
%
% \CheckSum{84}
%
% \changes{v0.2}{2016/02/12}{First Version with Documentation, extracted variables stuff
% from \texttt{presentation.dtx}}
% \changes{v0.2}{2016/02/12}{reinstating id macros from \texttt{latexml.sty}}
% \GetFileInfo{cmath.sty}
%
% \MakeShortVerb{\|}
%\def\scsys#1{{{\sc #1}}\index{#1@{\sc #1}}}
% \def\xml{\scsys{Xml}}
% \def\mathml{\scsys{MathML}}
% \def\omdoc{\scsys{OMDoc}}
% \def\openmath{\scsys{OpenMath}}
% \def\latexml{\scsys{LaTeXML}}
% \def\perl{\scsys{Perl}}
% \def\cmathml{Content-{\sc MathML}\index{Content {\sc MathML}}\index{MathML@{\sc MathML}!content}}
% \def\activemath{\scsys{ActiveMath}}
% \def\twin#1#2{\index{#1!#2}\index{#2!#1}}
% \def\twintoo#1#2{{#1 #2}\twin{#1}{#2}}
% \def\atwin#1#2#3{\index{#1!#2!#3}\index{#3!#2 (#1)}}
% \def\atwintoo#1#2#3{{#1 #2 #3}\atwin{#1}{#2}{#3}}
% \title{{\texttt{cmath.sty}}: An Infrastructure for building Inline Content Math in
% {\stex}\thanks{Version {\fileversion} (last revised {\filedate})}}
% \author{Michael Kohlhase \& Deyan Ginev\\
% Jacobs University, Bremen\\
% \url{http://kwarc.info/kohlhase}}
% \date{\today}
% \maketitle
%
% \begin{abstract}
% The |cmath| package is a central part of the {\stex} collection, a version of
% {\TeX/\LaTeX} that allows to markup {\TeX/\LaTeX} documents semantically without
% leaving the document format, essentially turning {\TeX/\LaTeX} into a document format
% for mathematical knowledge management (MKM).
%
% This package supplies an infrastructure that allows to build content math expressions
% (strict content MathML or OpenMath objects) in the text. This is needed whenever the
% head symbols of expressions are variables and can thus not be treated via the
% |\symdef| mechanism in \stex.
% \end{abstract}
%
% \newpage\setcounter{tocdepth}{2}\tableofcontents\newpage
%
%\section{Introduction}\label{sec:intro}
%
% \stex allows to build content math expressions via the |\symdef|
% mechanism~\cite{KohAmb:smmssl:ctan} if their heads are constants. For instance, if we
% have defined |\symdef{lt}[2]{#1<#2}| in the module |relation1|, then an invocation of
% |\lt3a| will be transformed to
% \begin{verbatim}
% <OMA>
% <OMS cd="relation1" name="lt"/>
% <OMI>3</OMI>
% <OMV name="a"/>
% </OMA>
% \end{verbatim}
% If the head of the expression (i.e. the function symbol in this case) is a variable,
% then we cannot resort to a |\symdef|, since that would define the functional equivalent
% of a logical constant. Sometimes, {\latexml} can figure out that when we write $f(a,b)$
% that $f$ is a function (especially, if we declare them to be via the |functions=| key in
% the dominating statement environment~\cite{Kohlhase:smmtf:ctan}). But sometimes, we want
% to be explicit, especially for $n$-ary functions and in the presence of elided elements
% in argument sequences. A related problem is markup for complex variable names, such as
% $x_{\text{left}}$ or $ST^*$.
%
% The |cmath| package supplies the {\LaTeX} bindings that allow us to
% achieve this.
%
% \section{The User Interface}\label{sec:user}
%
% \subsection{Variable Names}\label{sec:inter:vname}
%
% In mathematics we often use complex variable names like $x'$, $g_n$, $f^1$,
% $\widetilde\phi_i^j$ or even $foo$; for presentation-oriented {\LaTeX}, this is not a
% problem, but if we want to generate content markup, we must show
% explicitly that those are complex identifiers (otherwise the
% variable name $foo$ might be mistaken for the product $f\cdot
% o\cdot o$). In careful mathematical typesetting, |$sin$| is distinguished from |$\sin$|,
% but we cannot rely on this effect for variable names.
%
% \DescribeMacro{\vname} |\vname| identifies a token sequence as a name, and allows the
% user to provide an ASCII ({\xml}-compatible) identifier for it. The optional argument is
% the identifier, and the second one the LaTeX representation. The identifier can also be
% used with \DescribeMacro{\vname} |\vnref| for referencing. So, if we have used
% |\vnname[xi]{x_i}|, then we can later use |\vnref{xi}| as a short name for
% |\vname{x_i}|. Note that in output formats that are capable of generating structure
% sharing, |\vnref{xi}| would be represented as a
% cross-reference.\ednote{DG: Do we know whether using the same name
% in two vname invocations, would refer to two instances of the same variable? Presumably so, since the names are the same? We should make this explicit in the
% text. A different variable would e.g. have a name ``xi2'', but the same body}
%
% Since indexed variable names make a significant special case of complex identifiers, we
% provides the macros \DescribeMacro{\livar}|\livar| that allows to mark up variables with
% lower indices. If |\livar| is given an optional first argument, this is taken as a
% name. Thus |\livar[foo]{x}1| is ``short'' for |\vname[foo]{x_1}|. The macros
% \DescribeMacro{\livar}|\livar|, serve the analogous purpose for variables with upper
% indices, and \DescribeMacro{\ulivar}|\ulivar| for upper and lower indices. Finally,
% \DescribeMacro{\primvar}|\primvar| and \DescribeMacro{\pprimvar}|\pprimvar| do the same
% for variables with primes and double primes (triple primes are bad style).
%
% \subsection{Applications}\label{sec:user:appl}
%
% To construct a content math application of the form $f(a_1,\ldots,a_n)$ with concrete
% arguments $a_i$ (i.e. without elisions), then we can use the
% \DescribeMacro{\nappa}|\nappa| macro. If we have elisions in the arguments, then we
% have to interpret the arguments as a sequence of argument constructors applied to the
% respective positional indexes. We can mark up this situation with the
% \DescribeMacro{\nappf}|\nappf| macro:
% |\nappf{|\meta{fun}|}{|\meta{const}|}{|\meta{first}|}{|\meta{last}|}| where \meta{const}
% is a macro for the constructor is presented as
% $\meta{fun}(\meta{const}\meta{first},\ldots,\meta{const}\meta{last})$; see
% Figure~\ref{fig:application} for a concrete example, and
% Figure~\ref{fig:application-result}.\ednote{MK@MK: we need a meta-cd |cmath| with the
% respective notation definition here. It is very frustrating that we cannot even really
% write down the axiomatization of flexary constants in OpenMath.}
%
% \begin{figure}\centering
% \begin{tabular}{|l|l|}\hline
% \verb|\nappa{f}{a_1,a_2,a_3}| & $\nappa{f}{a_1,a_2,a_3}$\\\hline
% \verb|\nappe{f}{a_1}{a_n}| & $\nappe{f}{a_1}{a_n}$\\\hline
% \verb|\symdef{eph}[1]{e_{#1}^{\varphi(#1)}}|& $\def\foo#1{e_{#1}^{\varphi(#1)}}\nappf{g}\foo14$\\
% \verb|\nappf{g}\eph14|
% & \\\hline
% \verb|\nappli{f}a1n| & $\nappli{f}a1n$\\\hline
% \verb|\nappui{f}a1n| & $\nappui{f}a1n$\\\hline
% \end{tabular}
% \caption{Application Macros}\label{fig:application}
% \end{figure}
%
% For a simple elision in the arguments, we can use
% \DescribeMacro{\nappe}|\nappe{|\meta{fun}|}{|\meta{first}|}{|\meta{last}|}| will be
% formatted as $\meta{fun}(\meta{first},\ldots,\meta{last})$. Note that this is quite
% un-semantic (we have to guess the sequence), so the use of |\nappe| is discouraged.
%
% A solution to this situation is if we can think of the arguments as a finite sequence
% $a=:(a_i)_{l\leq i\leq h}$, then we can use \DescribeMacro
% {\nappli}|\nappli{|\meta{fun}|}{|\meta{seq}|}{|\meta{start}|}{|\meta{end}|}|, where
% \meta{seq} is the sequence, and the remaining arguments are the start and end index. The
% \DescribeMacro{\nappui} works like |\nappli|, but uses upper indices in the
% presentation.
%
% \begin{exfig}\centering
% \begin{verbatim}
% \symdef{eph}[1]{e_{#1}^{\phi(#1)}}
% \nappf{g}\eph14
% \end{verbatim}
% currently generates
% \begin{verbatim}
% <OMA>
% <OMS cd="cmath" name="apply-from-to"/>
% <OMV name="g"/>
% <OMBIND>
% <OMS cd="fns1" name="lambda"/>
% <OMBVAR><OMV name="x"/></OMBVAR>
% <OMA><OMS cd="???" name="eph"/><OMV name="x"/></OMA>
% </OMBIND>
% <OMI>1</OMI>
% <OMI>4</OMI>
% </OMA>
% \end{verbatim}
% \caption{Application Macros}\label{fig:application-result}
% \end{exfig}
%
% \subsection{Binders}\label{sec:user:bind}
%\ednote{MK: document}
%
% \subsection{Sharing}\label{sec:user:sharing}
% We (currently) use the
%
% \section{Limitations}\label{sec:limitations}
%
% In this section we document known limitations. If you want to help alleviate them,
% please feel free to contact the package author. Some of them are currently discussed in
% the \sTeX GitHub repository~\cite{sTeX:github:on}.
% \begin{compactenum}
% \item none reported yet
% \end{compactenum}
%
% \StopEventually{\newpage\PrintIndex\newpage\PrintChanges\printbibliography}
%
% \section{The Implementation}\label{sec:implementation}
%
% \subsection{Package Options}\label{sec:impl:options}
%
% The |cmath| package does not take options (at the moment), but we pass any we get to the
% |presentation| package.
%
% \begin{macrocode}
%<*package>
\DeclareOption*{\PassOptionsToPackage{\CurrentOption}{presentation}}
\ProcessOptions
% \end{macrocode}
%
% The next measure is to ensure that some {\sTeX} packages are loaded. For {\latexml}, we
% also initialize the package inclusions, there we do not need |ntheorem|, since the XML
% does not do the presentation.
% \begin{macrocode}
\RequirePackage{presentation}
% \end{macrocode}
% \subsection{Variable Names}\label{sec:impl:vname}
%
% \begin{macro}{\vname}
% a name macro; the first optional argument is an identifier \meta{id}, this is standard
% for {\LaTeX}, but for {\latexml}, we want to generate attributes
% |xml:id="cvar.|\meta{id}|"| and |name="|\meta{id}|"|. However, if no id was given in
% we default them to |xml:id="cvar.|\meta{count}|"| and
% |name="name.cvar.|\meta{count}|"|.
% \begin{macrocode}
\newcommand\vname[2][]{#2%
\def\@opt{#1}%
\ifx\@opt\@empty\else\expandafter\gdef\csname MOD@name@#1\endcsname{#2}\fi}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\vnref}
% \begin{macrocode}
\def\vnref#1{\csname MOD@name@#1\endcsname}
% \end{macrocode}
% \end{macro}
% \ednote{the following macros are just ideas, they need to be implemented and documented}
% \begin{macro}{\uivar}
% constructors for variables.
% \begin{macrocode}
\newcommand\primvar[2][]{\vname[#1]{#2^\prime}}
\newcommand\pprimvar[2][]{\vname[#1]{#2^{\prime\prime}}}
\newcommand\uivar[3][]{\vname[#1]{{#2}^{#3}}}
\newcommand\livar[3][]{\vname[#1]{{#2}_{#3}}}
\newcommand\ulivar[4][]{\vname[#1]{{#2}^{#3}_{#4}}}
% \end{macrocode}
% \end{macro}
%
% \subsection{Applications}\label{sec:impl:appl}
%
% \begin{macro}{\napp*}
% \ednote{document keyval args above and implement them in LaTeXML}
% \begin{macrocode}
\newcommand\nappa[3][]{\prefix[#1]{#2}{#3}}
\newcommand\nappe[4][]{\nappa[#1]{#2}{#3,\ldots,#4}}
\newcommand\nappf[5][]{\nappe[#1]{#2}{#3{#4}}{#3{#5}}}
\newcommand\nappli[5][]{\nappe[#1]{#2}{#3_{#4}}{#3_{#5}}}
\newcommand\nappui[5][]{\nappe[#1]{#2}{#3^{#4}}{#3^{#5}}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\anapp*}
% \ednote{document anapp* and implement in LaTeXML (i.e. get the presentation
% information into the OM/MathML).}
% \begin{macrocode}
\newcommand\anappa[3][]{\assoc[#1]{#2}{#3}}
\newcommand\anappe[4][]{\anappa[#1]{#2}{#3,\ldots,#4}}
\newcommand\anappf[5][]{\anappe[#1]{#2}{#3{#4}}{#3{#5}}}
\newcommand\anappli[5][]{\anappe[#1]{#2}{#3_{#4}}{#3_{#5}}}
\newcommand\anappui[5][]{\anappe[#1]{#2}{#3^{#4}}{#3^{#5}}}
% \end{macrocode}
% \end{macro}
%
% \subsection{Binders}\label{sec:impl:bind}
%
% \subsection{Sharing}\label{sec:user:sharing}
% These macros are lifted from Bruce Miller's |latexml.sty|, we do not want the rest.
% \begin{macro}{\LXMID}
% \begin{macrocode}
\def\LXMID#1#2{\expandafter\gdef\csname xmarg#1\endcsname{#2}\csname xmarg#1\endcsname}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\LXMRef}
% \begin{macrocode}
\def\LXMRef#1{\csname xmarg#1\endcsname}
%</package>
% \end{macrocode}
% \end{macro}
% \Finale
\endinput
%
% Local Variables:
% mode: doctex
% TeX-master: t
% End:
%
% LocalWords: iffalse NeedsTeXFormat cmath cmath.dtx texttt presentation.dtx scsys sc
% LocalWords: sc mathml omdoc latexml cmathml activemath twintoo atwin atwintoo stex lt
% LocalWords: fileversion filedate maketitle symdef newpage setcounter tocdepth newpage
% LocalWords: tableofcontents ary widetilde cdot vname vname vnref vnname ednote livar
% LocalWords: livar ulivar ulivar primvar primvar pprimvar pprimvar ldots nappa nappa
% LocalWords: nappf nappf hline nappe eph varphi nappli nappli firstarg lastarg exfig
% LocalWords: compactenum printbibliography textsf langle rangle textsf langle rangle
% LocalWords: ltxml cvar newcommand ifx expandafter gdef csname endcsname ltx uivar leq
% LocalWords: napp nappui sequencefromto endinput seq
|