1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
|
%\iffalse -*-mode:Latex;tex-command:"latex *;dvips pst-slpe -o"-*- \fi
%\iffalse
% $Id: pst-slpe.dtx,v 1.7 1998/09/15 12:43:03 giese Exp $
%
% Copyright 1998 Martin Giese, giese@ira.uka.de
% 2005 Herbert Voss (using xkeyval)
%
% This file is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
%
% IMPORTANT COPYRIGHT NOTICE:
%
% Permission is granted to copy this file to another file with a clearly
% different name and to customize the declarations in that copy to serve
% the needs of your installation, provided that you comply with
% the conditions in the file legal.txt from the LaTeX2e distribution.
%
% However, NO PERMISSION is granted to produce or to distribute a
% modified version of this file under its original name.
%
% You are NOT ALLOWED to change this file.
%
%\fi
% \CharacterTable
% {Upper-case \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
% Lower-case \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
% Digits \0\1\2\3\4\5\6\7\8\9
% Exclamation \! Double quote \" Hash (number) \#
% Dollar \$ Percent \% Ampersand \&
% Acute accent \' Left paren \( Right paren \)
% Asterisk \* Plus \+ Comma \,
% Minus \- Point \. Solidus \/
% Colon \: Semicolon \; Less than \<
% Equals \= Greater than \> Question mark \?
% Commercial at \@ Left bracket \[ Backslash \\
% Right bracket \] Circumflex \^ Underscore \_
% Grave accent \` Left brace \{ Vertical bar \|
% Right brace \} Tilde \~}
% \CheckSum{163}
%
% \changes{v1.1}{2005/10/05}{%
% using the extended pst-xkey instead of the old pst-key package;
% creating a dtx file (hv)}
% \changes{v1.0}{2005/03/05}{More compatible to the other PStricks
% packages. (RN)}
%
%\iffalse
%<*!prolog>
\def\pstslpefileversion{1.1}
\def\pstslpefiledate{2005/10/05}
%</!prolog>
%\fi
%
% \title{\textsf{pst-slpe} package \\ version \pstslpefileversion}
% \author{Martin Giese\footnote{email:\texttt{giese@ira.uka.de}}}
% \date{\pstslpefiledate}
% \maketitle
%
%\section{Introduction}
%As of the 97 release, PSTricks contains the |pst-grad|
%package, which provides a gradient fill style for arbitrary shapes.
%Although it often produces nice results, it has a number of
%deficiencies:
%\begin{enumerate}
%\item It is not possible to go from a colour $A$ to $B$ to $C$,
%etc. The most evident application of such a multi-colour gradient are
%of course rainbow effects. But they can also be useful in informative
%contexts, eg to identify modes of operation in a scale of values
%(normal/danger/overload).
%\item Colours are interpolated linearly in the RGB space. This is
%often OK, but when you want to go from red $(1,0,0)$ to green
%$(0,1,0)$, it looks much better to get there via yellow $(1,1,0)$ than
%via brown $(0.5,0.5,0)$. The point is, that to get from one saturated
%colour to another, the colours on the way should also be saturated to
%produce an optically pleasing result.
%\item |pst-grad| is limited to {\em linear} gradients, ie~there
%is a (possibly rotated) rectilinear coordinate system, such that the
%colour at every point depends only on the $x$ coordinate of the
%point. In particular, there is no way to get circular patterns.
%\end{enumerate}
%|pst-slpe| solves {\em all} of the mentioned
%problems in {\em one} package.
%
%Problems 1.~is addressed by permitting the user to specify an
%arbitrary number of colours, along with the points at which these are
%to be reached. A special form of each of the fill styles is provided,
%which just needs two colours as parameters, and goes from one to the
%other. This makes the fill styles easier to use in that simple case.
%
%Problem 2.~is solved by interpolating in the hue-saturation-value
%colour space. Conversion between RGB and HSV is done behind the
%scenes. The user specifies colours in RGB.
%
%Finally, |pst-slpe| provides {\em concentric} and {\em radial}
%gradients. What these mean is best explained with a polar coordinate
%system: In a concentric pattern, the colour of a point depends on the
%radius coordinate, while in a radial pattern, it depends on the angle
%coordinate.
%
%As a special bonus, the PostScript part of |pst-slpe| is somewhat
%optimized for speed. In |ghostscript|, rendering is about 30\% faster
%than with |pst-grad|.
%\medskip
%
%For most of these problems, solutions have been posted in the
%appropriate \TeX\ newsgroup over the years. |pst-slpe| has however
%been developed independently from these proposals. It is based on
%the original PSTricks 0.93 |gradient| code, most of which has been
%changed or replaced. The
%author is indebted to Denis Girou, whose encouragement triggered the
%process of making this a shipable package instead of a private
%experiment.
%\medskip
%
%The new fill styles and the
%graphics parameters provided to use them are described in
%section 2 of this document. Section 3, if present, documents the
%implementation consisting of a generic \TeX\ file and a PostScript
%header for the |dvi|-to-PostScript converter. You can get section 3
%by calling \LaTeX\ as follows on most relevant systems:
%\begin{verbatim}
%latex '\AtBeginDocument{\AlsoImplementation}\input{pst-slpe.dtx}'
%\end{verbatim}
%\section{Package Usage}
% To use |pst-slpe|, you have to say
% \begin{verbatim}
% \usepackage{pst-slpe}
% \end{verbatim}
% in the document prologue for \LaTeX, and
% \begin{verbatim}
% \input pst-slpe.tex
% \end{verbatim}
% in ``plain'' \TeX.
%
% \DescribeMacro{slope}
% \DescribeMacro{slopes}
% \DescribeMacro{ccslope}
% \DescribeMacro{ccslopes}
% \DescribeMacro{radslope}
% \DescribeMacro{radslopes}
% |pst-slpe| provides six new fill styles called |slope|, |slopes|,
% |ccslope|, |ccslopes|, |radslope| and |radslopes|. These obviously
% come in pairs: The $\ldots$|slope|-styles are simplified versions of
% the general $\ldots$|slopes|-styles.\footnote{By the way, I use slope
% as a synonym for gradient. It sounds less pretentious and avoids
% name clashes.} The |cc|$\ldots$ styles paint concentric patterns,
% and the |rad|$\ldots$ styles do radial ones. Here is a little
% overview of what they look like:
% \newcommand{\st}{$\vcenter to30pt{}$}
% \begin{quote}\LARGE
% \begin{tabular}{cc}
% \psframebox[fillstyle=slope]{\st|slope|} &\qquad
% \psframebox[fillstyle=slopes]{\st|slopes|} \\[2ex]
% \psframebox[fillstyle=ccslope]{\st|ccslope|} &\qquad
% \psframebox[fillstyle=ccslopes]{\st|ccslopes|} \\[2ex]
% \psframebox[fillstyle=radslope]{\st|radslope|} &\qquad
% \psframebox[fillstyle=radslopes]{\st|radslopes|} \\[2ex]
% \end{tabular}
% \end{quote}
% These examples were produced by saying simply
% \begin{verbatim}
% \psframebox[fillstyle=slope]{...}
% \end{verbatim}
% etc.~without setting any further graphics parameters. The package
% provides a number of parameters that can be used to control
% the way these patterns
% are painted.
% \medskip
%
% \DescribeMacro{slopebegin}
% \DescribeMacro{slopeend}
% The graphics parameters |slopebegin| and |slopeend| set the colours
% between which the three $\ldots$|slope| styles should interpolate.
% Eg,
% \begin{verbatim}
% \psframebox[fillstyle=slope,slopebegin=red,slopeend=green]{...}
% \end{verbatim}
% produces:
% \begin{quote}\Large
% \psframebox[fillstyle=slope,slopebegin=red,slopeend=green]{\st slopes!}
% \end{quote}
% The same settings of |slopebegin| and |slopeend| for the |ccslope|
% and |radslope| fillstyles produce
% \begin{quote}\Large
% \psframebox[fillstyle=ccslope,slopebegin=red,slopeend=green]{\st slopes!}
% \quad{\normalsize resp.}\quad
% \psframebox[fillstyle=radslope,slopebegin=red,slopeend=green]{\st slopes!}
% \end{quote}
% The default settings go from a greenish yellow to pure blue.
% \medskip
%
% \DescribeMacro{slopecolors}
% If you want to interpolate between more than two colours, you have
% to use the $\ldots$|slopes| styles, which are controlled by the
% |slopecolors| parameter instead of |slopebegin| and |slopeend|. The
% idea is to specify the colour to use at certain points `on the
% way'. To fill a shape with |slopes|, imagine a linear scale
% from its left edge to its right edge. The left edge must lie at
% coordinate 0. Pick an arbitrary value for the right edge, say 23.
% Now you want to get light yellow at the left edge, a pastel green at $17/23$
% of the way and dark cyan at the right edge, like this:
% \begin{quote}\psset{unit=0.45cm}
% \begin{pspicture}(-1,0)(24,6)
% \pscustom[fillstyle=slopes,
% slopecolors=0 1 1 .9 17 .5 1 .5 23 0 0.5 0.5 3]{
% \psccurve(0,2.5)(12,3.5)(20,4)(23,2)(17,2.5)}
% \psaxes(0,5)(-0.01,5)(23.01,5)
% \psline(0,5)(0,1)
% \psline(17,5)(17,1)
% \psline(23,5)(23,1)
% \end{pspicture}
% \end{quote}
% The RGB values for the three colours are $(1,1,0.9)$, $(0.5,1,0.5)$
% and $(0,0.5,0.5)$. The value for the |slopecolors| parameter is a list
% of `colour infos' followed by the number of `colour infos'.
% Each `colour info' consists
% of the coordinate value where a colour is to be specified, followed by
% the RGB values of that colour. All these values are separated by
% white space. The correct setting for the example is thus:
% \begin{verbatim}
% slopecolors=0 1 1 .9 17 .5 1 .5 23 0 .5 .5 3
% \end{verbatim}
% For |ccslopes|, specify the colours from the center outward.
% For |radslopes| (with no rotation specified), 0 represents the ray
% going `eastward'. Specify the colours anti-clockwise. If you want a
% smooth gradient at the beginning and starting ray of |radslopes|, you
% should pick the first and last colours identical.
%
% Please note, that the |slopecolors| parameter is not subject to any
% parsing on the \TeX\ side. If you forget a number or specify the wrong
% number of segments, the PostScript interpreter will probably crash.
%
% The default value for |slopecolors| specifies a rainbow.
%
% \medskip
%
% \DescribeMacro{slopesteps}
% The parameter |slopesteps| controls the number of distinct colour steps
% rendered. Higher values for this parameter result in better quality
% but proportionally slower rendering. Eg, setting
% |slopesteps| to 5 with the |slope| fill style results in
% \begin{quote}\Large
% \psframebox[fillstyle=slope,slopesteps=5]{\st slopes!}
% \end{quote}
%
% The default value is 100, which
% suffices for most purposes. Remember that the number of distinct colours
% reproducible by a given device is limited. Pushing |slopesteps| to
% high will result only in loss of performance at no gain in quality.
% \medskip
%
% \DescribeMacro{slopeangle}
% The |slope(s)| and |radslope(s)| patterns may be rotated. As usual,
% the angles are given anti-clockwise. Eg, an angle of 30 degrees
% gives
% \begin{quote}\Large\psset{slopeangle=30}
% \psframebox[fillstyle=slope]{\st slopes!}
% \quad{\normalsize and}\quad
% \psframebox[fillstyle=radslope]{\st slopes!}
% \end{quote}
% with the |slope| and |radslope| fillstyles.
% \medskip
%
% \DescribeMacro{slopecenter}
% For the |cc|$\ldots$ and |rad|$\ldots$ styles, it is possible to
% set the center of the pattern. The |slopecenter| parameter is set to
% the coordinates of that center relative to the bounding box of the
% current path. The following effect:
% \begin{quote}\psset{unit=0.45cm}
% \begin{pspicture}(-1,-1)(24,5)
% \pscustom[fillstyle=radslope,slopecenter=0.2 0.4]{
% \pspolygon(0,2.5)(12,2.5)(20,4)(23,2)(17,2.5)(3,0)}
% \psaxes[axesstyle=frame,Dx=0.1,dx=2.2999,Dy=0.2,dy=0.7999](0,0)(23,4)
% \psline(4.6,0)(4.6,4)
% \psline(0,1.6)(23,1.6)
% \end{pspicture}
% \end{quote}
% was achieved with
% \begin{verbatim}
% fillstyle=radslope,slopecenter=0.2 0.4
% \end{verbatim}
% The default value for |slopecenter| is |0.5 0.5|, which is the
% center for symmetrical shapes. Note that this parameter is not
% parsed by \TeX, so setting it to anything else than two numbers
% between 0 and 1 might crash the PostScript interpreter.
% \medskip
%
% \DescribeMacro{sloperadius}
% Normally, the |cc|$\ldots$ and |rad|$\ldots$ styles distribute the
% given colours so that the center is painted in the first colour given,
% and the points of the shape furthest from the center are painted in
% the last colour. In other words the maximum radius to which the
% |slopecolors| parameter refers is the maximum distance from the
% center (defined by |slopecenter|) to any point on the periphery
% of the shape. This radius can be explicitly set with |sloperadius|.
% Eg, setting |sloperadius=0.5cm| gives
% \begin{quote}\Large\psset{sloperadius=0.5cm}
% \psframebox[fillstyle=ccslope]{\st slopes!}
% \end{quote}
% Any point further from the center than the given |sloperadius| is
% painted with the last colour in |slopeclours|, resp.~|slopeend|.
%
% The default value for |sloperadius| is 0, which invokes the default
% behaviour of automatically calculating the radius.
%
% \StopEventually{}
%\section{The Code}
% \subsection{Producing the documentation}
%
% A short driver is provided that can be extracted if necessary by
% the \textsc{docstrip} program provided with \LaTeXe.
% \begin{macrocode}
%<*driver>
\NeedsTeXFormat{LaTeX2e}
\documentclass{ltxdoc}
\usepackage{pst-slpe}
\usepackage{pst-plot}
\DisableCrossrefs
\MakeShortVerb{\|}
\newcommand\Lopt[1]{\textsf{#1}}
\newcommand\file[1]{\texttt{#1}}
\AtEndDocument{
\PrintChanges
%\PrintIndex
}
%\OnlyDescription
\begin{document}
\DocInput{pst-slpe.dtx}
\end{document}
%</driver>
% \end{macrocode}
%
% \subsection{The \file{pst-slpe.sty} file}
% The \file{pst-slpe.sty} file is very simple. It just loads
% the generic \file{pst-slpe.tex} file.
% \begin{macrocode}
%<*stylefile>
\RequirePackage{pstricks}
\ProvidesPackage{pst-slpe}[2005/03/05 package wrapper for `pst-slpe.tex']
\input{pst-slpe.tex}
\ProvidesFile{pst-slpe.tex}
[\pstslpefiledate\space v\pstslpefileversion\space `pst-slpe' (Martin Giese)]
%</stylefile>
% \end{macrocode}
%
% \subsection{The \file{pst-slpe.tex} file}
% \file{pst-slpe.tex} contains the \TeX-side of things. We begin
% by identifying ourselves and setting things up, the same as in
% other PSTricks packages.
% \begin{macrocode}
%<*texfile>
\message{ v\pstslpefileversion, \pstslpefiledate}
\csname PstSlopeLoaded\endcsname
\let\PstSlopeLoaded\endinput
\ifx\PSTricksLoaded\endinput\else
\def\next{\input pstricks.tex }\expandafter\next
\fi
\ifx\PSTXKeyLoaded\endinput\else\input pst-xkey \fi % --> hv
\edef\TheAtCode{\the\catcode`\@}
\catcode`\@=11
\pst@addfams{pst-slpe} % --> hv
\pstheader{pst-slpe.pro}
% \end{macrocode}
% \begin{macro}{slopebegin}
% \begin{macro}{slopeend}
% \begin{macro}{slopesteps}
% \begin{macro}{slopeangle}
% \subsubsection{New graphics parameters}
% We now define the various new parameters needed by the |slope|
% fill styles and install default values. First come the colours,
% ie~graphics parameters |slopebegin| and |slopeend|, followed
% by the number of steps, |slopesteps|, and the rotation angle,
% |slopeangle|.
% \begin{macrocode}
\newrgbcolor{slopebegin}{0.9 1 0}
\define@key[psset]{pst-slpe}{slopebegin}{\pst@getcolor{#1}\psslopebegin}% --> hv
\psset[pst-slpe]{slopebegin=slopebegin} % --> hv
\newrgbcolor{slopeend}{0 0 1}
\define@key[psset]{pst-slpe}{slopeend}{\pst@getcolor{#1}\psslopeend}% --> hv
\psset[pst-slpe]{slopeend=slopeend}% --> hv
\define@key[psset]{pst-slpe}{slopesteps}{\pst@getint{#1}\psslopesteps}% --> hv
\psset[pst-slpe]{slopesteps=100}% --> hv
\define@key[psset]{pst-slpe}{slopeangle}{\pst@getangle{#1}\psx@slopeangle}% --> hv
\psset[pst-slpe]{slopeangle=0}% --> hv
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \begin{macro}{slopecolors}
% The value for |slopecolors| is not parsed. It is directly copied
% to the PostScript output. This is certainly not the way it
% should be, but it's simple. The default value is a rainbow from
% red to magenta.
% \begin{macrocode}
\define@key[psset]{pst-slpe}{slopecolors}{\def\psx@slopecolors{#1}}% --> hv
\psset[pst-slpe]{slopecolors={% --> hv
0.0 1 0 0
0.4 0 1 0
0.8 0 0 1
1.0 1 0 1
4}}
% \end{macrocode}
% \end{macro}
% \begin{macro}{slopecenter}
% The argument to |slopecenter| isn't parsed either. But there's
% probably not much that can go wrong with two decimal numbers.
% \begin{macrocode}
\define@key[psset]{pst-slpe}{slopecenter}{\def\psx@slopecenter{#1}}% --> hv
\psset[pst-slpe]{slopecenter={0.5 0.5}}% --> hv
% \end{macrocode}
% \end{macro}
% \begin{macro}{sloperadius}
% The default value for |sloperadius| is 0, which makes the
% PostScript procedure |PatchRadius| determine a value for the radius.
% \begin{macrocode}
\define@key[psset]{pst-slpe}{sloperadius}{\pst@getlength{#1}\psx@sloperadius}% --> hv
\psset[pst-slpe]{sloperadius=0}% --> hv
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Fill style macros}
%
% Now come the fill style definitions that use these parameters.
% There is one macro for each fill style named |\psfs@|$style$.
% PSTricks calls this macro whenever the current path needs to
% be filled in that style. The current path should not be
% clobbered by the PostScript code output by the macro.
%
% \begin{macro}{slopes}
% For the slopes fill style we produce PostScript code that
% first puts the |slopecolors| parameter onto the stack. Note that
% the number of colours listed, which comes last in |slopecolors| is
% now on the top of the stack. Next come the |slopesteps| and
% |slopeangle| parameters. We switch to the dictionary established
% by the \file{pst-slop.pro} Prolog and call |SlopesFill|, which
% does the artwork and takes care to leave the path alone.
% \begin{macrocode}
\def\psfs@slopes{%
\addto@pscode{
\psx@slopecolors\space
\psslopesteps
\psx@slopeangle
tx@PstSlopeDict begin SlopesFill end}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{slope}
% The |slope| style uses parameters |slopebegin| and |slopeend|
% instead of |slopecolors|. So the produced PostScript uses these
% parameters to build a stack in |slopecolors| format. The
% |\pst@usecolor| generates PostScript to set the current colour.
% We can query the RGB values with |currentrgbcolor|.
% A |gsave|/|grestore| pair is used to avoid changing the
% PostScript graphics state. Once the stack is set up,
% |SlopesFill| is called as before.
% \begin{macrocode}
\def\psfs@slope{%
\addto@pscode{%
gsave
0 \pst@usecolor\psslopebegin currentrgbcolor
1 \pst@usecolor\psslopeend currentrgbcolor
2
grestore
\psslopesteps \psx@slopeangle tx@PstSlopeDict begin SlopesFill end}}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{ccslopes}
% \begin{macro}{ccslope}
% \begin{macro}{radslopes}
% The code for the other fill styles is about the same, except for a few
% parameters more or less and different PostScript procedures called
% to do the work.
% \begin{macrocode}
\def\psfs@ccslopes{%
\addto@pscode{%
\psx@slopecolors\space
\psslopesteps \psx@slopecenter\space \psx@sloperadius\space
tx@PstSlopeDict begin CcSlopesFill end}}
\def\psfs@ccslope{%
\addto@pscode{%
gsave 0 \pst@usecolor\psslopebegin currentrgbcolor
1 \pst@usecolor\psslopeend currentrgbcolor
2 grestore
\psslopesteps \psx@slopecenter\space \psx@sloperadius\space
tx@PstSlopeDict begin CcSlopesFill end}}
\def\psfs@radslopes{%
\addto@pscode{%
\psx@slopecolors\space
\psslopesteps\psx@slopecenter\space\psx@sloperadius\space\psx@slopeangle
tx@PstSlopeDict begin RadSlopesFill end}}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \begin{macro}{radslope}
% |radslope| is slightly different: Just going from one colour to
% another in 360 degrees is usually not what is wanted. |radslope| just
% does something pretty with the colours provided.
% \begin{macrocode}
\def\psfs@radslope{%
\addto@pscode{%
gsave 0 \pst@usecolor\psslopebegin currentrgbcolor
1 \pst@usecolor\psslopeend currentrgbcolor
2 \pst@usecolor\psslopebegin currentrgbcolor
3 \pst@usecolor\psslopeend currentrgbcolor
4 \pst@usecolor\psslopebegin currentrgbcolor
5 grestore
\psslopesteps\psx@slopecenter\space\psx@sloperadius\space\psx@slopeangle
tx@PstSlopeDict begin RadSlopesFill end}}
\catcode`\@=\TheAtCode\relax
%</texfile>
% \end{macrocode}
% \end{macro}
%
% \subsection{The \file{pst-slpe.pro} file}
% The file \file{pst-slpe.pro} contains PostScript definitions
% to be included in the PostScript output by the
% |dvi|-to-PostScript converter, eg |dvips|.
% First thing is to define a
% dictionary to keep definitions local.
% \begin{macrocode}
%<*prolog>
/tx@PstSlopeDict 60 dict def tx@PstSlopeDict begin
% \end{macrocode}
%
% \begin{macro}{max}
% $x1 \quad x2 \quad \mathtt{max}\quad max$\\
% |max| is a utility function that calculates the maximum
% of two numbers.
% \begin{macrocode}
/max {2 copy lt {exch} if pop} bind def
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{Iterate}
% $p_1\quad r_1\quad g_1\quad b_1\quad\ldots\quad
% p_n\quad r_n\quad g_n\quad b_n\quad n\quad \mathtt{Iterate}\quad -$\\
% This is the actual iteration, which goes through the colour
% information and plots the segments.
% It uses the value of |NumSteps| which is set by the wrapper
% procedures. |DrawStep| is called all of |NumSteps| times, so
% it had better be fast.
%
% First, the number of colour infos is read from the
% top of the stack and decremented, to get the number of segments.
% \begin{macrocode}
/Iterate {
1 sub /NumSegs ED
% \end{macrocode}
% Now we get the first colour. This is really the {\em last}
% colour given in the |slopecolors| argument. We have to work
% {\em down} the stack, so we shall be careful to plot the segments
% in reverse order. The |dup mul| stuff squares the RGB
% components. This does a kind-of-gamma correction, without
% which primary colours tend to take up too much space in the
% slope. This is nothing deep, it just looks better in my opinion.
% The following lines convert RGB to HSB and store the resulting
% components, as well as the |Pt| coordinate in four variables.
% \begin{macrocode}
dup mul 3 1 roll dup mul 3 1 roll dup mul 3 1 roll
setrgbcolor currenthsbcolor
/ThisB ED
/ThisS ED
/ThisH ED
/ThisPt ED
% \end{macrocode}
% To avoid gaps, we fill the whole path in that first colour.
% \begin{macrocode}
gsave fill grestore
% \end{macrocode}
% The body of the following outer loop is executed
% once for each segment.
% It expects a current colour and |Pt| coordinate in the |This*|
% variables and pops the next colour and point from the stack. It
% then draws the single steps of that segment.
% \begin{macrocode}
NumSegs {
dup mul 3 1 roll dup mul 3 1 roll dup mul 3 1 roll
setrgbcolor currenthsbcolor
/NextB ED
/NextS ED
/NextH ED
/NextPt ED
% \end{macrocode}
% |NumSteps| always contains the remaining number of steps available.
% These are evenly distributed between |Pt| coordinates |ThisPt|
% to 0, so for the current segment we may use
% $|NumSteps|*(|ThisPt|-|NextPt|)/|ThisPt|$ steps.
% \begin{macrocode}
ThisPt NextPt sub ThisPt div NumSteps mul cvi /SegSteps exch def
/NumSteps NumSteps SegSteps sub def
% \end{macrocode}
% |SegSteps| may be zero. In that case there is nothing to do for
% this segment.
% \begin{macrocode}
SegSteps 0 eq not {
% \end{macrocode}
% If one of the colours is gray, ie~0 saturation, its hue is
% useless. In this case, instead of starting of with a random hue,
% we take the hue of the other endpoint. (If both have saturation
% 0, we have a pure gray scale and no harm is done)
% \begin{macrocode}
ThisS 0 eq {/ThisH NextH def} if
NextS 0 eq {/NextH ThisH def} if
% \end{macrocode}
% To interpolate between two colours of different hue, we want to
% go the shorter way around the colour circle. The following code
% assures that this happens if we go linearly from |This*| to
% |Next*| by conditionally adding 1.0 to one of the hue values.
% The new hue values can lie between 0.0 and 2.0, so we will later
% have to subtract 1.0 from values greater than one.
% \begin{macrocode}
ThisH NextH sub 0.5 gt
{/NextH NextH 1.0 add def}
{ NextH ThisH sub 0.5 ge {/ThisH ThisH 1.0 add def} if }
ifelse
% \end{macrocode}
% We define three variables to hold the current colour coordinates
% and calculate the corresponding increments per step.
% \begin{macrocode}
/B ThisB def
/S ThisS def
/H ThisH def
/BInc NextB ThisB sub SegSteps div def
/SInc NextS ThisS sub SegSteps div def
/HInc NextH ThisH sub SegSteps div def
% \end{macrocode}
% The body of the following inner loop sets the current colour,
% according to |H|, |S| and |B| and
% undoes the kind-of-gamma correction by converting to RGB colour.
% It then calls |DrawStep|, which draws one step and maybe updates
% the current point or user space, or variables of its own. Finally,
% it increments the three colour variables.
% \begin{macrocode}
SegSteps {
H dup 1. gt {1. sub} if S B sethsbcolor
currentrgbcolor
sqrt 3 1 roll sqrt 3 1 roll sqrt 3 1 roll
setrgbcolor
DrawStep
/H H HInc add def
/S S SInc add def
/B B BInc add def
} bind repeat
% \end{macrocode}
% The outer loop ends by moving on to the |Next| colour and point.
%
% \begin{macrocode}
/ThisH NextH def
/ThisS NextS def
/ThisB NextB def
/ThisPt NextPt def
} if
} bind repeat
} def
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{PatchRadius}
% $-\quad\mathtt{PatchRadius}\quad-$\\
% This macro inspects the value of the variable |Radius|. If it is
% 0, it is set to the maximum distance of any point in the
% current path from the origin of user space. This has the effect
% that the current path will be totally filled. To find the maximum
% distance, we flatten the path and call |UpdRR| for each endpoint
% of the generated polygon. The current maximum square distance is
% gathered in |RR|.
% \begin{macrocode}
/PatchRadius {
Radius 0 eq {
/UpdRR { dup mul exch dup mul add RR max /RR ED } bind def
gsave
flattenpath
/RR 0 def
{UpdRR} {UpdRR} {} {} pathforall
grestore
/Radius RR sqrt def
} if
} def
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{SlopesFill}
% $p_1\quad r_1\quad g_1\quad b_1\quad\ldots\quad
% p_n\quad r_n\quad g_n\quad b_n\quad n\quad s\quad\alpha\quad
% \mathtt{SlopesFill}\quad -$\\
% Fill the current path with a slope described by $p_1,\ldots,b_n,n$.
% Use a total of $s$ single steps. Rotate the slope by $\alpha$
% degrees, 0 meaning $r_1,g_1,b_1$ left to $r_n,g_n,b_n$ right.
%
% After saving the current path, we do the rotation and get the
% number of steps, which is later needed by |Iterate|. Remember,
% that iterate calls |DrawStep| in the reverse order, ie~from
% right to left. We work around this by adding 180 degrees to
% the rotation. Filling
% works by clipping to the path and painting an appropriate sequence
% of rectangles. |DrawStep| is set up for |Iterate| to draw a
% rectangle of width |XInc| high enough to cover the whole
% clippath (we use the Level 2 operator |rectfill| for speed) and
% translate the user system by |XInc|.
% \begin{macrocode}
/SlopesFill {
gsave
180 add rotate
/NumSteps ED
clip
pathbbox
/h ED /w ED
2 copy translate
h sub neg /h ED
w sub neg /w ED
/XInc w NumSteps div def
/DrawStep {
0 0 XInc h rectfill
XInc 0 translate
} bind def
Iterate
grestore
} def
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{CcSlopesFill} $p_1\quad r_1\quad g_1\quad
% b_1\quad\ldots\quad p_n\quad r_n\quad g_n\quad b_n\quad n\quad
% c_x\quad c_y \quad r\quad \mathtt{CcSlopesFill}\quad -$\\ Fills
% the current path with a concentric pattern,
% ie~in a polar coordinate system, the colour depends on the
% radius and not on the angle.
% Centered around a point with coordinates $(c_x,c_y)$ relative to
% the bounding box of the path, ie~for a rectangle, $(0,0)$ will
% center the pattern around the lower left corner of the rectangle,
% $(0.5,0.5)$ around its center. The largest circle has a radius of
% $r$. If $r=0$, $r$ is taken to be the maximum distance of any
% point on the current path from the center defined by $(c_x,c_y)$.
% The colours are given from the center outwards,
% ie~$(r_1,g_1,b_1)$ describe the colour at the center.
%
% The code is similar to that of |SlopesFill|. The main differences
% are the call to |PatchRadius|, which catches the case that $r=0$
% and the different definition for |DrawStep|, Which now fills a
% circle of radius |Rad| and decreases that Variable. Of course,
% drawing starts on the outside, so we work down the stack and circles
% drawn later partially cover those drawn first. Painting
% non-overlapping, `donut-shapes' would be slower.
% \begin{macrocode}
/CcSlopesFill {
gsave
/Radius ED
/CenterY ED
/CenterX ED
/NumSteps ED
clip
pathbbox
/h ED /w ED
2 copy translate
h sub neg /h ED
w sub neg /w ED
w CenterX mul h CenterY mul translate
PatchRadius
/RadPerStep Radius NumSteps div neg def
/Rad Radius def
/DrawStep {
0 0 Rad 0 360 arc
closepath fill
/Rad Rad RadPerStep add def
} bind def
Iterate
grestore
} def
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{RadSlopesFill}
% $p_1\quad r_1\quad g_1\quad b_1\quad\ldots
% \quad p_n\quad r_n\quad g_n\quad b_n\quad n\quad
% c_x\quad c_y \quad r\quad\alpha\quad \mathtt{CcSlopesFill}\quad -$\\
% This fills the current path with a radial pattern, ie~in a
% polar coordinate system the colour depends on the angle and not on
% the radius. All this is very similar to |CcSlopesFill|. There
% is an extra parameter $\alpha$, which rotates the pattern.
%
% The only new thing in the code is the |DrawStep| procedure.
% This does {\em not} draw a circular arc, but a triangle, which is
% considerably faster. One of the short sides of the triangle is
% determined by |Radius|, the other one by |dY|, which is calculated
% as $|dY|:=|Radius|\times\tan(|AngleIncrement|)$.
% \begin{macrocode}
/RadSlopesFill {
gsave
rotate
/Radius ED
/CenterY ED
/CenterX ED
/NumSteps ED
clip
pathbbox
/h ED /w ED
2 copy translate
h sub neg /h ED
w sub neg /w ED
w CenterX mul h CenterY mul translate
PatchRadius
/AngleIncrement 360 NumSteps div neg def
/dY AngleIncrement sin AngleIncrement cos div Radius mul def
/DrawStep {
0 0 moveto
Radius 0 rlineto
0 dY rlineto
closepath fill
AngleIncrement rotate
} bind def
Iterate
grestore
} def
% \end{macrocode}
% \end{macro}
% Last, but not least, we have to close the private dictionary.
% \begin{macrocode}
end
%</prolog>
% \end{macrocode}
% \Finale
%
|