summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/l3kernel/l3str-convert.dtx
blob: edc2dd3cf50888d62734cf6e74ed80e312cca7e1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
% \iffalse meta-comment
%
%% File: l3str-convert.dtx
%
% Copyright (C) 2013-2021 The LaTeX Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version.  The latest version
% of this license is in the file
%
%    https://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
%
% -----------------------------------------------------------------------
%
% The development version of the bundle can be found at
%
%    https://github.com/latex3/latex3
%
% for those people who are interested.
%
%<*driver>
\documentclass[full,kernel]{l3doc}
\begin{document}
  \DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
%
% \title{^^A
%   The \textsf{l3str-convert} package: string encoding conversions^^A
% }
%
% \author{^^A
%  The \LaTeX{} Project\thanks
%    {^^A
%      E-mail:
%        \href{mailto:latex-team@latex-project.org}
%          {latex-team@latex-project.org}^^A
%    }^^A
% }
%
% \date{Released 2021-11-12}
%
% \maketitle
%
% \begin{documentation}
%
% \section{Encoding and escaping schemes}
%
% Traditionally, string encodings only specify how strings of characters
% should be stored as bytes. However, the resulting lists of bytes are
% often to be used in contexts where only a restricted subset of bytes
% are permitted (\emph{e.g.}, \textsc{pdf} string objects,
% \textsc{url}s).  Hence, storing a string of characters is done in two
% steps.
% \begin{itemize}
%   \item The code points (\enquote{character codes}) are expressed as
%     bytes following a given \enquote{encoding}. This can be
%     \textsc{utf-16}, \textsc{iso 8859-1}, \emph{etc.}  See
%     Table~\ref{tab:encodings} for a list of supported
%     encodings.\footnote{Encodings and escapings will be added as they
%       are requested.}
%   \item Bytes are translated to \TeX{} tokens through a given
%     \enquote{escaping}. Those are defined for the most part by the
%     \texttt{pdf} file format.  See Table~\ref{tab:escapings} for a
%     list of escaping methods supported.\footnotemark[\csname c@footnote\endcsname]
% \end{itemize}
%
% \begin{table}\centering
%   \caption{\label{tab:encodings}Supported encodings.
%     Non-alphanumeric characters are ignored,
%     and capital letters are lower-cased
%     before searching for the encoding in this list.}
%   \begin{tabular}{cc}
%     \toprule
%     \meta{Encoding}   & description \\
%     \midrule
%     \texttt{utf8}     & \textsc{utf-8} \\
%     \texttt{utf16}    & \textsc{utf-16}, with byte-order mark \\
%     \texttt{utf16be}  & \textsc{utf-16}, big-endian \\
%     \texttt{utf16le}  & \textsc{utf-16}, little-endian \\
%     \texttt{utf32}    & \textsc{utf-32}, with byte-order mark \\
%     \texttt{utf32be}  & \textsc{utf-32}, big-endian \\
%     \texttt{utf32le}  & \textsc{utf-32}, little-endian \\
%     \midrule
%     \texttt{iso88591},  \texttt{latin1}  & \textsc{iso 8859-1} \\
%     \texttt{iso88592},  \texttt{latin2}  & \textsc{iso 8859-2} \\
%     \texttt{iso88593},  \texttt{latin3}  & \textsc{iso 8859-3} \\
%     \texttt{iso88594},  \texttt{latin4}  & \textsc{iso 8859-4} \\
%     \texttt{iso88595}                    & \textsc{iso 8859-5} \\
%     \texttt{iso88596}                    & \textsc{iso 8859-6} \\
%     \texttt{iso88597}                    & \textsc{iso 8859-7} \\
%     \texttt{iso88598}                    & \textsc{iso 8859-8} \\
%     \texttt{iso88599},  \texttt{latin5}  & \textsc{iso 8859-9} \\
%     \texttt{iso885910}, \texttt{latin6}  & \textsc{iso 8859-10} \\
%     \texttt{iso885911}                   & \textsc{iso 8859-11} \\
%     \texttt{iso885913}, \texttt{latin7}  & \textsc{iso 8859-13} \\
%     \texttt{iso885914}, \texttt{latin8}  & \textsc{iso 8859-14} \\
%     \texttt{iso885915}, \texttt{latin9}  & \textsc{iso 8859-15} \\
%     \texttt{iso885916}, \texttt{latin10} & \textsc{iso 8859-16} \\
%     \midrule
%     \texttt{clist}                       & comma-list of integers \\
%     \meta{empty}                         & native (Unicode) string \\
%     \texttt{default}                        & like \texttt{utf8} with 8-bit engines,
%                                            and like native with unicode-engines \\
%     \bottomrule
%   \end{tabular}
% \end{table}
%
% \begin{table}\centering
%   \caption{\label{tab:escapings}Supported escapings.
%     Non-alphanumeric characters are ignored,
%     and capital letters are lower-cased
%     before searching for the escaping in this list.}
%   \begin{tabular}{cc}
%     \toprule
%     \meta{Escaping} & description \\
%     \midrule
%     \texttt{bytes}, or empty
%       & arbitrary bytes \\
%     \texttt{hex}, \texttt{hexadecimal}
%       & byte $=$ two hexadecimal digits \\
%     \texttt{name}
%       & see \tn{pdfescapename} \\
%     \texttt{string}
%       & see \tn{pdfescapestring} \\
%     \texttt{url}
%       & encoding used in \textsc{url}s \\
%     \bottomrule
%   \end{tabular}
% \end{table}
%
% \section{Conversion functions}
%
% \begin{function}{\str_set_convert:Nnnn, \str_gset_convert:Nnnn}
%   \begin{syntax}
%     \cs{str_set_convert:Nnnn} \meta{str~var} \Arg{string} \Arg{name~1} \Arg{name~2}
%   \end{syntax}
%   This function converts the \meta{string} from the encoding given by
%   \meta{name~1} to the encoding given by \meta{name~2}, and stores the
%   result in the \meta{str~var}.  Each \meta{name} can have the form
%   \meta{encoding} or \meta{encoding}\texttt{/}\meta{escaping}, where
%   the possible values of \meta{encoding} and \meta{escaping} are given
%   in Tables~\ref{tab:encodings} and~\ref{tab:escapings}, respectively.
%   The default escaping is to input and output bytes directly.  The
%   special case of an empty \meta{name} indicates the use of
%   \enquote{native} strings, 8-bit for \pdfTeX{}, and Unicode strings
%   for the other two engines.
%
%   For example,
%   \begin{verbatim}
%     \str_set_convert:Nnnn \l_foo_str { Hello! } { } { utf16/hex }
%   \end{verbatim}
%   results in the variable \cs[no-index]{l_foo_str} holding the string
%   \texttt{FEFF00480065006C006C006F0021}. This is obtained by
%   converting each character in the (native) string \texttt{Hello!}  to
%   the \textsc{utf-16} encoding, and expressing each byte as a pair of
%   hexadecimal digits. Note the presence of a (big-endian) byte order
%   mark \hexnum{FEFF}, which can be avoided by specifying the encoding
%   \texttt{utf16be/hex}.
%
%   An error is raised if the \meta{string} is not valid according to
%   the \meta{escaping~1} and \meta{encoding~1}, or if it cannot be
%   reencoded in the \meta{encoding~2} and \meta{escaping~2} (for
%   instance, if a character does not exist in the \meta{encoding~2}).
%   Erroneous input is replaced by the Unicode replacement character
%   \hexnum{FFFD}, and characters which cannot be reencoded are replaced
%   by either the replacement character \hexnum{FFFD} if it exists in
%   the \meta{encoding~2}, or an encoding-specific replacement
%   character, or the question mark character.
% \end{function}
%
% \begin{function}[TF]{\str_set_convert:Nnnn, \str_gset_convert:Nnnn}
%   \begin{syntax}
%     \cs{str_set_convert:NnnnTF} \meta{str~var} \Arg{string} \Arg{name~1} \Arg{name~2} \Arg{true code} \Arg{false code}
%   \end{syntax}
%   As \cs{str_set_convert:Nnnn}, converts the \meta{string} from the
%   encoding given by \meta{name~1} to the encoding given by
%   \meta{name~2}, and assigns the result to \meta{str~var}. Contrarily
%   to \cs{str_set_convert:Nnnn}, the conditional variant does not raise
%   errors in case the \meta{string} is not valid according to the
%   \meta{name~1} encoding, or cannot be expressed in the \meta{name~2}
%   encoding. Instead, the \meta{false code} is performed.
% \end{function}
%
% \section{Conversion by expansion (for PDF contexts)}
%
% A small number of expandable functions are provided for use in PDF string/name
% contexts. These \emph{assume UTF-8} and \emph{no escaping} in the input.
%
% \begin{function}[EXP]{\str_convert_pdfname:n}
%   \begin{syntax}
%     \cs{str_convert_pdfname:n} \meta{string}
%   \end{syntax}
%   As \cs{str_set_convert:Nnnn}, converts the \meta{string} on a byte-by-byte
%   basis with non-ASCII codepoints  escaped using hashes.
% \end{function}
%
% \section{Possibilities, and things to do}
%
% Encoding/escaping-related tasks.
% \begin{itemize}
%   \item In \XeTeX{}/\LuaTeX{}, would it be better to use the
%     |^^^^....| approach to build a string from a given list of
%     character codes?  Namely, within a group, assign |0-9a-f| and all
%     characters we want to category ``other'', then assign~|^| the
%     category superscript, and use \tn{scantokens}.
%   \item Change \cs{str_set_convert:Nnnn} to expand its last two
%     arguments.
%   \item Describe the internal format in the code comments. Refuse code
%     points in $[\hexnum{D800}, \hexnum{DFFF}]$ in the internal
%     representation?
%   \item Add documentation about each encoding and escaping method, and
%     add examples.
%   \item The \texttt{hex} unescaping should raise an error for
%     odd-token count strings.
%   \item Decide what bytes should be escaped in the \texttt{url}
%     escaping. Perhaps the characters |!'()*-./0123456789_| are safe,
%     and all other characters should be escaped?
%   \item Automate generation of 8-bit mapping files.
%   \item Change the framework for 8-bit encodings: for decoding from
%     8-bit to Unicode, use $256$ integer registers; for encoding, use a
%     tree-box.
%   \item More encodings (see Heiko's \pkg{stringenc}). CESU?
%   \item More escapings: \textsc{ascii85}, shell escapes, lua escapes,
%     \emph{etc.}?
% \end{itemize}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3str-convert} implementation}
%
%    \begin{macrocode}
%<*package>
%    \end{macrocode}
%
%    \begin{macrocode}
%<@@=str>
%    \end{macrocode}
%
% \subsection{Helpers}
%
% \subsubsection{Variables and constants}
%
% \begin{macro}{\@@_tmp:w}
% \begin{variable}{\l_@@_internal_tl}
%   Internal scratch space for some functions.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_tmp:w { }
\tl_new:N \l_@@_internal_tl
%    \end{macrocode}
% \end{variable}
% \end{macro}
%
% \begin{variable}{\g_@@_result_tl}
%   The \cs{g_@@_result_tl} variable is used to hold the result of
%   various internal string operations (mostly conversions) which are
%   typically performed in a group. The variable is global so that it
%   remains defined outside the group, to be assigned to a user-provided
%   variable.
%    \begin{macrocode}
\tl_new:N \g_@@_result_tl
%    \end{macrocode}
% \end{variable}
%
% \begin{variable}{\c_@@_replacement_char_int}
%   When converting, invalid bytes are replaced by the Unicode
%   replacement character \hexnum{FFFD}.
%    \begin{macrocode}
\int_const:Nn \c_@@_replacement_char_int { "FFFD }
%    \end{macrocode}
% \end{variable}
%
% \begin{variable}{\c_@@_max_byte_int}
%   The maximal byte number.
%    \begin{macrocode}
\int_const:Nn \c_@@_max_byte_int { 255 }
%    \end{macrocode}
% \end{variable}
%
% \begin{variable}{\s_@@}
%   Internal scan marks.
%    \begin{macrocode}
\scan_new:N \s_@@
%    \end{macrocode}
% \end{variable}
%
% \begin{variable}{\q_@@_nil}
%   Internal quarks.
%    \begin{macrocode}
\quark_new:N \q_@@_nil
%    \end{macrocode}
% \end{variable}
%
% \begin{variable}{\g_@@_alias_prop}
%   To avoid needing one file per encoding/escaping alias, we keep track
%   of those in a property list.
%    \begin{macrocode}
\prop_new:N \g_@@_alias_prop
\prop_gput:Nnn \g_@@_alias_prop { latin1 } { iso88591 }
\prop_gput:Nnn \g_@@_alias_prop { latin2 } { iso88592 }
\prop_gput:Nnn \g_@@_alias_prop { latin3 } { iso88593 }
\prop_gput:Nnn \g_@@_alias_prop { latin4 } { iso88594 }
\prop_gput:Nnn \g_@@_alias_prop { latin5 } { iso88599 }
\prop_gput:Nnn \g_@@_alias_prop { latin6 } { iso885910 }
\prop_gput:Nnn \g_@@_alias_prop { latin7 } { iso885913 }
\prop_gput:Nnn \g_@@_alias_prop { latin8 } { iso885914 }
\prop_gput:Nnn \g_@@_alias_prop { latin9 } { iso885915 }
\prop_gput:Nnn \g_@@_alias_prop { latin10 } { iso885916 }
\prop_gput:Nnn \g_@@_alias_prop { utf16le } { utf16 }
\prop_gput:Nnn \g_@@_alias_prop { utf16be } { utf16 }
\prop_gput:Nnn \g_@@_alias_prop { utf32le } { utf32 }
\prop_gput:Nnn \g_@@_alias_prop { utf32be } { utf32 }
\prop_gput:Nnn \g_@@_alias_prop { hexadecimal } { hex }
\bool_lazy_any:nTF
  {
    \sys_if_engine_luatex_p:
    \sys_if_engine_xetex_p:
  }
  {
    \prop_gput:Nnn \g_@@_alias_prop { default } {  }
  }
  {
    \prop_gput:Nnn \g_@@_alias_prop { default } { utf8 }
  }
%    \end{macrocode}
% \end{variable}
%
% \begin{variable}{\g_@@_error_bool}
%   In conversion functions with a built-in conditional, errors are not
%   reported directly to the user, but the information is collected in
%   this boolean, used at the end to decide on which branch of the
%   conditional to take.
%    \begin{macrocode}
\bool_new:N \g_@@_error_bool
%    \end{macrocode}
% \end{variable}
%
% \begin{variable}{str_byte, str_error}
%   Conversions from one \meta{encoding}/\meta{escaping} pair to another
%   are done within \texttt{x}-expanding assignments. Errors are
%   signalled by raising the relevant flag.
%    \begin{macrocode}
\flag_new:n { str_byte }
\flag_new:n { str_error }
%    \end{macrocode}
% \end{variable}
%
% \subsection{String conditionals}
%
% \begin{macro}[EXP]{\@@_if_contains_char:NnT, \@@_if_contains_char:NnTF}
% \begin{macro}[EXP]{\@@_if_contains_char:nnTF}
% \begin{macro}[EXP]{\@@_if_contains_char_aux:nn,\@@_if_contains_char_auxi:nN}
% \begin{macro}[EXP]{\@@_if_contains_char_true:}
%   \begin{syntax}
%     \cs{@@_if_contains_char:nnTF} \Arg{token list} \meta{char}
%   \end{syntax}
%   Expects the \meta{token list} to be an \meta{other string}: the
%   caller is responsible for ensuring that no (too-)special catcodes
%   remain.
%   Loop over the characters of the string, comparing character codes.
%   The loop is broken if character codes match. Otherwise we return
%   \enquote{false}.
%    \begin{macrocode}
\prg_new_conditional:Npnn \@@_if_contains_char:Nn #1#2 { T , TF }
  {
    \exp_after:wN \@@_if_contains_char_aux:nn \exp_after:wN {#1} {#2}
      { \prg_break:n { ? \fi: } }
    \prg_break_point:
    \prg_return_false:
  }
\cs_new:Npn \@@_if_contains_char_aux:nn #1#2
  { \@@_if_contains_char_auxi:nN {#2} #1 }
\prg_new_conditional:Npnn \@@_if_contains_char:nn #1#2 { TF }
  {
    \@@_if_contains_char_auxi:nN {#2} #1 { \prg_break:n { ? \fi: } }
    \prg_break_point:
    \prg_return_false:
  }
\cs_new:Npn \@@_if_contains_char_auxi:nN #1#2
  {
    \if_charcode:w #1 #2
      \exp_after:wN \@@_if_contains_char_true:
    \fi:
    \@@_if_contains_char_auxi:nN {#1}
  }
\cs_new:Npn \@@_if_contains_char_true:
  { \prg_break:n { \prg_return_true: \use_none:n } }
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[rEXP]{\@@_octal_use:NTF}
%   \begin{syntax}
%     \cs{@@_octal_use:NTF} \meta{token} \Arg{true code} \Arg{false code}
%   \end{syntax}
%   If the \meta{token} is an octal digit, it is left in the input
%   stream, \emph{followed} by the \meta{true code}. Otherwise, the
%   \meta{false code} is left in the input stream.
%   \begin{texnote}
%     This function will fail if the escape character is an octal
%     digit. We are thus careful to set the escape character to a known
%     value before using it.
%   \end{texnote}
%   \TeX{} dutifully detects octal digits for us: if |#1| is an octal
%   digit, then the right-hand side of the comparison is |'1#1|, greater
%   than $1$. Otherwise, the right-hand side stops as |'1|, and the
%   conditional takes the \texttt{false} branch.
%    \begin{macrocode}
\prg_new_conditional:Npnn \@@_octal_use:N #1 { TF }
  {
    \if_int_compare:w 1 < '1 \token_to_str:N #1 \exp_stop_f:
      #1 \prg_return_true:
    \else:
      \prg_return_false:
    \fi:
  }
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}[rEXP]{\@@_hexadecimal_use:NTF}
%   \TeX{} detects uppercase hexadecimal digits for us (see
%   \cs{@@_octal_use:NTF}), but not the lowercase letters, which we
%   need to detect and replace by their uppercase counterpart.
%    \begin{macrocode}
\prg_new_conditional:Npnn \@@_hexadecimal_use:N #1 { TF }
  {
    \if_int_compare:w 1 < "1 \token_to_str:N #1 \exp_stop_f:
      #1 \prg_return_true:
    \else:
      \if_case:w \int_eval:n { \exp_after:wN ` \token_to_str:N #1 - `a }
           A
      \or: B
      \or: C
      \or: D
      \or: E
      \or: F
      \else:
        \prg_return_false:
        \exp_after:wN \use_none:n
      \fi:
      \prg_return_true:
    \fi:
  }
%    \end{macrocode}
% \end{macro}
%
% \subsection{Conversions}
%
% \subsubsection{Producing one byte or character}
%
% \begin{variable}{\c_@@_byte_0_tl, \c_@@_byte_1_tl, \c_@@_byte_255_tl}
% \begin{variable}{\c_@@_byte_-1_tl}
%   For each integer $N$ in the range $[0,255]$, we create a constant
%   token list which holds three character tokens with category code
%   other: the character with character code $N$, followed by the
%   representation of $N$ as two hexadecimal digits.  The value $-1$ is
%   given a default token list which ensures that later functions give
%   an empty result for the input $-1$.
%    \begin{macrocode}
\group_begin:
  \__kernel_tl_set:Nx \l_@@_internal_tl { \tl_to_str:n { 0123456789ABCDEF } }
   \tl_map_inline:Nn \l_@@_internal_tl
     {
        \tl_map_inline:Nn \l_@@_internal_tl
          {
            \tl_const:cx { c_@@_byte_ \int_eval:n {"#1##1} _tl }
               { \char_generate:nn { "#1##1 } { 12 } #1 ##1 }
          }
     }
\group_end:
\tl_const:cn { c_@@_byte_-1_tl } { { } \use_none:n { } }
%    \end{macrocode}
% \end{variable}
% \end{variable}
%
% \begin{macro}[EXP]{\@@_output_byte:n}
% \begin{macro}[EXP]{\@@_output_byte:w}
% \begin{macro}[EXP]{\@@_output_hexadecimal:n}
% \begin{macro}[EXP]{\@@_output_end:}
%   Those functions must be used carefully: feeding them a value outside
%   the range $[-1,255]$ will attempt to use the undefined token list
%   variable \cs{c_@@_byte_\meta{number}_tl}. Assuming that the
%   argument is in the right range, we expand the corresponding token
%   list, and pick either the byte (first token) or the hexadecimal
%   representations (second and third tokens). The value $-1$ produces
%   an empty result in both cases.
%    \begin{macrocode}
\cs_new:Npn \@@_output_byte:n #1
  { \@@_output_byte:w #1 \@@_output_end: }
\cs_new:Npn \@@_output_byte:w
  {
    \exp_after:wN \exp_after:wN
    \exp_after:wN \use_i:nnn
    \cs:w c_@@_byte_ \int_eval:w
  }
\cs_new:Npn \@@_output_hexadecimal:n #1
  {
    \exp_after:wN \exp_after:wN
    \exp_after:wN \use_none:n
    \cs:w c_@@_byte_ \int_eval:n {#1} _tl \cs_end:
  }
\cs_new:Npn \@@_output_end:
  { \scan_stop: _tl \cs_end: }
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[rEXP]{\@@_output_byte_pair_be:n}
% \begin{macro}[rEXP]{\@@_output_byte_pair_le:n}
% \begin{macro}[rEXP]{\@@_output_byte_pair:nnN}
%   Convert a number in the range $[0,65535]$ to a pair of bytes, either
%   big-endian or little-endian.
%    \begin{macrocode}
\cs_new:Npn \@@_output_byte_pair_be:n #1
  {
    \exp_args:Nf \@@_output_byte_pair:nnN
      { \int_div_truncate:nn { #1 } { "100 } } {#1} \use:nn
  }
\cs_new:Npn \@@_output_byte_pair_le:n #1
  {
    \exp_args:Nf \@@_output_byte_pair:nnN
      { \int_div_truncate:nn { #1 } { "100 } } {#1} \use_ii_i:nn
  }
\cs_new:Npn \@@_output_byte_pair:nnN #1#2#3
  {
    #3
      { \@@_output_byte:n { #1 } }
      { \@@_output_byte:n { #2 - #1 * "100 } }
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsubsection{Mapping functions for conversions}
%
% \begin{macro}{\@@_convert_gmap:N}
% \begin{macro}[rEXP]{\@@_convert_gmap_loop:NN}
%   This maps the function |#1| over all characters in
%   \cs{g_@@_result_tl}, which should be a byte string in most cases,
%   sometimes a native string.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_convert_gmap:N #1
  {
    \__kernel_tl_gset:Nx \g_@@_result_tl
      {
        \exp_after:wN \@@_convert_gmap_loop:NN
        \exp_after:wN #1
          \g_@@_result_tl { ? \prg_break: }
        \prg_break_point:
      }
  }
\cs_new:Npn \@@_convert_gmap_loop:NN #1#2
  {
    \use_none:n #2
    #1#2
    \@@_convert_gmap_loop:NN #1
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_convert_gmap_internal:N}
% \begin{macro}[rEXP]{\@@_convert_gmap_internal_loop:Nw}
%   This maps the function |#1| over all character codes in
%   \cs{g_@@_result_tl}, which must be in the internal representation.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_convert_gmap_internal:N #1
  {
    \__kernel_tl_gset:Nx \g_@@_result_tl
      {
        \exp_after:wN \@@_convert_gmap_internal_loop:Nww
        \exp_after:wN #1
          \g_@@_result_tl \s_@@ \s_@@_stop \prg_break: \s_@@
        \prg_break_point:
      }
  }
\cs_new:Npn \@@_convert_gmap_internal_loop:Nww #1 #2 \s_@@ #3 \s_@@
  {
    \@@_use_none_delimit_by_s_stop:w #3 \s_@@_stop
    #1 {#3}
    \@@_convert_gmap_internal_loop:Nww #1
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsubsection{Error-reporting during conversion}
%
% \begin{macro}{\@@_if_flag_error:nnx}
% \begin{macro}{\@@_if_flag_no_error:nnx}
%   When converting using the function \cs{str_set_convert:Nnnn}, errors
%   should be reported to the user after each step in the
%   conversion. Errors are signalled by raising some flag (typically
%   \texttt{@@_error}), so here we test that flag: if it is raised,
%   give the user an error, otherwise remove the arguments. On the other
%   hand, in the conditional functions \cs{str_set_convert:NnnnTF},
%   errors should be suppressed. This is done by changing
%   \cs{@@_if_flag_error:nnx} into \cs{@@_if_flag_no_error:nnx}
%   locally.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_if_flag_error:nnx #1
  {
    \flag_if_raised:nTF {#1}
      { \msg_error:nnx { str } }
      { \use_none:nn }
  }
\cs_new_protected:Npn \@@_if_flag_no_error:nnx #1#2#3
  { \flag_if_raised:nT {#1} { \bool_gset_true:N \g_@@_error_bool } }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[rEXP]{\@@_if_flag_times:nT}
%   At the end of each conversion step, we raise all relevant errors as
%   one error message, built on the fly. The height of each flag
%   indicates how many times a given error was encountered. This
%   function prints |#2| followed by the number of occurrences of an
%   error if it occurred, nothing otherwise.
%    \begin{macrocode}
\cs_new:Npn \@@_if_flag_times:nT #1#2
  { \flag_if_raised:nT {#1} { #2~(x \flag_height:n {#1} ) } }
%    \end{macrocode}
% \end{macro}
%
% \subsubsection{Framework for conversions}
%
% Most functions in this module expect to be working with
% \enquote{native} strings. Strings can also be stored as bytes, in one
% of many encodings, for instance \textsc{utf8}.  The bytes themselves
% can be expressed in various ways in terms of \TeX{} tokens, for
% instance as pairs of hexadecimal digits. The questions of going from
% arbitrary Unicode code points to bytes, and from bytes to tokens are
% mostly independent.
%
% Conversions are done in four steps:
% \begin{itemize}
%   \item \enquote{unescape} produces a string of bytes;
%   \item \enquote{decode} takes in a string of bytes, and converts it
%     to a list of Unicode characters in an internal representation,
%     with items of the form
%     \begin{quote}
%       \meta{bytes} \cs{s_@@} \meta{Unicode code point} \cs{s_@@}
%     \end{quote}
%     where we have collected the \meta{bytes} which combined to form
%     this particular Unicode character, and the \meta{Unicode code
%       point} is in the range $[0,\hexnum{10FFFF}]$.
%   \item \enquote{encode} encodes the internal list of code points as a
%     byte string in the new encoding;
%   \item \enquote{escape} escapes bytes as requested.
% \end{itemize}
% The process is modified in case one of the encoding is empty (or the
% conversion function has been set equal to the empty encoding because
% it was not found): then the unescape or escape step is ignored, and
% the decode or encode steps work on tokens instead of bytes. Otherwise,
% each step must ensure that it passes a correct byte string or internal
% string to the next step.
%
% \begin{macro}{\str_set_convert:Nnnn, \str_gset_convert:Nnnn}
% \begin{macro}[TF]{\str_set_convert:Nnnn, \str_gset_convert:Nnnn}
% \begin{macro}{\@@_convert:nNNnnn}
%   The input string is stored in \cs{g_@@_result_tl}, then we:
%   unescape and decode; encode and escape; exit the group and store the
%   result in the user's variable. The various conversion functions all
%   act on \cs{g_@@_result_tl}. Errors are silenced for the conditional
%   functions by redefining \cs{@@_if_flag_error:nnx} locally.
%    \begin{macrocode}
\cs_new_protected:Npn \str_set_convert:Nnnn
  { \@@_convert:nNNnnn { } \tl_set_eq:NN }
\cs_new_protected:Npn \str_gset_convert:Nnnn
  { \@@_convert:nNNnnn { } \tl_gset_eq:NN }
\prg_new_protected_conditional:Npnn
    \str_set_convert:Nnnn #1#2#3#4 { T , F , TF }
  {
    \bool_gset_false:N \g_@@_error_bool
    \@@_convert:nNNnnn
      { \cs_set_eq:NN \@@_if_flag_error:nnx \@@_if_flag_no_error:nnx }
      \tl_set_eq:NN #1 {#2} {#3} {#4}
    \bool_if:NTF \g_@@_error_bool \prg_return_false: \prg_return_true:
  }
\prg_new_protected_conditional:Npnn
    \str_gset_convert:Nnnn #1#2#3#4 { T , F , TF }
  {
    \bool_gset_false:N \g_@@_error_bool
    \@@_convert:nNNnnn
      { \cs_set_eq:NN \@@_if_flag_error:nnx \@@_if_flag_no_error:nnx }
      \tl_gset_eq:NN #1 {#2} {#3} {#4}
    \bool_if:NTF \g_@@_error_bool \prg_return_false: \prg_return_true:
  }
\cs_new_protected:Npn \@@_convert:nNNnnn #1#2#3#4#5#6
  {
    \group_begin:
      #1
      \__kernel_tl_gset:Nx \g_@@_result_tl { \__kernel_str_to_other_fast:n {#4} }
      \exp_after:wN \@@_convert:wwwnn
        \tl_to_str:n {#5} /// \s_@@_stop
        { decode } { unescape }
        \prg_do_nothing:
        \@@_convert_decode_:
      \exp_after:wN \@@_convert:wwwnn
        \tl_to_str:n {#6} /// \s_@@_stop
        { encode } { escape }
        \use_ii_i:nn
        \@@_convert_encode_:
    \group_end:
    #2 #3 \g_@@_result_tl
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_convert:wwwnn}
% \begin{macro}{\@@_convert:NNnNN}
%   The task of \cs{@@_convert:wwwnn} is to split
%   \meta{encoding}/\meta{escaping} pairs into their components, |#1|
%   and |#2|. Calls to \cs{@@_convert:nnn} ensure that the
%   corresponding conversion functions are defined. The third auxiliary
%   does the main work.
%   \begin{itemize}
%     \item |#1| is the encoding conversion function;
%     \item |#2| is the escaping function;
%     \item |#3| is the escaping name for use in an error message;
%     \item |#4| is \cs{prg_do_nothing:} for unescaping/decoding, and
%       \cs{use_ii_i:nn} for encoding/escaping;
%     \item |#5| is the default encoding function (either
%       \enquote{decode} or \enquote{encode}), for which there should be
%       no escaping.
%   \end{itemize}
%   Let us ignore the native encoding for a second. In the
%   unescaping/decoding phase, we want to do |#2#1| in this order, and
%   in the encoding/escaping phase, the order should be reversed:
%   |#4#2#1| does exactly that. If one of the encodings is the default
%   (native), then the escaping should be ignored, with an error if any
%   was given, and only the encoding, |#1|, should be performed.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_convert:wwwnn
    #1 / #2 // #3 \s_@@_stop #4#5
  {
    \@@_convert:nnn {enc} {#4} {#1}
    \@@_convert:nnn {esc} {#5} {#2}
    \exp_args:Ncc \@@_convert:NNnNN
      { @@_convert_#4_#1: } { @@_convert_#5_#2: } {#2}
  }
\cs_new_protected:Npn \@@_convert:NNnNN #1#2#3#4#5
  {
    \if_meaning:w #1 #5
      \tl_if_empty:nF {#3}
        { \msg_error:nnx { str } { native-escaping } {#3} }
      #1
    \else:
      #4 #2 #1
    \fi:
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_convert:nnn}
% \begin{macro}{\@@_convert:nnnn}
%   The arguments of \cs{@@_convert:nnn} are: \texttt{enc} or
%   \texttt{esc}, used to build filenames, the type of the conversion
%   (unescape, decode, encode, escape), and the encoding or escaping
%   name. If the function is already defined, no need to do anything.
%   Otherwise, filter out all non-alphanumerics in the name, and
%   lowercase it. Feed that, and the same three arguments, to
%   \cs{@@_convert:nnnn}. The task is then to make sure that the
%   conversion function |#3_#1| corresponding to the type |#3| and
%   filtered name |#1| is defined, then set our initial conversion
%   function |#3_#4| equal to that.
%
%   How do we get the |#3_#1| conversion to be defined if it isn't?
%   Two main cases.
%
%   First, if |#1| is a key in \cs{g_@@_alias_prop}, then the value
%   \cs{l_@@_internal_tl} tells us what file to load. Loading is
%   skipped if the file was already read, \emph{i.e.}, if the conversion
%   command based on \cs{l_@@_internal_tl} already exists.  Otherwise,
%   try to load the file; if that fails, there is an error, use the
%   default empty name instead.
%
%   Second, |#1| may be absent from the property list. The
%   \cs{cs_if_exist:cF} test is automatically false, and we search for a
%   file defining the encoding or escaping |#1| (this should allow
%   third-party \texttt{.def} files). If the file is not found, there is
%   an error, use the default empty name instead.
%
%   In all cases, the conversion based on \cs{l_@@_internal_tl} is
%   defined, so we can set the |#3_#1| function equal to that. In some
%   cases (\emph{e.g.}, \texttt{utf16be}), the |#3_#1| function is
%   actually defined within the file we just loaded, and it is different
%   from the \cs{l_@@_internal_tl}-based function: we mustn't clobber
%   that different definition.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_convert:nnn #1#2#3
  {
    \cs_if_exist:cF { @@_convert_#2_#3: }
      {
        \exp_args:Nx \@@_convert:nnnn
          { \@@_convert_lowercase_alphanum:n {#3} }
          {#1} {#2} {#3}
      }
  }
\cs_new_protected:Npn \@@_convert:nnnn #1#2#3#4
  {
    \cs_if_exist:cF { @@_convert_#3_#1: }
      {
        \prop_get:NnNF \g_@@_alias_prop {#1} \l_@@_internal_tl
          { \tl_set:Nn \l_@@_internal_tl {#1} }
        \cs_if_exist:cF { @@_convert_#3_ \l_@@_internal_tl : }
          {
            \file_if_exist:nTF { l3str-#2- \l_@@_internal_tl .def }
              {
                \group_begin:
                  \cctab_select:N \c_code_cctab
                  \file_input:n { l3str-#2- \l_@@_internal_tl .def }
                \group_end:
              }
              {
                \tl_clear:N \l_@@_internal_tl
                \msg_error:nnxx { str } { unknown-#2 } {#4} {#1}
              }
          }
        \cs_if_exist:cF { @@_convert_#3_#1: }
          {
            \cs_gset_eq:cc { @@_convert_#3_#1: }
              { @@_convert_#3_ \l_@@_internal_tl : }
          }
      }
    \cs_gset_eq:cc { @@_convert_#3_#4: } { @@_convert_#3_#1: }
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[rEXP]{\@@_convert_lowercase_alphanum:n}
% \begin{macro}[rEXP]{\@@_convert_lowercase_alphanum_loop:N}
%   This function keeps only letters and digits, with upper case letters
%   converted to lower case.
%    \begin{macrocode}
\cs_new:Npn \@@_convert_lowercase_alphanum:n #1
  {
    \exp_after:wN \@@_convert_lowercase_alphanum_loop:N
      \tl_to_str:n {#1} { ? \prg_break: }
    \prg_break_point:
  }
\cs_new:Npn \@@_convert_lowercase_alphanum_loop:N #1
  {
    \use_none:n #1
    \if_int_compare:w `#1 > `Z \exp_stop_f:
      \if_int_compare:w `#1 > `z \exp_stop_f: \else:
        \if_int_compare:w `#1 < `a \exp_stop_f: \else:
          #1
        \fi:
      \fi:
    \else:
      \if_int_compare:w `#1 < `A \exp_stop_f:
        \if_int_compare:w 1 < 1#1 \exp_stop_f:
          #1
        \fi:
      \else:
        \@@_output_byte:n { `#1 + `a - `A }
      \fi:
    \fi:
    \@@_convert_lowercase_alphanum_loop:N
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsubsection{Byte unescape and escape}
%
% Strings of bytes may need to be stored in auxiliary files in safe
% \enquote{escaping} formats. Each such escaping is only loaded as
% needed. By default, on input any non-byte is filtered out, while the
% output simply consists in letting bytes through.
%
% \begin{macro}[rEXP]{\@@_filter_bytes:n}
% \begin{macro}[rEXP]{\@@_filter_bytes_aux:N}
%   In the case of 8-bit engines, every character is a byte.  For
%   Unicode-aware engines, test the character code; non-bytes cause us
%   to raise the flag \texttt{str_byte}.  Spaces have already been given
%   the correct category code when this function is called.
%    \begin{macrocode}
\bool_lazy_any:nTF
  {
    \sys_if_engine_luatex_p:
    \sys_if_engine_xetex_p:
  }
  {
    \cs_new:Npn \@@_filter_bytes:n #1
      {
        \@@_filter_bytes_aux:N #1
          { ? \prg_break: }
        \prg_break_point:
      }
    \cs_new:Npn \@@_filter_bytes_aux:N #1
      {
        \use_none:n #1
        \if_int_compare:w `#1 < 256 \exp_stop_f:
          #1
        \else:
          \flag_raise:n { str_byte }
        \fi:
        \@@_filter_bytes_aux:N
      }
  }
  { \cs_new_eq:NN \@@_filter_bytes:n \use:n }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_convert_unescape_:}
% \begin{macro}{\@@_convert_unescape_bytes:}
%   The simplest unescaping method removes non-bytes from
%   \cs{g_@@_result_tl}.
%    \begin{macrocode}
\bool_lazy_any:nTF
  {
    \sys_if_engine_luatex_p:
    \sys_if_engine_xetex_p:
  }
  {
    \cs_new_protected:Npn \@@_convert_unescape_:
      {
        \flag_clear:n { str_byte }
        \__kernel_tl_gset:Nx \g_@@_result_tl
          { \exp_args:No \@@_filter_bytes:n \g_@@_result_tl }
        \@@_if_flag_error:nnx { str_byte } { non-byte } { bytes }
      }
  }
  { \cs_new_protected:Npn \@@_convert_unescape_: { } }
\cs_new_eq:NN \@@_convert_unescape_bytes: \@@_convert_unescape_:
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_convert_escape_:}
% \begin{macro}{\@@_convert_escape_bytes:}
%   The simplest form of escape leaves the bytes from the previous step
%   of the conversion unchanged.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_convert_escape_: { }
\cs_new_eq:NN \@@_convert_escape_bytes: \@@_convert_escape_:
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsubsection{Native strings}
%
% \begin{macro}{\@@_convert_decode_:}
% \begin{macro}[rEXP]{\@@_decode_native_char:N}
%   Convert each character to its character code, one at a time.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_convert_decode_:
  { \@@_convert_gmap:N \@@_decode_native_char:N }
\cs_new:Npn \@@_decode_native_char:N #1
  { #1 \s_@@ \int_value:w `#1 \s_@@ }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_convert_encode_:}
% \begin{macro}[EXP]{\@@_encode_native_char:n}
%   The conversion from an internal string to native character tokens
%   basically maps \cs{char_generate:nn} through the code-points, but in
%   non-Unicode-aware engines we use a fall-back character |?| rather
%   than nothing when given a character code outside $[0,255]$.  We
%   detect the presence of bad characters using a flag and only produce
%   a single error after the \texttt{x}-expanding assignment.
%    \begin{macrocode}
\bool_lazy_any:nTF
  {
    \sys_if_engine_luatex_p:
    \sys_if_engine_xetex_p:
  }
  {
    \cs_new_protected:Npn \@@_convert_encode_:
      { \@@_convert_gmap_internal:N \@@_encode_native_char:n }
    \cs_new:Npn \@@_encode_native_char:n #1
      { \char_generate:nn {#1} {12} }
  }
  {
    \cs_new_protected:Npn \@@_convert_encode_:
      {
        \flag_clear:n { str_error }
        \@@_convert_gmap_internal:N \@@_encode_native_char:n
        \@@_if_flag_error:nnx { str_error }
          { native-overflow } { }
      }
    \cs_new:Npn \@@_encode_native_char:n #1
      {
        \if_int_compare:w #1 > \c_@@_max_byte_int
          \flag_raise:n { str_error }
          ?
        \else:
          \char_generate:nn {#1} {12}
        \fi:
      }
    \msg_new:nnnn { str } { native-overflow }
      { Character~code~too~large~for~this~engine. }
      {
        This~engine~only~support~8-bit~characters:~
        valid~character~codes~are~in~the~range~[0,255].~
        To~manipulate~arbitrary~Unicode,~use~LuaTeX~or~XeTeX.
      }
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsubsection{\texttt{clist}}
%
% \begin{macro}{\@@_convert_decode_clist:}
% \begin{macro}[rEXP]{\@@_decode_clist_char:n}
%   Convert each integer to the internal form.  We first turn
%   \cs{g_@@_result_tl} into a clist variable, as this avoids problems
%   with leading or trailing commas.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_convert_decode_clist:
  {
    \clist_gset:No \g_@@_result_tl \g_@@_result_tl
    \__kernel_tl_gset:Nx \g_@@_result_tl
      {
        \exp_args:No \clist_map_function:nN
          \g_@@_result_tl \@@_decode_clist_char:n
      }
  }
\cs_new:Npn \@@_decode_clist_char:n #1
  { #1 \s_@@ \int_eval:n {#1} \s_@@ }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_convert_encode_clist:}
% \begin{macro}[rEXP]{\@@_encode_clist_char:n}
%   Convert the internal list of character codes to a comma-list of
%   character codes.  The first line produces a comma-list with a
%   leading comma, removed in the next step (this also works in the
%   empty case, since \cs{tl_tail:N} does not trigger an error in this
%   case).
%    \begin{macrocode}
\cs_new_protected:Npn \@@_convert_encode_clist:
  {
    \@@_convert_gmap_internal:N \@@_encode_clist_char:n
    \__kernel_tl_gset:Nx \g_@@_result_tl { \tl_tail:N \g_@@_result_tl }
  }
\cs_new:Npn \@@_encode_clist_char:n #1 { , #1 }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsubsection{8-bit encodings}
%
% It is not clear in what situations 8-bit encodings are used, hence it
% is not clear what should be optimized.  The current approach is
% reasonably efficient to convert long strings, and it scales well when
% using many different encodings.
%
% The data needed to support a given 8-bit encoding is stored in a file
% that consists of a single function call
% \begin{quote}\ttfamily
%   \cs{@@_declare_eight_bit_encoding:nnnn} \Arg{name} \Arg{modulo}
%   \Arg{mapping} \Arg{missing}
% \end{quote}
% This declares the encoding \meta{name} to map bytes to Unicode
% characters according to the \meta{mapping}, and map those bytes which
% are not mentioned in the \meta{mapping} either to the replacement
% character (if they appear in \meta{missing}), or to themselves.  The
% \meta{mapping} argument is a token list of pairs \Arg{byte}
% \Arg{Unicode} expressed in uppercase hexadecimal notation.  The
% \meta{missing} argument is a token list of \Arg{byte}.  Every
% \meta{byte} which does not appear in the \meta{mapping} nor the
% \meta{missing} lists maps to itself in Unicode, so for instance the
% \texttt{latin1} encoding has empty \meta{mapping} and \meta{missing}
% lists.  The \meta{modulo} is a (decimal) integer between $256$ and
% $558$ inclusive, modulo which all Unicode code points supported by the
% encodings must be different.
%
% We use two integer arrays per encoding.  When decoding we only use the
% \texttt{decode} integer array, with entry $n+1$ (offset needed because
% integer array indices start at~$1$) equal to the Unicode code point
% that corresponds to the $n$-th byte in the encoding under
% consideration, or $-1$ if the given byte is invalid in this encoding.
% When encoding we use both arrays: upon seeing a code point~$n$, we
% look up the entry ($1$~plus) $n$ modulo some number $M$ in the
% \texttt{encode} array, which tells us the byte that might encode the
% given Unicode code point, then we check in the \texttt{decode} array
% that indeed this byte encodes the Unicode code point we want.  Here,
% $M$ is an encoding-dependent integer between $256$ and $558$ (it turns
% out), chosen so that among the Unicode code points that can be validly
% represented in the given encoding, no pair of code points have the
% same value modulo~$M$.
%
% \begin{macro}
%   {
%     \@@_declare_eight_bit_encoding:nnnn,
%     \@@_declare_eight_bit_aux:NNnnn,
%     \@@_declare_eight_bit_loop:Nnn,
%     \@@_declare_eight_bit_loop:Nn
%   }
%   Loop through both lists of bytes to fill in the \texttt{decode}
%   integer array, then fill the \texttt{encode} array accordingly.
%   For bytes that are invalid in the given encoding, store $-1$ in the
%   \texttt{decode} array.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_declare_eight_bit_encoding:nnnn #1
  {
    \tl_set:Nn \l_@@_internal_tl {#1}
    \cs_new_protected:cpn { @@_convert_decode_#1: }
      { \@@_convert_decode_eight_bit:n {#1} }
    \cs_new_protected:cpn { @@_convert_encode_#1: }
      { \@@_convert_encode_eight_bit:n {#1} }
    \exp_args:Ncc \@@_declare_eight_bit_aux:NNnnn
      { g_@@_decode_#1_intarray } { g_@@_encode_#1_intarray }
  }
\cs_new_protected:Npn \@@_declare_eight_bit_aux:NNnnn #1#2#3#4#5
  {
    \intarray_new:Nn #1 { 256 }
    \int_step_inline:nnn { 0 } { 255 }
      { \intarray_gset:Nnn #1 { 1 + ##1 } {##1} }
    \@@_declare_eight_bit_loop:Nnn #1
      #4 { \s_@@_stop \prg_break: } { }
    \prg_break_point:
    \@@_declare_eight_bit_loop:Nn #1
      #5 { \s_@@_stop \prg_break: }
    \prg_break_point:
    \intarray_new:Nn #2 {#3}
    \int_step_inline:nnn { 0 } { 255 }
      {
        \int_compare:nNnF { \intarray_item:Nn #1 { 1 + ##1 } } = { -1 }
          {
            \intarray_gset:Nnn #2
              {
                1 +
                \int_mod:nn { \intarray_item:Nn #1 { 1 + ##1 } }
                  { \intarray_count:N #2 }
              }
              {##1}
          }
      }
  }
\cs_new_protected:Npn \@@_declare_eight_bit_loop:Nnn #1#2#3
  {
    \@@_use_none_delimit_by_s_stop:w #2 \s_@@_stop
    \intarray_gset:Nnn #1 { 1 + "#2 } { "#3 }
    \@@_declare_eight_bit_loop:Nnn #1
  }
\cs_new_protected:Npn \@@_declare_eight_bit_loop:Nn #1#2
  {
    \@@_use_none_delimit_by_s_stop:w #2 \s_@@_stop
    \intarray_gset:Nnn #1 { 1 + "#2 } { -1 }
    \@@_declare_eight_bit_loop:Nn #1
  }
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_convert_decode_eight_bit:n}
% \begin{macro}[rEXP]{\@@_decode_eight_bit_aux:n, \@@_decode_eight_bit_aux:Nn}
%   The map from bytes to Unicode code points is in the \texttt{decode}
%   array corresponding to the given encoding.  Define \cs{@@_tmp:w} and
%   pass it successively all bytes in the string.  It produces an
%   internal representation with suitable \cs{s_@@} inserted, and the
%   corresponding code point is obtained by looking it up in the integer
%   array.  If the entry is $-1$ then issue a replacement character and
%   raise the flag indicating that there was an error.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_convert_decode_eight_bit:n #1
  {
    \cs_set:Npx \@@_tmp:w
      {
        \exp_not:N \@@_decode_eight_bit_aux:Nn
        \exp_not:c { g_@@_decode_#1_intarray }
      }
    \flag_clear:n { str_error }
    \@@_convert_gmap:N \@@_tmp:w
    \@@_if_flag_error:nnx { str_error } { decode-8-bit } {#1}
  }
\cs_new:Npn \@@_decode_eight_bit_aux:Nn #1#2
  {
    #2 \s_@@
    \exp_args:Nf \@@_decode_eight_bit_aux:n
      { \intarray_item:Nn #1 { 1 + `#2 } }
    \s_@@
  }
\cs_new:Npn \@@_decode_eight_bit_aux:n #1
  {
    \if_int_compare:w #1 < \c_zero_int
      \flag_raise:n { str_error }
      \int_value:w \c_@@_replacement_char_int
    \else:
      #1
    \fi:
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_convert_encode_eight_bit:n}
% \begin{macro}[rEXP]{\@@_encode_eight_bit_aux:nnN, \@@_encode_eight_bit_aux:NNn}
%   It is not practical to make an integer array with indices in the
%   full Unicode range, so we work modulo some number, which is simply
%   the size of the \texttt{encode} integer array for the given
%   encoding.  This gives us a candidate byte for representing a given
%   Unicode code point.  Of course taking the modulo leads to collisions
%   so we check in the \texttt{decode} array that the byte we got is
%   indeed correct.  Otherwise the Unicode code point we started from is
%   simply not representable in the given encoding.
%    \begin{macrocode}
\int_new:N \l_@@_modulo_int
\cs_new_protected:Npn \@@_convert_encode_eight_bit:n #1
  {
    \cs_set:Npx \@@_tmp:w
      {
        \exp_not:N \@@_encode_eight_bit_aux:NNn
        \exp_not:c { g_@@_encode_#1_intarray }
        \exp_not:c { g_@@_decode_#1_intarray }
      }
    \flag_clear:n { str_error }
    \@@_convert_gmap_internal:N \@@_tmp:w
    \@@_if_flag_error:nnx { str_error } { encode-8-bit } {#1}
  }
\cs_new:Npn \@@_encode_eight_bit_aux:NNn #1#2#3
  {
    \exp_args:Nf \@@_encode_eight_bit_aux:nnN
      {
        \intarray_item:Nn #1
          { 1 + \int_mod:nn {#3} { \intarray_count:N #1 } }
      }
      {#3}
      #2
  }
\cs_new:Npn \@@_encode_eight_bit_aux:nnN #1#2#3
  {
    \int_compare:nNnTF { \intarray_item:Nn #3 { 1 + #1 } } = {#2}
      { \@@_output_byte:n {#1} }
      { \flag_raise:n { str_error } }
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Messages}
%
% General messages, and messages for the encodings and escapings loaded
% by default (\enquote{native}, and \enquote{bytes}).
%    \begin{macrocode}
\msg_new:nnn { str } { unknown-esc }
  { Escaping~scheme~'#1'~(filtered:~'#2')~unknown. }
\msg_new:nnn { str } { unknown-enc }
  { Encoding~scheme~'#1'~(filtered:~'#2')~unknown. }
\msg_new:nnnn { str } { native-escaping }
  { The~'native'~encoding~scheme~does~not~support~any~escaping. }
  {
    Since~native~strings~do~not~consist~in~bytes,~
    none~of~the~escaping~methods~make~sense.~
    The~specified~escaping,~'#1',~will be ignored.
  }
\msg_new:nnn { str } { file-not-found }
  { File~'l3str-#1.def'~not~found. }
%    \end{macrocode}
%
% Message used when the \enquote{bytes} unescaping fails because the
% string given to \cs{str_set_convert:Nnnn} contains a non-byte. This
% cannot happen for the -8-bit engines.
% Messages used for other escapings and
% encodings are defined in each definition file.
%    \begin{macrocode}
\bool_lazy_any:nT
  {
    \sys_if_engine_luatex_p:
    \sys_if_engine_xetex_p:
  }
  {
    \msg_new:nnnn { str } { non-byte }
      { String~invalid~in~escaping~'#1':~it~may~only~contain~bytes. }
      {
        Some~characters~in~the~string~you~asked~to~convert~are~not~
        8-bit~characters.~Perhaps~the~string~is~a~'native'~Unicode~string?~
        If~it~is,~try~using\\
        \\
        \iow_indent:n
          {
            \iow_char:N\\str_set_convert:Nnnn \\
            \ \ <str~var>~\{~<string>~\}~\{~native~\}~\{~<target~encoding>~\}
          }
      }
  }
%    \end{macrocode}
%
% Those messages are used when converting to and from 8-bit encodings.
%    \begin{macrocode}
\msg_new:nnnn { str } { decode-8-bit }
  { Invalid~string~in~encoding~'#1'. }
  {
    LaTeX~came~across~a~byte~which~is~not~defined~to~represent~
    any~character~in~the~encoding~'#1'.
  }
\msg_new:nnnn { str } { encode-8-bit }
  { Unicode~string~cannot~be~converted~to~encoding~'#1'. }
  {
    The~encoding~'#1'~only~contains~a~subset~of~all~Unicode~characters.~
    LaTeX~was~asked~to~convert~a~string~to~that~encoding,~but~that~
    string~contains~a~character~that~'#1'~does~not~support.
  }
%    \end{macrocode}
%
% \subsection{Escaping definitions}
%
% Several of those encodings are defined by the pdf file format.  The
% following byte storage methods are defined:
% \begin{itemize}
%   \item \texttt{bytes} (default), non-bytes are filtered out, and
%     bytes are left untouched (this is defined by default);
%   \item \texttt{hex} or \texttt{hexadecimal}, as per the \pdfTeX{}
%     primitive \tn{pdfescapehex}
%   \item \texttt{name}, as per the \pdfTeX{} primitive
%     \tn{pdfescapename}
%   \item \texttt{string}, as per the \pdfTeX{} primitive
%     \tn{pdfescapestring}
%   \item \texttt{url}, as per the percent encoding of urls.
% \end{itemize}
%
% \subsubsection{Unescape methods}
%
% \begin{macro}{\@@_convert_unescape_hex:}
% \begin{macro}[rEXP]{\@@_unescape_hex_auxi:N}
% \begin{macro}[rEXP]{\@@_unescape_hex_auxii:N}
%   Take chars two by two, and interpret each pair as the hexadecimal
%   code for a byte. Anything else than hexadecimal digits is ignored,
%   raising the flag.  A string which contains an odd number of
%   hexadecimal digits gets |0| appended to it: this is equivalent to
%   appending a |0| in all cases, and dropping it if it is alone.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_convert_unescape_hex:
  {
    \group_begin:
      \flag_clear:n { str_error }
      \int_set:Nn \tex_escapechar:D { 92 }
      \__kernel_tl_gset:Nx \g_@@_result_tl
        {
          \@@_output_byte:w "
            \exp_last_unbraced:Nf \@@_unescape_hex_auxi:N
              { \tl_to_str:N \g_@@_result_tl }
            0 { ? 0 - 1 \prg_break: }
            \prg_break_point:
          \@@_output_end:
        }
      \@@_if_flag_error:nnx { str_error } { unescape-hex } { }
    \group_end:
  }
\cs_new:Npn \@@_unescape_hex_auxi:N #1
  {
    \use_none:n #1
    \@@_hexadecimal_use:NTF #1
      { \@@_unescape_hex_auxii:N }
      {
        \flag_raise:n { str_error }
        \@@_unescape_hex_auxi:N
      }
  }
\cs_new:Npn \@@_unescape_hex_auxii:N #1
  {
    \use_none:n #1
    \@@_hexadecimal_use:NTF #1
      {
        \@@_output_end:
        \@@_output_byte:w " \@@_unescape_hex_auxi:N
      }
      {
        \flag_raise:n { str_error }
        \@@_unescape_hex_auxii:N
      }
  }
\msg_new:nnnn { str } { unescape-hex }
  { String~invalid~in~escaping~'hex':~only~hexadecimal~digits~allowed. }
  {
    Some~characters~in~the~string~you~asked~to~convert~are~not~
    hexadecimal~digits~(0-9,~A-F,~a-f)~nor~spaces.
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_convert_unescape_name:}
% \begin{macro}[rEXP]{\@@_unescape_name_loop:wNN}
% \begin{macro}{\@@_convert_unescape_url:}
% \begin{macro}[rEXP]{\@@_unescape_url_loop:wNN}
%   The \cs{@@_convert_unescape_name:} function replaces each
%   occurrence of |#| followed by two hexadecimal digits in
%   \cs{g_@@_result_tl} by the corresponding byte.  The \texttt{url}
%   function is identical, with escape character |%| instead of |#|.
%   Thus we define the two together. The arguments of \cs{@@_tmp:w} are
%   the character code of |#| or |%| in hexadecimal, the name of the
%   main function to define, and the name of the auxiliary which
%   performs the loop.
%
%   The looping auxiliary |#3| finds the next escape character, reads
%   the following two characters, and tests them. The test
%   \cs{@@_hexadecimal_use:NTF} leaves the upper-case digit in the
%   input stream, hence we surround the test with
%   \cs{@@_output_byte:w}~|"| and \cs{@@_output_end:}.  If both
%   characters are hexadecimal digits, they should be removed before
%   looping: this is done by \cs{use_i:nnn}.  If one of the characters
%   is not a hexadecimal digit, then feed |"#1| to
%   \cs{@@_output_byte:w} to produce the escape character, raise the
%   flag, and call the looping function followed by the two characters
%   (remove \cs{use_i:nnn}).
%    \begin{macrocode}
\cs_set_protected:Npn \@@_tmp:w #1#2#3
  {
    \cs_new_protected:cpn { @@_convert_unescape_#2: }
      {
        \group_begin:
          \flag_clear:n { str_byte }
          \flag_clear:n { str_error }
          \int_set:Nn \tex_escapechar:D { 92 }
          \__kernel_tl_gset:Nx \g_@@_result_tl
            {
              \exp_after:wN #3 \g_@@_result_tl
                #1 ? { ? \prg_break: }
              \prg_break_point:
            }
          \@@_if_flag_error:nnx { str_byte } { non-byte } { #2 }
          \@@_if_flag_error:nnx { str_error } { unescape-#2 } { }
        \group_end:
      }
    \cs_new:Npn #3 ##1#1##2##3
      {
        \@@_filter_bytes:n {##1}
        \use_none:n ##3
        \@@_output_byte:w "
          \@@_hexadecimal_use:NTF ##2
            {
              \@@_hexadecimal_use:NTF ##3
                { }
                {
                  \flag_raise:n { str_error }
                  * 0 + `#1 \use_i:nn
                }
            }
            {
              \flag_raise:n { str_error }
              0 + `#1 \use_i:nn
            }
        \@@_output_end:
        \use_i:nnn #3 ##2##3
      }
    \msg_new:nnnn { str } { unescape-#2 }
      { String~invalid~in~escaping~'#2'. }
      {
        LaTeX~came~across~the~escape~character~'#1'~not~followed~by~
        two~hexadecimal~digits.~This~is~invalid~in~the~escaping~'#2'.
      }
  }
\exp_after:wN \@@_tmp:w \c_hash_str { name }
  \@@_unescape_name_loop:wNN
\exp_after:wN \@@_tmp:w \c_percent_str { url }
  \@@_unescape_url_loop:wNN
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_convert_unescape_string:}
% \begin{macro}[rEXP]{\@@_unescape_string_newlines:wN}
% \begin{macro}[rEXP]{\@@_unescape_string_loop:wNNN}
% \begin{macro}[rEXP]{\@@_unescape_string_repeat:NNNNNN}
%   The \texttt{string} escaping is somewhat similar to the
%   \texttt{name} and \texttt{url} escapings, with escape character |\|.
%   The first step is to convert all three line endings, |^^J|, |^^M|,
%   and |^^M^^J| to the common |^^J|, as per the \textsc{pdf}
%   specification.  This step cannot raise the flag.
%
%   Then the following escape sequences are decoded.
%   \begin{itemize}\def\makelabel#1{\hss\llap{\ttfamily\string#1}}
%     \item[\n] Line feed ($10$)
%     \item[\r] Carriage return ($13$)
%     \item[\t] Horizontal tab ($9$)
%     \item[\b] Backspace ($8$)
%     \item[\f] Form feed ($12$)
%     \item[\(] Left parenthesis
%     \item[\)] Right parenthesis
%     \item[\\] Backslash
%     \item[\ddd] (backslash followed by $1$ to $3$ octal digits) Byte
%       \texttt{ddd} (octal), subtracting $256$ in case of overflow.
%   \end{itemize}
%   If followed by an end-of-line character, the backslash and the
%   end-of-line are ignored. If followed by anything else, the backslash
%   is ignored, raising the error flag.
%    \begin{macrocode}
\group_begin:
  \char_set_catcode_other:N \^^J
  \char_set_catcode_other:N \^^M
  \cs_set_protected:Npn \@@_tmp:w #1
    {
      \cs_new_protected:Npn \@@_convert_unescape_string:
        {
          \group_begin:
            \flag_clear:n { str_byte }
            \flag_clear:n { str_error }
            \int_set:Nn \tex_escapechar:D { 92 }
            \__kernel_tl_gset:Nx \g_@@_result_tl
              {
                \exp_after:wN \@@_unescape_string_newlines:wN
                  \g_@@_result_tl \prg_break: ^^M ?
                \prg_break_point:
              }
            \__kernel_tl_gset:Nx \g_@@_result_tl
              {
                \exp_after:wN \@@_unescape_string_loop:wNNN
                  \g_@@_result_tl #1 ?? { ? \prg_break: }
                \prg_break_point:
              }
            \@@_if_flag_error:nnx { str_byte } { non-byte } { string }
            \@@_if_flag_error:nnx { str_error } { unescape-string } { }
          \group_end:
        }
    }
  \exp_args:No \@@_tmp:w { \c_backslash_str }
  \exp_last_unbraced:NNNNo
    \cs_new:Npn \@@_unescape_string_loop:wNNN #1 \c_backslash_str #2#3#4
        {
          \@@_filter_bytes:n {#1}
          \use_none:n #4
          \@@_output_byte:w '
            \@@_octal_use:NTF #2
              {
                \@@_octal_use:NTF #3
                  {
                    \@@_octal_use:NTF #4
                      {
                        \if_int_compare:w #2 > 3 \exp_stop_f:
                          - 256
                        \fi:
                        \@@_unescape_string_repeat:NNNNNN
                      }
                      { \@@_unescape_string_repeat:NNNNNN ? }
                  }
                  { \@@_unescape_string_repeat:NNNNNN ?? }
              }
              {
                \str_case_e:nnF {#2}
                  {
                    { \c_backslash_str } { 134 }
                    { ( } { 50 }
                    { ) } { 51 }
                    { r } { 15 }
                    { f } { 14 }
                    { n } { 12 }
                    { t } { 11 }
                    { b } { 10 }
                    { ^^J } { 0 - 1 }
                  }
                  {
                    \flag_raise:n { str_error }
                    0 - 1 \use_i:nn
                  }
              }
          \@@_output_end:
          \use_i:nn \@@_unescape_string_loop:wNNN #2#3#4
        }
  \cs_new:Npn \@@_unescape_string_repeat:NNNNNN #1#2#3#4#5#6
    { \@@_output_end: \@@_unescape_string_loop:wNNN }
  \cs_new:Npn \@@_unescape_string_newlines:wN #1 ^^M #2
    {
      #1
      \if_charcode:w ^^J #2 \else: ^^J \fi:
      \@@_unescape_string_newlines:wN #2
    }
  \msg_new:nnnn { str } { unescape-string }
    { String~invalid~in~escaping~'string'. }
    {
      LaTeX~came~across~an~escape~character~'\c_backslash_str'~
      not~followed~by~any~of:~'n',~'r',~'t',~'b',~'f',~'(',~')',~
      '\c_backslash_str',~one~to~three~octal~digits,~or~the~end~
      of~a~line.
    }
\group_end:
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsubsection{Escape methods}
%
% Currently, none of the escape methods can lead to errors, assuming
% that their input is made out of bytes.
%
% \begin{macro}{\@@_convert_escape_hex:}
% \begin{macro}[rEXP]{\@@_escape_hex_char:N}
%   Loop and convert each byte to hexadecimal.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_convert_escape_hex:
  { \@@_convert_gmap:N \@@_escape_hex_char:N }
\cs_new:Npn \@@_escape_hex_char:N #1
  { \@@_output_hexadecimal:n { `#1 } }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_convert_escape_name:}
% \begin{macro}[rEXP]{\@@_escape_name_char:n}
% \begin{macro}[rEXP]{\@@_if_escape_name:nTF}
% \begin{variable}{\c_@@_escape_name_str}
% \begin{variable}{\c_@@_escape_name_not_str}
%   For each byte, test whether it should be output as is, or be
%   \enquote{hash-encoded}.  Roughly, bytes outside the range
%   $[\hexnum{2A},\hexnum{7E}]$ are hash-encoded. We keep two lists of
%   exceptions: characters in \cs{c_@@_escape_name_not_str} are not
%   hash-encoded, and characters in the \cs{c_@@_escape_name_str} are
%   encoded.
%    \begin{macrocode}
\str_const:Nn \c_@@_escape_name_not_str { ! " $ & ' } %$
\str_const:Nn \c_@@_escape_name_str { {}/<>[] }
\cs_new_protected:Npn \@@_convert_escape_name:
  { \@@_convert_gmap:N \@@_escape_name_char:n }
\cs_new:Npn \@@_escape_name_char:n #1
  {
    \@@_if_escape_name:nTF {#1} {#1}
      { \c_hash_str \@@_output_hexadecimal:n {`#1} }
  }
\prg_new_conditional:Npnn \@@_if_escape_name:n #1 { TF }
  {
    \if_int_compare:w `#1 < "2A \exp_stop_f:
      \@@_if_contains_char:NnTF \c_@@_escape_name_not_str {#1}
        \prg_return_true: \prg_return_false:
    \else:
      \if_int_compare:w `#1 > "7E \exp_stop_f:
        \prg_return_false:
      \else:
        \@@_if_contains_char:NnTF \c_@@_escape_name_str {#1}
          \prg_return_false: \prg_return_true:
      \fi:
    \fi:
  }
%    \end{macrocode}
% \end{variable}
% \end{variable}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_convert_escape_string:}
% \begin{macro}[rEXP]{\@@_escape_string_char:N}
% \begin{macro}[rEXP]{\@@_if_escape_string:NTF}
% \begin{variable}{\c_@@_escape_string_str}
%   Any character below (and including) space, and any character above
%   (and including) \texttt{del}, are converted to octal.  One backslash
%   is added before each parenthesis and backslash.
%    \begin{macrocode}
\str_const:Nx \c_@@_escape_string_str
  { \c_backslash_str ( ) }
\cs_new_protected:Npn \@@_convert_escape_string:
  { \@@_convert_gmap:N \@@_escape_string_char:N }
\cs_new:Npn \@@_escape_string_char:N #1
  {
    \@@_if_escape_string:NTF #1
      {
        \@@_if_contains_char:NnT
          \c_@@_escape_string_str {#1}
          { \c_backslash_str }
        #1
      }
      {
        \c_backslash_str
        \int_div_truncate:nn {`#1} {64}
        \int_mod:nn { \int_div_truncate:nn {`#1} { 8 } } { 8 }
        \int_mod:nn {`#1} { 8 }
      }
  }
\prg_new_conditional:Npnn \@@_if_escape_string:N #1 { TF }
  {
    \if_int_compare:w `#1 < "21 \exp_stop_f:
      \prg_return_false:
    \else:
      \if_int_compare:w `#1 > "7E \exp_stop_f:
        \prg_return_false:
      \else:
        \prg_return_true:
      \fi:
    \fi:
  }
%    \end{macrocode}
% \end{variable}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_convert_escape_url:}
% \begin{macro}[rEXP]{\@@_escape_url_char:n}
% \begin{macro}[rEXP]{\@@_if_escape_url:nTF}
%   This function is similar to \cs{@@_convert_escape_name:}, escaping
%   different characters.
%    \begin{macrocode}
\cs_new_protected:Npn \@@_convert_escape_url:
  { \@@_convert_gmap:N \@@_escape_url_char:n }
\cs_new:Npn \@@_escape_url_char:n #1
  {
    \@@_if_escape_url:nTF {#1} {#1}
      { \c_percent_str \@@_output_hexadecimal:n { `#1 } }
  }
\prg_new_conditional:Npnn \@@_if_escape_url:n #1 { TF }
  {
    \if_int_compare:w `#1 < "41 \exp_stop_f:
      \@@_if_contains_char:nnTF { "-.<> } {#1}
        \prg_return_true: \prg_return_false:
    \else:
      \if_int_compare:w `#1 > "7E \exp_stop_f:
        \prg_return_false:
      \else:
        \@@_if_contains_char:nnTF { [ ] } {#1}
          \prg_return_false: \prg_return_true:
      \fi:
    \fi:
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Encoding definitions}
%
% The \texttt{native} encoding is automatically defined. Other encodings
% are loaded as needed. The following encodings are supported:
% \begin{itemize}
%   \item \textsc{utf-8};
%   \item \textsc{utf-16}, big-, little-endian, or with byte order mark;
%   \item \textsc{utf-32}, big-, little-endian, or with byte order mark;
%   \item the \textsc{iso 8859} code pages, numbered from $1$ to $16$,
%     skipping the inexistent \textsc{iso 8859-12}.
% \end{itemize}
%
% \subsubsection{\textsc{utf-8} support}
%
% \begin{macro}{\@@_convert_encode_utf8:}
% \begin{macro}[rEXP]{\@@_encode_utf_viii_char:n}
% \begin{macro}[rEXP]{\@@_encode_utf_viii_loop:wwnnw}
%   Loop through the internal string, and convert each character to its
%   \textsc{utf-8} representation. The representation is built from the
%   right-most (least significant) byte to the left-most (most
%   significant) byte. Continuation bytes are in the range $[128,191]$,
%   taking $64$ different values, hence we roughly want to express the
%   character code in base $64$, shifting the first digit in the
%   representation by some number depending on how many continuation
%   bytes there are. In the range $[0,127]$, output the corresponding
%   byte directly. In the range $[128,2047]$, output the remainder
%   modulo $64$, plus $128$ as a continuation byte, then output the
%   quotient (which is in the range $[0,31]$), shifted by $192$. In the
%   next range, $[2048,65535]$, split the character code into residue
%   and quotient modulo $64$, output the residue as a first continuation
%   byte, then repeat; this leaves us with a quotient in the range
%   $[0,15]$, which we output shifted by $224$. The last range,
%   $[65536,1114111]$, follows the same pattern: once we realize that
%   dividing twice by $64$ leaves us with a number larger than $15$, we
%   repeat, producing a last continuation byte, and offset the quotient
%   by $240$ for the leading byte.
%
%   How is that implemented? \cs{@@_encode_utf_vii_loop:wwnnw} takes
%   successive quotients as its first argument, the quotient from the
%   previous step as its second argument (except in step~$1$), the bound
%   for quotients that trigger one more step or not, and finally the
%   offset used if this step should produce the leading byte. Leading
%   bytes can be in the ranges $[0,127]$, $[192,223]$, $[224,239]$, and
%   $[240,247]$ (really, that last limit should be $244$ because Unicode
%   stops at the code point $1114111$). At each step, if the quotient
%   |#1| is less than the limit |#3| for that range, output the leading
%   byte (|#1| shifted by |#4|) and stop. Otherwise, we need one more
%   step: use the quotient of |#1| by $64$, and |#1| as arguments for
%   the looping auxiliary, and output the continuation byte
%   corresponding to the remainder $|#2|-64|#1|+128$. The bizarre
%   construction |- 1 + 0 *| removes the spurious initial
%   continuation byte (better methods welcome).
%    \begin{macrocode}
\cs_new_protected:cpn { @@_convert_encode_utf8: }
  { \@@_convert_gmap_internal:N \@@_encode_utf_viii_char:n }
\cs_new:Npn \@@_encode_utf_viii_char:n #1
  {
    \@@_encode_utf_viii_loop:wwnnw #1 ; - 1 + 0 * ;
      { 128 } {       0 }
      {  32 } {     192 }
      {  16 } {     224 }
      {   8 } {     240 }
    \s_@@_stop
  }
\cs_new:Npn \@@_encode_utf_viii_loop:wwnnw #1; #2; #3#4 #5 \s_@@_stop
  {
    \if_int_compare:w #1 < #3 \exp_stop_f:
      \@@_output_byte:n { #1 + #4 }
      \exp_after:wN \@@_use_none_delimit_by_s_stop:w
    \fi:
    \exp_after:wN \@@_encode_utf_viii_loop:wwnnw
      \int_value:w \int_div_truncate:nn {#1} {64} ; #1 ;
      #5 \s_@@_stop
    \@@_output_byte:n { #2 - 64 * ( #1 - 2 ) }
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{variable}
%   {
%     \l_@@_missing_flag  ,
%     \l_@@_extra_flag    ,
%     \l_@@_overlong_flag ,
%     \l_@@_overflow_flag ,
%   }
%   When decoding a string that is purportedly in the \textsc{utf-8}
%   encoding, four different errors can occur, signalled by a specific
%   flag for each (we define those flags using \cs{flag_clear_new:n}
%   rather than \cs{flag_new:n}, because they are shared with other
%   encoding definition files).
%   \begin{itemize}
%     \item \enquote{Missing continuation byte}: a leading byte is not
%       followed by the right number of continuation bytes.
%     \item \enquote{Extra continuation byte}: a continuation byte
%       appears where it was not expected, \emph{i.e.}, not after an
%       appropriate leading byte.
%     \item \enquote{Overlong}: a Unicode character is expressed using
%       more bytes than necessary, for instance, \hexnum{C0}\hexnum{80}
%       for the code point $0$, instead of a single null byte.
%     \item \enquote{Overflow}: this occurs when decoding produces
%       Unicode code points greater than $1114111$.
%   \end{itemize}
%   We only raise one \LaTeX3 error message, combining all the errors
%   which occurred. In the short message, the leading comma must be
%   removed to get a grammatically correct sentence. In the long text,
%   first remind the user what a correct \textsc{utf-8} string should
%   look like, then add error-specific information.
%    \begin{macrocode}
\flag_clear_new:n { str_missing }
\flag_clear_new:n { str_extra }
\flag_clear_new:n { str_overlong }
\flag_clear_new:n { str_overflow }
\msg_new:nnnn { str } { utf8-decode }
  {
    Invalid~UTF-8~string:
    \exp_last_unbraced:Nf \use_none:n
      {
        \@@_if_flag_times:nT { str_missing }  { ,~missing~continuation~byte }
        \@@_if_flag_times:nT { str_extra }    { ,~extra~continuation~byte }
        \@@_if_flag_times:nT { str_overlong } { ,~overlong~form }
        \@@_if_flag_times:nT { str_overflow } { ,~code~point~too~large }
      }
    .
  }
  {
    In~the~UTF-8~encoding,~each~Unicode~character~consists~in~
    1~to~4~bytes,~with~the~following~bit~pattern: \\
    \iow_indent:n
      {
        Code~point~\ \ \ \ <~128:~0xxxxxxx \\
        Code~point~\ \ \  <~2048:~110xxxxx~10xxxxxx \\
        Code~point~\ \   <~65536:~1110xxxx~10xxxxxx~10xxxxxx \\
        Code~point~    <~1114112:~11110xxx~10xxxxxx~10xxxxxx~10xxxxxx \\
      }
    Bytes~of~the~form~10xxxxxx~are~called~continuation~bytes.
    \flag_if_raised:nT { str_missing }
      {
        \\\\
        A~leading~byte~(in~the~range~[192,255])~was~not~followed~by~
        the~appropriate~number~of~continuation~bytes.
      }
    \flag_if_raised:nT { str_extra }
      {
        \\\\
        LaTeX~came~across~a~continuation~byte~when~it~was~not~expected.
      }
    \flag_if_raised:nT { str_overlong }
      {
        \\\\
        Every~Unicode~code~point~must~be~expressed~in~the~shortest~
        possible~form.~For~instance,~'0xC0'~'0x83'~is~not~a~valid~
        representation~for~the~code~point~3.
      }
    \flag_if_raised:nT { str_overflow }
      {
        \\\\
        Unicode~limits~code~points~to~the~range~[0,1114111].
      }
  }
\prop_gput:Nnn \g_msg_module_name_prop { str } { LaTeX3 }
\prop_gput:Nnn \g_msg_module_type_prop { str } { }
%    \end{macrocode}
% \end{variable}
%
% \begin{macro}{\@@_convert_decode_utf8:}
% \begin{macro}[rEXP]
%   {
%     \@@_decode_utf_viii_start:N,
%     \@@_decode_utf_viii_continuation:wwN,
%     \@@_decode_utf_viii_aux:wNnnwN
%   }
% \begin{macro}[rEXP]
%   {\@@_decode_utf_viii_overflow:w, \@@_decode_utf_viii_end:}
%   Decoding is significantly harder than encoding. As before, lower
%   some flags, which are tested at the end (in bulk, to trigger at most
%   one \LaTeX3 error, as explained above). We expect successive
%   multi-byte sequences of the form \meta{start byte}
%   \meta{continuation bytes}. The \texttt{_start} auxiliary tests the
%   first byte:
%   \begin{itemize}
%     \item $[0,\hexnum{7F}]$: the byte stands alone, and is converted
%       to its own character code;
%     \item $[\hexnum{80}, \hexnum{BF}]$: unexpected continuation byte,
%       raise the appropriate flag, and convert that byte to the
%       replacement character \hexnum{FFFD};
%     \item $[\hexnum{C0}, \hexnum{FF}]$: this byte should be followed
%       by some continuation byte(s).
%   \end{itemize}
%   In the first two cases, \cs{use_none_delimit_by_q_stop:w} removes
%   data that only the third case requires, namely the limits of ranges
%   of Unicode characters which can be expressed with $1$, $2$, $3$, or
%   $4$ bytes.
%
%   We can now concentrate on the multi-byte case and the
%   \texttt{_continuation} auxiliary. We expect |#3| to be in the range
%   $[\hexnum{80}, \hexnum{BF}]$. The test for this goes as follows: if
%   the character code is less than \hexnum{80}, we compare it to
%   $-\hexnum{C0}$, yielding \texttt{false}; otherwise to \hexnum{C0},
%   yielding \texttt{true} in the range $[\hexnum{80}, \hexnum{BF}]$ and
%   \texttt{false} otherwise. If we find that the byte is not a
%   continuation range, stop the current slew of bytes, output the
%   replacement character, and continue parsing with the \texttt{_start}
%   auxiliary, starting at the byte we just tested. Once we know that
%   the byte is a continuation byte, leave it behind us in the input
%   stream, compute what code point the bytes read so far would produce,
%   and feed that number to the \texttt{_aux} function.
%
%   The \texttt{_aux} function tests whether we should look for more
%   continuation bytes or not. If the number it receives as |#1| is less
%   than the maximum |#4| for the current range, then we are done: check
%   for an overlong representation by comparing |#1| with the maximum
%   |#3| for the previous range. Otherwise, we call the
%   \texttt{_continuation} auxiliary again, after shifting the
%   \enquote{current code point} by |#4| (maximum from the range we just
%   checked).
%
%   Two additional tests are needed: if we reach the end of the list of
%   range maxima and we are still not done, then we are faced with an
%   overflow. Clean up, and again insert the code point \hexnum{FFFD}
%   for the replacement character. Also, every time we read a byte, we
%   need to check whether we reached the end of the string. In a correct
%   \textsc{utf-8} string, this happens automatically when the
%   \texttt{_start} auxiliary leaves its first argument in the input
%   stream: the end-marker begins with \cs{prg_break:}, which ends
%   the loop. On the other hand, if the end is reached when looking for
%   a continuation byte, the \cs{use_none:n} |#3| construction removes
%   the first token from the end-marker, and leaves the \texttt{_end}
%   auxiliary, which raises the appropriate error flag before ending the
%   mapping.
%    \begin{macrocode}
\cs_new_protected:cpn { @@_convert_decode_utf8: }
  {
    \flag_clear:n { str_error }
    \flag_clear:n { str_missing }
    \flag_clear:n { str_extra }
    \flag_clear:n { str_overlong }
    \flag_clear:n { str_overflow }
    \__kernel_tl_gset:Nx \g_@@_result_tl
      {
        \exp_after:wN \@@_decode_utf_viii_start:N \g_@@_result_tl
          { \prg_break: \@@_decode_utf_viii_end: }
        \prg_break_point:
      }
    \@@_if_flag_error:nnx { str_error } { utf8-decode } { }
  }
\cs_new:Npn \@@_decode_utf_viii_start:N #1
  {
    #1
    \if_int_compare:w `#1 < "C0 \exp_stop_f:
      \s_@@
      \if_int_compare:w `#1 < "80 \exp_stop_f:
        \int_value:w `#1
      \else:
        \flag_raise:n { str_extra }
        \flag_raise:n { str_error }
        \int_use:N \c_@@_replacement_char_int
      \fi:
    \else:
      \exp_after:wN \@@_decode_utf_viii_continuation:wwN
      \int_value:w \int_eval:n { `#1 - "C0 } \exp_after:wN
    \fi:
    \s_@@
    \@@_use_none_delimit_by_s_stop:w {"80} {"800} {"10000} {"110000} \s_@@_stop
    \@@_decode_utf_viii_start:N
  }
\cs_new:Npn \@@_decode_utf_viii_continuation:wwN
    #1 \s_@@ #2 \@@_decode_utf_viii_start:N #3
  {
    \use_none:n #3
    \if_int_compare:w `#3 <
          \if_int_compare:w `#3 < "80 \exp_stop_f: - \fi:
          "C0 \exp_stop_f:
      #3
      \exp_after:wN \@@_decode_utf_viii_aux:wNnnwN
      \int_value:w \int_eval:n { #1 * "40 + `#3 - "80 } \exp_after:wN
    \else:
      \s_@@
      \flag_raise:n { str_missing }
      \flag_raise:n { str_error }
      \int_use:N \c_@@_replacement_char_int
    \fi:
    \s_@@
    #2
    \@@_decode_utf_viii_start:N #3
  }
\cs_new:Npn \@@_decode_utf_viii_aux:wNnnwN
    #1 \s_@@ #2#3#4 #5 \@@_decode_utf_viii_start:N #6
  {
    \if_int_compare:w #1 < #4 \exp_stop_f:
      \s_@@
      \if_int_compare:w #1 < #3 \exp_stop_f:
        \flag_raise:n { str_overlong }
        \flag_raise:n { str_error }
        \int_use:N \c_@@_replacement_char_int
      \else:
        #1
      \fi:
    \else:
      \if_meaning:w \s_@@_stop #5
        \@@_decode_utf_viii_overflow:w #1
      \fi:
      \exp_after:wN \@@_decode_utf_viii_continuation:wwN
      \int_value:w \int_eval:n { #1 - #4 } \exp_after:wN
    \fi:
    \s_@@
    #2 {#4} #5
    \@@_decode_utf_viii_start:N
  }
\cs_new:Npn \@@_decode_utf_viii_overflow:w #1 \fi: #2 \fi:
  {
    \fi: \fi:
    \flag_raise:n { str_overflow }
    \flag_raise:n { str_error }
    \int_use:N \c_@@_replacement_char_int
  }
\cs_new:Npn \@@_decode_utf_viii_end:
  {
    \s_@@
    \flag_raise:n { str_missing }
    \flag_raise:n { str_error }
    \int_use:N \c_@@_replacement_char_int \s_@@
    \prg_break:
  }
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsubsection{\textsc{utf-16} support}
%
% The definitions are done in a category code regime where the bytes
% $254$ and $255$ used by the byte order mark have catcode~$12$.
%    \begin{macrocode}
\group_begin:
  \char_set_catcode_other:N \^^fe
  \char_set_catcode_other:N \^^ff
%    \end{macrocode}
%
% \begin{macro}
%   {
%     \@@_convert_encode_utf16:   ,
%     \@@_convert_encode_utf16be: ,
%     \@@_convert_encode_utf16le: ,
%   }
% \begin{macro}[rEXP]
%   {
%     \@@_encode_utf_xvi_aux:N  ,
%     \@@_encode_utf_xvi_char:n ,
%   }
%   When the endianness is not specified, it is big-endian by default,
%   and we add a byte-order mark.  Convert characters one by one in a
%   loop, with different behaviours depending on the character code.
%   \begin{itemize}
%     \item $[0, \hexnum{D7FF}]$: converted to two bytes;
%     \item $[\hexnum{D800}, \hexnum{DFFF}]$ are used as surrogates:
%       they cannot be converted and are replaced by the replacement
%       character;
%     \item $[\hexnum{E000}, \hexnum{FFFF}]$: converted to two bytes;
%     \item $[\hexnum{10000}, \hexnum{10FFFF}]$: converted to a pair of
%       surrogates, each two bytes. The magic \hexnum{D7C0} is
%       $\hexnum{D800}-\hexnum{10000}/\hexnum{400}$.
%   \end{itemize}
%   For the duration of this operation, \cs{@@_tmp:w} is defined as a
%   function to convert a number in the range $[0, \hexnum{FFFF}]$ to a
%   pair of bytes (either big endian or little endian), by feeding the
%   quotient of the division of |#1| by \hexnum{100}, followed by |#1|
%   to \cs{@@_encode_utf_xvi_be:nn} or its \texttt{le} analog: those
%   compute the remainder, and output two bytes for the quotient and
%   remainder.
%    \begin{macrocode}
  \cs_new_protected:cpn { @@_convert_encode_utf16: }
    {
      \@@_encode_utf_xvi_aux:N \@@_output_byte_pair_be:n
      \tl_gput_left:Nx \g_@@_result_tl { ^^fe ^^ff }
    }
  \cs_new_protected:cpn { @@_convert_encode_utf16be: }
    { \@@_encode_utf_xvi_aux:N \@@_output_byte_pair_be:n }
  \cs_new_protected:cpn { @@_convert_encode_utf16le: }
    { \@@_encode_utf_xvi_aux:N \@@_output_byte_pair_le:n }
  \cs_new_protected:Npn \@@_encode_utf_xvi_aux:N #1
    {
      \flag_clear:n { str_error }
      \cs_set_eq:NN \@@_tmp:w #1
      \@@_convert_gmap_internal:N \@@_encode_utf_xvi_char:n
      \@@_if_flag_error:nnx { str_error } { utf16-encode } { }
    }
  \cs_new:Npn \@@_encode_utf_xvi_char:n #1
    {
      \if_int_compare:w #1 < "D800 \exp_stop_f:
        \@@_tmp:w {#1}
      \else:
        \if_int_compare:w #1 < "10000 \exp_stop_f:
          \if_int_compare:w #1 < "E000 \exp_stop_f:
            \flag_raise:n { str_error }
            \@@_tmp:w { \c_@@_replacement_char_int }
          \else:
            \@@_tmp:w {#1}
          \fi:
        \else:
          \exp_args:Nf \@@_tmp:w { \int_div_truncate:nn {#1} {"400} + "D7C0 }
          \exp_args:Nf \@@_tmp:w { \int_mod:nn {#1} {"400} + "DC00 }
        \fi:
      \fi:
    }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{variable}
%   {
%     \l_@@_missing_flag ,
%     \l_@@_extra_flag   ,
%     \l_@@_end_flag     ,
%   }
%   When encoding a Unicode string to \textsc{utf-16}, only one error
%   can occur: code points in the range $[\hexnum{D800},
%   \hexnum{DFFF}]$, corresponding to surrogates, cannot be encoded. We
%   use the all-purpose flag \texttt{@@_error} to signal that error.
%
%   When decoding a Unicode string which is purportedly in
%   \textsc{utf-16}, three errors can occur: a missing trail surrogate,
%   an unexpected trail surrogate, and a string containing an odd number
%   of bytes.
%    \begin{macrocode}
  \flag_clear_new:n { str_missing }
  \flag_clear_new:n { str_extra }
  \flag_clear_new:n { str_end }
  \msg_new:nnnn { str } { utf16-encode }
    { Unicode~string~cannot~be~expressed~in~UTF-16:~surrogate. }
    {
      Surrogate~code~points~(in~the~range~[U+D800,~U+DFFF])~
      can~be~expressed~in~the~UTF-8~and~UTF-32~encodings,~
      but~not~in~the~UTF-16~encoding.
    }
  \msg_new:nnnn { str } { utf16-decode }
    {
      Invalid~UTF-16~string:
      \exp_last_unbraced:Nf \use_none:n
        {
          \@@_if_flag_times:nT { str_missing }  { ,~missing~trail~surrogate }
          \@@_if_flag_times:nT { str_extra }    { ,~extra~trail~surrogate }
          \@@_if_flag_times:nT { str_end }      { ,~odd~number~of~bytes }
        }
      .
    }
    {
      In~the~UTF-16~encoding,~each~Unicode~character~is~encoded~as~
      2~or~4~bytes: \\
      \iow_indent:n
        {
          Code~point~in~[U+0000,~U+D7FF]:~two~bytes \\
          Code~point~in~[U+D800,~U+DFFF]:~illegal \\
          Code~point~in~[U+E000,~U+FFFF]:~two~bytes \\
          Code~point~in~[U+10000,~U+10FFFF]:~
            a~lead~surrogate~and~a~trail~surrogate \\
        }
      Lead~surrogates~are~pairs~of~bytes~in~the~range~[0xD800,~0xDBFF],~
      and~trail~surrogates~are~in~the~range~[0xDC00,~0xDFFF].
      \flag_if_raised:nT { str_missing }
        {
          \\\\
          A~lead~surrogate~was~not~followed~by~a~trail~surrogate.
        }
      \flag_if_raised:nT { str_extra }
        {
          \\\\
          LaTeX~came~across~a~trail~surrogate~when~it~was~not~expected.
        }
      \flag_if_raised:nT { str_end }
        {
          \\\\
          The~string~contained~an~odd~number~of~bytes.~This~is~invalid:~
          the~basic~code~unit~for~UTF-16~is~16~bits~(2~bytes).
        }
    }
%    \end{macrocode}
% \end{variable}
%
% \begin{macro}
%   {
%     \@@_convert_decode_utf16:   ,
%     \@@_convert_decode_utf16be: ,
%     \@@_convert_decode_utf16le: ,
%   }
% \begin{macro}{\@@_decode_utf_xvi_bom:NN, \@@_decode_utf_xvi:Nw}
%   As for \textsc{utf-8}, decoding \textsc{utf-16} is harder than
%   encoding it. If the endianness is unknown, check the first two
%   bytes: if those are \hexnum{FE} and \hexnum{FF} in either order,
%   remove them and use the corresponding endianness, otherwise assume
%   big-endianness. The three endianness cases are based on a common
%   auxiliary whose first argument is $1$ for big-endian and $2$ for
%   little-endian, and whose second argument, delimited by the scan mark
%   \cs{s_@@_stop}, is expanded once (the string may be long; passing
%   \cs{g_@@_result_tl} as an argument before expansion is cheaper).
%
%   The \cs{@@_decode_utf_xvi:Nw} function defines \cs{@@_tmp:w} to
%   take two arguments and return the character code of the first one if
%   the string is big-endian, and the second one if the string is
%   little-endian, then loops over the string using
%   \cs{@@_decode_utf_xvi_pair:NN} described below.
%    \begin{macrocode}
  \cs_new_protected:cpn { @@_convert_decode_utf16be: }
    { \@@_decode_utf_xvi:Nw 1 \g_@@_result_tl \s_@@_stop }
  \cs_new_protected:cpn { @@_convert_decode_utf16le: }
    { \@@_decode_utf_xvi:Nw 2 \g_@@_result_tl \s_@@_stop }
  \cs_new_protected:cpn { @@_convert_decode_utf16: }
    {
      \exp_after:wN \@@_decode_utf_xvi_bom:NN
        \g_@@_result_tl \s_@@_stop \s_@@_stop \s_@@_stop
    }
  \cs_new_protected:Npn \@@_decode_utf_xvi_bom:NN #1#2
    {
      \str_if_eq:nnTF { #1#2 } { ^^ff ^^fe }
        { \@@_decode_utf_xvi:Nw 2 }
        {
          \str_if_eq:nnTF { #1#2 } { ^^fe ^^ff }
            { \@@_decode_utf_xvi:Nw 1 }
            { \@@_decode_utf_xvi:Nw 1 #1#2 }
        }
    }
  \cs_new_protected:Npn \@@_decode_utf_xvi:Nw #1#2 \s_@@_stop
    {
      \flag_clear:n { str_error }
      \flag_clear:n { str_missing }
      \flag_clear:n { str_extra }
      \flag_clear:n { str_end }
      \cs_set:Npn \@@_tmp:w ##1 ##2 { ` ## #1 }
      \__kernel_tl_gset:Nx \g_@@_result_tl
        {
          \exp_after:wN \@@_decode_utf_xvi_pair:NN
            #2 \q_@@_nil \q_@@_nil
          \prg_break_point:
        }
      \@@_if_flag_error:nnx { str_error } { utf16-decode } { }
    }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[rEXP]
%   {
%     \@@_decode_utf_xvi_pair:NN     ,
%     \@@_decode_utf_xvi_quad:NNwNN  ,
%     \@@_decode_utf_xvi_pair_end:Nw ,
%   }
% \begin{macro}[rEXP]
%   {
%     \@@_decode_utf_xvi_error:nNN ,
%     \@@_decode_utf_xvi_extra:NNw ,
%   }
%   Bytes are read two at a time. At this stage, |\@@_tmp:w #1#2|
%   expands to the character code of the most significant byte, and we
%   distinguish cases depending on which range it lies in:
%   \begin{itemize}
%     \item $[\hexnum{D8}, \hexnum{DB}]$ signals a lead surrogate, and
%       the integer expression yields $1$ (\eTeX{} rounds ties away from
%       zero);
%     \item $[\hexnum{DC}, \hexnum{DF}]$ signals a trail surrogate,
%       unexpected here, and the integer expression yields $2$;
%     \item any other value signals a code point in the Basic
%       Multilingual Plane, which stands for itself, and the
%       \cs{if_case:w} construction expands to nothing (cases other than
%       $1$ or $2$), leaving the relevant material in the input stream,
%       followed by another call to the \texttt{_pair} auxiliary.
%   \end{itemize}
%   The case of a lead surrogate is treated by the \texttt{_quad}
%   auxiliary, whose arguments |#1|, |#2|, |#4| and |#5| are the four
%   bytes. We expect the most significant byte of |#4#5| to be in the
%   range $[\hexnum{DC}, \hexnum{DF}]$ (trail surrogate). The test is
%   similar to the test used for continuation bytes in the
%   \textsc{utf-8} decoding functions. In the case where |#4#5| is
%   indeed a trail surrogate, leave |#1#2#4#5| \cs{s_@@}
%   \meta{code~point} \cs{s_@@}, and remove the pair |#4#5| before
%   looping with \cs{@@_decode_utf_xvi_pair:NN}. Otherwise, of course,
%   complain about the missing surrogate.
%
%   The magic number \hexnum{D7F7} is such that
%   $\hexnum{D7F7}*\hexnum{400} = \hexnum{D800}*\hexnum{400} +
%   \hexnum{DC00} - \hexnum{10000}$.
%
%   Every time we read a pair of bytes, we test for the end-marker
%   \cs{q_@@_nil}. When reaching the end, we additionally check that the
%   string had an even length. Also, if the end is reached when
%   expecting a trail surrogate, we treat that as a missing surrogate.
%    \begin{macrocode}
  \cs_new:Npn \@@_decode_utf_xvi_pair:NN #1#2
    {
      \if_meaning:w \q_@@_nil #2
        \@@_decode_utf_xvi_pair_end:Nw #1
      \fi:
      \if_case:w
        \int_eval:n { ( \@@_tmp:w #1#2 - "D6 ) / 4 } \scan_stop:
      \or: \exp_after:wN \@@_decode_utf_xvi_quad:NNwNN
      \or: \exp_after:wN \@@_decode_utf_xvi_extra:NNw
      \fi:
      #1#2 \s_@@
      \int_eval:n { "100 * \@@_tmp:w #1#2 + \@@_tmp:w #2#1 } \s_@@
      \@@_decode_utf_xvi_pair:NN
    }
  \cs_new:Npn \@@_decode_utf_xvi_quad:NNwNN
      #1#2 #3 \@@_decode_utf_xvi_pair:NN #4#5
    {
      \if_meaning:w \q_@@_nil #5
        \@@_decode_utf_xvi_error:nNN { missing } #1#2
        \@@_decode_utf_xvi_pair_end:Nw #4
      \fi:
      \if_int_compare:w
          \if_int_compare:w \@@_tmp:w #4#5 < "DC \exp_stop_f:
            0 = 1
          \else:
            \@@_tmp:w #4#5 < "E0
          \fi:
          \exp_stop_f:
        #1 #2 #4 #5 \s_@@
        \int_eval:n
          {
            ( "100 * \@@_tmp:w #1#2 + \@@_tmp:w #2#1 - "D7F7 ) * "400
            + "100 * \@@_tmp:w #4#5 + \@@_tmp:w #5#4
          }
        \s_@@
        \exp_after:wN \use_i:nnn
      \else:
        \@@_decode_utf_xvi_error:nNN { missing } #1#2
      \fi:
      \@@_decode_utf_xvi_pair:NN #4#5
    }
  \cs_new:Npn \@@_decode_utf_xvi_pair_end:Nw #1 \fi:
    {
      \fi:
      \if_meaning:w \q_@@_nil #1
      \else:
        \@@_decode_utf_xvi_error:nNN { end } #1 \prg_do_nothing:
      \fi:
      \prg_break:
    }
  \cs_new:Npn \@@_decode_utf_xvi_extra:NNw #1#2 \s_@@ #3 \s_@@
    { \@@_decode_utf_xvi_error:nNN { extra } #1#2 }
  \cs_new:Npn \@@_decode_utf_xvi_error:nNN #1#2#3
    {
      \flag_raise:n { str_error }
      \flag_raise:n { str_#1 }
      #2 #3 \s_@@
      \int_use:N \c_@@_replacement_char_int \s_@@
    }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% Restore the original catcodes of bytes $254$ and $255$.
%    \begin{macrocode}
\group_end:
%    \end{macrocode}
%
% \subsubsection{\textsc{utf-32} support}
%
% The definitions are done in a category code regime where the bytes
% $0$, $254$ and $255$ used by the byte order mark have catcode
% \enquote{other}.
%    \begin{macrocode}
\group_begin:
  \char_set_catcode_other:N \^^00
  \char_set_catcode_other:N \^^fe
  \char_set_catcode_other:N \^^ff
%    \end{macrocode}
%
% \begin{macro}
%   {
%     \@@_convert_encode_utf32:   ,
%     \@@_convert_encode_utf32be: ,
%     \@@_convert_encode_utf32le: ,
%   }
% \begin{macro}[rEXP]
%   {
%     \@@_encode_utf_xxxii_be:n      ,
%     \@@_encode_utf_xxxii_be_aux:nn ,
%     \@@_encode_utf_xxxii_le:n      ,
%     \@@_encode_utf_xxxii_le_aux:nn ,
%   }
%   Convert each integer in the comma-list \cs{g_@@_result_tl} to a
%   sequence of four bytes. The functions for big-endian and
%   little-endian encodings are very similar, but the
%   \cs{@@_output_byte:n} instructions are reversed.
%    \begin{macrocode}
  \cs_new_protected:cpn { @@_convert_encode_utf32: }
    {
      \@@_convert_gmap_internal:N \@@_encode_utf_xxxii_be:n
      \tl_gput_left:Nx \g_@@_result_tl { ^^00 ^^00 ^^fe ^^ff }
    }
  \cs_new_protected:cpn { @@_convert_encode_utf32be: }
    { \@@_convert_gmap_internal:N \@@_encode_utf_xxxii_be:n }
  \cs_new_protected:cpn { @@_convert_encode_utf32le: }
    { \@@_convert_gmap_internal:N \@@_encode_utf_xxxii_le:n }
  \cs_new:Npn \@@_encode_utf_xxxii_be:n #1
    {
      \exp_args:Nf \@@_encode_utf_xxxii_be_aux:nn
        { \int_div_truncate:nn {#1} { "100 } } {#1}
    }
  \cs_new:Npn \@@_encode_utf_xxxii_be_aux:nn #1#2
    {
      ^^00
      \@@_output_byte_pair_be:n {#1}
      \@@_output_byte:n { #2 - #1 * "100 }
    }
  \cs_new:Npn \@@_encode_utf_xxxii_le:n #1
    {
      \exp_args:Nf \@@_encode_utf_xxxii_le_aux:nn
        { \int_div_truncate:nn {#1} { "100 } } {#1}
    }
  \cs_new:Npn \@@_encode_utf_xxxii_le_aux:nn #1#2
    {
      \@@_output_byte:n { #2 - #1 * "100 }
      \@@_output_byte_pair_le:n {#1}
      ^^00
    }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{variable}{str_overflow, str_end}
%   There can be no error when encoding in \textsc{utf-32}. When
%   decoding, the string may not have length $4n$, or it may contain
%   code points larger than \hexnum{10FFFF}. The latter case often
%   happens if the encoding was in fact not \textsc{utf-32}, because
%   most arbitrary strings are not valid in \textsc{utf-32}.
%    \begin{macrocode}
  \flag_clear_new:n { str_overflow }
  \flag_clear_new:n { str_end }
  \msg_new:nnnn { str } { utf32-decode }
    {
      Invalid~UTF-32~string:
      \exp_last_unbraced:Nf \use_none:n
        {
          \@@_if_flag_times:nT { str_overflow } { ,~code~point~too~large }
          \@@_if_flag_times:nT { str_end }      { ,~truncated~string }
        }
      .
    }
    {
      In~the~UTF-32~encoding,~every~Unicode~character~
      (in~the~range~[U+0000,~U+10FFFF])~is~encoded~as~4~bytes.
      \flag_if_raised:nT { str_overflow }
        {
          \\\\
          LaTeX~came~across~a~code~point~larger~than~1114111,~
          the~maximum~code~point~defined~by~Unicode.~
          Perhaps~the~string~was~not~encoded~in~the~UTF-32~encoding?
        }
      \flag_if_raised:nT { str_end }
        {
          \\\\
          The~length~of~the~string~is~not~a~multiple~of~4.~
          Perhaps~the~string~was~truncated?
        }
    }
%    \end{macrocode}
% \end{variable}
%
% \begin{macro}
%   {
%     \@@_convert_decode_utf32:   ,
%     \@@_convert_decode_utf32be: ,
%     \@@_convert_decode_utf32le: ,
%   }
% \begin{macro}
%   {\@@_decode_utf_xxxii_bom:NNNN, \@@_decode_utf_xxxii:Nw}
% \begin{macro}[rEXP]
%   {\@@_decode_utf_xxxii_loop:NNNN, \@@_decode_utf_xxxii_end:w}
%
%   The structure is similar to \textsc{utf-16} decoding functions. If
%   the endianness is not given, test the first $4$ bytes of the string
%   (possibly \cs{s_@@_stop} if the string is too short) for the presence
%   of a byte-order mark. If there is a byte-order mark, use that
%   endianness, and remove the $4$ bytes, otherwise default to
%   big-endian, and leave the $4$ bytes in place. The
%   \cs{@@_decode_utf_xxxii:Nw} auxiliary receives $1$ or $2$ as its
%   first argument indicating endianness, and the string to convert as
%   its second argument (expanded or not). It sets \cs{@@_tmp:w} to
%   expand to the character code of either of its two arguments
%   depending on endianness, then triggers the \texttt{_loop} auxiliary
%   inside an \texttt{x}-expanding assignment to \cs{g_@@_result_tl}.
%
%   The \texttt{_loop} auxiliary first checks for the end-of-string
%   marker \cs{s_@@_stop}, calling the \texttt{_end} auxiliary if
%   appropriate. Otherwise, leave the \meta{4~bytes} \cs{s_@@} behind,
%   then check that the code point is not overflowing: the leading byte
%   must be $0$, and the following byte at most $16$.
%
%   In the ending code, we check that there remains no byte: there
%   should be nothing left until the first \cs{s_@@_stop}. Break the map.
%    \begin{macrocode}
  \cs_new_protected:cpn { @@_convert_decode_utf32be: }
    { \@@_decode_utf_xxxii:Nw 1 \g_@@_result_tl \s_@@_stop }
  \cs_new_protected:cpn { @@_convert_decode_utf32le: }
    { \@@_decode_utf_xxxii:Nw 2 \g_@@_result_tl \s_@@_stop }
  \cs_new_protected:cpn { @@_convert_decode_utf32: }
    {
      \exp_after:wN \@@_decode_utf_xxxii_bom:NNNN \g_@@_result_tl
        \s_@@_stop \s_@@_stop \s_@@_stop \s_@@_stop \s_@@_stop
    }
  \cs_new_protected:Npn \@@_decode_utf_xxxii_bom:NNNN #1#2#3#4
    {
      \str_if_eq:nnTF { #1#2#3#4 } { ^^ff ^^fe ^^00 ^^00 }
        { \@@_decode_utf_xxxii:Nw 2 }
        {
          \str_if_eq:nnTF { #1#2#3#4 } { ^^00 ^^00 ^^fe ^^ff }
            { \@@_decode_utf_xxxii:Nw 1 }
            { \@@_decode_utf_xxxii:Nw 1 #1#2#3#4 }
        }
    }
  \cs_new_protected:Npn \@@_decode_utf_xxxii:Nw #1#2 \s_@@_stop
    {
      \flag_clear:n { str_overflow }
      \flag_clear:n { str_end }
      \flag_clear:n { str_error }
      \cs_set:Npn \@@_tmp:w ##1 ##2 { ` ## #1 }
      \__kernel_tl_gset:Nx \g_@@_result_tl
        {
          \exp_after:wN \@@_decode_utf_xxxii_loop:NNNN
            #2 \s_@@_stop \s_@@_stop \s_@@_stop \s_@@_stop
          \prg_break_point:
        }
      \@@_if_flag_error:nnx { str_error } { utf32-decode } { }
    }
  \cs_new:Npn \@@_decode_utf_xxxii_loop:NNNN #1#2#3#4
    {
      \if_meaning:w \s_@@_stop #4
        \exp_after:wN \@@_decode_utf_xxxii_end:w
      \fi:
      #1#2#3#4 \s_@@
      \if_int_compare:w \@@_tmp:w #1#4 > \c_zero_int
        \flag_raise:n { str_overflow }
        \flag_raise:n { str_error }
        \int_use:N \c_@@_replacement_char_int
      \else:
        \if_int_compare:w \@@_tmp:w #2#3 > 16 \exp_stop_f:
          \flag_raise:n { str_overflow }
          \flag_raise:n { str_error }
          \int_use:N \c_@@_replacement_char_int
        \else:
          \int_eval:n
            { \@@_tmp:w #2#3*"10000 + \@@_tmp:w #3#2*"100 + \@@_tmp:w #4#1 }
        \fi:
      \fi:
      \s_@@
      \@@_decode_utf_xxxii_loop:NNNN
    }
  \cs_new:Npn \@@_decode_utf_xxxii_end:w #1 \s_@@_stop
    {
      \tl_if_empty:nF {#1}
        {
          \flag_raise:n { str_end }
          \flag_raise:n { str_error }
          #1 \s_@@
          \int_use:N \c_@@_replacement_char_int \s_@@
        }
      \prg_break:
    }
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% Restore the original catcodes of bytes $0$, $254$ and $255$.
%    \begin{macrocode}
\group_end:
%    \end{macrocode}
%
% \subsection{PDF names and strings by expansion}
%
% \begin{macro}[EXP]{\str_convert_pdfname:n}
% \begin{macro}[EXP]{\@@_convert_pdfname:n}
% \begin{macro}[EXP]
%   {\@@_convert_pdfname_bytes:n, \@@_convert_pdfname_bytes_aux:n}
% \begin{macro}[EXP]{\@@_convert_pdfname_bytes_aux:nnn}
%   To convert to PDF names by expansion, we work purely on UTF-8 input. The
%   first step is to make a string with \enquote{other} spaces,
%   after which we use a simple token-by-token approach. In Unicode
%   engines, we break down everything before one-byte codepoints, but for
%   $8$-bit engines there is no need to worry. Actual escaping is covered
%   by the same code as used in the non-expandable route.
%    \begin{macrocode}
\cs_new:Npn \str_convert_pdfname:n #1
  {
    \exp_args:Ne \tl_to_str:n
      { \str_map_function:nN {#1} \@@_convert_pdfname:n }
  }
\bool_lazy_or:nnTF
  { \sys_if_engine_luatex_p: }
  { \sys_if_engine_xetex_p: }
  {
    \cs_new:Npn \@@_convert_pdfname:n #1
      {
        \int_compare:nNnTF { `#1 } > { "7F }
          { \@@_convert_pdfname_bytes:n {#1} }
          { \@@_escape_name_char:n {#1} }
      }
    \cs_new:Npn \@@_convert_pdfname_bytes:n #1
      {
        \exp_args:Ne \@@_convert_pdfname_bytes_aux:n
          { \char_to_utfviii_bytes:n {`#1} }
      }
    \cs_new:Npn \@@_convert_pdfname_bytes_aux:n #1
      { \@@_convert_pdfname_bytes_aux:nnnn #1 }
    \cs_new:Npx \@@_convert_pdfname_bytes_aux:nnnn #1#2#3#4
      {
        \c_hash_str \exp_not:N \@@_output_hexadecimal:n {#1}
        \c_hash_str \exp_not:N \@@_output_hexadecimal:n {#2}
        \exp_not:N \tl_if_blank:nF {#3}
          {
            \c_hash_str \exp_not:N \@@_output_hexadecimal:n {#3}
            \exp_not:N \tl_if_blank:nF {#4}
              {
                \c_hash_str \exp_not:N \@@_output_hexadecimal:n {#4}
              }
          }
      }
  }
  { \cs_new_eq:NN \@@_convert_pdfname:n \@@_escape_name_char:n }
%    \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
%    \begin{macrocode}
%</package>
%    \end{macrocode}
%
% \subsubsection{\textsc{iso 8859} support}
%
% The \textsc{iso-8859-1} encoding exactly matches with the $256$ first
% Unicode characters. For other 8-bit encodings of the \textsc{iso-8859}
% family, we keep track only of differences, and of unassigned bytes.
%    \begin{macrocode}
%<*iso88591>
\@@_declare_eight_bit_encoding:nnnn { iso88591 } { 256 }
  {
  }
  {
  }
%</iso88591>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso88592>
\@@_declare_eight_bit_encoding:nnnn { iso88592 } { 399 }
  {
    { A1 } { 0104 }
    { A2 } { 02D8 }
    { A3 } { 0141 }
    { A5 } { 013D }
    { A6 } { 015A }
    { A9 } { 0160 }
    { AA } { 015E }
    { AB } { 0164 }
    { AC } { 0179 }
    { AE } { 017D }
    { AF } { 017B }
    { B1 } { 0105 }
    { B2 } { 02DB }
    { B3 } { 0142 }
    { B5 } { 013E }
    { B6 } { 015B }
    { B7 } { 02C7 }
    { B9 } { 0161 }
    { BA } { 015F }
    { BB } { 0165 }
    { BC } { 017A }
    { BD } { 02DD }
    { BE } { 017E }
    { BF } { 017C }
    { C0 } { 0154 }
    { C3 } { 0102 }
    { C5 } { 0139 }
    { C6 } { 0106 }
    { C8 } { 010C }
    { CA } { 0118 }
    { CC } { 011A }
    { CF } { 010E }
    { D0 } { 0110 }
    { D1 } { 0143 }
    { D2 } { 0147 }
    { D5 } { 0150 }
    { D8 } { 0158 }
    { D9 } { 016E }
    { DB } { 0170 }
    { DE } { 0162 }
    { E0 } { 0155 }
    { E3 } { 0103 }
    { E5 } { 013A }
    { E6 } { 0107 }
    { E8 } { 010D }
    { EA } { 0119 }
    { EC } { 011B }
    { EF } { 010F }
    { F0 } { 0111 }
    { F1 } { 0144 }
    { F2 } { 0148 }
    { F5 } { 0151 }
    { F8 } { 0159 }
    { F9 } { 016F }
    { FB } { 0171 }
    { FE } { 0163 }
    { FF } { 02D9 }
  }
  {
  }
%</iso88592>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso88593>
\@@_declare_eight_bit_encoding:nnnn { iso88593 } { 384 }
  {
    { A1 } { 0126 }
    { A2 } { 02D8 }
    { A6 } { 0124 }
    { A9 } { 0130 }
    { AA } { 015E }
    { AB } { 011E }
    { AC } { 0134 }
    { AF } { 017B }
    { B1 } { 0127 }
    { B6 } { 0125 }
    { B9 } { 0131 }
    { BA } { 015F }
    { BB } { 011F }
    { BC } { 0135 }
    { BF } { 017C }
    { C5 } { 010A }
    { C6 } { 0108 }
    { D5 } { 0120 }
    { D8 } { 011C }
    { DD } { 016C }
    { DE } { 015C }
    { E5 } { 010B }
    { E6 } { 0109 }
    { F5 } { 0121 }
    { F8 } { 011D }
    { FD } { 016D }
    { FE } { 015D }
    { FF } { 02D9 }
  }
  {
    { A5 }
    { AE }
    { BE }
    { C3 }
    { D0 }
    { E3 }
    { F0 }
  }
%</iso88593>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso88594>
\@@_declare_eight_bit_encoding:nnnn { iso88594 } { 383 }
  {
    { A1 } { 0104 }
    { A2 } { 0138 }
    { A3 } { 0156 }
    { A5 } { 0128 }
    { A6 } { 013B }
    { A9 } { 0160 }
    { AA } { 0112 }
    { AB } { 0122 }
    { AC } { 0166 }
    { AE } { 017D }
    { B1 } { 0105 }
    { B2 } { 02DB }
    { B3 } { 0157 }
    { B5 } { 0129 }
    { B6 } { 013C }
    { B7 } { 02C7 }
    { B9 } { 0161 }
    { BA } { 0113 }
    { BB } { 0123 }
    { BC } { 0167 }
    { BD } { 014A }
    { BE } { 017E }
    { BF } { 014B }
    { C0 } { 0100 }
    { C7 } { 012E }
    { C8 } { 010C }
    { CA } { 0118 }
    { CC } { 0116 }
    { CF } { 012A }
    { D0 } { 0110 }
    { D1 } { 0145 }
    { D2 } { 014C }
    { D3 } { 0136 }
    { D9 } { 0172 }
    { DD } { 0168 }
    { DE } { 016A }
    { E0 } { 0101 }
    { E7 } { 012F }
    { E8 } { 010D }
    { EA } { 0119 }
    { EC } { 0117 }
    { EF } { 012B }
    { F0 } { 0111 }
    { F1 } { 0146 }
    { F2 } { 014D }
    { F3 } { 0137 }
    { F9 } { 0173 }
    { FD } { 0169 }
    { FE } { 016B }
    { FF } { 02D9 }
  }
  {
  }
%</iso88594>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso88595>
\@@_declare_eight_bit_encoding:nnnn { iso88595 } { 374 }
  {
    { A1 } { 0401 }
    { A2 } { 0402 }
    { A3 } { 0403 }
    { A4 } { 0404 }
    { A5 } { 0405 }
    { A6 } { 0406 }
    { A7 } { 0407 }
    { A8 } { 0408 }
    { A9 } { 0409 }
    { AA } { 040A }
    { AB } { 040B }
    { AC } { 040C }
    { AE } { 040E }
    { AF } { 040F }
    { B0 } { 0410 }
    { B1 } { 0411 }
    { B2 } { 0412 }
    { B3 } { 0413 }
    { B4 } { 0414 }
    { B5 } { 0415 }
    { B6 } { 0416 }
    { B7 } { 0417 }
    { B8 } { 0418 }
    { B9 } { 0419 }
    { BA } { 041A }
    { BB } { 041B }
    { BC } { 041C }
    { BD } { 041D }
    { BE } { 041E }
    { BF } { 041F }
    { C0 } { 0420 }
    { C1 } { 0421 }
    { C2 } { 0422 }
    { C3 } { 0423 }
    { C4 } { 0424 }
    { C5 } { 0425 }
    { C6 } { 0426 }
    { C7 } { 0427 }
    { C8 } { 0428 }
    { C9 } { 0429 }
    { CA } { 042A }
    { CB } { 042B }
    { CC } { 042C }
    { CD } { 042D }
    { CE } { 042E }
    { CF } { 042F }
    { D0 } { 0430 }
    { D1 } { 0431 }
    { D2 } { 0432 }
    { D3 } { 0433 }
    { D4 } { 0434 }
    { D5 } { 0435 }
    { D6 } { 0436 }
    { D7 } { 0437 }
    { D8 } { 0438 }
    { D9 } { 0439 }
    { DA } { 043A }
    { DB } { 043B }
    { DC } { 043C }
    { DD } { 043D }
    { DE } { 043E }
    { DF } { 043F }
    { E0 } { 0440 }
    { E1 } { 0441 }
    { E2 } { 0442 }
    { E3 } { 0443 }
    { E4 } { 0444 }
    { E5 } { 0445 }
    { E6 } { 0446 }
    { E7 } { 0447 }
    { E8 } { 0448 }
    { E9 } { 0449 }
    { EA } { 044A }
    { EB } { 044B }
    { EC } { 044C }
    { ED } { 044D }
    { EE } { 044E }
    { EF } { 044F }
    { F0 } { 2116 }
    { F1 } { 0451 }
    { F2 } { 0452 }
    { F3 } { 0453 }
    { F4 } { 0454 }
    { F5 } { 0455 }
    { F6 } { 0456 }
    { F7 } { 0457 }
    { F8 } { 0458 }
    { F9 } { 0459 }
    { FA } { 045A }
    { FB } { 045B }
    { FC } { 045C }
    { FD } { 00A7 }
    { FE } { 045E }
    { FF } { 045F }
  }
  {
  }
%</iso88595>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso88596>
\@@_declare_eight_bit_encoding:nnnn { iso88596 } { 344 }
  {
    { AC } { 060C }
    { BB } { 061B }
    { BF } { 061F }
    { C1 } { 0621 }
    { C2 } { 0622 }
    { C3 } { 0623 }
    { C4 } { 0624 }
    { C5 } { 0625 }
    { C6 } { 0626 }
    { C7 } { 0627 }
    { C8 } { 0628 }
    { C9 } { 0629 }
    { CA } { 062A }
    { CB } { 062B }
    { CC } { 062C }
    { CD } { 062D }
    { CE } { 062E }
    { CF } { 062F }
    { D0 } { 0630 }
    { D1 } { 0631 }
    { D2 } { 0632 }
    { D3 } { 0633 }
    { D4 } { 0634 }
    { D5 } { 0635 }
    { D6 } { 0636 }
    { D7 } { 0637 }
    { D8 } { 0638 }
    { D9 } { 0639 }
    { DA } { 063A }
    { E0 } { 0640 }
    { E1 } { 0641 }
    { E2 } { 0642 }
    { E3 } { 0643 }
    { E4 } { 0644 }
    { E5 } { 0645 }
    { E6 } { 0646 }
    { E7 } { 0647 }
    { E8 } { 0648 }
    { E9 } { 0649 }
    { EA } { 064A }
    { EB } { 064B }
    { EC } { 064C }
    { ED } { 064D }
    { EE } { 064E }
    { EF } { 064F }
    { F0 } { 0650 }
    { F1 } { 0651 }
    { F2 } { 0652 }
  }
  {
    { A1 }
    { A2 }
    { A3 }
    { A5 }
    { A6 }
    { A7 }
    { A8 }
    { A9 }
    { AA }
    { AB }
    { AE }
    { AF }
    { B0 }
    { B1 }
    { B2 }
    { B3 }
    { B4 }
    { B5 }
    { B6 }
    { B7 }
    { B8 }
    { B9 }
    { BA }
    { BC }
    { BD }
    { BE }
    { C0 }
    { DB }
    { DC }
    { DD }
    { DE }
    { DF }
  }
%</iso88596>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso88597>
\@@_declare_eight_bit_encoding:nnnn { iso88597 } { 498 }
  {
    { A1 } { 2018 }
    { A2 } { 2019 }
    { A4 } { 20AC }
    { A5 } { 20AF }
    { AA } { 037A }
    { AF } { 2015 }
    { B4 } { 0384 }
    { B5 } { 0385 }
    { B6 } { 0386 }
    { B8 } { 0388 }
    { B9 } { 0389 }
    { BA } { 038A }
    { BC } { 038C }
    { BE } { 038E }
    { BF } { 038F }
    { C0 } { 0390 }
    { C1 } { 0391 }
    { C2 } { 0392 }
    { C3 } { 0393 }
    { C4 } { 0394 }
    { C5 } { 0395 }
    { C6 } { 0396 }
    { C7 } { 0397 }
    { C8 } { 0398 }
    { C9 } { 0399 }
    { CA } { 039A }
    { CB } { 039B }
    { CC } { 039C }
    { CD } { 039D }
    { CE } { 039E }
    { CF } { 039F }
    { D0 } { 03A0 }
    { D1 } { 03A1 }
    { D3 } { 03A3 }
    { D4 } { 03A4 }
    { D5 } { 03A5 }
    { D6 } { 03A6 }
    { D7 } { 03A7 }
    { D8 } { 03A8 }
    { D9 } { 03A9 }
    { DA } { 03AA }
    { DB } { 03AB }
    { DC } { 03AC }
    { DD } { 03AD }
    { DE } { 03AE }
    { DF } { 03AF }
    { E0 } { 03B0 }
    { E1 } { 03B1 }
    { E2 } { 03B2 }
    { E3 } { 03B3 }
    { E4 } { 03B4 }
    { E5 } { 03B5 }
    { E6 } { 03B6 }
    { E7 } { 03B7 }
    { E8 } { 03B8 }
    { E9 } { 03B9 }
    { EA } { 03BA }
    { EB } { 03BB }
    { EC } { 03BC }
    { ED } { 03BD }
    { EE } { 03BE }
    { EF } { 03BF }
    { F0 } { 03C0 }
    { F1 } { 03C1 }
    { F2 } { 03C2 }
    { F3 } { 03C3 }
    { F4 } { 03C4 }
    { F5 } { 03C5 }
    { F6 } { 03C6 }
    { F7 } { 03C7 }
    { F8 } { 03C8 }
    { F9 } { 03C9 }
    { FA } { 03CA }
    { FB } { 03CB }
    { FC } { 03CC }
    { FD } { 03CD }
    { FE } { 03CE }
  }
  {
    { AE }
    { D2 }
  }
%</iso88597>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso88598>
\@@_declare_eight_bit_encoding:nnnn { iso88598 } { 308 }
  {
    { AA } { 00D7 }
    { BA } { 00F7 }
    { DF } { 2017 }
    { E0 } { 05D0 }
    { E1 } { 05D1 }
    { E2 } { 05D2 }
    { E3 } { 05D3 }
    { E4 } { 05D4 }
    { E5 } { 05D5 }
    { E6 } { 05D6 }
    { E7 } { 05D7 }
    { E8 } { 05D8 }
    { E9 } { 05D9 }
    { EA } { 05DA }
    { EB } { 05DB }
    { EC } { 05DC }
    { ED } { 05DD }
    { EE } { 05DE }
    { EF } { 05DF }
    { F0 } { 05E0 }
    { F1 } { 05E1 }
    { F2 } { 05E2 }
    { F3 } { 05E3 }
    { F4 } { 05E4 }
    { F5 } { 05E5 }
    { F6 } { 05E6 }
    { F7 } { 05E7 }
    { F8 } { 05E8 }
    { F9 } { 05E9 }
    { FA } { 05EA }
    { FD } { 200E }
    { FE } { 200F }
  }
  {
    { A1 }
    { BF }
    { C0 }
    { C1 }
    { C2 }
    { C3 }
    { C4 }
    { C5 }
    { C6 }
    { C7 }
    { C8 }
    { C9 }
    { CA }
    { CB }
    { CC }
    { CD }
    { CE }
    { CF }
    { D0 }
    { D1 }
    { D2 }
    { D3 }
    { D4 }
    { D5 }
    { D6 }
    { D7 }
    { D8 }
    { D9 }
    { DA }
    { DB }
    { DC }
    { DD }
    { DE }
    { FB }
    { FC }
  }
%</iso88598>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso88599>
\@@_declare_eight_bit_encoding:nnnn { iso88599 } { 352 }
  {
    { D0 } { 011E }
    { DD } { 0130 }
    { DE } { 015E }
    { F0 } { 011F }
    { FD } { 0131 }
    { FE } { 015F }
  }
  {
  }
%</iso88599>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso885910>
\@@_declare_eight_bit_encoding:nnnn { iso885910 } { 383 }
  {
    { A1 } { 0104 }
    { A2 } { 0112 }
    { A3 } { 0122 }
    { A4 } { 012A }
    { A5 } { 0128 }
    { A6 } { 0136 }
    { A8 } { 013B }
    { A9 } { 0110 }
    { AA } { 0160 }
    { AB } { 0166 }
    { AC } { 017D }
    { AE } { 016A }
    { AF } { 014A }
    { B1 } { 0105 }
    { B2 } { 0113 }
    { B3 } { 0123 }
    { B4 } { 012B }
    { B5 } { 0129 }
    { B6 } { 0137 }
    { B8 } { 013C }
    { B9 } { 0111 }
    { BA } { 0161 }
    { BB } { 0167 }
    { BC } { 017E }
    { BD } { 2015 }
    { BE } { 016B }
    { BF } { 014B }
    { C0 } { 0100 }
    { C7 } { 012E }
    { C8 } { 010C }
    { CA } { 0118 }
    { CC } { 0116 }
    { D1 } { 0145 }
    { D2 } { 014C }
    { D7 } { 0168 }
    { D9 } { 0172 }
    { E0 } { 0101 }
    { E7 } { 012F }
    { E8 } { 010D }
    { EA } { 0119 }
    { EC } { 0117 }
    { F1 } { 0146 }
    { F2 } { 014D }
    { F7 } { 0169 }
    { F9 } { 0173 }
    { FF } { 0138 }
  }
  {
  }
%</iso885910>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso885911>
\@@_declare_eight_bit_encoding:nnnn { iso885911 } { 369 }
  {
    { A1 } { 0E01 }
    { A2 } { 0E02 }
    { A3 } { 0E03 }
    { A4 } { 0E04 }
    { A5 } { 0E05 }
    { A6 } { 0E06 }
    { A7 } { 0E07 }
    { A8 } { 0E08 }
    { A9 } { 0E09 }
    { AA } { 0E0A }
    { AB } { 0E0B }
    { AC } { 0E0C }
    { AD } { 0E0D }
    { AE } { 0E0E }
    { AF } { 0E0F }
    { B0 } { 0E10 }
    { B1 } { 0E11 }
    { B2 } { 0E12 }
    { B3 } { 0E13 }
    { B4 } { 0E14 }
    { B5 } { 0E15 }
    { B6 } { 0E16 }
    { B7 } { 0E17 }
    { B8 } { 0E18 }
    { B9 } { 0E19 }
    { BA } { 0E1A }
    { BB } { 0E1B }
    { BC } { 0E1C }
    { BD } { 0E1D }
    { BE } { 0E1E }
    { BF } { 0E1F }
    { C0 } { 0E20 }
    { C1 } { 0E21 }
    { C2 } { 0E22 }
    { C3 } { 0E23 }
    { C4 } { 0E24 }
    { C5 } { 0E25 }
    { C6 } { 0E26 }
    { C7 } { 0E27 }
    { C8 } { 0E28 }
    { C9 } { 0E29 }
    { CA } { 0E2A }
    { CB } { 0E2B }
    { CC } { 0E2C }
    { CD } { 0E2D }
    { CE } { 0E2E }
    { CF } { 0E2F }
    { D0 } { 0E30 }
    { D1 } { 0E31 }
    { D2 } { 0E32 }
    { D3 } { 0E33 }
    { D4 } { 0E34 }
    { D5 } { 0E35 }
    { D6 } { 0E36 }
    { D7 } { 0E37 }
    { D8 } { 0E38 }
    { D9 } { 0E39 }
    { DA } { 0E3A }
    { DF } { 0E3F }
    { E0 } { 0E40 }
    { E1 } { 0E41 }
    { E2 } { 0E42 }
    { E3 } { 0E43 }
    { E4 } { 0E44 }
    { E5 } { 0E45 }
    { E6 } { 0E46 }
    { E7 } { 0E47 }
    { E8 } { 0E48 }
    { E9 } { 0E49 }
    { EA } { 0E4A }
    { EB } { 0E4B }
    { EC } { 0E4C }
    { ED } { 0E4D }
    { EE } { 0E4E }
    { EF } { 0E4F }
    { F0 } { 0E50 }
    { F1 } { 0E51 }
    { F2 } { 0E52 }
    { F3 } { 0E53 }
    { F4 } { 0E54 }
    { F5 } { 0E55 }
    { F6 } { 0E56 }
    { F7 } { 0E57 }
    { F8 } { 0E58 }
    { F9 } { 0E59 }
    { FA } { 0E5A }
    { FB } { 0E5B }
  }
  {
    { DB }
    { DC }
    { DD }
    { DE }
  }
%</iso885911>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso885913>
\@@_declare_eight_bit_encoding:nnnn { iso885913 } { 399 }
  {
    { A1 } { 201D }
    { A5 } { 201E }
    { A8 } { 00D8 }
    { AA } { 0156 }
    { AF } { 00C6 }
    { B4 } { 201C }
    { B8 } { 00F8 }
    { BA } { 0157 }
    { BF } { 00E6 }
    { C0 } { 0104 }
    { C1 } { 012E }
    { C2 } { 0100 }
    { C3 } { 0106 }
    { C6 } { 0118 }
    { C7 } { 0112 }
    { C8 } { 010C }
    { CA } { 0179 }
    { CB } { 0116 }
    { CC } { 0122 }
    { CD } { 0136 }
    { CE } { 012A }
    { CF } { 013B }
    { D0 } { 0160 }
    { D1 } { 0143 }
    { D2 } { 0145 }
    { D4 } { 014C }
    { D8 } { 0172 }
    { D9 } { 0141 }
    { DA } { 015A }
    { DB } { 016A }
    { DD } { 017B }
    { DE } { 017D }
    { E0 } { 0105 }
    { E1 } { 012F }
    { E2 } { 0101 }
    { E3 } { 0107 }
    { E6 } { 0119 }
    { E7 } { 0113 }
    { E8 } { 010D }
    { EA } { 017A }
    { EB } { 0117 }
    { EC } { 0123 }
    { ED } { 0137 }
    { EE } { 012B }
    { EF } { 013C }
    { F0 } { 0161 }
    { F1 } { 0144 }
    { F2 } { 0146 }
    { F4 } { 014D }
    { F8 } { 0173 }
    { F9 } { 0142 }
    { FA } { 015B }
    { FB } { 016B }
    { FD } { 017C }
    { FE } { 017E }
    { FF } { 2019 }
  }
  {
  }
%</iso885913>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso885914>
\@@_declare_eight_bit_encoding:nnnn { iso885914 } { 529 }
  {
    { A1 } { 1E02 }
    { A2 } { 1E03 }
    { A4 } { 010A }
    { A5 } { 010B }
    { A6 } { 1E0A }
    { A8 } { 1E80 }
    { AA } { 1E82 }
    { AB } { 1E0B }
    { AC } { 1EF2 }
    { AF } { 0178 }
    { B0 } { 1E1E }
    { B1 } { 1E1F }
    { B2 } { 0120 }
    { B3 } { 0121 }
    { B4 } { 1E40 }
    { B5 } { 1E41 }
    { B7 } { 1E56 }
    { B8 } { 1E81 }
    { B9 } { 1E57 }
    { BA } { 1E83 }
    { BB } { 1E60 }
    { BC } { 1EF3 }
    { BD } { 1E84 }
    { BE } { 1E85 }
    { BF } { 1E61 }
    { D0 } { 0174 }
    { D7 } { 1E6A }
    { DE } { 0176 }
    { F0 } { 0175 }
    { F7 } { 1E6B }
    { FE } { 0177 }
  }
  {
  }
%</iso885914>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso885915>
\@@_declare_eight_bit_encoding:nnnn { iso885915 } { 383 }
  {
    { A4 } { 20AC }
    { A6 } { 0160 }
    { A8 } { 0161 }
    { B4 } { 017D }
    { B8 } { 017E }
    { BC } { 0152 }
    { BD } { 0153 }
    { BE } { 0178 }
  }
  {
  }
%</iso885915>
%    \end{macrocode}
%
%    \begin{macrocode}
%<*iso885916>
\@@_declare_eight_bit_encoding:nnnn { iso885916 } { 558 }
  {
    { A1 } { 0104 }
    { A2 } { 0105 }
    { A3 } { 0141 }
    { A4 } { 20AC }
    { A5 } { 201E }
    { A6 } { 0160 }
    { A8 } { 0161 }
    { AA } { 0218 }
    { AC } { 0179 }
    { AE } { 017A }
    { AF } { 017B }
    { B2 } { 010C }
    { B3 } { 0142 }
    { B4 } { 017D }
    { B5 } { 201D }
    { B8 } { 017E }
    { B9 } { 010D }
    { BA } { 0219 }
    { BC } { 0152 }
    { BD } { 0153 }
    { BE } { 0178 }
    { BF } { 017C }
    { C3 } { 0102 }
    { C5 } { 0106 }
    { D0 } { 0110 }
    { D1 } { 0143 }
    { D5 } { 0150 }
    { D7 } { 015A }
    { D8 } { 0170 }
    { DD } { 0118 }
    { DE } { 021A }
    { E3 } { 0103 }
    { E5 } { 0107 }
    { F0 } { 0111 }
    { F1 } { 0144 }
    { F5 } { 0151 }
    { F7 } { 015B }
    { F8 } { 0171 }
    { FD } { 0119 }
    { FE } { 021B }
  }
  {
  }
%</iso885916>
%    \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex