1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
|
% \iffalse meta-comment
%
%% File: l3str.dtx Copyright (C) 2011-2019 The LaTeX3 Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version. The latest version
% of this license is in the file
%
% https://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
%
% -----------------------------------------------------------------------
%
% The development version of the bundle can be found at
%
% https://github.com/latex3/latex3
%
% for those people who are interested.
%
%<*driver>
\documentclass[full,kernel]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{^^A
% The \pkg{l3str} package: Strings^^A
% }
%
% \author{^^A
% The \LaTeX3 Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released 2019-01-12}
%
% \maketitle
%
% \begin{documentation}
%
% \TeX{} associates each character with a category code: as such, there is no
% concept of a \enquote{string} as commonly understood in many other
% programming languages. However, there are places where we wish to manipulate
% token lists while in some sense \enquote{ignoring} category codes: this is
% done by treating token lists as strings in a \TeX{} sense.
%
% A \TeX{} string (and thus an \pkg{expl3} string) is a series of characters
% which have category code $12$ (\enquote{other}) with the exception of
% space characters which have category code $10$ (\enquote{space}). Thus
% at a technical level, a \TeX{} string is a token list with the appropriate
% category codes. In this documentation, these are simply referred to as
% strings.
%
% String variables are simply specialised token lists, but by convention
% should be named with the suffix \texttt{\ldots{}str}. Such variables
% should contain characters with category code $12$ (other), except
% spaces, which have category code $10$ (blank space). All the
% functions in this module which accept a token list argument first
% convert it to a string using \cs{tl_to_str:n} for internal processing,
% and do not treat a token list or the corresponding string
% representation differently.
%
% As a string is a subset of the more general token list, it is sometimes unclear
% when one should be used over the other.
% Use a string variable for data that isn't primarily intended for typesetting
% and for which a level of protection from unwanted expansion is suitable.
% This data type simplifies comparison of variables since there are no concerns
% about expansion of their contents.
%
% The functions \cs{cs_to_str:N}, \cs{tl_to_str:n}, \cs{tl_to_str:N} and
% \cs{token_to_str:N} (and variants) generate strings from the appropriate
% input: these are documented in \pkg{l3basics}, \pkg{l3tl} and \pkg{l3token},
% respectively.
%
% Most expandable functions in this module come in three flavours:
% \begin{itemize}
% \item \cs[no-index]{str_\ldots{}:N}, which expect a token list or string
% variable as their argument;
% \item \cs[no-index]{str_\ldots{}:n}, taking any token list (or string) as an
% argument;
% \item \cs[no-index]{str_\ldots{}_ignore_spaces:n}, which ignores any space
% encountered during the operation: these functions are typically
% faster than those which take care of escaping spaces
% appropriately.
% \end{itemize}
%
% \section{Building strings}
%
% \begin{function}[added = 2015-09-18]{\str_new:N, \str_new:c}
% \begin{syntax}
% \cs{str_new:N} \meta{str~var}
% \end{syntax}
% Creates a new \meta{str~var} or raises an error if the name is
% already taken. The declaration is global. The \meta{str~var} is
% initially empty.
% \end{function}
%
% \begin{function}[added = 2015-09-18, updated = 2018-07-28]
% {
% \str_const:Nn, \str_const:NV, \str_const:Nx,
% \str_const:cn, \str_const:cV, \str_const:cx
% }
% \begin{syntax}
% \cs{str_const:Nn} \meta{str~var} \Arg{token list}
% \end{syntax}
% Creates a new constant \meta{str~var} or raises an error if the name
% is already taken. The value of the \meta{str~var} is set
% globally to the \meta{token list}, converted to a string.
% \end{function}
%
% \begin{function}[added = 2015-09-18]
% {\str_clear:N, \str_clear:c, \str_gclear:N, \str_gclear:c}
% \begin{syntax}
% \cs{str_clear:N} \meta{str~var}
% \end{syntax}
% Clears the content of the \meta{str~var}.
% \end{function}
%
% \begin{function}[added = 2015-09-18]{\str_clear_new:N, \str_clear_new:c}
% \begin{syntax}
% \cs{str_clear_new:N} \meta{str~var}
% \end{syntax}
% Ensures that the \meta{str~var} exists globally by applying
% \cs{str_new:N} if necessary, then applies
% \cs[index=str_clear:N]{str_(g)clear:N} to leave
% the \meta{str~var} empty.
% \end{function}
%
% \begin{function}[added = 2015-09-18]
% {
% \str_set_eq:NN, \str_set_eq:cN, \str_set_eq:Nc, \str_set_eq:cc,
% \str_gset_eq:NN, \str_gset_eq:cN, \str_gset_eq:Nc, \str_gset_eq:cc
% }
% \begin{syntax}
% \cs{str_set_eq:NN} \meta{str~var_1} \meta{str~var_2}
% \end{syntax}
% Sets the content of \meta{str~var_1} equal to that of
% \meta{str~var_2}.
% \end{function}
%
% \begin{function}[added = 2017-10-08]
% {
% \str_concat:NNN, \str_concat:ccc,
% \str_gconcat:NNN, \str_gconcat:ccc
% }
% \begin{syntax}
% \cs{str_concat:NNN} \meta{str~var_1} \meta{str~var_2} \meta{str~var_3}
% \end{syntax}
% Concatenates the content of \meta{str~var_2} and \meta{str~var_3}
% together and saves the result in \meta{str~var_1}. The \meta{str~var_2}
% is placed at the left side of the new string variable.
% The \meta{str~var_2} and \meta{str~var_3} must indeed be strings, as
% this function does not convert their contents to a string.
% \end{function}
%
% \section{Adding data to string variables}
%
% \begin{function}[added = 2015-09-18, updated = 2018-07-28]
% {
% \str_set:Nn, \str_set:NV, \str_set:Nx,
% \str_set:cn, \str_set:cV, \str_set:cx,
% \str_gset:Nn, \str_gset:NV, \str_gset:Nx,
% \str_gset:cn, \str_gset:cV, \str_gset:cx
% }
% \begin{syntax}
% \cs{str_set:Nn} \meta{str var} \Arg{token list}
% \end{syntax}
% Converts the \meta{token list} to a \meta{string}, and stores the
% result in \meta{str var}.
% \end{function}
%
% \begin{function}[added = 2015-09-18, updated = 2018-07-28]
% {
% \str_put_left:Nn, \str_put_left:NV, \str_put_left:Nx,
% \str_put_left:cn, \str_put_left:cV, \str_put_left:cx,
% \str_gput_left:Nn, \str_gput_left:NV, \str_gput_left:Nx,
% \str_gput_left:cn, \str_gput_left:cV, \str_gput_left:cx
% }
% \begin{syntax}
% \cs{str_put_left:Nn} \meta{str var} \Arg{token list}
% \end{syntax}
% Converts the \meta{token list} to a \meta{string}, and prepends the
% result to \meta{str var}. The current contents of the \meta{str
% var} are not automatically converted to a string.
% \end{function}
%
% \begin{function}[added = 2015-09-18, updated = 2018-07-28]
% {
% \str_put_right:Nn, \str_put_right:NV, \str_put_right:Nx,
% \str_put_right:cn, \str_put_right:cV, \str_put_right:cx,
% \str_gput_right:Nn, \str_gput_right:NV, \str_gput_right:Nx,
% \str_gput_right:cn, \str_gput_right:cV, \str_gput_right:cx
% }
% \begin{syntax}
% \cs{str_put_right:Nn} \meta{str var} \Arg{token list}
% \end{syntax}
% Converts the \meta{token list} to a \meta{string}, and appends the
% result to \meta{str var}. The current contents of the \meta{str
% var} are not automatically converted to a string.
% \end{function}
%
% \section{Modifying string variables}
%
% \begin{function}[added = 2017-10-08]
% {
% \str_replace_once:Nnn, \str_replace_once:cnn,
% \str_greplace_once:Nnn, \str_greplace_once:cnn
% }
% \begin{syntax}
% \cs{str_replace_once:Nnn} \meta{str~var} \Arg{old} \Arg{new}
% \end{syntax}
% Converts the \meta{old} and \meta{new} token lists to strings, then
% replaces the first (leftmost) occurrence of \meta{old string} in the
% \meta{str~var} with \meta{new string}.
% \end{function}
%
% \begin{function}[added = 2017-10-08]
% {
% \str_replace_all:Nnn, \str_replace_all:cnn,
% \str_greplace_all:Nnn, \str_greplace_all:cnn
% }
% \begin{syntax}
% \cs{str_replace_all:Nnn} \meta{str~var} \Arg{old} \Arg{new}
% \end{syntax}
% Converts the \meta{old} and \meta{new} token lists to strings, then
% replaces all occurrences of \meta{old string} in the
% \meta{str~var} with \meta{new string}.
% As this function
% operates from left to right, the pattern \meta{old string}
% may remain after the replacement (see \cs{str_remove_all:Nn}
% for an example).
% \end{function}
%
% \begin{function}[added = 2017-10-08]
% {
% \str_remove_once:Nn, \str_remove_once:cn,
% \str_gremove_once:Nn, \str_gremove_once:cn
% }
% \begin{syntax}
% \cs{str_remove_once:Nn} \meta{str~var} \Arg{token list}
% \end{syntax}
% Converts the \meta{token list} to a \meta{string} then
% removes the first (leftmost) occurrence of \meta{string} from the
% \meta{str~var}.
% \end{function}
%
% \begin{function}[added = 2017-10-08]
% {
% \str_remove_all:Nn, \str_remove_all:cn,
% \str_gremove_all:Nn, \str_gremove_all:cn
% }
% \begin{syntax}
% \cs{str_remove_all:Nn} \meta{str~var} \Arg{token list}
% \end{syntax}
% Converts the \meta{token list} to a \meta{string} then
% removes all occurrences of \meta{string} from the
% \meta{str~var}.
% As this function
% operates from left to right, the pattern \meta{string}
% may remain after the removal, for instance,
% \begin{quote}
% \cs{str_set:Nn} \cs{l_tmpa_str} |{abbccd}|
% \cs{str_remove_all:Nn} \cs{l_tmpa_str} |{bc}|
% \end{quote}
% results in \cs{l_tmpa_str} containing \texttt{abcd}.
% \end{function}
%
% \section{String conditionals}
%
% \begin{function}[EXP, pTF, added = 2015-09-18]
% {\str_if_exist:N, \str_if_exist:c}
% \begin{syntax}
% \cs{str_if_exist_p:N} \meta{str~var}
% \cs{str_if_exist:NTF} \meta{str~var} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests whether the \meta{str~var} is currently defined. This does not
% check that the \meta{str~var} really is a string.
% \end{function}
%
% \begin{function}[EXP,pTF, added = 2015-09-18]
% {\str_if_empty:N, \str_if_empty:c}
% \begin{syntax}
% \cs{str_if_empty_p:N} \meta{str~var}
% \cs{str_if_empty:NTF} \meta{str~var} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests if the \meta{string variable} is entirely empty
% (\emph{i.e.}~contains no characters at all).
% \end{function}
%
% \begin{function}[EXP,pTF, added = 2015-09-18]
% {\str_if_eq:NN, \str_if_eq:Nc, \str_if_eq:cN, \str_if_eq:cc}
% \begin{syntax}
% \cs{str_if_eq_p:NN} \meta{str~var_1} \meta{str~var_2}
% \cs{str_if_eq:NNTF} \meta{str~var_1} \meta{str~var_2} \Arg{true code} \Arg{false code}
% \end{syntax}
% Compares the content of two \meta{str variables} and
% is logically \texttt{true} if the two contain the same characters
% in the same order.
% \end{function}
%
% \begin{function}[EXP,pTF, updated = 2018-06-18]
% {
% \str_if_eq:nn, \str_if_eq:Vn, \str_if_eq:on, \str_if_eq:no,
% \str_if_eq:nV, \str_if_eq:VV, \str_if_eq:vn, \str_if_eq:nv,
% \str_if_eq:ee
% }
% \begin{syntax}
% \cs{str_if_eq_p:nn} \Arg{tl_1} \Arg{tl_2}
% \cs{str_if_eq:nnTF} \Arg{tl_1} \Arg{tl_2} \Arg{true code} \Arg{false code}
% \end{syntax}
% Compares the two \meta{token lists} on a character by character
% basis (namely after converting them to strings),
% and is \texttt{true} if the two \meta{strings} contain the same
% characters in the same order. Thus for example
% \begin{verbatim}
% \str_if_eq_p:no { abc } { \tl_to_str:n { abc } }
% \end{verbatim}
% is logically \texttt{true}.
% \end{function}
%
% \begin{function}[TF, added = 2017-10-08]{\str_if_in:Nn, \str_if_in:cn}
% \begin{syntax}
% \cs{str_if_in:NnTF} \meta{str~var} \Arg{token list} \Arg{true code} \Arg{false code}
% \end{syntax}
% Converts the \meta{token list} to a \meta{string} and
% tests if that \meta{string} is found in the content of the
% \meta{str~var}.
% \end{function}
%
% \begin{function}[TF, added = 2017-10-08]{\str_if_in:nn}
% \begin{syntax}
% \cs{str_if_in:nnTF} \meta{tl_1} \Arg{tl_2} \Arg{true code} \Arg{false code}
% \end{syntax}
% Converts both \meta{token lists} to \meta{strings} and
% tests whether \meta{string_2} is found inside \meta{string_1}.
% \end{function}
%
% \begin{function}[added = 2013-07-24, updated = 2015-02-28, EXP, noTF]
% {\str_case:nn, \str_case:on, \str_case:nV, \str_case:nv}
% \begin{syntax}
% \cs{str_case:nnTF} \Arg{test string} \\
% ~~|{| \\
% ~~~~\Arg{string case_1} \Arg{code case_1} \\
% ~~~~\Arg{string case_2} \Arg{code case_2} \\
% ~~~~\ldots \\
% ~~~~\Arg{string case_n} \Arg{code case_n} \\
% ~~|}| \\
% ~~\Arg{true code}
% ~~\Arg{false code}
% \end{syntax}
% Compares the \meta{test string} in turn with each
% of the \meta{string cases} (all token lists are converted to strings).
% If the two are equal (as described for
% \cs{str_if_eq:nnTF}) then the associated \meta{code} is left in the
% input stream and other cases are discarded. If any of the
% cases are matched, the \meta{true code} is also inserted into the
% input stream (after the code for the appropriate case), while if none
% match then the \meta{false code} is inserted. The function
% \cs{str_case:nn}, which does nothing if there is no match, is also
% available.
% \end{function}
%
% \begin{function}[added = 2018-06-19, EXP, noTF]{\str_case_e:nn}
% \begin{syntax}
% \cs{str_case_e:nnTF} \Arg{test string} \\
% ~~|{| \\
% ~~~~\Arg{string case_1} \Arg{code case_1} \\
% ~~~~\Arg{string case_2} \Arg{code case_2} \\
% ~~~~\ldots \\
% ~~~~\Arg{string case_n} \Arg{code case_n} \\
% ~~|}| \\
% ~~\Arg{true code}
% ~~\Arg{false code}
% \end{syntax}
% Compares the full expansion of the \meta{test string}
% in turn with the full expansion of the \meta{string cases}
% (all token lists are converted to strings). If the two
% full expansions are equal (as described for \cs{str_if_eq:nnTF}) then the
% associated \meta{code} is left in the input stream
% and other cases are discarded. If any of the
% cases are matched, the \meta{true code} is also inserted into the
% input stream (after the code for the appropriate case), while if none
% match then the \meta{false code} is inserted. The function
% \cs{str_case_e:nn}, which does nothing if there is no match, is also
% available.
% The \meta{test string} is expanded in each comparison, and must
% always yield the same result: for example, random numbers must
% not be used within this string.
% \end{function}
%
% \section{Mapping to strings}
%
% \begin{function}[added = 2017-11-14, rEXP]
% {\str_map_function:NN, \str_map_function:cN}
% \begin{syntax}
% \cs{str_map_function:NN} \meta{str~var} \meta{function}
% \end{syntax}
% Applies \meta{function} to every \meta{character} in the
% \meta{str~var} including spaces.
% See also \cs{str_map_function:nN}.
% \end{function}
%
% \begin{function}[added = 2017-11-14, rEXP]
% {\str_map_function:nN}
% \begin{syntax}
% \cs{str_map_function:nN} \Arg{token list} \meta{function}
% \end{syntax}
% Converts the \meta{token list} to a \meta{string} then
% applies \meta{function} to every \meta{character} in the
% \meta{string} including spaces.
% See also \cs{str_map_function:NN}.
% \end{function}
%
% \begin{function}[added = 2017-11-14]
% {\str_map_inline:Nn, \str_map_inline:cn}
% \begin{syntax}
% \cs{str_map_inline:Nn} \meta{str~var} \Arg{inline function}
% \end{syntax}
% Applies the \meta{inline function} to every \meta{character} in the
% \meta{str~var} including spaces.
% The \meta{inline function} should consist of code which
% receives the \meta{character} as |#1|. See also \cs{str_map_function:NN}.
% \end{function}
%
% \begin{function}[added = 2017-11-14]
% {\str_map_inline:nn}
% \begin{syntax}
% \cs{str_map_inline:nn} \Arg{token list} \Arg{inline function}
% \end{syntax}
% Converts the \meta{token list} to a \meta{string} then
% applies the \meta{inline function} to every \meta{character} in the
% \meta{string} including spaces.
% The \meta{inline function} should consist of code which
% receives the \meta{character} as |#1|. See also \cs{str_map_function:NN}.
% \end{function}
%
% \begin{function}[added = 2017-11-14]
% {\str_map_variable:NNn, \str_map_variable:cNn}
% \begin{syntax}
% \cs{str_map_variable:NNn} \meta{str~var} \meta{variable} \Arg{code}
% \end{syntax}
% Stores each \meta{character} of the \meta{string} (including spaces)
% in turn in the (string or token list) \meta{variable} and applies
% the \meta{code}. The \meta{code} will usually make use of the
% \meta{variable}, but this is not enforced. The assignments to the
% \meta{variable} are local. See also \cs{str_map_inline:Nn}.
% \end{function}
%
% \begin{function}[added = 2017-11-14]
% {\str_map_variable:nNn}
% \begin{syntax}
% \cs{str_map_variable:nNn} \Arg{token list} \meta{variable} \Arg{code}
% \end{syntax}
% Converts the \meta{token list} to a \meta{string} then stores each
% \meta{character} in the \meta{string} (including spaces) in turn in
% the (string or token list) \meta{variable} and applies the
% \meta{code}. The \meta{code} will usually make use of the
% \meta{variable}, but this is not enforced. The assignments to the
% \meta{variable} are local. See also \cs{str_map_inline:Nn}.
% \end{function}
%
% \begin{function}[added = 2017-10-08, rEXP]{\str_map_break:}
% \begin{syntax}
% \cs{str_map_break:}
% \end{syntax}
% Used to terminate a \cs[no-index]{str_map_\ldots} function before all
% characters in the \meta{string} have been processed. This
% normally takes place within a conditional statement, for example
% \begin{verbatim}
% \str_map_inline:Nn \l_my_str
% {
% \str_if_eq:nnT { #1 } { bingo } { \str_map_break: }
% % Do something useful
% }
% \end{verbatim}
% See also \cs{str_map_break:n}.
% Use outside of a \cs[no-index]{str_map_\ldots} scenario leads to low
% level \TeX{} errors.
% \begin{texnote}
% When the mapping is broken, additional tokens may be inserted
% before continuing with the
% code that follows the loop.
% This depends on the design of the mapping function.
% \end{texnote}
% \end{function}
%
% \begin{function}[added = 2017-10-08, rEXP]{\str_map_break:n}
% \begin{syntax}
% \cs{str_map_break:n} \Arg{code}
% \end{syntax}
% Used to terminate a \cs[no-index]{str_map_\ldots} function before all
% characters in the \meta{string} have been processed, inserting
% the \meta{code} after the mapping has ended. This
% normally takes place within a conditional statement, for example
% \begin{verbatim}
% \str_map_inline:Nn \l_my_str
% {
% \str_if_eq:nnT { #1 } { bingo }
% { \str_map_break:n { <code> } }
% % Do something useful
% }
% \end{verbatim}
% Use outside of a \cs[no-index]{str_map_\ldots} scenario leads to low
% level \TeX{} errors.
% \begin{texnote}
% When the mapping is broken, additional tokens may be inserted
% before the \meta{code} is
% inserted into the input stream.
% This depends on the design of the mapping function.
% \end{texnote}
% \end{function}
%
% \section{Working with the content of strings}
%
% \begin{function}[EXP, added = 2015-09-18]{\str_use:N, \str_use:c}
% \begin{syntax}
% \cs{str_use:N} \meta{str~var}
% \end{syntax}
% Recovers the content of a \meta{str~var} and places it
% directly in the input stream. An error is raised if the variable
% does not exist or if it is invalid. Note that it is possible to use
% a \meta{str} directly without an accessor function.
% \end{function}
%
% \begin{function}[EXP, added = 2015-09-18]
% {\str_count:N, \str_count:c, \str_count:n, \str_count_ignore_spaces:n}
% \begin{syntax}
% \cs{str_count:n} \Arg{token list}
% \end{syntax}
% Leaves in the input stream the number of characters in the string
% representation of \meta{token list}, as an integer denotation. The
% functions differ in their treatment of spaces. In the case of
% \cs{str_count:N} and \cs{str_count:n}, all characters including
% spaces are counted. The \cs{str_count_ignore_spaces:n} function
% leaves the number of non-space characters in the input stream.
% \end{function}
%
% \begin{function}[EXP, added = 2015-09-18]
% {\str_count_spaces:N, \str_count_spaces:c, \str_count_spaces:n}
% \begin{syntax}
% \cs{str_count_spaces:n} \Arg{token list}
% \end{syntax}
% Leaves in the input stream the number of space characters in the
% string representation of \meta{token list}, as an integer
% denotation. Of course, this function has no \texttt{_ignore_spaces}
% variant.
% \end{function}
%
% \begin{function}[EXP, added = 2015-09-18]
% {\str_head:N, \str_head:c, \str_head:n, \str_head_ignore_spaces:n}
% \begin{syntax}
% \cs{str_head:n} \Arg{token list}
% \end{syntax}
% Converts the \meta{token list} into a \meta{string}. The first
% character in the \meta{string} is then left in the input stream,
% with category code \enquote{other}. The functions differ if the
% first character is a space: \cs{str_head:N} and \cs{str_head:n}
% return a space token with category code~$10$ (blank space), while
% the \cs{str_head_ignore_spaces:n} function ignores this space
% character and leaves the first non-space character in the input
% stream. If the \meta{string} is empty (or only contains spaces in
% the case of the \texttt{_ignore_spaces} function), then nothing is
% left on the input stream.
% \end{function}
%
% \begin{function}[EXP, added = 2015-09-18]
% {\str_tail:N, \str_tail:c, \str_tail:n, \str_tail_ignore_spaces:n}
% \begin{syntax}
% \cs{str_tail:n} \Arg{token list}
% \end{syntax}
% Converts the \meta{token list} to a \meta{string}, removes the first
% character, and leaves the remaining characters (if any) in the input
% stream, with category codes $12$ and $10$ (for spaces). The
% functions differ in the case where the first character is a space:
% \cs{str_tail:N} and \cs{str_tail:n} only trim that space, while
% \cs{str_tail_ignore_spaces:n} removes the first non-space character
% and any space before it. If the \meta{token list} is empty (or
% blank in the case of the \texttt{_ignore_spaces} variant), then
% nothing is left on the input stream.
% \end{function}
%
% \begin{function}[EXP, added = 2015-09-18]
% {\str_item:Nn, \str_item:nn, \str_item_ignore_spaces:nn}
% \begin{syntax}
% \cs{str_item:nn} \Arg{token list} \Arg{integer expression}
% \end{syntax}
% Converts the \meta{token list} to a \meta{string}, and leaves in the
% input stream the character in position \meta{integer expression} of
% the \meta{string}, starting at $1$ for the first (left-most)
% character. In the case of \cs{str_item:Nn} and \cs{str_item:nn},
% all characters including spaces are taken into account. The
% \cs{str_item_ignore_spaces:nn} function skips spaces when counting
% characters. If the \meta{integer expression} is negative,
% characters are counted from the end of the \meta{string}. Hence,
% $-1$ is the right-most character, \emph{etc.}
% \end{function}
%
% \begin{function}[EXP, added = 2015-09-18]
% {
% \str_range:Nnn, \str_range:cnn, \str_range:nnn,
% \str_range_ignore_spaces:nnn
% }
% \begin{syntax}
% \cs{str_range:nnn} \Arg{token list} \Arg{start index} \Arg{end index}
% \end{syntax}
% Converts the \meta{token list} to a \meta{string}, and leaves in the
% input stream the characters from the \meta{start index} to the
% \meta{end index} inclusive. Spaces are preserved and counted as items
% (contrast this with \cs{tl_range:nnn} where spaces are not counted as
% items and are possibly discarded from the output).
%
% Here \meta{start index} and \meta{end index} should be integer denotations.
% For describing in detail the functions' behavior, let $m$ and $n$ be the start
% and end index respectively. If either is $0$, the result is empty. A positive
% index means `start counting from the left end', a negative index means
% `start counting from the right end'. Let $l$ be the count of the token list.
%
% The \emph{actual start point} is determined as $M=m$ if~$m>0$ and as $M=l+m+1$
% if~$m<0$. Similarly the \emph{actual end point} is $N=n$ if~$n>0$ and $N=l+n+1$
% if~$n<0$. If $M>N$, the result is empty. Otherwise it consists of all items from
% position $M$ to position $N$ inclusive; for the purpose of this rule, we can
% imagine that the token list extends at infinity on either side, with void items
% at positions $s$ for $s\le0$ or $s>l$.
% For instance,
% \begin{verbatim}
% \iow_term:x { \str_range:nnn { abcdef } { 2 } { 5 } }
% \iow_term:x { \str_range:nnn { abcdef } { -4 } { -1 } }
% \iow_term:x { \str_range:nnn { abcdef } { -2 } { -1 } }
% \iow_term:x { \str_range:nnn { abcdef } { 0 } { -1 } }
% \end{verbatim}
% prints \texttt{bcde}, \texttt{cdef}, \texttt{ef}, and an empty
% line to the terminal. The \meta{start index} must always be smaller than
% or equal to the \meta{end index}: if this is not the case then no output
% is generated. Thus
% \begin{verbatim}
% \iow_term:x { \str_range:nnn { abcdef } { 5 } { 2 } }
% \iow_term:x { \str_range:nnn { abcdef } { -1 } { -4 } }
% \end{verbatim}
% both yield empty strings.
%
% The behavior of \cs{str_range_ignore_spaces:nnn} is similar, but spaces
% are removed before starting the job. The input
% \begin{verbatim}
% \iow_term:x { \str_range:nnn { abcdefg } { 2 } { 5 } }
% \iow_term:x { \str_range:nnn { abcdefg } { 2 } { -3 } }
% \iow_term:x { \str_range:nnn { abcdefg } { -6 } { 5 } }
% \iow_term:x { \str_range:nnn { abcdefg } { -6 } { -3 } }
%
% \iow_term:x { \str_range:nnn { abc~efg } { 2 } { 5 } }
% \iow_term:x { \str_range:nnn { abc~efg } { 2 } { -3 } }
% \iow_term:x { \str_range:nnn { abc~efg } { -6 } { 5 } }
% \iow_term:x { \str_range:nnn { abc~efg } { -6 } { -3 } }
%
% \iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { 5 } }
% \iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { 2 } { -3 } }
% \iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { 5 } }
% \iow_term:x { \str_range_ignore_spaces:nnn { abcdefg } { -6 } { -3 } }
%
% \iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { 2 } { 5 } }
% \iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { 2 } { -3 } }
% \iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { 5 } }
% \iow_term:x { \str_range_ignore_spaces:nnn { abcd~efg } { -6 } { -3 } }
% \end{verbatim}
% will print four instances of |bcde|, four instances of |bc e| and eight
% instances of |bcde|.
% \end{function}
%
% \section{String manipulation}
%
% \begin{function}[EXP, added = 2015-03-01]
% {
% \str_lower_case:n, \str_lower_case:f,
% \str_upper_case:n, \str_upper_case:f
% }
% \begin{syntax}
% \cs{str_lower_case:n} \Arg{tokens}
% \cs{str_upper_case:n} \Arg{tokens}
% \end{syntax}
% Converts the input \meta{tokens} to their string representation, as
% described for \cs{tl_to_str:n}, and then to the lower or upper
% case representation using a one-to-one mapping as described by the
% Unicode Consortium file |UnicodeData.txt|.
%
% These functions are intended for case changing programmatic data in
% places where upper/lower case distinctions are meaningful. One example
% would be automatically generating a function name from user input where
% some case changing is needed. In this situation the input is programmatic,
% not textual, case does have meaning and a language-independent one-to-one
% mapping is appropriate. For example
% \begin{verbatim}
% \cs_new_protected:Npn \myfunc:nn #1#2
% {
% \cs_set_protected:cpn
% {
% user
% \str_upper_case:f { \tl_head:n {#1} }
% \str_lower_case:f { \tl_tail:n {#1} }
% }
% { #2 }
% }
% \end{verbatim}
% would be used to generate a function with an auto-generated name consisting
% of the upper case equivalent of the supplied name followed by the lower
% case equivalent of the rest of the input.
%
% These functions should \emph{not} be used for
% \begin{itemize}
% \item Caseless comparisons: use \cs{str_fold_case:n} for this
% situation (case folding is distinct from lower casing).
% \item Case changing text for typesetting: see the
% \cs[index=tl_lower_case:n]{tl_lower_case:n(n)},
% \cs[index=tl_upper_case:n]{tl_upper_case:n(n)} and
% \cs[index=tl_mixed_case:n]{tl_mixed_case:n(n)} functions which
% correctly deal with context-dependence and other factors appropriate
% to text case changing.
% \end{itemize}
%
% \begin{texnote}
% As with all \pkg{expl3} functions, the input supported by
% \cs{str_fold_case:n} is \emph{engine-native} characters which are or
% interoperate with \textsc{utf-8}. As such, when used with \pdfTeX{}
% \emph{only} the Latin alphabet characters A--Z are case-folded
% (\emph{i.e.}~the \textsc{ascii} range which coincides with
% \textsc{utf-8}). Full \textsc{utf-8} support is available with both
% \XeTeX{} and \LuaTeX{}.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP, added = 2014-06-19, updated = 2016-03-07]
% {\str_fold_case:n, \str_fold_case:V}
% \begin{syntax}
% \cs{str_fold_case:n} \Arg{tokens}
% \end{syntax}
% Converts the input \meta{tokens} to their string representation, as
% described for \cs{tl_to_str:n}, and then folds the case of the resulting
% \meta{string} to remove case information. The result of this process is
% left in the input stream.
%
% String folding is a process used for material such as identifiers rather
% than for \enquote{text}. The folding provided by \cs{str_fold_case:n}
% follows the mappings provided by the \href{http://www.unicode.org}^^A
% {Unicode Consortium}, who
% \href{http://www.unicode.org/faq/casemap_charprop.html#2}{state}:
% \begin{quote}
% Case folding is primarily used for caseless comparison of text, such
% as identifiers in a computer program, rather than actual text
% transformation. Case folding in Unicode is based on the lowercase
% mapping, but includes additional changes to the source text to help make
% it language-insensitive and consistent. As a result, case-folded text
% should be used solely for internal processing and generally should not be
% stored or displayed to the end user.
% \end{quote}
% The folding approach implemented by \cs{str_fold_case:n} follows the
% \enquote{full} scheme defined by the Unicode Consortium
% (\emph{e.g.}~\SS folds to \texttt{SS}). As case-folding is
% a language-insensitive process, there is no special treatment of
% Turkic input (\emph{i.e.}~\texttt{I} always folds to \texttt{i} and
% not to \texttt{\i}).
%
% \begin{texnote}
% As with all \pkg{expl3} functions, the input supported by
% \cs{str_fold_case:n} is \emph{engine-native} characters which are or
% interoperate with \textsc{utf-8}. As such, when used with \pdfTeX{}
% \emph{only} the Latin alphabet characters A--Z are case-folded
% (\emph{i.e.}~the \textsc{ascii} range which coincides with
% \textsc{utf-8}). Full \textsc{utf-8} support is available with both
% \XeTeX{} and \LuaTeX{}, subject only to the fact that \XeTeX{} in
% particular has issues with characters of code above hexadecimal
% $0\mathrm{xFFFF}$ when interacting with \cs{tl_to_str:n}.
% \end{texnote}
% \end{function}
%
% \section{Viewing strings}
%
% \begin{function}[added = 2015-09-18]
% {\str_show:N, \str_show:c, \str_show:n}
% \begin{syntax}
% \cs{str_show:N} \meta{str~var}
% \end{syntax}
% Displays the content of the \meta{str~var} on the terminal.
% \end{function}
%
% \section{Constant token lists}
%
% \begin{variable}[added = 2015-09-19]
% {
% \c_ampersand_str,
% \c_atsign_str,
% \c_backslash_str,
% \c_left_brace_str,
% \c_right_brace_str,
% \c_circumflex_str,
% \c_colon_str,
% \c_dollar_str,
% \c_hash_str,
% \c_percent_str,
% \c_tilde_str,
% \c_underscore_str
% }
% Constant strings, containing a single character token, with category
% code $12$.
% \end{variable}
%
% \section{Scratch strings}
%
% \begin{variable}{\l_tmpa_str, \l_tmpb_str}
% Scratch strings for local assignment. These are never used by
% the kernel code, and so are safe for use with any \LaTeX3-defined
% function. However, they may be overwritten by other non-kernel
% code and so should only be used for short-term storage.
% \end{variable}
%
% \begin{variable}{\g_tmpa_str, \g_tmpb_str}
% Scratch strings for global assignment. These are never used by
% the kernel code, and so are safe for use with any \LaTeX3-defined
% function. However, they may be overwritten by other non-kernel
% code and so should only be used for short-term storage.
% \end{variable}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3str} implementation}
%
% \begin{macrocode}
%<*initex|package>
% \end{macrocode}
%
% \begin{macrocode}
%<@@=str>
% \end{macrocode}
%
% \subsection{Creating and setting string variables}
%
% \begin{macro}
% {
% \str_new:N, \str_new:c,
% \str_use:N, \str_use:c,
% \str_clear:N, \str_clear:c,
% \str_gclear:N,\str_gclear:c,
% \str_clear_new:N, \str_clear_new:c,
% \str_gclear_new:N, \str_gclear_new:c
% }
% \begin{macro}
% {
% \str_set_eq:NN, \str_set_eq:cN, \str_set_eq:Nc, \str_set_eq:cc,
% \str_gset_eq:NN, \str_gset_eq:cN, \str_gset_eq:Nc, \str_gset_eq:cc
% }
% \begin{macro}
% {\str_concat:NNN, \str_concat:ccc, \str_gconcat:NNN, \str_gconcat:ccc}
% A string is simply a token list. The full mapping system isn't set up
% yet so do things by hand.
% \begin{macrocode}
\group_begin:
\cs_set_protected:Npn \@@_tmp:n #1
{
\tl_if_blank:nF {#1}
{
\cs_new_eq:cc { str_ #1 :N } { tl_ #1 :N }
\exp_args:Nc \cs_generate_variant:Nn { str_ #1 :N } { c }
\@@_tmp:n
}
}
\@@_tmp:n
{ new }
{ use }
{ clear }
{ gclear }
{ clear_new }
{ gclear_new }
{ }
\group_end:
\cs_new_eq:NN \str_set_eq:NN \tl_set_eq:NN
\cs_new_eq:NN \str_gset_eq:NN \tl_gset_eq:NN
\cs_generate_variant:Nn \str_set_eq:NN { c , Nc , cc }
\cs_generate_variant:Nn \str_gset_eq:NN { c , Nc , cc }
\cs_new_eq:NN \str_concat:NNN \tl_concat:NNN
\cs_new_eq:NN \str_gconcat:NNN \tl_gconcat:NNN
\cs_generate_variant:Nn \str_concat:NNN { ccc }
\cs_generate_variant:Nn \str_gconcat:NNN { ccc }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \str_set:Nn, \str_set:NV, \str_set:Nx,
% \str_set:cn, \str_set:cV, \str_set:cx,
% \str_gset:Nn, \str_gset:NV, \str_gset:Nx,
% \str_gset:cn, \str_gset:cV, \str_gset:cx,
% \str_const:Nn, \str_const:NV, \str_const:Nx,
% \str_const:cn, \str_const:cV, \str_const:cx,
% \str_put_left:Nn, \str_put_left:NV, \str_put_left:Nx,
% \str_put_left:cn, \str_put_left:cV, \str_put_left:cx,
% \str_gput_left:Nn, \str_gput_left:NV, \str_gput_left:Nx,
% \str_gput_left:cn, \str_gput_left:cV, \str_gput_left:cx,
% \str_put_right:Nn, \str_put_right:NV, \str_put_right:Nx,
% \str_put_right:cn, \str_put_right:cV, \str_put_right:cx,
% \str_gput_right:Nn, \str_gput_right:NV, \str_gput_right:Nx,
% \str_gput_right:cn, \str_gput_right:cV, \str_gput_right:cx
% }
% Simply convert the token list inputs to \meta{strings}.
% \begin{macrocode}
\group_begin:
\cs_set_protected:Npn \@@_tmp:n #1
{
\tl_if_blank:nF {#1}
{
\cs_new_protected:cpx { str_ #1 :Nn } ##1##2
{
\exp_not:c { tl_ #1 :Nx } ##1
{ \exp_not:N \tl_to_str:n {##2} }
}
\cs_generate_variant:cn { str_ #1 :Nn } { NV , Nx , cn , cV , cx }
\@@_tmp:n
}
}
\@@_tmp:n
{ set }
{ gset }
{ const }
{ put_left }
{ gput_left }
{ put_right }
{ gput_right }
{ }
\group_end:
% \end{macrocode}
% \end{macro}
%
% \subsection{Modifying string variables}
%
% \begin{macro}
% {
% \str_replace_all:Nnn, \str_replace_all:cnn,
% \str_greplace_all:Nnn, \str_greplace_all:cnn,
% \str_replace_once:Nnn, \str_replace_once:cnn,
% \str_greplace_once:Nnn, \str_greplace_once:cnn
% }
% \begin{macro}{\@@_replace:NNNnn}
% \begin{macro}{\@@_replace_aux:NNNnnn}
% \begin{macro}{\@@_replace_next:w}
% Start by applying \cs{tl_to_str:n} to convert the old and new token
% lists to strings, and also apply \cs{tl_to_str:N} to avoid any
% issues if we are fed a token list variable. Then the code is a much
% simplified version of the token list code because neither the
% delimiter nor the replacement can contain macro parameters or
% braces. The delimiter \cs{q_mark} cannot appear in the string to
% edit so it is used in all cases. Some |x|-expansion is unnecessary.
% There is no need to avoid losing braces nor to protect against
% expansion. The ending code is much simplified and does not need to
% hide in braces.
% \begin{macrocode}
\cs_new_protected:Npn \str_replace_once:Nnn
{ \@@_replace:NNNnn \prg_do_nothing: \tl_set:Nx }
\cs_new_protected:Npn \str_greplace_once:Nnn
{ \@@_replace:NNNnn \prg_do_nothing: \tl_gset:Nx }
\cs_new_protected:Npn \str_replace_all:Nnn
{ \@@_replace:NNNnn \@@_replace_next:w \tl_set:Nx }
\cs_new_protected:Npn \str_greplace_all:Nnn
{ \@@_replace:NNNnn \@@_replace_next:w \tl_gset:Nx }
\cs_generate_variant:Nn \str_replace_once:Nnn { c }
\cs_generate_variant:Nn \str_greplace_once:Nnn { c }
\cs_generate_variant:Nn \str_replace_all:Nnn { c }
\cs_generate_variant:Nn \str_greplace_all:Nnn { c }
\cs_new_protected:Npn \@@_replace:NNNnn #1#2#3#4#5
{
\tl_if_empty:nTF {#4}
{
\__kernel_msg_error:nnx { kernel } { empty-search-pattern } {#5}
}
{
\use:x
{
\exp_not:n { \@@_replace_aux:NNNnnn #1 #2 #3 }
{ \tl_to_str:N #3 }
{ \tl_to_str:n {#4} } { \tl_to_str:n {#5} }
}
}
}
\cs_new_protected:Npn \@@_replace_aux:NNNnnn #1#2#3#4#5#6
{
\cs_set:Npn \@@_replace_next:w ##1 #5 { ##1 #6 #1 }
#2 #3
{
\@@_replace_next:w
#4
\use_none_delimit_by_q_stop:w
#5
\q_stop
}
}
\cs_new_eq:NN \@@_replace_next:w ?
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\str_remove_once:Nn, \str_remove_once:cn}
% \begin{macro}{\str_gremove_once:Nn, \str_gremove_once:cn}
% Removal is just a special case of replacement.
% \begin{macrocode}
\cs_new_protected:Npn \str_remove_once:Nn #1#2
{ \str_replace_once:Nnn #1 {#2} { } }
\cs_new_protected:Npn \str_gremove_once:Nn #1#2
{ \str_greplace_once:Nnn #1 {#2} { } }
\cs_generate_variant:Nn \str_remove_once:Nn { c }
\cs_generate_variant:Nn \str_gremove_once:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\str_remove_all:Nn, \str_remove_all:cn}
% \begin{macro}{\str_gremove_all:Nn, \str_gremove_all:cn}
% Removal is just a special case of replacement.
% \begin{macrocode}
\cs_new_protected:Npn \str_remove_all:Nn #1#2
{ \str_replace_all:Nnn #1 {#2} { } }
\cs_new_protected:Npn \str_gremove_all:Nn #1#2
{ \str_greplace_all:Nnn #1 {#2} { } }
\cs_generate_variant:Nn \str_remove_all:Nn { c }
\cs_generate_variant:Nn \str_gremove_all:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{String comparisons}
%
% \begin{macro}[pTF, EXP]
% {
% \str_if_empty:N, \str_if_empty:c,
% \str_if_exist:N, \str_if_exist:c
% }
% More copy-paste!
% \begin{macrocode}
\prg_new_eq_conditional:NNn \str_if_exist:N \tl_if_exist:N
{ p , T , F , TF }
\prg_new_eq_conditional:NNn \str_if_exist:c \tl_if_exist:c
{ p , T , F , TF }
\prg_new_eq_conditional:NNn \str_if_empty:N \tl_if_empty:N
{ p , T , F , TF }
\prg_new_eq_conditional:NNn \str_if_empty:c \tl_if_empty:c
{ p , T , F , TF }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_if_eq:nn}
% \begin{macro}[EXP]{\@@_escape:n}
% String comparisons rely on the primitive \cs[index=pdfstrcmp]{(pdf)strcmp} if available:
% \LuaTeX{} does not have it, so emulation is required. As the net result
% is that we do not \emph{always} use the primitive, the correct approach
% is to wrap up in a function with defined behaviour. That's done by
% providing a wrapper and then redefining in the \LuaTeX{} case. Note that
% the necessary Lua code is loaded in \pkg{l3boostrap}.
% The need to detokenize and force
% expansion of input arises from the case where a |#| token is used in the
% input, \emph{e.g.}~|\__str_if_eq:nn {#} { \tl_to_str:n {#} }|, which
% otherwise would fail as \cs{tex_luaescapestring:D} does not double
% such tokens.
% \begin{macrocode}
\cs_new:Npn \@@_if_eq:nn #1#2 { \tex_strcmp:D {#1} {#2} }
\cs_if_exist:NT \tex_luatexversion:D
{
\cs_set_eq:NN \lua_escape:e \tex_luaescapestring:D
\cs_set_eq:NN \lua_now:e \tex_directlua:D
\cs_set:Npn \@@_if_eq:nn #1#2
{
\lua_now:e
{
l3kernel.strcmp
(
" \@@_escape:n {#1} " ,
" \@@_escape:n {#2} "
)
}
}
\cs_new:Npn \@@_escape:n #1
{
\lua_escape:e
{ \__kernel_tl_to_str:w \use:e { {#1} } }
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[pTF, EXP]
% {
% \str_if_eq:nn, \str_if_eq:Vn, \str_if_eq:on, \str_if_eq:nV,
% \str_if_eq:no, \str_if_eq:VV,
% \str_if_eq:ee
% }
% Modern engines provide a direct way of comparing two token lists,
% but returning a number. This set of conditionals therefore make life
% a bit clearer. The \texttt{nn} and \texttt{xx} versions are created
% directly as this is most efficient.
% \begin{macrocode}
\prg_new_conditional:Npnn \str_if_eq:nn #1#2 { p , T , F , TF }
{
\if_int_compare:w
\@@_if_eq:nn { \exp_not:n {#1} } { \exp_not:n {#2} }
= 0 \exp_stop_f:
\prg_return_true: \else: \prg_return_false: \fi:
}
\prg_generate_conditional_variant:Nnn \str_if_eq:nn
{ V , v , o , nV , no , VV , nv } { p , T , F , TF }
\prg_new_conditional:Npnn \str_if_eq:ee #1#2 { p , T , F , TF }
{
\if_int_compare:w \@@_if_eq:nn {#1} {#2} = 0 \exp_stop_f:
\prg_return_true: \else: \prg_return_false: \fi:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP, pTF]
% {\str_if_eq:NN, \str_if_eq:Nc, \str_if_eq:cN, \str_if_eq:cc}
% Note that \cs{str_if_eq:NN} is different from
% \cs{tl_if_eq:NN} because it needs to ignore category codes.
% \begin{macrocode}
\prg_new_conditional:Npnn \str_if_eq:NN #1#2 { p , TF , T , F }
{
\if_int_compare:w
\@@_if_eq:nn { \tl_to_str:N #1 } { \tl_to_str:N #2 }
= 0 \exp_stop_f: \prg_return_true: \else: \prg_return_false: \fi:
}
\prg_generate_conditional_variant:Nnn \str_if_eq:NN
{ c , Nc , cc } { T , F , TF , p }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[TF]{\str_if_in:Nn, \str_if_in:cn, \str_if_in:nn}
% Everything here needs to be detokenized but beyond that it is a
% simple token list test. It would be faster to fine-tune the |T|,
% |F|, |TF| variants by calling the appropriate variant of
% \cs{tl_if_in:nnTF} directly but that takes more code.
% \begin{macrocode}
\prg_new_protected_conditional:Npnn \str_if_in:Nn #1#2 { T , F , TF }
{
\use:x
{ \tl_if_in:nnTF { \tl_to_str:N #1 } { \tl_to_str:n {#2} } }
{ \prg_return_true: } { \prg_return_false: }
}
\prg_generate_conditional_variant:Nnn \str_if_in:Nn
{ c } { T , F , TF }
\prg_new_protected_conditional:Npnn \str_if_in:nn #1#2 { T , F , TF }
{
\use:x
{ \tl_if_in:nnTF { \tl_to_str:n {#1} } { \tl_to_str:n {#2} } }
{ \prg_return_true: } { \prg_return_false: }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP, noTF]
% {\str_case:nn, \str_case:on, \str_case:nV, \str_case:nv, \str_case_e:nn}
% \begin{macro}[EXP]{\@@_case:nnTF, \@@_case_e:nnTF}
% \begin{macro}[EXP]
% {\@@_case:nw, \@@_case_e:nw, \@@_case_end:nw}
% Much the same as \cs[index=tl_case:nn]{tl_case:nn(TF)} here:
% just a change in the internal comparison.
% \begin{macrocode}
\cs_new:Npn \str_case:nn #1#2
{
\exp:w
\@@_case:nnTF {#1} {#2} { } { }
}
\cs_new:Npn \str_case:nnT #1#2#3
{
\exp:w
\@@_case:nnTF {#1} {#2} {#3} { }
}
\cs_new:Npn \str_case:nnF #1#2
{
\exp:w
\@@_case:nnTF {#1} {#2} { }
}
\cs_new:Npn \str_case:nnTF #1#2
{
\exp:w
\@@_case:nnTF {#1} {#2}
}
\cs_new:Npn \@@_case:nnTF #1#2#3#4
{ \@@_case:nw {#1} #2 {#1} { } \q_mark {#3} \q_mark {#4} \q_stop }
\cs_generate_variant:Nn \str_case:nn { o , nV , nv }
\prg_generate_conditional_variant:Nnn \str_case:nn
{ o , nV , nv } { T , F , TF }
\cs_new:Npn \@@_case:nw #1#2#3
{
\str_if_eq:nnTF {#1} {#2}
{ \@@_case_end:nw {#3} }
{ \@@_case:nw {#1} }
}
\cs_new:Npn \str_case_e:nn #1#2
{
\exp:w
\@@_case_e:nnTF {#1} {#2} { } { }
}
\cs_new:Npn \str_case_e:nnT #1#2#3
{
\exp:w
\@@_case_e:nnTF {#1} {#2} {#3} { }
}
\cs_new:Npn \str_case_e:nnF #1#2
{
\exp:w
\@@_case_e:nnTF {#1} {#2} { }
}
\cs_new:Npn \str_case_e:nnTF #1#2
{
\exp:w
\@@_case_e:nnTF {#1} {#2}
}
\cs_new:Npn \@@_case_e:nnTF #1#2#3#4
{ \@@_case_e:nw {#1} #2 {#1} { } \q_mark {#3} \q_mark {#4} \q_stop }
\cs_new:Npn \@@_case_e:nw #1#2#3
{
\str_if_eq:eeTF {#1} {#2}
{ \@@_case_end:nw {#3} }
{ \@@_case_e:nw {#1} }
}
\cs_new:Npn \@@_case_end:nw #1#2#3 \q_mark #4#5 \q_stop
{ \exp_end: #1 #4 }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Mapping to strings}
%
% \begin{macro}[rEXP]{\str_map_function:NN, \str_map_function:cN}
% \begin{macro}[rEXP]{\str_map_function:nN}
% \begin{macro}{\str_map_inline:Nn, \str_map_inline:cn}
% \begin{macro}{\str_map_inline:nn}
% \begin{macro}{\str_map_variable:NNn, \str_map_variable:cNn}
% \begin{macro}{\str_map_variable:nNn}
% \begin{macro}{\str_map_break:}
% \begin{macro}{\str_map_break:n}
% \begin{macro}[rEXP]{\@@_map_function:w, \@@_map_function:Nn}
% \begin{macro}{\@@_map_inline:NN, \@@_map_variable:NnN}
% The inline and variable mappings are similar to the usual token list
% mappings but start out by turning the argument to an ``other
% string''. Doing the same for the expandable function mapping would
% require \cs{__kernel_str_to_other:n}, quadratic in the string length. To deal
% with spaces in that case, \cs{@@_map_function:w} replaces the
% following space by a braced space and a further call to itself.
% These are received by \cs{@@_map_function:Nn}, which passes
% the space to |#1| and calls \cs{@@_map_function:w} to deal with the
% next space. The space before the braced space allows to optimize
% the \cs{q_recursion_tail} test. Of course we need to include a
% trailing space (the question mark is needed to avoid losing the
% space when \TeX{} tokenizes the line).
% At the cost of about three more auxiliaries this code could get a $9$
% times speed up by testing only every $9$-th character for whether it
% is \cs{q_recursion_tail} (also by converting $9$ spaces at a time in
% the \cs{str_map_function:nN} case).
% \begin{macrocode}
\cs_new:Npn \str_map_function:nN #1#2
{
\exp_after:wN \@@_map_function:w
\exp_after:wN \@@_map_function:Nn \exp_after:wN #2
\__kernel_tl_to_str:w {#1}
\q_recursion_tail ? ~
\prg_break_point:Nn \str_map_break: { }
}
\cs_new:Npn \str_map_function:NN
{ \exp_args:No \str_map_function:nN }
\cs_new:Npn \@@_map_function:w #1 ~
{ #1 { ~ { ~ } \@@_map_function:w } }
\cs_new:Npn \@@_map_function:Nn #1#2
{
\if_meaning:w \q_recursion_tail #2
\exp_after:wN \str_map_break:
\fi:
#1 #2 \@@_map_function:Nn #1
}
\cs_generate_variant:Nn \str_map_function:NN { c }
\cs_new_protected:Npn \str_map_inline:nn #1#2
{
\int_gincr:N \g__kernel_prg_map_int
\cs_gset_protected:cpn
{ @@_map_ \int_use:N \g__kernel_prg_map_int :w } ##1 {#2}
\use:x
{
\exp_not:N \@@_map_inline:NN
\exp_not:c { @@_map_ \int_use:N \g__kernel_prg_map_int :w }
\__kernel_str_to_other_fast:n {#1}
}
\q_recursion_tail
\prg_break_point:Nn \str_map_break:
{ \int_gdecr:N \g__kernel_prg_map_int }
}
\cs_new_protected:Npn \str_map_inline:Nn
{ \exp_args:No \str_map_inline:nn }
\cs_generate_variant:Nn \str_map_inline:Nn { c }
\cs_new:Npn \@@_map_inline:NN #1#2
{
\quark_if_recursion_tail_break:NN #2 \str_map_break:
\exp_args:No #1 { \token_to_str:N #2 }
\@@_map_inline:NN #1
}
\cs_new_protected:Npn \str_map_variable:nNn #1#2#3
{
\use:x
{
\exp_not:n { \@@_map_variable:NnN #2 {#3} }
\__kernel_str_to_other_fast:n {#1}
}
\q_recursion_tail
\prg_break_point:Nn \str_map_break: { }
}
\cs_new_protected:Npn \str_map_variable:NNn
{ \exp_args:No \str_map_variable:nNn }
\cs_new_protected:Npn \@@_map_variable:NnN #1#2#3
{
\quark_if_recursion_tail_break:NN #3 \str_map_break:
\str_set:Nn #1 {#3}
\use:n {#2}
\@@_map_variable:NnN #1 {#2}
}
\cs_generate_variant:Nn \str_map_variable:NNn { c }
\cs_new:Npn \str_map_break:
{ \prg_map_break:Nn \str_map_break: { } }
\cs_new:Npn \str_map_break:n
{ \prg_map_break:Nn \str_map_break: }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Accessing specific characters in a string}
%
% \begin{macro}[EXP]{\__kernel_str_to_other:n}
% \begin{macro}[EXP]{\@@_to_other_loop:w, \@@_to_other_end:w}
% First apply \cs{tl_to_str:n}, then replace all spaces by
% \enquote{other} spaces, $8$ at a time, storing the converted part of
% the string between the \cs{q_mark} and \cs{q_stop} markers. The end
% is detected when \cs{@@_to_other_loop:w} finds one of the trailing
% |A|, distinguished from any contents of the initial token list by
% their category. Then \cs{@@_to_other_end:w} is called, and finds
% the result between \cs{q_mark} and the first |A| (well, there is
% also the need to remove a space).
% \begin{macrocode}
\cs_new:Npn \__kernel_str_to_other:n #1
{
\exp_after:wN \@@_to_other_loop:w
\tl_to_str:n {#1} ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ \q_mark \q_stop
}
\group_begin:
\tex_lccode:D `\* = `\ %
\tex_lccode:D `\A = `\A %
\tex_lowercase:D
{
\group_end:
\cs_new:Npn \@@_to_other_loop:w
#1 ~ #2 ~ #3 ~ #4 ~ #5 ~ #6 ~ #7 ~ #8 ~ #9 \q_stop
{
\if_meaning:w A #8
\@@_to_other_end:w
\fi:
\@@_to_other_loop:w
#9 #1 * #2 * #3 * #4 * #5 * #6 * #7 * #8 * \q_stop
}
\cs_new:Npn \@@_to_other_end:w \fi: #1 \q_mark #2 * A #3 \q_stop
{ \fi: #2 }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[rEXP]{\__kernel_str_to_other_fast:n}
% \begin{macro}[rEXP]{\__kernel_str_to_other_fast_loop:w, \@@_to_other_fast_end:w}
% The difference with \cs{__kernel_str_to_other:n} is that the converted part is
% left in the input stream, making these commands only
% restricted-expandable.
% \begin{macrocode}
\cs_new:Npn \__kernel_str_to_other_fast:n #1
{
\exp_after:wN \@@_to_other_fast_loop:w \tl_to_str:n {#1} ~
A ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ A ~ \q_stop
}
\group_begin:
\tex_lccode:D `\* = `\ %
\tex_lccode:D `\A = `\A %
\tex_lowercase:D
{
\group_end:
\cs_new:Npn \@@_to_other_fast_loop:w
#1 ~ #2 ~ #3 ~ #4 ~ #5 ~ #6 ~ #7 ~ #8 ~ #9 ~
{
\if_meaning:w A #9
\@@_to_other_fast_end:w
\fi:
#1 * #2 * #3 * #4 * #5 * #6 * #7 * #8 * #9
\@@_to_other_fast_loop:w *
}
\cs_new:Npn \@@_to_other_fast_end:w #1 * A #2 \q_stop {#1}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]
% {\str_item:Nn, \str_item:cn, \str_item:nn, \str_item_ignore_spaces:nn}
% \begin{macro}[EXP]{\@@_item:nn, \@@_item:w}
% The \cs{str_item:nn} hands its argument with spaces escaped to
% \cs{@@_item:nn}, and makes sure to turn the result back into
% a proper string (with category code~$10$ spaces) eventually. The
% \cs{str_item_ignore_spaces:nn} function does not escape spaces,
% which are thus ignored by \cs{@@_item:nn} since
% everything else is done with undelimited arguments.
% Evaluate the \meta{index} argument~|#2| and count characters in
% the string, passing those two numbers to \cs{@@_item:w} for
% further analysis. If the \meta{index} is negative, shift it by
% the \meta{count} to know the how many character to discard, and if
% that is still negative give an empty result. If the \meta{index}
% is larger than the \meta{count}, give an empty result, and
% otherwise discard $\meta{index}-1$ characters before returning the
% following one. The shift by $-1$ is obtained by inserting an empty
% brace group before the string in that case: that brace group also
% covers the case where the \meta{index} is zero.
% \begin{macrocode}
\cs_new:Npn \str_item:Nn { \exp_args:No \str_item:nn }
\cs_generate_variant:Nn \str_item:Nn { c }
\cs_new:Npn \str_item:nn #1#2
{
\exp_args:Nf \tl_to_str:n
{
\exp_args:Nf \@@_item:nn
{ \__kernel_str_to_other:n {#1} } {#2}
}
}
\cs_new:Npn \str_item_ignore_spaces:nn #1
{ \exp_args:No \@@_item:nn { \tl_to_str:n {#1} } }
\cs_new:Npn \@@_item:nn #1#2
{
\exp_after:wN \@@_item:w
\int_value:w \int_eval:n {#2} \exp_after:wN ;
\int_value:w \@@_count:n {#1} ;
#1 \q_stop
}
\cs_new:Npn \@@_item:w #1; #2;
{
\int_compare:nNnTF {#1} < 0
{
\int_compare:nNnTF {#1} < {-#2}
{ \use_none_delimit_by_q_stop:w }
{
\exp_after:wN \use_i_delimit_by_q_stop:nw
\exp:w \exp_after:wN \@@_skip_exp_end:w
\int_value:w \int_eval:n { #1 + #2 } ;
}
}
{
\int_compare:nNnTF {#1} > {#2}
{ \use_none_delimit_by_q_stop:w }
{
\exp_after:wN \use_i_delimit_by_q_stop:nw
\exp:w \@@_skip_exp_end:w #1 ; { }
}
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_skip_exp_end:w}
% \begin{macro}[EXP]
% {\@@_skip_loop:wNNNNNNNN, \@@_skip_end:w, \@@_skip_end:NNNNNNNN}
% Removes |max(#1,0)| characters from the input stream, and then
% leaves \cs{exp_end:}. This should be expanded using
% \cs{exp:w}. We remove characters $8$ at a time until
% there are at most $8$ to remove. Then we do a dirty trick: the
% \cs{if_case:w} construction leaves between $0$ and $8$ times the
% \cs{or:} control sequence, and those \cs{or:} become arguments of
% \cs{@@_skip_end:NNNNNNNN}. If the number of characters to remove
% is $6$, say, then there are two \cs{or:} left, and the $8$ arguments
% of \cs{@@_skip_end:NNNNNNNN} are the two \cs{or:}, and $6$
% characters from the input stream, exactly what we wanted to
% remove. Then close the \cs{if_case:w} conditional with \cs{fi:}, and
% stop the initial expansion with \cs{exp_end:} (see places where
% \cs{@@_skip_exp_end:w} is called).
% \begin{macrocode}
\cs_new:Npn \@@_skip_exp_end:w #1;
{
\if_int_compare:w #1 > 8 \exp_stop_f:
\exp_after:wN \@@_skip_loop:wNNNNNNNN
\else:
\exp_after:wN \@@_skip_end:w
\int_value:w \int_eval:w
\fi:
#1 ;
}
\cs_new:Npn \@@_skip_loop:wNNNNNNNN #1; #2#3#4#5#6#7#8#9
{
\exp_after:wN \@@_skip_exp_end:w
\int_value:w \int_eval:n { #1 - 8 } ;
}
\cs_new:Npn \@@_skip_end:w #1 ;
{
\exp_after:wN \@@_skip_end:NNNNNNNN
\if_case:w #1 \exp_stop_f: \or: \or: \or: \or: \or: \or: \or: \or:
}
\cs_new:Npn \@@_skip_end:NNNNNNNN #1#2#3#4#5#6#7#8 { \fi: \exp_end: }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]
% {\str_range:Nnn, \str_range:nnn, \str_range_ignore_spaces:nnn}
% \begin{macro}[EXP]{\@@_range:nnn}
% \begin{macro}[EXP]{\@@_range:w, \@@_range:nnw}
% Sanitize the string. Then evaluate the arguments. At this stage we
% also decrement the \meta{start index}, since our goal is to know how
% many characters should be removed. Then limit the range to be
% non-negative and at most the length of the string (this avoids
% needing to check for the end of the string when grabbing
% characters), shifting negative numbers by the appropriate amount.
% Afterwards, skip characters, then keep some more, and finally drop
% the end of the string.
% \begin{macrocode}
\cs_new:Npn \str_range:Nnn { \exp_args:No \str_range:nnn }
\cs_generate_variant:Nn \str_range:Nnn { c }
\cs_new:Npn \str_range:nnn #1#2#3
{
\exp_args:Nf \tl_to_str:n
{
\exp_args:Nf \@@_range:nnn
{ \__kernel_str_to_other:n {#1} } {#2} {#3}
}
}
\cs_new:Npn \str_range_ignore_spaces:nnn #1
{ \exp_args:No \@@_range:nnn { \tl_to_str:n {#1} } }
\cs_new:Npn \@@_range:nnn #1#2#3
{
\exp_after:wN \@@_range:w
\int_value:w \@@_count:n {#1} \exp_after:wN ;
\int_value:w \int_eval:n { (#2) - 1 } \exp_after:wN ;
\int_value:w \int_eval:n {#3} ;
#1 \q_stop
}
\cs_new:Npn \@@_range:w #1; #2; #3;
{
\exp_args:Nf \@@_range:nnw
{ \@@_range_normalize:nn {#2} {#1} }
{ \@@_range_normalize:nn {#3} {#1} }
}
\cs_new:Npn \@@_range:nnw #1#2
{
\exp_after:wN \@@_collect_delimit_by_q_stop:w
\int_value:w \int_eval:n { #2 - #1 } \exp_after:wN ;
\exp:w \@@_skip_exp_end:w #1 ;
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \begin{macro}[EXP]{\@@_range_normalize:nn}
% This function converts an \meta{index} argument into an explicit
% position in the string (a result of $0$ denoting \enquote{out of
% bounds}). Expects two explicit integer arguments: the
% \meta{index} |#1| and the string count~|#2|. If |#1| is negative,
% replace it by $|#1| + |#2| + 1$, then limit to the range $[0,
% |#2|]$.
% \begin{macrocode}
\cs_new:Npn \@@_range_normalize:nn #1#2
{
\int_eval:n
{
\if_int_compare:w #1 < 0 \exp_stop_f:
\if_int_compare:w #1 < -#2 \exp_stop_f:
0
\else:
#1 + #2 + 1
\fi:
\else:
\if_int_compare:w #1 < #2 \exp_stop_f:
#1
\else:
#2
\fi:
\fi:
}
}
% \end{macrocode}
% \end{macro}
% \begin{macro}[EXP]{\@@_collect_delimit_by_q_stop:w}
% \begin{macro}[EXP]
% {
% \@@_collect_loop:wn, \@@_collect_loop:wnNNNNNNN,
% \@@_collect_end:wn, \@@_collect_end:nnnnnnnnw
% }
% Collects |max(#1,0)| characters, and removes everything else until
% \cs{q_stop}. This is somewhat similar to \cs{@@_skip_exp_end:w}, but
% accepts integer expression arguments. This time we can only grab
% $7$ characters at a time. At the end, we use an \cs{if_case:w}
% trick again, so that the $8$ first arguments of
% \cs{@@_collect_end:nnnnnnnnw} are some \cs{or:}, followed by an
% \cs{fi:}, followed by |#1| characters from the input stream. Simply
% leaving this in the input stream closes the conditional properly
% and the \cs{or:} disappear.
% \begin{macrocode}
\cs_new:Npn \@@_collect_delimit_by_q_stop:w #1;
{ \@@_collect_loop:wn #1 ; { } }
\cs_new:Npn \@@_collect_loop:wn #1 ;
{
\if_int_compare:w #1 > 7 \exp_stop_f:
\exp_after:wN \@@_collect_loop:wnNNNNNNN
\else:
\exp_after:wN \@@_collect_end:wn
\fi:
#1 ;
}
\cs_new:Npn \@@_collect_loop:wnNNNNNNN #1; #2 #3#4#5#6#7#8#9
{
\exp_after:wN \@@_collect_loop:wn
\int_value:w \int_eval:n { #1 - 7 } ;
{ #2 #3#4#5#6#7#8#9 }
}
\cs_new:Npn \@@_collect_end:wn #1 ;
{
\exp_after:wN \@@_collect_end:nnnnnnnnw
\if_case:w \if_int_compare:w #1 > 0 \exp_stop_f:
#1 \else: 0 \fi: \exp_stop_f:
\or: \or: \or: \or: \or: \or: \fi:
}
\cs_new:Npn \@@_collect_end:nnnnnnnnw #1#2#3#4#5#6#7#8 #9 \q_stop
{ #1#2#3#4#5#6#7#8 }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Counting characters}
%
% \begin{macro}[EXP]
% {\str_count_spaces:N, \str_count_spaces:c, \str_count_spaces:n}
% \begin{macro}[EXP]{\@@_count_spaces_loop:w}
% To speed up this function, we grab and discard $9$ space-delimited
% arguments in each iteration of the loop. The loop stops when the
% last argument is one of the trailing |X|\meta{number}, and that
% \meta{number} is added to the sum of $9$ that precedes, to adjust
% the result.
% \begin{macrocode}
\cs_new:Npn \str_count_spaces:N
{ \exp_args:No \str_count_spaces:n }
\cs_generate_variant:Nn \str_count_spaces:N { c }
\cs_new:Npn \str_count_spaces:n #1
{
\int_eval:n
{
\exp_after:wN \@@_count_spaces_loop:w
\tl_to_str:n {#1} ~
X 7 ~ X 6 ~ X 5 ~ X 4 ~ X 3 ~ X 2 ~ X 1 ~ X 0 ~ X -1 ~
\q_stop
}
}
\cs_new:Npn \@@_count_spaces_loop:w #1~#2~#3~#4~#5~#6~#7~#8~#9~
{
\if_meaning:w X #9
\use_i_delimit_by_q_stop:nw
\fi:
9 + \@@_count_spaces_loop:w
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]
% {\str_count:N, \str_count:c, \str_count:n, \str_count_ignore_spaces:n}
% \begin{macro}[EXP]{\@@_count:n}
% \begin{macro}[EXP]{\@@_count_aux:n, \@@_count_loop:NNNNNNNNN}
% To count characters in a string we could first escape all spaces
% using \cs{__kernel_str_to_other:n}, then pass the result to \cs{tl_count:n}.
% However, the escaping step would be quadratic in the number of
% characters in the string, and we can do better. Namely, sum the
% number of spaces (\cs{str_count_spaces:n}) and the result of
% \cs{tl_count:n}, which ignores spaces. Since strings tend to be
% longer than token lists, we use specialized functions to count
% characters ignoring spaces. Namely, loop, grabbing $9$ non-space
% characters at each step, and end as soon as we reach one of the $9$
% trailing items. The internal function \cs{@@_count:n}, used in
% \cs{str_item:nn} and \cs{str_range:nnn}, is similar to
% \cs{str_count_ignore_spaces:n} but expects its argument to already
% be a string or a string with spaces escaped.
% \begin{macrocode}
\cs_new:Npn \str_count:N { \exp_args:No \str_count:n }
\cs_generate_variant:Nn \str_count:N { c }
\cs_new:Npn \str_count:n #1
{
\@@_count_aux:n
{
\str_count_spaces:n {#1}
+ \exp_after:wN \@@_count_loop:NNNNNNNNN \tl_to_str:n {#1}
}
}
\cs_new:Npn \@@_count:n #1
{
\@@_count_aux:n
{ \@@_count_loop:NNNNNNNNN #1 }
}
\cs_new:Npn \str_count_ignore_spaces:n #1
{
\@@_count_aux:n
{ \exp_after:wN \@@_count_loop:NNNNNNNNN \tl_to_str:n {#1} }
}
\cs_new:Npn \@@_count_aux:n #1
{
\int_eval:n
{
#1
{ X 8 } { X 7 } { X 6 }
{ X 5 } { X 4 } { X 3 }
{ X 2 } { X 1 } { X 0 }
\q_stop
}
}
\cs_new:Npn \@@_count_loop:NNNNNNNNN #1#2#3#4#5#6#7#8#9
{
\if_meaning:w X #9
\exp_after:wN \use_none_delimit_by_q_stop:w
\fi:
9 + \@@_count_loop:NNNNNNNNN
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{The first character in a string}
%
% \begin{macro}[EXP]
% {\str_head:N, \str_head:c, \str_head:n, \str_head_ignore_spaces:n}
% \begin{macro}[EXP]{\@@_head:w}
% The \texttt{_ignore_spaces} variant applies \cs{tl_to_str:n} then
% grabs the first item, thus skipping spaces.
% As usual, \cs{str_head:N} expands its argument and
% hands it to \cs{str_head:n}. To circumvent the fact that \TeX{}
% skips spaces when grabbing undelimited macro parameters,
% \cs{@@_head:w} takes an argument delimited by a space. If |#1|
% starts with a non-space character, \cs{use_i_delimit_by_q_stop:nw}
% leaves that in the input stream. On the other hand, if |#1| starts
% with a space, the \cs{@@_head:w} takes an empty argument, and the
% single (initially braced) space in the definition of \cs{@@_head:w}
% makes its way to the output. Finally, for an empty argument, the
% (braced) empty brace group in the definition of \cs{str_head:n}
% gives an empty result after passing through
% \cs{use_i_delimit_by_q_stop:nw}.
% \begin{macrocode}
\cs_new:Npn \str_head:N { \exp_args:No \str_head:n }
\cs_generate_variant:Nn \str_head:N { c }
\cs_new:Npn \str_head:n #1
{
\exp_after:wN \@@_head:w
\tl_to_str:n {#1}
{ { } } ~ \q_stop
}
\cs_new:Npn \@@_head:w #1 ~ %
{ \use_i_delimit_by_q_stop:nw #1 { ~ } }
\cs_new:Npn \str_head_ignore_spaces:n #1
{
\exp_after:wN \use_i_delimit_by_q_stop:nw
\tl_to_str:n {#1} { } \q_stop
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]
% {\str_tail:N, \str_tail:c, \str_tail:n, \str_tail_ignore_spaces:n}
% \begin{macro}[EXP]{\@@_tail_auxi:w, \@@_tail_auxii:w}
% Getting the tail is a little bit more convoluted than the head of a
% string. We hit the front of the string with \cs{reverse_if:N}
% \cs{if_charcode:w} \cs{scan_stop:}. This removes the first
% character, and necessarily makes the test true, since the character
% cannot match \cs{scan_stop:}. The auxiliary function then inserts
% the required \cs{fi:} to close the conditional, and leaves the tail
% of the string in the input stream. The details are such that an
% empty string has an empty tail (this requires in particular that the
% end-marker |X| be unexpandable and not a control sequence). The
% \texttt{_ignore_spaces} is rather simpler: after converting the
% input to a string, \cs{@@_tail_auxii:w} removes one undelimited
% argument and leaves everything else until an end-marker \cs{q_mark}.
% One can check that an empty (or blank) string yields an empty
% tail.
% \begin{macrocode}
\cs_new:Npn \str_tail:N { \exp_args:No \str_tail:n }
\cs_generate_variant:Nn \str_tail:N { c }
\cs_new:Npn \str_tail:n #1
{
\exp_after:wN \@@_tail_auxi:w
\reverse_if:N \if_charcode:w
\scan_stop: \tl_to_str:n {#1} X X \q_stop
}
\cs_new:Npn \@@_tail_auxi:w #1 X #2 \q_stop { \fi: #1 }
\cs_new:Npn \str_tail_ignore_spaces:n #1
{
\exp_after:wN \@@_tail_auxii:w
\tl_to_str:n {#1} \q_mark \q_mark \q_stop
}
\cs_new:Npn \@@_tail_auxii:w #1 #2 \q_mark #3 \q_stop { #2 }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{String manipulation}
%
% \begin{macro}[EXP]
% {
% \str_fold_case:n, \str_fold_case:V,
% \str_lower_case:n, \str_lower_case:f,
% \str_upper_case:n, \str_upper_case:f
% }
% \begin{macro}[EXP]{\@@_change_case:nn}
% \begin{macro}[EXP]{\@@_change_case_aux:nn}
% \begin{macro}[EXP]{\@@_change_case_result:n}
% \begin{macro}[EXP]{\@@_change_case_output:nw, \@@_change_case_output:fw}
% \begin{macro}[EXP]{\@@_change_case_end:nw}
% \begin{macro}[EXP]{\@@_change_case_loop:nw}
% \begin{macro}[EXP]{\@@_change_case_space:n}
% \begin{macro}[EXP]{\@@_change_case_char:nN}
% Case changing for programmatic reasons is done by first detokenizing
% input then doing a simple loop that only has to worry about spaces
% and everything else. The output is detokenized to allow data sharing
% with text-based case changing.
% \begin{macrocode}
\cs_new:Npn \str_fold_case:n #1 { \@@_change_case:nn {#1} { fold } }
\cs_new:Npn \str_lower_case:n #1 { \@@_change_case:nn {#1} { lower } }
\cs_new:Npn \str_upper_case:n #1 { \@@_change_case:nn {#1} { upper } }
\cs_generate_variant:Nn \str_fold_case:n { V }
\cs_generate_variant:Nn \str_lower_case:n { f }
\cs_generate_variant:Nn \str_upper_case:n { f }
\cs_new:Npn \@@_change_case:nn #1
{
\exp_after:wN \@@_change_case_aux:nn \exp_after:wN
{ \tl_to_str:n {#1} }
}
\cs_new:Npn \@@_change_case_aux:nn #1#2
{
\@@_change_case_loop:nw {#2} #1 \q_recursion_tail \q_recursion_stop
\@@_change_case_result:n { }
}
\cs_new:Npn \@@_change_case_output:nw #1#2 \@@_change_case_result:n #3
{ #2 \@@_change_case_result:n { #3 #1 } }
\cs_generate_variant:Nn \@@_change_case_output:nw { f }
\cs_new:Npn \@@_change_case_end:wn #1 \@@_change_case_result:n #2
{ \tl_to_str:n {#2} }
\cs_new:Npn \@@_change_case_loop:nw #1#2 \q_recursion_stop
{
\tl_if_head_is_space:nTF {#2}
{ \@@_change_case_space:n }
{ \@@_change_case_char:nN }
{#1} #2 \q_recursion_stop
}
\exp_last_unbraced:NNNNo
\cs_new:Npn \@@_change_case_space:n #1 \c_space_tl
{
\@@_change_case_output:nw { ~ }
\@@_change_case_loop:nw {#1}
}
\cs_new:Npn \@@_change_case_char:nN #1#2
{
\quark_if_recursion_tail_stop_do:Nn #2
{ \@@_change_case_end:wn }
\@@_change_case_output:fw
{ \use:c { char_ #1 _case:N } #2 }
\@@_change_case_loop:nw {#1}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{variable}
% {
% \c_ampersand_str,
% \c_atsign_str,
% \c_backslash_str,
% \c_left_brace_str,
% \c_right_brace_str,
% \c_circumflex_str,
% \c_colon_str,
% \c_dollar_str,
% \c_hash_str,
% \c_percent_str,
% \c_tilde_str,
% \c_underscore_str
% }
% For all of those strings, use \cs{cs_to_str:N} to get characters with
% the correct category code without worries
% \begin{macrocode}
\str_const:Nx \c_ampersand_str { \cs_to_str:N \& }
\str_const:Nx \c_atsign_str { \cs_to_str:N \@ }
\str_const:Nx \c_backslash_str { \cs_to_str:N \\ }
\str_const:Nx \c_left_brace_str { \cs_to_str:N \{ }
\str_const:Nx \c_right_brace_str { \cs_to_str:N \} }
\str_const:Nx \c_circumflex_str { \cs_to_str:N \^ }
\str_const:Nx \c_colon_str { \cs_to_str:N \: }
\str_const:Nx \c_dollar_str { \cs_to_str:N \$ }
\str_const:Nx \c_hash_str { \cs_to_str:N \# }
\str_const:Nx \c_percent_str { \cs_to_str:N \% }
\str_const:Nx \c_tilde_str { \cs_to_str:N \~ }
\str_const:Nx \c_underscore_str { \cs_to_str:N \_ }
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\l_tmpa_str, \l_tmpb_str, \g_tmpa_str, \g_tmpb_str}
% Scratch strings.
% \begin{macrocode}
\str_new:N \l_tmpa_str
\str_new:N \l_tmpb_str
\str_new:N \g_tmpa_str
\str_new:N \g_tmpb_str
% \end{macrocode}
% \end{variable}
%
% \subsection{Viewing strings}
%
% \begin{macro}{\str_show:n, \str_show:N, \str_show:c}
% Displays a string on the terminal.
% \begin{macrocode}
\cs_new_eq:NN \str_show:n \tl_show:n
\cs_new_eq:NN \str_show:N \tl_show:N
\cs_generate_variant:Nn \str_show:N { c }
% \end{macrocode}
% \end{macro}
%
% \subsection{Deprecated functions}
%
% \begin{macro}[EXP, deprecated = 2019-12-31, noTF]{\str_case_x:nn}
% \begin{macro}[EXP, deprecated = 2019-12-31, pTF]{\str_if_eq_x:nn}
% For removal after 2019-12-31.
% \begin{macrocode}
\__kernel_patch_deprecation:nnNNpn { 2019-12-31 } { \str_case_e:nn }
\cs_new:Npn \str_case_x:nn { \str_case_e:nn }
\__kernel_patch_deprecation:nnNNpn { 2019-12-31 } { \str_case_e:nnT }
\cs_new:Npn \str_case_x:nnT { \str_case_e:nnT }
\__kernel_patch_deprecation:nnNNpn { 2019-12-31 } { \str_case_e:nnF }
\cs_new:Npn \str_case_x:nnF { \str_case_e:nnF }
\__kernel_patch_deprecation:nnNNpn { 2019-12-31 } { \str_case_e:nnTF }
\cs_new:Npn \str_case_x:nnTF { \str_case_e:nnTF }
\__kernel_patch_deprecation:nnNNpn { 2019-12-31 } { \str_if_eq_p:ee }
\cs_new:Npn \str_if_eq_x_p:nn { \str_if_eq_p:ee }
\__kernel_patch_deprecation:nnNNpn { 2019-12-31 } { \str_if_eq:eeT }
\cs_new:Npn \str_if_eq_x:nnT { \str_if_eq:eeT }
\__kernel_patch_deprecation:nnNNpn { 2019-12-31 } { \str_if_eq:eeF }
\cs_new:Npn \str_if_eq_x:nnF { \str_if_eq:eeF }
\__kernel_patch_deprecation:nnNNpn { 2019-12-31 } { \str_if_eq:eeTF }
\cs_new:Npn \str_if_eq_x:nnTF { \str_if_eq:eeTF }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex
|