summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/nicematrix/nicematrix.dtx
blob: bfb21ac87859bdf189954ac33b15d7de512b2bfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
% \iffalse meta-comment
%
% Copyright (C) 2017 by F. Pantigny
% -----------------------------------
%
% This file may be distributed and/or modified under the
% conditions of the LaTeX Project Public License, either version 1.3
% of this license or (at your option) any later version.
% The latest version of this license is in:
%
% http://www.latex-project.org/lppl.txt
%
% and version 1.3 or later is part of all distributions of LaTeX
% version 2005/12/01 or later.
%
% \fi
% \iffalse
\def\myfileversion{1.1}
\def\myfiledate{2018/02/26}
%
%
%<*batchfile>
\begingroup
\input l3docstrip.tex
\keepsilent
\usedir{tex/latex/nicematrix}
\preamble

Copyright (C) 2018 by F. Pantigny
-----------------------------------

This file may be distributed and/or modified under the
conditions of the LaTeX Project Public License, either version 1.3
of this license or (at your option) any later version.
The latest version of this license is in:

http://www.latex-project.org/lppl.txt

and version 1.3 or later is part of all distributions of LaTeX
version 2005/12/01 or later.

\endpreamble
\askforoverwritefalse
\endgroup
%</batchfile>
%
%<@@=nm>
%<*driver>
\documentclass[dvipsnames]{l3doc}% dvipsnames is for xcolor (loaded by Tikz, loaded by nicematrix)
\VerbatimFootnotes
\usepackage{xltxtra}
\usepackage{geometry}
\geometry{left=2.8cm,right=2.8cm,top=2.5cm,bottom=2.5cm,papersize={21cm,29.7cm}}
\usepackage{nicematrix}
\NewDocumentEnvironment {scope} {} {} {}
\def\interitem{\vskip 7mm plus 2 mm minus 3mm}          
\def\emphase{\bgroup\color{RoyalPurple}\let\next=}
\fvset{commandchars=\~\#\@,formatcom={\color{gray}}}
\parindent 0pt
\DisableCrossrefs
\begin{document}
\DocInput{nicematrix.dtx}
\end{document}
%</driver>
% \fi 
% \title{The package \pkg{nicematrix}\thanks{This document corresponds to the version~\myfileversion\space of \pkg{nicematrix},
% at the date of~\myfiledate.}} \author{F. Pantigny \\ \texttt{fpantigny@wanadoo.fr}}
%
% \maketitle
%
% \begin{abstract}
% The LaTeX package \pkg{nicematrix} gives an environment |{NiceMatrix}| which is similar to the environment
% |{matrix}| but gives the possibility to draw ellipis dots between the cells of the matrix.
% \end{abstract}
%
% \vspace{1cm}
% \section{Presentation}
%
% This package can be used with |xelatex|, |lualatex|, |pdflatex| but also by the classical workflow
% |latex|-|dvips|-|ps2pdf| (or Adobe Distiller). Two compilations may be necessary. This package requires the
% packages \pkg{expl3}, \pkg{l3keys2e}, \pkg{xparse}, \pkg{array}, \pkg{mathtools} and \pkg{tikz}. 
%
% \medskip
% The package \pkg{nicematrix} aims to draw beautiful matrices in a way almost transparent for the user.
% 
% \medskip
% Consider, for exemple, the matrix\enskip
% $A = \begin{pmatrix}
% 1      &\cdots &\cdots &1      \\
% 0      &\ddots &       &\vdots \\
% \vdots &\ddots &\ddots &\vdots \\
% 0      &\cdots &0      &1
% \end{pmatrix}$
%
% \medskip
% Usually, when using LaTeX and \pkg{amsmath} (or \pkg{mathtools}), such a matrix is composed with an environment
% |{pmatrix}| and the following code:
% \begin{Verbatim}
% $A = \begin{pmatrix}
% 1      & \cdots & \cdots & 1      \\
% 0      & \ddots &        & \vdots \\
% \vdots & \ddots & \ddots & \vdots \\
% 0      & \cdots & 0      & 1
% \end{pmatrix}$
% \end{Verbatim}
% 
% \medskip 
% If we load the package \pkg{nicematrix} with the option |Transparent|, the same code will give the
% following result:
% 
% \begin{scope}
% \NiceMatrixOptions{Transparent}
% \[A = \begin{pmatrix}
% 1      & \cdots & \cdots & 1      \\
% 0      & \ddots &        & \vdots \\
% \vdots & \ddots & \ddots & \vdots \\
% 0      & \cdots & 0      & 1
% \end{pmatrix}\]
% \end{scope}
%
% \medskip
% The dotted lines are drawn with Tikz. Two compilations may be necessary.
%
%
% \section{How to use nicematrix for new code}
%
% \subsection{The environment NiceMatrix and its variants} 
%
% The package \pkg{nicematrix} gives six new environments |{NiceMatrix}|, |{pNiceMatrix}|, |{bNiceMatrix}|,
% |{BNiceMatrix}|, |{vNiceMatrix}| and |{VNiceMatrix}|. By default, these environments behave almost exactly as the
% corresponding environments of \pkg{amsmath} (and \pkg{mathtools}): |{matrix}|, |{pmatrix}|, |{bmatrix}|,
% |{Bmatrix}|, |{vmatrix}| and |{Vmatrix}|.
%
% \smallskip
% Inside these environments, five new commands are defined: |\Ldots|, |\Cdots|, |\Vdots|, |\Ddots| and |\Iddots|.
% These commands are intended to be used in place of |\dots|, |\cdots|, |\vdots|, |\ddots| and
% |\iddots|.\footnote{The command |\iddots|, defined in \pkg{nicematrix}, is a variant of 
% |\ddots| with dots going forward: \smash{$\iddots$}. If the command |\iddots| is already defined (for example if
% \pkg{mathdots} is loaded), the previous definition is not overwritten. Note that the package \pkg{yhmath} provides a
% command |\adots| similar to |\iddots|.} 
%
% \smallskip
% Each of them must be used alone in the cell of the array and it draws a dotted line between the first non-empty
% cells\footnote{The precise definition of a ``non-empty cell'' is given below.} on both sides of the current cell.
% Of course, for |\Ldots| and |\Cdots|, it's an horizontal line; for |\Vdots|, it's a vertical line and for
% |\Ddots| and |\Iddots| diagonals ones.\par\nobreak
% \bigskip
% \begin{BVerbatim}[baseline=c,boxwidth=10cm]
% \begin{bNiceMatrix}
% a_1      & \Cdots &        & & a_1 \\
% \Vdots   & a_2    & \Cdots & & a_2 \\
%          & \Vdots & \Ddots \\
% \\
% a_1      & a_2    &        & & a_n \\ 
% \end{bNiceMatrix}
% \end{BVerbatim}
% $\begin{bNiceMatrix}
% a_1      & \Cdots &        & & a_1 \\
% \Vdots   & a_2    & \Cdots & & a_2 \\
%          & \Vdots & \Ddots \\
% \\
% a_1      & a_2    &        & & a_n \\ 
% \end{bNiceMatrix}$
% 
% \interitem
% In order to represent the null matrix, one can use the following codage:\par\nobreak
% \bigskip
% \begin{BVerbatim}[baseline=c,boxwidth=10cm]
% \begin{bNiceMatrix}
% 0      & \Cdots & 0      \\
% \Vdots &        & \Vdots \\
% 0      & \Cdots & 0 
% \end{bNiceMatrix}
% \end{BVerbatim}
% $\begin{bNiceMatrix}
% 0      & \Cdots & 0      \\
% \Vdots &        & \Vdots \\
% 0      & \Cdots & 0 
% \end{bNiceMatrix}$
%
% \bigskip
% However, one may want a larger matrix. Usually, in such a case, the users of LaTeX add a new row and a new
% column. It's possible to use the same method with \pkg{nicematrix}:\par\nobreak
% \bigskip
% \begin{BVerbatim}[baseline=c,boxwidth=10cm]
% \begin{bNiceMatrix}
% 0      & \Cdots & \Cdots & 0      \\
% \Vdots &        &        & \Vdots \\
% \Vdots &        &        & \Vdots \\
% 0      & \Cdots & \Cdots & 0 
% \end{bNiceMatrix}
% \end{BVerbatim}
% $\begin{bNiceMatrix}
% 0      & \Cdots & \Cdots & 0      \\
% \Vdots &        &        & \Vdots \\
% \Vdots &        &        & \Vdots \\
% 0      & \Cdots & \Cdots & 0 
% \end{bNiceMatrix}$
% 
% \bigskip
% In the first column of this exemple, there are two instructions |\Vdots| but only one dotted line is drawn (there
% is no overlapping graphic objects in the resulting \textsc{pdf}).
%
% However, useless computations are performed by TeX before detecting that both instructions would eventually yield
% the same dotted line. That's why the package \pkg{nicematrix} provides starred versions of |\Ldots|, |\Cdots|,
% etc.: |\Ldots*|, |\Cdots*|, etc. These versions are simply equivalent to |\hphantom{\ldots}|,
% |\hphantom{\cdots}|, etc. The user should use these starred versions whenever a classical version has already
% been used for the same dotted line.\par\nobreak
% \bigskip
% \begin{BVerbatim}[baseline=c,boxwidth=10cm]
% \begin{bNiceMatrix}
% 0       & \Cdots & ~emphase#\Cdots*@ & 0       \\
% \Vdots  &        &         & \Vdots  \\
% ~emphase#\Vdots*@ &        &         & ~emphase#\Vdots*@ \\
% 0       & \Cdots & ~emphase#\Cdots*@ & 0 
% \end{bNiceMatrix}
% \end{BVerbatim}
% $\begin{bNiceMatrix}
% 0       & \Cdots &        & 0      \\
% \Vdots  &        &        &        \\
%         &        &        & \Vdots \\
% 0       &        & \Cdots & 0 
% \end{bNiceMatrix}$
%
% \bigskip
% In fact, in this example, it would be possible to draw the same matrix without starred commands with the
% following code:\par\nobreak
% \bigskip
% \begin{BVerbatim}[baseline=c,boxwidth=10cm]
% \begin{bNiceMatrix}
% 0       & \Cdots &        & 0      \\
% \Vdots  &        &        &        \\
%         &        &        & \Vdots \\
% 0       &        & \Cdots & 0 
% \end{bNiceMatrix}
% \end{BVerbatim}
% $\begin{bNiceMatrix}
% 0       & \Cdots &        & 0      \\
% \Vdots  &        &        &        \\
%         &        &        & \Vdots \\
% 0       &        & \Cdots & 0 
% \end{bNiceMatrix}$
%
% \bigskip
% There are also other means to change the size of the matrix. Someone might want to use the optional argument of
% the command~|\\| for the vertical dimension and a command~|\hspace*| in a cell for the horizontal dimension.
% However, a command~|\hspace*| might interfer with the construction of the dotted lines. That's why the package
% \pkg{nicematrix} provides a command~|\Hspace| which is a variant of |\hspace| transparent for the dotted lines of
% \pkg{nicematrix}.\par\nobreak
% \bigskip
% \begin{BVerbatim}[baseline=c,boxwidth=10cm]
% \begin{bNiceMatrix}
% 0      & \Cdots & ~emphase#\Hspace*{1cm}@ & 0      \\
% \Vdots &        &               & \Vdots \\~emphase#[1cm]@
% 0      & \Cdots &               & 0    
% \end{bNiceMatrix}
% \end{BVerbatim}
% $\begin{bNiceMatrix}
% 0      & \Cdots & \Hspace*{1cm} & 0      \\
% \Vdots &        &               & \Vdots \\[1cm]
% 0      & \Cdots &               & 0    
% \end{bNiceMatrix}$
% 
% \vskip1cm
% \subsection{The option NullifyDots}
%
% Consider the following matrix composed classicaly with the environment |{pmatrix}|.\par\nobreak
% \medskip
% \begin{BVerbatim}[baseline=c,boxwidth=7cm]
% $A = \begin{pmatrix}
% a_0 & b \\
% a_1 &   \\
% a_2 &   \\
% a_3 &   \\
% a_4 &   \\
% a_5 & b
% \end{pmatrix}$
% \end{BVerbatim}
% $A = \begin{pmatrix}
% a_0 & b \\
% a_1 &   \\
% a_2 &   \\
% a_3 &   \\
% a_4 &   \\
% a_5 & b
% \end{pmatrix}$
%
%
% \bigskip
% If we add |\vdots| instructions in the second column, the geometry of the matrix is modified.\par\nobreak
% \medskip
% \begin{BVerbatim}[baseline=c,boxwidth=7cm]
% $B = \begin{pmatrix}
% a_0 & b      \\
% a_1 & \vdots \\
% a_2 & \vdots \\
% a_3 & \vdots \\
% a_4 & \vdots \\
% a_5 & b
% \end{pmatrix}$
% \end{BVerbatim}
% $B = \begin{pmatrix}
% a_0 & b      \\
% a_1 & \vdots \\
% a_2 & \vdots \\
% a_3 & \vdots \\
% a_4 & \vdots \\
% a_5 & b
% \end{pmatrix}$
%
% \bigskip
% By default, with \pkg{nicematrix}, if we replace |{pmatrix}| by |{pNiceMatrix}| and |\vdots| by
% |\Vdots| (or |\Vdots*| for efficiency), the geometry of the matrix is not changed.\par\nobreak
% \medskip
% \begin{BVerbatim}[baseline=c,boxwidth=7cm]
% $C = \begin{pNiceMatrix}
% a_0 & b       \\
% a_1 & \Vdots  \\
% a_2 & \Vdots* \\
% a_3 & \Vdots* \\
% a_4 & \Vdots* \\
% a_5 & b
% \end{pNiceMatrix}$
% \end{BVerbatim}
% $C = \begin{pNiceMatrix}
% a_0 & b       \\
% a_1 & \Vdots  \\
% a_2 & \Vdots* \\
% a_3 & \Vdots* \\
% a_4 & \Vdots* \\
% a_5 & b
% \end{pNiceMatrix}$
%
% \bigskip
% However, one may prefer the geometry of the first matrix $A$ and would like to have such a geometry with a dotted
% line in the second column. It's possible by using the option |NullifyDots| (and only one instruction |\Vdots| is
% necessary).\par\nobreak
% \medskip
% \begin{BVerbatim}[baseline=c,boxwidth=7cm]
% ~emphase#\NiceMatrixOptions{NullifyDots}@
% $D = \begin{pNiceMatrix}
% a_0 & b      \\
% a_1 & \Vdots \\
% a_2 &        \\
% a_3 &        \\
% a_4 &        \\
% a_5 & b
% \end{pNiceMatrix}$
% \end{BVerbatim}
% {\NiceMatrixOptions{NullifyDots}
% $D = \begin{pNiceMatrix}
% a_0 & b      \\
% a_1 & \Vdots \\
% a_2 &        \\
% a_3 &        \\
% a_4 &        \\
% a_5 & b
% \end{pNiceMatrix}$}
%
% \medskip
% The option |NullifyDots| smashes the instructions |\Ldots| (and the variants) vertically but also horizontally.
%
% \section{How to use nicematrix for existing code}
%
% The package \pkg{nicematrix} provides an option called |Transparent| for using existing code transparently (this
% option --- and the others --- can be set with the |\usepackage| command but \pkg{nicematrix} provides also a
% dedicated command called |\NiceMatrixOptions|).
%
% In fact, this option is an alias for the conjonction of two options : |RenewDots| and |RenewMatrix|.
%
% \smallskip
%
% \begin{itemize}
% \item The option |RenewDots|\par\nobreak
% With this option, the commands |\ldots|, |\cdots|, |\vdots|, |\ddots| and |\iddots|\footnote{The command
% |\iddots| is not a command of LaTeX but is defined by the package \pkg{nicematrix}. If |mathdots| is loaded, the
% version of |mathdots| is used.} are redefined within the environments |{NiceMatrix}| and behave like |\Ldots|,
% |\Cdots|, |\Vdots|, |\Ddots| and |\Iddots|; the command |\dots| (``automatic dots'' of |amsmath| --- and
% |mathtools|) is also redefined to behave like |\Ldots|.
%
% \item  The option |RenewMatrix|\par\nobreak
% With this option, the environment |{matrix}| is redefined and behave like |{NiceMatrix}|, and so on for the five
% variants.
% \end{itemize}
%
% \bigskip 
% Therefore, with the option |Transparent|, a classical code gives directly the ouput of \pkg{nicematrix}.\par\nobreak
% \bigskip
% \begin{BVerbatim}[baseline=c]
% ~emphase#\NiceMatrixOptions{Transparent}@
% \begin{pmatrix}
% 1      & \cdots & \cdots & 1      \\
% 0      & \ddots &        & \vdots \\
% \vdots & \ddots & \ddots & \vdots \\
% 0      & \cdots & 0      & 1
% \end{pmatrix}
% \end{BVerbatim}
% \hspace{2cm}
% \begin{scope}
% \NiceMatrixOptions{Transparent}
% $\begin{pmatrix}
% 1      & \cdots & \cdots & 1      \\
% 0      & \ddots &        & \vdots \\
% \vdots & \ddots & \ddots & \vdots \\
% 0      & \cdots & 0      & 1
% \end{pmatrix}$
% \end{scope}
%
% 
% \section{Technical remarks}
%
% \subsection{Diagonal lines} 
%
% By default, all the diagonal lines of a same matrix are ``parallelized''. That means that the first diagonal line
% is drawn and, then, the other lines are drawn parallel to the first one (by rotation around the left-most
% extremity of the line). That's why the position of the instructions |\Ddots| in the matrix can have a marked
% effect on the final result.
%
% \medskip
% In the following examples, the first |\Ddots| instruction is written in color:
% 
% \medskip
% \begin{scope}
% \begin{minipage}{9.5cm}
% Example with parallelization (default):
% \begin{Verbatim}
% $A = \begin{pNiceMatrix}
% 1      & \Cdots &        & 1      \\
% a+b    & ~emphase#\Ddots@~ &        & \Vdots \\
% \Vdots & \Ddots &        &        \\
% a+b    & \Cdots & a+b    & 1
% \end{pNiceMatrix}$
% \end{Verbatim}
% \end{minipage}
% $A = \begin{pNiceMatrix}
% 1      & \Cdots &     & 1      \\
% a+b    & \Ddots &     & \Vdots \\
% \Vdots & \Ddots &     &        \\
% a+b    & \Cdots & a+b & 1
% \end{pNiceMatrix}$
% 
% \bigskip
% \NiceMatrixOptions{ParallelizeDiagonals=true}%
% \begin{minipage}{9.5cm}
% % \begin{Verbatim}
% $A = \begin{pNiceMatrix}
% 1      & \Cdots &        & 1      \\
% a+b    &        &        & \Vdots \\
% \Vdots & ~emphase#\Ddots@~ & \Ddots &        \\
% a+b    & \Cdots & a+b    & 1
% \end{pNiceMatrix}$
% \end{Verbatim}
% \end{minipage}
% $A = \begin{pNiceMatrix}
% 1      & \Cdots &        & 1      \\
% a+b    &        &        & \Vdots \\
% \Vdots & \Ddots & \Ddots &        \\
% a+b    & \Cdots & a+b    & 1
% \end{pNiceMatrix}$
%
% \bigskip
% It's possible to turn off the parallelization with the option |ParallelizeDiagonals| set to |false|: \par\nobreak 
%
% \medskip
% \NiceMatrixOptions{ParallelizeDiagonals=false}%
% \begin{minipage}{9.5cm}
% The same example without parallelization:\\
% |\NiceMatrixOptions{ParallelizeDiagonals=false}|. 
% \end{minipage}
% $A = \begin{pNiceMatrix}
% 1      & \Cdots  &     & 1      \\
% a+b    & \Ddots  &     & \Vdots \\
% \Vdots & \Ddots  &     &        \\
% a+b    & \Cdots  & a+b & 1
% \end{pNiceMatrix}$
%
%
% \end{scope}
%
% \vskip1cm
% \subsection{The ``empty'' cells}
% 
% An instruction like |\Ldots|, |\Cdots|, etc. tries to determine the first non-empty cell on both
% sides\footnote{If \pkg{nicematrix} can't find theses cells, an error |Imposible instruction| is raised. Nevertheless,
% with the option |Silent|, these instructions are discarded silently.}. However, a empty cell is not necessarily a
% cell with no TeX content (that is to say a cell with no token between the two ampersands~|&|). Indeed, a cell
% with contents |\hspace*{1cm}| may be considered as empty.
%
% \interitem
% For \pkg{nicematrix}, the precise rules are as follow.
%
% \begin{itemize}
% \item An implicit cell is empty. For example, in the following matrix:
%
% \begin{Verbatim}
% \begin{pmatrix}
% a & b \\
% c \\
% \end{pmatrix}
% \end{Verbatim}
% 
% the last cell (second row and second column) is empty.
%
% \medskip
% \item Each cell whose TeX ouput has a width less than 0.5~pt is empty.
%
% \medskip
% \item A cell which contains a command |\Ldots|, |\Cdots|, |\Vdots|, |\Ddots| or |\Iddots| and their starred
% versions is empty. We recall that theses commands should be used alone in a cell.
%
% \medskip
% \item A cell with a command |\Hspace| (or |\Hspace*|) is empty. This command |\Hspace| is a command defined by
% the package \pkg{nicematrix} with the same meaning that |\hspace| except that the cell where it is used is
% considered as empty. This command can be used to fix the width of some columns of the matrix without interfering
% with \pkg{nicematrix}.
% % \end{itemize}
%
% \interitem
% A dotted line must be delimited by two non-empty cells. If it's not possible to find one of these cells whitin
% the boudaries of the matrix, an error is issued and the instruction is ignored.
%
%
%
% \section{Examples}
%
%
% \bigskip
% A tridiagonal matrix :
% 
% \bigskip
% \begin{BVerbatim}[baseline=c]
% \NiceMatrixOptions{NullifyDots}
% $\begin{pNiceMatrix}
% a      & b      & 0      &        & \Cdots & 0      \\ 
% b      & a      & b      & \Ddots &        & \Vdots \\
% 0      & b      & a      & \Ddots &        &        \\
%        & \Ddots & \Ddots & \Ddots &        & 0      \\
% \Vdots &        &        &        &        & b      \\
% 0      & \Cdots &        & 0      & b      & a
% \end{pNiceMatrix}$
% \end{BVerbatim}
% \hspace{1.5cm}
% \begin{scope}
% \NiceMatrixOptions{NullifyDots}
% $\begin{pNiceMatrix}
% a      & b      & 0      &        & \Cdots & 0      \\ 
% b      & a      & b      & \Ddots &        & \Vdots \\
% 0      & b      & a      & \Ddots &        &        \\
%        & \Ddots & \Ddots & \Ddots &        & 0      \\
% \Vdots &        &        &        &        & b      \\
% 0      & \Cdots &        & 0      & b      & a
% \end{pNiceMatrix}$
% \end{scope}
%
% \vspace{2cm}
%
% A permutation matrix :
%
% \bigskip
% \begin{BVerbatim}[baseline=c]
% $\begin{pNiceMatrix}
% 0       & 1 & 0 &        & \Cdots &   0    \\
% \Vdots  &   &   & \Ddots &        & \Vdots \\
%         &   &   & \Ddots &        &        \\
%         &   &   & \Ddots &        &   0    \\
% 0       & 0 &   &        &        &   1    \\
% 1       & 0 &   & \Cdots &        &   0    
% \end{pNiceMatrix}$
% \end{BVerbatim}
% \hspace{2.5cm}
% $\begin{pNiceMatrix}
% 0       & 1 & 0 &        & \Cdots &   0    \\
% \Vdots  &   &   & \Ddots &        & \Vdots \\
%         &   &   & \Ddots &        &        \\
%         &   &   & \Ddots &        &   0    \\
% 0       & 0 &   &        &        &   1    \\
% 1       & 0 &   & \Cdots &        &   0    
% \end{pNiceMatrix}$
%
% \vspace{2cm}
%
% An example with |\Iddots|: 
% 
% \bigskip
% \begin{BVerbatim}[baseline=c]
% $\begin{pNiceMatrix}
% 1       & \Cdots  &         & 1      \\
% \Vdots  &         &         & 0      \\
%         & ~emphase#\Iddots@ & ~emphase#\Iddots@ & \Vdots \\
% 1       & 0       & \Cdots  & 0 
% \end{pNiceMatrix}$
% \end{BVerbatim}
% \hspace{4cm}
% $\begin{pNiceMatrix}
% 1       & \Cdots  &         & 1      \\
% \Vdots  &         &         & 0      \\
%         & \Iddots & \Iddots & \Vdots \\
% 1       & 0       & \Cdots  & 0 
% \end{pNiceMatrix}$
%
%
% 
% \vspace{1cm}
%
% \section{Implementation}
%
% \subsection{Declaration of the package and extensions loaded}
%
% \bigskip
% We give the traditionnal declaration of a package written with |expl3|:
%    \begin{macrocode}
\RequirePackage{l3keys2e}
\ProvidesExplPackage
  {nicematrix}
  {\myfiledate}
  {\myfileversion}
  {Draws nice dotted lines in matrix environments}
%    \end{macrocode}
% 
% The command for the treatment of the options of |\usepackage| is at the end of this package for technical reasons.
%
% \bigskip
% We load \pkg{array} and \pkg{mathtools} (\pkg{mathtools} may be considered as the successor of \pkg{amsmath}) and \pkg{tikz}.
%    \begin{macrocode}
\RequirePackage{array}
\RequirePackage{mathtools}
\RequirePackage{tikz}
%    \end{macrocode}
%
% \bigskip 
% The package \pkg{xparse} will be used to define the environment |{NiceMatrix}|, its variants and the
% document-level commands (|\NiceMatrixOptions|, etc.).
% \begin{macrocode}
\RequirePackage{xparse}
%    \end{macrocode}
%
% \bigskip
% \subsection{Technical  definitions}
%
% First, we define a command |\iddots| similar to |\ddots| ($\ddots$) but with dots going forward ($\iddots$). We
% use |\ProvideDocumentCommand| of \pkg{xparse}, and so, if the command |\iddots| has already been defined (for
% example by the package \pkg{mathdots}), we don't define it again.
% 
%    \begin{macrocode}
\ProvideDocumentCommand \iddots {}
      {\mathinner{\mkern 1mu 
                  \raise \p@ \hbox{.}
                  \mkern 2mu
                  \raise 4\p@ \hbox{.}
                  \mkern 2mu
                  \raise 7\p@ \vbox{\kern 7pt 
                                    \hbox{.}}
                  \mkern 1mu}}
%    \end{macrocode}
%
% This definition is a variant of the standard definition of |\ddots|.
%
% \bigskip
% In the environment |{NiceMatrix}|, the command |\multicolumn| will be linked to the following command
% |\@@_multicolumn:| but only if the option |RenewMatrix| is not set. Indeed, if the option |RenewMatrix| is used,
% we want to let the possibility to the user to use |\multicolumn| (or |\hdotsfor| of \pkg{amsmath}) in some
% matrices without dotted lines and to have the automatic dotted lines of \pkg{nicematrix} in other matrices.
%    \begin{macrocode}
\cs_new_protected:Nn \@@_multicolumn:nn
       {\msg_error:nn {nicematrix} {multicolumn~forbidden}}
%    \end{macrocode}
% This command |\@@_multicolumn:nn| takes two arguments, and therefore, the first two arguments of |\column| will
% be gobbled.
%
% \bigskip 
% The following counter will count the environments |{NiceMatrix}|. The value of this counter will be used to
% prefix the names of the Tikz nodes created in the matrix.
%    \begin{macrocode}
\int_new:N \g_@@_env_int
%    \end{macrocode}
%
% \bigskip
% \subsection{The options}
%
% The flag |\l_@@_parallelize_diags_bool| controls wether the diagonals are parallelized. The default
% is~|true|.
%    \begin{macrocode}
\bool_new:N \l_@@_parallelize_diags_bool
\bool_set_true:N \l_@@_parallelize_diags_bool
%    \end{macrocode}
%
% \bigskip
% The flag |\l_@@_nullify_dots_bool| corresponds to the option |NullifyDots|. When the flag is down, the
% instructions like |\vdots| are inserted within a |\hphantom| (and so the constructed matrix has exactly the same
% size as a matrix constructed with the classical |{matrix}| and |\ldots|, |\vdots|, etc.)
%    \begin{macrocode}
\bool_new:N \l_@@_nullify_dots_bool
%    \end{macrocode}
%
% \bigskip
% The flag |\l_@@_renew_matrix_bool| will be raised if the option |RenewMatrix| is used.
%    \begin{macrocode}
\bool_new:N \l_@@_renew_matrix_bool
%    \end{macrocode}
%
% \bigskip
% We define a set of options which will be used with the command |NiceMatrixOptions|.
%    \begin{macrocode}
\keys_define:nn {NiceMatrix}
     {ParallelizeDiagonals .bool_set:N = \l_@@_parallelize_diags_bool,
      ParallelizeDiagonals .default:n  = true,
%    \end{macrocode}
%
% \bigskip
% With the option |RenewDots|, the command |\cdots|, |\ldots|, |\vdots| and |\ddots| are redefined and behave like the
% commands |\Cdots|, |\Ldots|, |\Vdots| and |\Ddots|.
%    \begin{macrocode}
      RenewDots            .bool_set:N = \l_@@_renew_dots_bool,
      RenewDots            .default:n  = true,
%    \end{macrocode}
%
% \bigskip
% With the option |RenewMatrix|, the environment |{matrix}| of \pkg{amsmath} and its variants are redefined to
% behave like the environment |{NiceMatrix}| and its variants.
%    \begin{macrocode}
      RenewMatrix          .code:n     = {\cs_set_eq:NN \env@matrix \NiceMatrix
                                          \bool_set_true:N \l_@@_renew_matrix_bool}, 
      RenewMatrix          .default:n  = true,
      Transparent          .meta:n     = {RenewDots,RenewMatrix},
      Transparent          .value_forbidden:n = true,
%    \end{macrocode}
%
% \bigskip
% Without the option |NullifyDots|, the instructions like |\vdots| are inserted within a
% |\hphantom| (and so the constructed matrix has exactly the same size as a matrix constructed with the
% classical |{matrix}| and |\ldots|, |\vdots|, etc.). This option is set by default.
%    \begin{macrocode}
      NullifyDots          .bool_set:N = \l_@@_nullify_dots_bool ,
      NullifyDots          .default:n  = true,
%    \end{macrocode}
%
% \bigskip
% With the option |Silent|, no error is generated for the impossible instructions. This option can be useful when
% adapting an existing code. 
%    \begin{macrocode}
     Silent                .code:n  = {\msg_redirect_name:nnn {nicematrix} 
                                                              {Impossible~instruction}
                                                              {none}} , 
     Silent                .value_forbidden:n = true}
%    \end{macrocode}
% 
% \bigskip
% |\NiceMatrixOptions| is the command of the \pkg{nicematrix} package to fix options at the document level. The
% scope of these specification is the current TeX group.
%    \begin{macrocode}
\NewDocumentCommand \NiceMatrixOptions {m}
    {\keys_set:nn {NiceMatrix} {#1}}
%    \end{macrocode}
%
% \bigskip
% \subsection{The main functions}
%
% The pseudo-environment |\@@_Cell:|--|\@@_end_Cell:| is used to format the cells of the array (except the cells of
% the first column: see below). 
%    \begin{macrocode}
\cs_new_protected:Nn \@@_Cell:
   {
%    \end{macrocode}
% We increment |\g_@@_column_int|, which is the counter of the columns. We need a global affectation because this
% command will be used in the cell of a |\halign| (via an environment |{array}|).
%    \begin{macrocode}
    \int_gincr:N \g_@@_column_int
%    \end{macrocode}
% At the end of the array, the counter |\g_@@_nb_column_int| will contain the total number of columns of the array
% (even if all the lines don't have the same number of ampersands).
%    \begin{macrocode}
    \int_gset:Nn \g_@@_nb_column_int {\int_max:nn \g_@@_nb_column_int \g_@@_column_int}
%    \end{macrocode}
% We create a Tikz node for the current cell of the array. 
%    \begin{macrocode}
    \tikz[remember~picture, inner~sep = 0pt, minimum~width = 0pt, baseline]
       \node [anchor=base] (nm-\int_use:N \g_@@_env_int-
                               \int_use:N \g_@@_line_int-
                               \int_use:N \g_@@_column_int)
       \bgroup $} % $
%    \end{macrocode}
%
%    \begin{macrocode}
\cs_new_protected:Nn \@@_end_Cell:
   {$\egroup ;} % $
%    \end{macrocode}
%
% \interitem 
% The pseudo-environment |\@@_Cell_First_Column:|--|\@@_end_Cell:| is used to format the cells of the first column
% of the array. For such a column, we have to increment the counter of the lines (|\g_@@_line_int|) and to
% initialize the counter of the columns (|\g_@@_column_int|).
%    \begin{macrocode}
\cs_new_protected:Nn \@@_Cell_First_Column:
   {\int_gincr:N \g_@@_line_int
    \int_gset:Nn \g_@@_column_int 0
    \@@_Cell:}
%    \end{macrocode}
%
%
% \interitem
% The environment |{NiceMatrix}| is the main environment of the package |nicematrix|. This environment creates an
% array similar to the array created by the environment |{matrix}| of \pkg{amsmath} but with Tikz nodes for each
% cell of the matrix.
%    \begin{macrocode}
\NewDocumentEnvironment {NiceMatrix} {}
   {
%    \end{macrocode}
% We use a |\aftergroup| to execute |\@@_draw_lines| at the end of the environment (all the LaTeX environments are
% TeX groups). With this technic, the second part of the environment is the same that the second part of the
% environment |{matrix}| of \pkg{amsmath}. Therefore, it's easier to redefine the environment |{matrix}| (when the
% option |RenewMatrix| is used).
%    \begin{macrocode}
    \aftergroup \@@_draw_lines:
%    \end{macrocode}
%
% The commands |\Ldots|, |\Cdots|, etc. will be defined only within the environment |{NiceMatrix}|.
%    \begin{macrocode}
    \cs_set_eq:NN \Ldots \@@_Ldots
    \cs_set_eq:NN \Cdots \@@_Cdots
    \cs_set_eq:NN \Vdots \@@_Vdots
    \cs_set_eq:NN \Ddots \@@_Ddots
    \cs_set_eq:NN \Iddots \@@_Iddots
    \cs_set_eq:NN \Hspace \@@_Hspace:
    \cs_set_eq:NN \NiceMatrixEndPoint \@@_NiceMatrixEndPoint:
    \bool_if:NF \l_@@_renew_matrix_bool
        {\cs_set_eq:NN \multicolumn \@@_multicolumn:nn}
%    \end{macrocode}
% If the option |RenewDots| is used, we redefine the commands |\ldots|, |\cdots|, etc.
%    \begin{macrocode}
    \bool_if:NT \l_@@_renew_dots_bool
       {\cs_set_eq:NN \ldots \@@_Ldots
        \cs_set_eq:NN \cdots \@@_Cdots
        \cs_set_eq:NN \vdots \@@_Vdots
        \cs_set_eq:NN \ddots \@@_Ddots
        \cs_set_eq:NN \iddots \@@_Iddots
        \cs_set_eq:NN \dots  \@@_Ldots}
%    \end{macrocode}
%
% We increment the counter |\g_@@_env_int| which counts the environments |{NiceMatrix}|.
%    \begin{macrocode}
    \int_gincr:N \g_@@_env_int
%    \end{macrocode}
% 
% The sequence |\g_@@_empty_cells_seq| will contains a list of ``empty'' cells (not all the empty cells of the
% matrix). If we want to indicate that the cell in line~$i$ and line~$j$ must be considered as empty, the token
% list ``|i-j|'' will be put in this sequence.
%    \begin{macrocode}
    \seq_gclear_new:N  \g_@@_empty_cells_seq
%    \end{macrocode}
%
% The counter |\g_@@_instruction_int| will count the instructions (|\Cdots|, |\Vdots|, |\Ddots|, etc.) in the matrix.
%    \begin{macrocode}
    \int_gzero_new:N \g_@@_instruction_int
%    \end{macrocode}
% The counter |\g_@@_line_int| will be used to count the lines of the array. At the end of the environment
% |{array}|, this counter will give the total number of lines of the matrix.
%    \begin{macrocode}
    \int_gzero_new:N \g_@@_line_int 
%    \end{macrocode}
% The counter |\g_@@_column_int| will be used to count the colums of the array. Since we want to known the total
% number of columns of the matrix, we also create a counter |\g_@@_nb_column_int|. These counters are updated in
% the command |\@@_Cell:| executed at the beginning of each cell.
%    \begin{macrocode}
    \int_gzero_new:N \g_@@_column_int 
    \int_gzero_new:N \g_@@_nb_column_int
%    \end{macrocode}
% The next two lines are the same as in the command |\env@matrix| of \pkg{amsmath} on which all the matrix
% constructions are built.
%    \begin{macrocode}
    \hskip -\arraycolsep
    \cs_set_eq:NN \@ifnextchar \new@ifnextchar
%    \end{macrocode}
% Eventually, the environment |{NiceMatrix}| is defined upon the environment |{array}|. We maintain the
% signification of the counter |\c@MaxMatrixCols| of \pkg{amsmath}.
%    \begin{macrocode}
    \int_set:Nn \l_tmpa_int {\c@MaxMatrixCols - 1}
    \array{>{\@@_Cell_First_Column:}c<{\@@_end_Cell:}
                  *\l_tmpa_int{>{\@@_Cell:}c<{\@@_end_Cell:}}}}
%    \end{macrocode}
% \bigskip
% The second part of the environment |{NiceMatrix}| is the same as the second part of the environment |{matrix}| of
% \pkg{amsmath}. However, at the end of the environment, the instruction |\@@_draw_lines:| will
% be executed because we have put a ``|\aftergroup \@@_draw_lines:|'' in the beginning of the environment
% (therefore, it's possible to implement the option |RenewMatrix| with |\cs_set_eq:NN \env@matrix \NiceMatrix|).
%    \begin{macrocode}
   {\endarray
    \hskip -\arraycolsep}
%    \end{macrocode}
%
% \interitem
% We create the variants of the environment |{NiceMatrix}|.
%    \begin{macrocode}
\NewDocumentEnvironment {pNiceMatrix} {}
   {\left(\begin{NiceMatrix}}
   {\end{NiceMatrix}\right)}
%    \end{macrocode}
%
%    \begin{macrocode}
\NewDocumentEnvironment {bNiceMatrix} {}
   {\left[\begin{NiceMatrix}}
   {\end{NiceMatrix}\right]}
%    \end{macrocode}
%
%    \begin{macrocode}
\NewDocumentEnvironment {BNiceMatrix} {}
   {\left\{\begin{NiceMatrix}}
   {\end{BNiceMatrix}\right\}}
%    \end{macrocode}
%
%    \begin{macrocode}
\NewDocumentEnvironment {vNiceMatrix} {}
   {\left\lvert\begin{NiceMatrix}}
   {\end{BNiceMatrix}\right\rvert}
%    \end{macrocode}
%
%    \begin{macrocode}
\NewDocumentEnvironment {VNiceMatrix} {}
   {\left\lVert\begin{NiceMatrix}}
   {\end{BNiceMatrix}\right\rVert}
%    \end{macrocode}
%
% \interitem
% The conditionnal |\@@_if_not_empty_cell:nnT| test wether a cell is empty. The first two arguments must be LaTeX3
% counters for the row and the column of the considered cell.
%    \begin{macrocode}
\prg_set_conditional:Npnn \@@_if_not_empty_cell:nn #1#2 {T}
%    \end{macrocode}
% If the cell is a implicit cell (that is after the symbol |\\| of end of row), the cell must, of course, be
% considered as empty. It's easy to check wether we are in this situation considering the correspondant Tikz node.
%    \begin{macrocode}
       {\cs_if_exist:cTF {pgf@sh@ns@nm-\int_use:N \g_@@_env_int-
                                       \int_use:N #1-
                                       \int_use:N #2}
%    \end{macrocode}
% We manage a list of ``empty cells'' called |\g_@@_empty_cells_seq|. In fact, this list is not a list of all the
% empty cells of the array but only those explicitely declared empty for some reason. It's easy to check if the
% current cell is in this list.
%    \begin{macrocode}
          {\seq_if_in:NxTF \g_@@_empty_cells_seq
                           {\int_use:N #1-\int_use:N #2}
             {\prg_return_false:}
%    \end{macrocode}
% In the general case, we consider the width of the Tikz node corresponding to the cell. In order to compute this
% width, we have to extract the coordinate of the west and east anchors of the node. This extraction needs a
% command environment |{pgfpicture}| but, in fact, nothing is drawn. 
%    \begin{macrocode}
             {\begin{pgfpicture}
%    \end{macrocode}
% We store the name of the node corresponding to the cell in |\l_tmpa_tl|.
%    \begin{macrocode}
                \tl_set:Nx \l_tmpa_tl {nm-\int_use:N \g_@@_env_int-
                                          \int_use:N #1-
                                          \int_use:N #2}
                \pgfpointanchor \l_tmpa_tl {east}
                \dim_gset:Nn \g_tmpa_dim \pgf@x
                \pgfpointanchor \l_tmpa_tl {west}
                \dim_gset:Nn \g_tmpb_dim \pgf@x
              \end{pgfpicture}
              \dim_compare:nNnTF {\dim_abs:n {\g_tmpb_dim-\g_tmpa_dim}} < {0.5 pt}
                    {\prg_return_false:}
                    {\prg_return_true:}
             }}
          {\prg_return_false:}
       }
%    \end{macrocode}
%
% \interitem
% For each drawing instruction in the matrix (like |\Cdots|, etc.), we create a global property list to store the
% informations corresponding to the instruction. Such an property list will have three fields:
% \begin{itemize}
% \item a field ``type'' with the type of the instruction (|cdots|, |vdots|, |ddots|, etc.);
% \item a field ``line'' with the number of the line of the matrix where the instruction appeared;
% \item a field ``column'' with the number of the column of the matrix where the instruction appeared.
% \end{itemize}
%
% \interitem
% The argument of the following command |\@@_instruction_of_type:n| is the type of the instruction (|cdots|,
% |vdots|, |ddots|, etc.). This command creates the corresponding property list.
%    \begin{macrocode}
\cs_new_protected:Nn \@@_instruction_of_type:n 
%    \end{macrocode}
% First, we increment the counter of the instructions (this counter is initialized in the beginning of the
% environment |{NiceMatrix}|). This incrementation is global because the command will be used in the cell of a |\halign|).
%    \begin{macrocode}
     {\int_gincr:N \g_@@_instruction_int
      \prop_put:Nnn \l_tmpa_prop {type} {#1}
      \prop_put:NnV \l_tmpa_prop {line} \g_@@_line_int
      \prop_put:NnV \l_tmpa_prop {column} \g_@@_column_int
%    \end{macrocode}
% The property list has been created in a local variable for convenience. Now, it will be stored in a
% global variable indicating the number of the instruction.
%    \begin{macrocode}
      \prop_gclear_new:c 
         {g_@@_instruction_\int_use:N\g_@@_instruction_int _prop}
      \prop_gset_eq:cN
         {g_@@_instruction_\int_use:N\g_@@_instruction_int _prop}
         \l_tmpa_prop
      }
%    \end{macrocode}
%
% 
% \bigskip
% \subsection{We draw the lines in the matrix}

%    \begin{macrocode}
\cs_new_protected:Nn \@@_draw_lines:
    {
%    \end{macrocode}
%
% The sequence |\l_@@_yet_drawn_seq| contains a list of lines which have been drawn previously in the matrix. We
% maintain this sequence because we don't want to draw two overlapping lines.
%    \begin{macrocode}
     \seq_clear_new:N \l_@@_yet_drawn_seq
%    \end{macrocode}
%
%
% The following variables will be used further.
%    \begin{macrocode}
     \int_zero_new:N \l_@@_type_int
     \int_zero_new:N \l_@@_line_int
     \int_zero_new:N \l_@@_column_int
     \int_zero_new:N \l_@@_di_int
     \int_zero_new:N \l_@@_dj_int
%    \end{macrocode}
%
% By befault, the diagonal lines will be parallelized\footnote{It's possible to use the option
% |ParallelizeDiagonals| to disable this parallelization.}. There are two types of diagonals lines: the $|\Ddots|$
% diagonals and the |\Iddots| diagonals. We have to count the both types in order to known wether a diagonal is the
% first of its type in the current |{NiceMatrix}| environment.
%    \begin{macrocode}
     \bool_if:NT \l_@@_parallelize_diags_bool
          {\int_zero_new:N \l_@@_ddots_int
           \int_zero_new:N \l_@@_iddots_int
%    \end{macrocode}
%
% The dimensions |\l_@@_delta_x_one_dim| and |\l_@@_delta_y_one_dim| will contains the $\Delta_x$ and $\Delta_y$ of the
% first |\Ddots| diagonal. We have to store these values in order to draw the others |\Ddots| diagonals parallel to
% the first one. Similarly |\l_@@_delta_x_two_dim| and |\l_@@_delta_y_two_dim| are the $\Delta_x$ and $\Delta_y$ of
% the first |\Iddots| diagonal.
%    \begin{macrocode}
           \dim_zero_new:N \l_@@_delta_x_one_dim
           \dim_zero_new:N \l_@@_delta_y_one_dim
           \dim_zero_new:N \l_@@_delta_x_two_dim
           \dim_zero_new:N \l_@@_delta_y_two_dim}
%    \end{macrocode}
% 
% \interitem
% The counter |\l_@@_instruction_int| will be the index of the loop over the instructions. The first value is~$1$.
%    \begin{macrocode}
     \int_zero_new:N \l_@@_instruction_int
     \int_incr:N \l_@@_instruction_int
%    \end{macrocode}
%
% \interitem
% We begin the loop over the instructions (the incrementation is at the end of the loop).
%    \begin{macrocode}
     \int_until_do:nNnn \l_@@_instruction_int > \g_@@_instruction_int
        {
%    \end{macrocode}
%
% \interitem
% We extract from the property list of the current instruction the fields ``type'', ``line'' and ``column''and we
% store these values. We have to do a conversion because the components of a property list are token lists (and not
% integers).
%    \begin{macrocode}
         \prop_get:cnN {g_@@_instruction_\int_use:N \l_@@_instruction_int _prop}
                        {type} \l_tmpa_tl
         \int_set:Nn \l_@@_type_int {\l_tmpa_tl}
         \prop_get:cnN {g_@@_instruction_\int_use:N \l_@@_instruction_int _prop}
                        {line} \l_tmpa_tl
         \int_set:Nn \l_@@_line_int {\l_tmpa_tl}
         \prop_get:cnN {g_@@_instruction_\int_use:N \l_@@_instruction_int _prop}
                        {column} \l_tmpa_tl
         \int_set:Nn \l_@@_column_int {\l_tmpa_tl}
%    \end{macrocode}
%
% \interitem
% We fix the values of |\l_@@_di_int| and |\l_@@_dj_int| which indicate the direction of the dotted line to draw in
% the matrix.
%    \begin{macrocode}
           \int_case:nn \l_@@_type_int
             { 0 {\int_set:Nn \l_@@_di_int 0
                  \int_set:Nn \l_@@_dj_int 1}
               1 {\int_set:Nn \l_@@_di_int 0
                  \int_set:Nn \l_@@_dj_int 1}
               2 {\int_set:Nn \l_@@_di_int 1
                  \int_set:Nn \l_@@_dj_int 0}
               3 {\int_set:Nn \l_@@_di_int 1
                  \int_set:Nn \l_@@_dj_int 1}
               4 {\int_set:Nn \l_@@_di_int 1
                  \int_set:Nn \l_@@_dj_int {-1}}}
%    \end{macrocode}
%
% \interitem 
% An instruction for a dotted line must have a initial cell and a final cell which are both not empty. If it's not
% the case, the instruction is said \emph{impossible}. An error will be raised if an impossible instruction is
% encountered.
%    \begin{macrocode}
           \bool_if_exist:NTF \l_@@_impossible_instruction_bool
               {\bool_set_false:N \l_@@_impossible_instruction_bool}
               {\bool_new:N \l_@@_impossible_instruction_bool}
%    \end{macrocode}
%
% \interitem
% We will determine |\l_@@_final_i_int| and |\l_@@_final_j_int| which will be the ``coordinates'' of the end of the
% dotted line we have to draw.
%    \begin{macrocode}
           \int_zero_new:N  \l_@@_final_i_int
           \int_zero_new:N  \l_@@_final_j_int
           \int_set:Nn \l_@@_final_i_int \l_@@_line_int
           \int_set:Nn \l_@@_final_j_int \l_@@_column_int
           \bool_if_exist:NTF \l_@@_stop_loop_bool
                  {\bool_set_false:N \l_@@_stop_loop_bool}
                  {\bool_new:N \l_@@_stop_loop_bool}
           \bool_do_until:Nn \l_@@_stop_loop_bool 
              {\int_add:Nn \l_@@_final_i_int \l_@@_di_int
               \int_add:Nn \l_@@_final_j_int \l_@@_dj_int
%    \end{macrocode}
% We test if we are still in the matrix. 
%    \begin{macrocode}
               \bool_if:nTF { \int_compare_p:nNn \l_@@_final_i_int < 1
                           || \int_compare_p:nNn \l_@@_final_i_int > \g_@@_line_int
                           || \int_compare_p:nNn \l_@@_final_j_int < 1
                           || \int_compare_p:nNn \l_@@_final_j_int > \g_@@_nb_column_int}
%    \end{macrocode}
% If we are outside the matrix, the instruction is impossible and, of course, we stop the loop.
%    \begin{macrocode}
                       {\bool_set_true:N \l_@@_impossible_instruction_bool
                        \bool_set_true:N \l_@@_stop_loop_bool}
%    \end{macrocode}
% If we are in the matrix, we test if the cell is empty. If it's not the case, we stop the loop because we have
% found the correct values for |\l_@@_final_i_int| and |\l_@@_final_j_int|.
%    \begin{macrocode}
                       {\@@_if_not_empty_cell:nnT \l_@@_final_i_int \l_@@_final_j_int
                              {\bool_set_true:N \l_@@_stop_loop_bool}}
               }
%    \end{macrocode}
% 
% \interitem
% We will determine |\l_@@_initial_i_int| and |\l_@@_initial_j_int| which will be the ``coordinates'' of the
% beginning of the dotted line we have to draw. The programmation is similar to the previous one.
%    \begin{macrocode}
           \int_zero_new:N  \l_@@_initial_i_int
           \int_zero_new:N  \l_@@_initial_j_int
           \int_set:Nn \l_@@_initial_i_int \l_@@_line_int
           \int_set:Nn \l_@@_initial_j_int \l_@@_column_int
%    \end{macrocode}
% If we known that the instruction is impossible (because it was not possible to found the correct value for 
% |\l_@@_final_i_int| and |\l_@@_final_j_int|), we don't do this loop.
%    \begin{macrocode}
           \bool_set_eq:NN \l_@@_stop_loop_bool \l_@@_impossible_instruction_bool
           \bool_do_until:Nn \l_@@_stop_loop_bool 
              {\int_sub:Nn \l_@@_initial_i_int \l_@@_di_int
               \int_sub:Nn \l_@@_initial_j_int \l_@@_dj_int
               \bool_if:nTF 
                       {   \int_compare_p:nNn \l_@@_initial_i_int < 1
                        || \int_compare_p:nNn \l_@@_initial_i_int > \g_@@_line_int
                        || \int_compare_p:nNn \l_@@_initial_j_int < 1
                        || \int_compare_p:nNn \l_@@_initial_j_int > \g_@@_nb_column_int}
                       {\bool_set_true:N \l_@@_impossible_instruction_bool
                        \bool_set_true:N \l_@@_stop_loop_bool}
                       {\@@_if_not_empty_cell:nnT \l_@@_initial_i_int \l_@@_initial_j_int
                              {\bool_set_true:N \l_@@_stop_loop_bool}}
               }
%    \end{macrocode}
%
% \interitem
% Now, we can determine wether we have to draw a line. 
% If the line is impossible, of course, we won't draw any line.
%    \begin{macrocode}
          \bool_if:NTF \l_@@_impossible_instruction_bool
            {\msg_error:nn {nicematrix} {Impossible~instruction}}
%    \end{macrocode}
%
% If the dotted line to draw is in the list of the previously drawn lines (|\l_@@_yet_drawn_seq|), we don't draw
% (so, we won't have overlapping lines in the \textsc{pdf}). The token list |\l_tmpa_tl| is the $4$-uplet
% characteristic of the line.
%    \begin{macrocode}
            {\tl_set:Nx \l_tmpa_tl {\int_use:N \l_@@_initial_i_int-
                                    \int_use:N \l_@@_initial_j_int-
                                    \int_use:N \l_@@_final_i_int-
                                    \int_use:N \l_@@_final_j_int}
             \seq_if_in:NVF \l_@@_yet_drawn_seq \l_tmpa_tl
%    \end{macrocode}
%
% If the dotted line to draw is not in the list, we add it the list |\l_@@_yet_drawn_seq|.
%    \begin{macrocode}
              {\seq_put_left:NV \l_@@_yet_drawn_seq \l_tmpa_tl
%    \end{macrocode}
%
% \medskip
% The four following variables are global because we will have to do affectations in a Tikz instruction (in order
% to extract the coordinates of two extremities of the line to draw).
%    \begin{macrocode}
               \dim_zero_new:N \g_@@_x_initial_dim 
               \dim_zero_new:N \g_@@_y_initial_dim 
               \dim_zero_new:N \g_@@_x_final_dim 
               \dim_zero_new:N \g_@@_y_final_dim
%    \end{macrocode}
%
% 
% We draw the line.
%    \begin{macrocode}
               \int_case:nn \l_@@_type_int 
                {0  \@@_draw_ldots_line:
                 1  \@@_draw_cdots_line:
                 2  \@@_draw_vdots_line:
                 3  \@@_draw_ddots_line:
                 4  \@@_draw_iddots_line:}}}
%    \end{macrocode}
%
% \bigskip
% Incrementation of the index of the loop (and end of the loop).
%    \begin{macrocode}
            \int_incr:N \l_@@_instruction_int
         }
}
%    \end{macrocode}
%
%
% \interitem 
% The command |\@@_retrieve_coords:nn| retrieves the Tikz coordinates of the two extremities of the dotted line we
% will have to draw \footnote{In fact, with diagonals lines, a adjustment of one of the coordinates may be done.}.
% This command has four implicit arguments which are |\l_@@_initial_i_int|, |\l_@@_initial_j_int|,
% |\l_@@_final_i_int| and |\l_@@_final_j_int|.
%
% The two arguments of the command |\@@_retrieve_coords:nn| are the anchors that must be used for the two nodes.
%
% The coordinates are stored in |\g_@@_x_initial_dim|, |\g_@@_y_initial_dim|, |\g_@@_x_final_dim|,
% |\g_@@_y_final_dim|. These variables are global for technical reasons: we have to do an affectation in an
% environment |{pgfpicture}|.
%    \begin{macrocode}
\cs_new_protected:Nn \@@_retrieve_coords:nn
     {\begin{tikzpicture}[remember~picture]
      \tikz@parse@node\pgfutil@firstofone
             (nm-\int_use:N \g_@@_env_int-
                 \int_use:N \l_@@_initial_i_int-
                 \int_use:N \l_@@_initial_j_int.#1)
      \dim_gset:Nn \g_@@_x_initial_dim \pgf@x
      \dim_gset:Nn \g_@@_y_initial_dim \pgf@y
      \tikz@parse@node\pgfutil@firstofone
                 (nm-\int_use:N \g_@@_env_int-
                     \int_use:N \l_@@_final_i_int-
                     \int_use:N \l_@@_final_j_int.#2)
      \dim_gset:Nn \g_@@_x_final_dim \pgf@x
      \dim_gset:Nn \g_@@_y_final_dim \pgf@y
      \end{tikzpicture} }
%    \end{macrocode}
%
% \interitem
%    \begin{macrocode}
\cs_new_protected:Nn \@@_draw_ldots_line:
      {\@@_retrieve_coords:nn {south~east} {south~west}
       \@@_draw_tikz_line:}
%    \end{macrocode}
%
% \bigskip
%    \begin{macrocode}
\cs_new_protected:Nn \@@_draw_cdots_line:
      {\@@_retrieve_coords:nn {mid~east} {mid~west}
       \@@_draw_tikz_line:}
%    \end{macrocode}
%
% \bigskip
%    \begin{macrocode}
\cs_new_protected:Nn \@@_draw_vdots_line:
      {\@@_retrieve_coords:nn {south} {north}
       \@@_draw_tikz_line:}
%    \end{macrocode}
%
% \interitem
% For the diagonal lines, the situation is a bit more complicated because, by default, we parallelize the diagonals
% lines. The first diagonal line is drawn and then, all the other diagonal lines are drawn parallel to the first
% one.
%    \begin{macrocode}
\cs_new_protected:Nn \@@_draw_ddots_line:
   {\@@_retrieve_coords:nn {south~east} {north~west}
%    \end{macrocode}
% We have retrieved the coordinates in the usual way (they are stored in |\g_@@_x_initial_dim|, etc.).
% If the parallelization of the diagonals is set, we will have (maybe) to adjust the fourth coordinate.
%    \begin{macrocode}
    \bool_if:NT \l_@@_parallelize_diags_bool
       {\int_incr:N \l_@@_ddots_int
%    \end{macrocode}
% We test if the diagonal line is the first one (the counter |\l_@@_ddots_int| is created for this usage).
%    \begin{macrocode}
        \int_compare:nNnTF \l_@@_ddots_int = 1
%    \end{macrocode}
% If the diagonal line is the first one, we have no adjustment of the line to do but we store the $\Delta_x$ and the
% $\Delta_y$ of the line because these values will be used to draw the others diagonal lines parallels to the first one.
%    \begin{macrocode}
          {\dim_set:Nn \l_@@_delta_x_one_dim {\g_@@_x_final_dim - \g_@@_x_initial_dim }
           \dim_set:Nn \l_@@_delta_y_one_dim {\g_@@_y_final_dim - \g_@@_y_initial_dim }}
%    \end{macrocode}
% If the diagonal line is not the first one, we have to adjust the second extremity of the line by modifying 
% the coordinate |\g_@@_y_initial_dim|.
%    \begin{macrocode}
          {\dim_gset:Nn \g_@@_y_final_dim          
                  {\g_@@_y_initial_dim +
                      (\g_@@_x_final_dim - \g_@@_x_initial_dim)
                      * \dim_ratio:nn \l_@@_delta_y_one_dim \l_@@_delta_x_one_dim }}}
%    \end{macrocode}
% Now, we can draw the dotted line (after a possible change of |\g_@@_y_initial_dim|).
%    \begin{macrocode}
    \@@_draw_tikz_line:}
%    \end{macrocode}
%
% \bigskip
% We draw the |\Iddots| diagonals in the same way.
%    \begin{macrocode}
\cs_new_protected:Nn \@@_draw_iddots_line:
   {\@@_retrieve_coords:nn {south~west} {north~east} 
    \bool_if:NT \l_@@_parallelize_diags_bool
       {\int_incr:N \l_@@_iddots_int
        \int_compare:nNnTF \l_@@_iddots_int = 1
          {\dim_set:Nn \l_@@_delta_x_two_dim {\g_@@_x_final_dim - \g_@@_x_initial_dim }
           \dim_set:Nn \l_@@_delta_y_two_dim {\g_@@_y_final_dim - \g_@@_y_initial_dim }}
          {\dim_gset:Nn \g_@@_y_final_dim
                  {\g_@@_y_initial_dim +
                      (\g_@@_x_final_dim - \g_@@_x_initial_dim)
                      * \dim_ratio:nn \l_@@_delta_y_two_dim \l_@@_delta_x_two_dim }}}
    \@@_draw_tikz_line:}
%    \end{macrocode}
%
% \bigskip
% \subsection{The actual instructions for drawing the dotted line with Tikz}
%
% The command |\@@_draw_tikz_line:| draws the line using four implicit arguments: 
%
% \quad |\g_@@_x_initial_dim|, |\g_@@_y_initial_dim|, |\g_@@_x_final_dim| and |\g_@@_y_final_dim|. 
% These variables are global for technical reasons: their first affectation was in an instruction |\tikz|.
%
%    \begin{macrocode}
\cs_new_protected:Nn \@@_draw_tikz_line:
                     { 
%    \end{macrocode}
% The dimension |\l_@@_l_dim| is the length $\ell$ of the line to draw. We use the floating point reals of
% \pkg{expl3} to compute this length.
%    \begin{macrocode}
                       \dim_zero_new:N \l_@@_l_dim
                       \dim_set:Nn \l_@@_l_dim
                                  { \fp_to_dim:n 
                                      { sqrt( (  \dim_use:N \g_@@_x_final_dim 
                                                -\dim_use:N \g_@@_x_initial_dim) ^2
                                             +(  \dim_use:N \g_@@_y_final_dim 
                                                -\dim_use:N \g_@@_y_initial_dim) ^2 )}
                                  }
%    \end{macrocode}
% The integer |\l_tmpa_int| is the number of dots of the dotted line.
%    \begin{macrocode}
                       \int_set:Nn \l_tmpa_int {\dim_ratio:nn {\l_@@_l_dim - 0.54em} 
                                                              {0.45em}}
%    \end{macrocode}
% The dimensions |\l_tmpa_dim| and |\l_tmpb_dim| are the coordinates of the vector between two dots in the
% dotted line.
%    \begin{macrocode}
                       \dim_set:Nn \l_tmpa_dim { (\g_@@_x_final_dim - \g_@@_x_initial_dim) 
                                                  * \dim_ratio:nn {0.45em} \l_@@_l_dim}
                       \dim_set:Nn \l_tmpb_dim { (\g_@@_y_final_dim - \g_@@_y_initial_dim) 
                                                  * \dim_ratio:nn {0.45em} \l_@@_l_dim}
%    \end{macrocode}
% In the loop over the dots (|\int_step_inline:nnnn|), the dimensions |\g_@@_x_initial_dim| and
% |\g_@@_y_initial_dim| will be used for the coordinates of the dots.
%    \begin{macrocode}
                       \dim_gadd:Nn \g_@@_x_initial_dim
                           { (\g_@@_x_final_dim - \g_@@_x_initial_dim)
                               * \dim_ratio:nn {\l_@@_l_dim - 0.45 em * \l_tmpa_int}
                                               {\l_@@_l_dim * 2}}
                       \dim_gadd:Nn \g_@@_y_initial_dim 
                           { (\g_@@_y_final_dim - \g_@@_y_initial_dim)
                              * \dim_ratio:nn {\l_@@_l_dim - 0.45 em * \l_tmpa_int}
                                              {\l_@@_l_dim * 2}}
                       \begin{tikzpicture}[overlay]
                       \int_step_inline:nnnn 0 1 \l_tmpa_int
                          { \pgfpathcircle{\pgfpoint{\g_@@_x_initial_dim}
                                                    {\g_@@_y_initial_dim}}
                                          {0.53pt}
                            \pgfusepath{fill}
                            \dim_gadd:Nn \g_@@_x_initial_dim \l_tmpa_dim
                            \dim_gadd:Nn \g_@@_y_initial_dim \l_tmpb_dim }
                       \end{tikzpicture}
}
%    \end{macrocode}
%
% \bigskip
% \subsection{User commands available in environments {NiceMatrix}}
%
% We give new names for the commands |\ldots|, |\cdots|, |\vdots| and |\ddots| because these commands will be
% redefined (if the option |RenewDots| is used).
%    \begin{macrocode}
\cs_set_eq:NN \@@_ldots \ldots
\cs_set_eq:NN \@@_cdots \cdots
\cs_set_eq:NN \@@_vdots \vdots
\cs_set_eq:NN \@@_ddots \ddots
\cs_set_eq:NN \@@_iddots \iddots
%    \end{macrocode}
%
% \interitem
% The command |\@@_add_to_empty_cells:| adds the current cell to |\g_@@_empty_cells_seq| which is the list of the
% empty cells (the cells explicitly declared ``empty'': there may be, of course, other empty cells in the matrix).
%    \begin{macrocode}
\cs_new_protected:Nn \@@_add_to_empty_cells:
    {\seq_gput_right:Nx \g_@@_empty_cells_seq
          {\int_use:N \g_@@_line_int-
           \int_use:N \g_@@_column_int}}
%    \end{macrocode}
%
% \interitem 
% The commands |\@@_Ldots|, |\@@_Cdots|, |\@@_Vdots|, |\@@_Ddots| and |\@@_Iddots| will be linked to |\Ldots|,
% |\Cdots|, |\Vdots|, |\Ddots| and |\Iddots| in the environment |{NiceMatrix}|.
%    \begin{macrocode}
\NewDocumentCommand \@@_Ldots {s}
    {\IfBooleanF {#1} {\@@_instruction_of_type:n 0}
     \bool_if:NF \l_@@_nullify_dots_bool {\phantom \@@_ldots}
     \@@_add_to_empty_cells:}
%    \end{macrocode}
%
% \bigskip
%    \begin{macrocode}
\NewDocumentCommand \@@_Cdots {s}
    {\IfBooleanF {#1} {\@@_instruction_of_type:n 1}
     \bool_if:NF \l_@@_nullify_dots_bool {\phantom \@@_cdots}
     \@@_add_to_empty_cells:}
%    \end{macrocode}
%
% \bigskip
%    \begin{macrocode}
\NewDocumentCommand \@@_Vdots {s}
    {\IfBooleanF {#1} {\@@_instruction_of_type:n 2}
     \bool_if:NF \l_@@_nullify_dots_bool {\phantom \@@_vdots}
     \@@_add_to_empty_cells:}
%    \end{macrocode}
%
% \bigskip
%    \begin{macrocode}
\NewDocumentCommand \@@_Ddots {s}
    {\IfBooleanF {#1} {\@@_instruction_of_type:n 3}
     \bool_if:NF \l_@@_nullify_dots_bool {\phantom \@@_ddots}
     \@@_add_to_empty_cells:}
%    \end{macrocode}
%
% \bigskip
%    \begin{macrocode}
\NewDocumentCommand \@@_Iddots {s}
    {\IfBooleanF {#1} {\@@_instruction_of_type:n 4}
     \bool_if:NF \l_@@_nullify_dots_bool {\phantom \@@_iddots}
     \@@_add_to_empty_cells:}
%    \end{macrocode}
%
%
% \bigskip
% The command |\@@_Hspace:| will be linked to |\hspace| in the environment |{NiceMatrix}|.
%    \begin{macrocode}
\cs_new_protected:Nn \@@_Hspace:
  {\@@_add_to_empty_cells:
   \hspace}
%    \end{macrocode}
%
% \bigskip
% The command |\@@_NiceMatrixEndPoint:| will be linked to |\NiceMatrixEndPoint| in the environment |{NiceMatrix}|.
%    \begin{macrocode}
\cs_new_protected:Nn \@@_NiceMatrixEndPoint:
     {\kern 0.5pt}
%    \end{macrocode}
%
% \bigskip
% \subsection{We process the options}
%
% We process the options when the package is loaded (with |\usepackage|) but we recommend to use
% |\NiceMatrixOptions| instead. 
%
% We must process these options after the definition of the environment |{NiceMatrix}| because the option
% |RenewMatrix| execute the code |\cs_set_eq:NN \env@matrix \NiceMatrix|. 
%
% Of course, the command |\NiceMatrix| must be defined before such an instruction is executed.
%    \begin{macrocode}
\ProcessKeysOptions {NiceMatrix}
%    \end{macrocode}
%
%
% \bigskip
% \subsection{The error messages}
%    \begin{macrocode}
\msg_new:nnnn {nicematrix}
              {Impossible~instruction}
              {It's~not~possible~to~execute~the~instruction~
               \int_case:nn \l_@@_type_int
                 {0 {\token_to_str:N \Ldots}
                  1 {\token_to_str:N \Cdots}
                  2 {\token_to_str:N \Vdots}
                  3 {\token_to_str:N \Ddots}}~in~the~line~\int_use:N\l_@@_line_int\ 
               ~and~the~column~\int_use:N\l_@@_column_int\space of~the~matrix~
               because~it's~impossible~to~find~one~of~its~extremities~  
               (both~extremities~must~be~non~empty~cells~of~the~matrix).~
               If~you~go~on,~the~instruction~will~be~ignored.}
              {You~can~specify~a~end~of~line~on~a~empty~cell~
               with~\token_to_str:N \NiceMatrixEndPoint.}
%    \end{macrocode}
%
%    \begin{macrocode}
\msg_new:nnn {nicematrix}
             {multicolumn~forbidden}
             {The~command~\token_to_str:N \multicolumn\ 
              is~forbidden~in~the~environment~\{NiceMatrix\}~ 
              and~its~variants.~The~command~\token_to_str:N \hdotsfor\ 
              of~amsmath~is~also~forbidden~since~it~uses~
              \token_to_str:N \multicolumn.~You~can~go~on~but~your~line~will~
              probably~be~wrong.}
%    \end{macrocode}
%
%
% \section{History}
%
% \subsection{Changes between versions 1.0 and 1.1}
% 
% Option |Silent| (with this option, the impossible instructions are discarded silently).
%
% The dotted lines are no longer drawn with Tikz nodes but with Tikz circles (for efficiency).
% 
% Modification of the code which is now twice faster.
% \endinput
% Local Variables:
% TeX-fold-mode: nil
% End: