1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
|
% \iffalse meta-comment
%
%% File: l3seq.dtx Copyright (C) 1990-2012 The LaTeX3 Project
%%
%% It may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License (LPPL), either version 1.3c of this
%% license or (at your option) any later version. The latest version
%% of this license is in the file
%%
%% http://www.latex-project.org/lppl.txt
%%
%% This file is part of the "l3kernel bundle" (The Work in LPPL)
%% and all files in that bundle must be distributed together.
%%
%% The released version of this bundle is available from CTAN.
%%
%% -----------------------------------------------------------------------
%%
%% The development version of the bundle can be found at
%%
%% http://www.latex-project.org/svnroot/experimental/trunk/
%%
%% for those people who are interested.
%%
%%%%%%%%%%%
%% NOTE: %%
%%%%%%%%%%%
%%
%% Snapshots taken from the repository represent work in progress and may
%% not work or may contain conflicting material! We therefore ask
%% people _not_ to put them into distributions, archives, etc. without
%% prior consultation with the LaTeX3 Project.
%%
%% -----------------------------------------------------------------------
%
%<*driver|package>
\RequirePackage{l3names}
\GetIdInfo$Id: l3seq.dtx 3158 2012-01-09 00:47:42Z bruno $
{L3 Experimental sequences and stacks}
%</driver|package>
%<*driver>
\documentclass[full]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{^^A
% The \pkg{l3seq} package\\ Sequences and stacks^^A
% \thanks{This file describes v\ExplFileVersion,
% last revised \ExplFileDate.}^^A
% }
%
% \author{^^A
% The \LaTeX3 Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released \ExplFileDate}
%
% \maketitle
%
% \begin{documentation}
%
% \LaTeX3 implements a \enquote{sequence} data type, which contain
% an ordered list of entries which may contain any \meta{balanced text}.
% It is possible to map functions to sequences such that the function
% is applied to every item in the sequence.
%
% Sequences are also used to implement stack functions in \LaTeX3. This
% is achieved using a number of dedicated stack functions.
%
% \section{Creating and initialising sequences}
%
% \begin{function}{\seq_new:N, \seq_new:c}
% \begin{syntax}
% \cs{seq_new:N} \meta{sequence}
% \end{syntax}
% Creates a new \meta{sequence} or raises an error if the name is
% already taken. The declaration is global. The \meta{sequence} will
% initially contain no items.
% \end{function}
%
% \begin{function}{\seq_clear:N, \seq_clear:c, \seq_gclear:N, \seq_gclear:c}
% \begin{syntax}
% \cs{seq_clear:N} \meta{sequence}
% \end{syntax}
% Clears all items from the \meta{sequence}.
% \end{function}
%
% \begin{function}
% {\seq_clear_new:N, \seq_clear_new:c, \seq_gclear_new:N, \seq_gclear_new:c}
% \begin{syntax}
% \cs{seq_clear_new:N} \meta{sequence}
% \end{syntax}
% Ensures that the \meta{sequence} exists globally by applying
% \cs{seq_new:N} if necessary, then applies \cs{seq_(g)clear:N} to leave
% the \meta{sequence} empty.
% \end{function}
%
% \begin{function}
% {
% \seq_set_eq:NN, \seq_set_eq:cN, \seq_set_eq:Nc, \seq_set_eq:cc,
% \seq_gset_eq:NN, \seq_gset_eq:cN, \seq_gset_eq:Nc, \seq_gset_eq:cc
% }
% \begin{syntax}
% \cs{seq_set_eq:NN} \meta{sequence1} \meta{sequence2}
% \end{syntax}
% Sets the content of \meta{sequence1} equal to that of
% \meta{sequence2}.
% \end{function}
%
% \begin{function}[added = 2011-08-15, updated = 2011-12-07]
% {\seq_set_split:Nnn, \seq_gset_split:Nnn}
% \begin{syntax}
% \cs{seq_set_split:Nnn} \meta{sequence} \Arg{delimiter} \Arg{token list}
% \end{syntax}
% Splits the \meta{token list} into \meta{items} separated
% by \meta{delimiter}, and assigns the result to the \meta{sequence}.
% Spaces on both sides of each \meta{item} are ignored,
% then one set of outer braces is removed (if any);
% this space trimming behaviour is identical to that of
% \pkg{l3clist} functions. Empty \meta{items} are preserved by
% \cs{seq_set_split:Nnn}, and can be removed afterwards using
% \cs{seq_remove_all:Nn} \meta{sequence} \Arg{}.
% The \meta{delimiter} may not contain |{|, |}| or |#|
% (assuming \TeX{}'s normal category code r\'egime).
% If the \meta{delimiter} is empty, the \meta{token list} is split
% into \meta{items} as a \meta{token list}.
% \end{function}
%
% \begin{function}
% {\seq_concat:NNN, \seq_concat:ccc, \seq_gconcat:NNN, \seq_gconcat:ccc}
% \begin{syntax}
% \cs{seq_concat:NNN} \meta{sequence1} \meta{sequence2} \meta{sequence3}
% \end{syntax}
% Concatenates the content of \meta{sequence2} and \meta{sequence3}
% together and saves the result in \meta{sequence1}. The items in
% \meta{sequence2} will be placed at the left side of the new sequence.
% \end{function}
%
% \section{Appending data to sequences}
%
% \begin{function}{
% \seq_put_left:Nn, \seq_put_left:NV, \seq_put_left:Nv,
% \seq_put_left:No, \seq_put_left:Nx,
% \seq_put_left:cn, \seq_put_left:cV, \seq_put_left:cv,
% \seq_put_left:co, \seq_put_left:cx,
% \seq_gput_left:Nn, \seq_gput_left:NV, \seq_gput_left:Nv,
% \seq_gput_left:No, \seq_gput_left:Nx,
% \seq_gput_left:cn, \seq_gput_left:cV, \seq_gput_left:cv,
% \seq_gput_left:co, \seq_gput_left:cx
% }
% \begin{syntax}
% \cs{seq_put_left:Nn} \meta{sequence} \Arg{item}
% \end{syntax}
% Appends the \meta{item} to the left of the \meta{sequence}.
% \end{function}
%
% \begin{function}{
% \seq_put_right:Nn, \seq_put_right:NV, \seq_put_right:Nv,
% \seq_put_right:No, \seq_put_right:Nx,
% \seq_put_right:cn, \seq_put_right:cV, \seq_put_right:cv,
% \seq_put_right:co, \seq_put_right:cx,
% \seq_gput_right:Nn, \seq_gput_right:NV, \seq_gput_right:Nv,
% \seq_gput_right:No, \seq_gput_right:Nx,
% \seq_gput_right:cn, \seq_gput_right:cV, \seq_gput_right:cv,
% \seq_gput_right:co, \seq_gput_right:cx
% }
% \begin{syntax}
% \cs{seq_put_right:Nn} \meta{sequence} \Arg{item}
% \end{syntax}
% Appends the \meta{item} to the right of the \meta{sequence}.
% \end{function}
%
% \section{Recovering items from sequences}
%
% Items can be recovered from either the left or the right of sequences.
% For implementation reasons, the actions at the left of the sequence are
% faster than those acting on the right. These functions all assign the
% recovered material locally, \emph{i.e.}~setting the
% \meta{token list variable} used with \cs{tl_set:Nn} and \emph{never}
% \cs{tl_gset:Nn}.
%
% \begin{function}{\seq_get_left:NN, \seq_get_left:cN}
% \begin{syntax}
% \cs{seq_get_left:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Stores the left-most item from a \meta{sequence} in the
% \meta{token list variable} without removing it from the
% \meta{sequence}. The \meta{token list variable} is assigned locally.
% If \meta{sequence} is empty an error will be raised.
% \end{function}
%
% \begin{function}{\seq_get_right:NN, \seq_get_right:cN}
% \begin{syntax}
% \cs{seq_get_right:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Stores the right-most item from a \meta{sequence} in the
% \meta{token list variable} without removing it from the
% \meta{sequence}. The \meta{token list variable} is assigned locally.
% If \meta{sequence} is empty an error will be raised.
% \end{function}
%
% \begin{function}{\seq_pop_left:NN, \seq_pop_left:cN}
% \begin{syntax}
% \cs{seq_pop_left:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Pops the left-most item from a \meta{sequence} into the
% \meta{token list variable}, \emph{i.e.}~removes the item from the
% sequence and stores it in the \meta{token list variable}.
% Both of the variables are assigned locally. If \meta{sequence} is
% empty an error will be raised.
% \end{function}
%
% \begin{function}{\seq_gpop_left:NN, \seq_gpop_left:cN}
% \begin{syntax}
% \cs{seq_gpop_left:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Pops the left-most item from a \meta{sequence} into the
% \meta{token list variable}, \emph{i.e.}~removes the item from the
% sequence and stores it in the \meta{token list variable}.
% The \meta{sequence} is modified globally, while the assignment of
% the \meta{token list variable} is local.
% If \meta{sequence} is empty an error will be raised.
% \end{function}
%
% \begin{function}{\seq_pop_right:NN, \seq_pop_right:cN}
% \begin{syntax}
% \cs{seq_pop_right:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Pops the right-most item from a \meta{sequence} into the
% \meta{token list variable}, \emph{i.e.}~removes the item from the
% sequence and stores it in in the \meta{token list variable}.
% Both of the variables are assigned locally. If \meta{sequence} is
% empty an error will be raised.
% \end{function}
%
% \begin{function}{\seq_gpop_right:NN, \seq_gpop_right:cN}
% \begin{syntax}
% \cs{seq_gpop_right:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Pops the right-most item from a \meta{sequence} into the
% \meta{token list variable}, \emph{i.e.}~removes the item from the
% sequence and stores it in the \meta{token list variable}.
% The \meta{sequence} is modified globally, while the assignment of
% the \meta{token list variable} is local.
% If \meta{sequence} is empty an error will be raised.
% \end{function}
%
% \section{Modifying sequences}
%
% While sequences are normally used as ordered lists, it may be
% necessary to modify the content. The functions here may be used
% to update sequences, while retaining the order of the unaffected
% entries.
%
% \begin{function}
% {
% \seq_remove_duplicates:N, \seq_remove_duplicates:c,
% \seq_gremove_duplicates:N, \seq_gremove_duplicates:c
% }
% \begin{syntax}
% \cs{seq_remove_duplicates:N} \meta{sequence}
% \end{syntax}
% Removes duplicate items from the \meta{sequence}, leaving the
% left most copy of each item in the \meta{sequence}. The \meta{item}
% comparison takes place on a token basis, as for \cs{tl_if_eq:nn(TF)}.
% \begin{texnote}
% This function iterates through every item in the \meta{sequence} and
% does a comparison with the \meta{items} already checked. It is therefore
% relatively slow with large sequences.
% \end{texnote}
% \end{function}
%
% \begin{function}
% {
% \seq_remove_all:Nn , \seq_remove_all:cn,
% \seq_gremove_all:Nn, \seq_gremove_all:cn
% }
% \begin{syntax}
% \cs{seq_remove_all:Nn} \meta{sequence} \Arg{item}
% \end{syntax}
% Removes every occurrence of \meta{item} from the \meta{sequence}.
% The \meta{item} comparison takes place on a token basis, as for
% \cs{tl_if_eq:nn(TF)}.
% \end{function}
%
% \section{Sequence conditionals}
%
% \begin{function}[EXP,pTF]{\seq_if_empty:N, \seq_if_empty:c}
% \begin{syntax}
% \cs{seq_if_empty_p:N} \meta{sequence}
% \cs{seq_if_empty:NTF} \meta{sequence} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests if the \meta{sequence} is empty (containing no items).
% \end{function}
%
% \begin{function}[TF]
% {
% \seq_if_in:Nn, \seq_if_in:NV, \seq_if_in:Nv, \seq_if_in:No, \seq_if_in:Nx,
% \seq_if_in:cn, \seq_if_in:cV, \seq_if_in:cv, \seq_if_in:co, \seq_if_in:cx
% }
% \begin{syntax}
% \cs{seq_if_in:NnTF} \meta{sequence} \Arg{item} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests if the \meta{item} is present in the \meta{sequence}.
% \end{function}
%
% \section{Mapping to sequences}
%
% \begin{function}[rEXP]{\seq_map_function:NN, \seq_map_function:cN}
% \begin{syntax}
% \cs{seq_map_function:NN} \meta{sequence} \meta{function}
% \end{syntax}
% Applies \meta{function} to every \meta{item} stored in the
% \meta{sequence}. The \meta{function} will receive one argument for
% each iteration. The \meta{items} are returned from left to right.
% The function \cs{seq_map_inline:Nn} is in general more efficient
% than \cs{seq_map_function:NN}.
% One mapping may be nested inside another.
% \end{function}
%
% \begin{function}{\seq_map_inline:Nn, \seq_map_inline:cn}
% \begin{syntax}
% \cs{seq_map_inline:Nn} \meta{sequence} \Arg{inline function}
% \end{syntax}
% Applies \meta{inline function} to every \meta{item} stored
% within the \meta{sequence}. The \meta{inline function} should
% consist of code which will receive the \meta{item} as |#1|.
% One in line mapping can be nested inside another. The \meta{items}
% are returned from left to right.
% \end{function}
%
% \begin{function}{
% \seq_map_variable:NNn, \seq_map_variable:Ncn,
% \seq_map_variable:cNn, \seq_map_variable:ccn
% }
% \begin{syntax}
% \cs{seq_map_variable:NNn} \meta{sequence} \meta{tl~var.} \Arg{function using tl~var.}
% \end{syntax}
% Stores each entry in the \meta{sequence} in turn in the
% \meta{tl~var.}\ and applies the \meta{function using tl~var.}
% The \meta{function} will usually consist of code making use of
% the \meta{tl~var.}, but this is not enforced. One variable
% mapping can be nested inside another. The \meta{items}
% are returned from left to right.
% \end{function}
%
% \begin{function}[rEXP]{\seq_map_break:}
% \begin{syntax}
% \cs{seq_map_break:}
% \end{syntax}
% Used to terminate a \cs{seq_map_\ldots} function before all
% entries in the \meta{sequence} have been processed. This will
% normally take place within a conditional statement, for example
% \begin{verbatim}
% \seq_map_inline:Nn \l_my_seq
% {
% \str_if_eq:nnTF { #1 } { bingo }
% { \seq_map_break: }
% {
% % Do something useful
% }
% }
% \end{verbatim}
% Use outside of a \cs{seq_map_\ldots} scenario will lead to low
% level \TeX{} errors.
% \begin{texnote}
% When the mapping is broken, additional tokens may be inserted by the
% internal macro \cs{prg_break_point:n} before further items are taken
% from the input stream. This will depend on the design of the mapping
% function.
% \end{texnote}
% \end{function}
%
% \begin{function}[rEXP]{\seq_map_break:n}
% \begin{syntax}
% \cs{seq_map_break:n} \Arg{tokens}
% \end{syntax}
% Used to terminate a \cs{seq_map_\ldots} function before all
% entries in the \meta{sequence} have been processed, inserting
% the \meta{tokens} after the mapping has ended. This will
% normally take place within a conditional statement, for example
% \begin{verbatim}
% \seq_map_inline:Nn \l_my_seq
% {
% \str_if_eq:nnTF { #1 } { bingo }
% { \seq_map_break:n { <tokens> } }
% {
% % Do something useful
% }
% }
% \end{verbatim}
% Use outside of a \cs{seq_map_\ldots} scenario will lead to low
% level \TeX{} errors.
% \begin{texnote}
% When the mapping is broken, additional tokens may be inserted by the
% internal macro \cs{prg_break_point:n} before the \meta{tokens} are
% inserted into the input stream.
% This will depend on the design of the mapping function.
% \end{texnote}
% \end{function}
%
% \section{Sequences as stacks}
%
% Sequences can be used as stacks, where data is pushed to and popped
% from the top of the sequence. (The left of a sequence is the top, for
% performance reasons.) The stack functions for sequences are not
% intended to be mixed with the general ordered data functions detailed
% in the previous section: a sequence should either be used as an
% ordered data type or as a stack, but not in both ways.
%
% \begin{function}{\seq_get:NN, \seq_get:cN}
% \begin{syntax}
% \cs{seq_get:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Reads the top item from a \meta{sequence} into the
% \meta{token list variable} without removing it from the
% \meta{sequence}. The \meta{token list variable} is assigned locally.
% If \meta{sequence} is empty an error will be raised.
% \end{function}
%
% \begin{function}{\seq_pop:NN, \seq_pop:cN}
% \begin{syntax}
% \cs{seq_pop:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Pops the top item from a \meta{sequence} into the
% \meta{token list variable}. Both of the variables are assigned
% locally. If \meta{sequence} is empty an error will be raised.
% \end{function}
%
% \begin{function}{\seq_gpop:NN, \seq_gpop:cN}
% \begin{syntax}
% \cs{seq_gpop:NN} \meta{sequence} \meta{token list variable}
% \end{syntax}
% Pops the top item from a \meta{sequence} into the
% \meta{token list variable}. The \meta{sequence} is modified globally,
% while the \meta{token list variable} is assigned locally. If
% \meta{sequence} is empty an error will be raised.
% \end{function}
%
% \begin{function}
% {
% \seq_push:Nn, \seq_push:NV, \seq_push:Nv, \seq_push:No, \seq_push:Nx,
% \seq_push:cn, \seq_push:cV, \seq_push:cv, \seq_push:co, \seq_push:cx,
% \seq_gpush:Nn, \seq_gpush:NV, \seq_gpush:Nv,
% \seq_gpush:No, \seq_gpush:Nx,
% \seq_gpush:cn, \seq_gpush:cV, \seq_gpush:cv,
% \seq_gpush:co, \seq_gpush:cx
% }
% \begin{syntax}
% \cs{seq_push:Nn} \meta{sequence} \Arg{item}
% \end{syntax}
% Adds the \Arg{item} to the top of the \meta{sequence}.
% \end{function}
%
% \section{Viewing sequences}
%
% \begin{function}{\seq_show:N, \seq_show:c}
% \begin{syntax}
% \cs{seq_show:N} \meta{sequence}
% \end{syntax}
% Displays the entries in the \meta{sequence} in the terminal.
% \end{function}
%
% \section{Experimental sequence functions}
%
% This section contains functions which may or may not be retained, depending
% on how useful they are found to be.
%
% \begin{function}[TF]{\seq_get_left:NN, \seq_get_left:cN}
% \begin{syntax}
% \cs{seq_get_left:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream and leaves the \meta{token list variable} unchanged. If the
% \meta{sequence} is non-empty, stores the left-most item from a
% \meta{sequence}
% in the \meta{token list variable} without removing it from a
% \meta{sequence}.
% The \meta{token list variable} is assigned locally.
% \end{function}
%
% \begin{function}[TF]{\seq_get_right:NN, \seq_get_right:cN}
% \begin{syntax}
% \cs{seq_get_right:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream and leaves the \meta{token list variable} unchanged. If the
% \meta{sequence} is non-empty, stores the right-most item from a
% \meta{sequence}
% in the \meta{token list variable} without removing it from a
% \meta{sequence}.
% The \meta{token list variable} is assigned locally.
% \end{function}
%
% \begin{function}[TF]{\seq_pop_left:NN, \seq_pop_left:cN}
% \begin{syntax}
% \cs{seq_pop_left:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream and leaves the \meta{token list variable} unchanged. If the
% \meta{sequence} is non-empty, pops the left-most item from a
% \meta{sequence}
% in the \meta{token list variable}, \emph{i.e.}~removes the item from a
% \meta{sequence}.
% Both the \meta{sequence} and the \meta{token list variable} are assigned
% locally.
% \end{function}
%
% \begin{function}[TF]{\seq_gpop_left:NN, \seq_gpop_left:cN}
% \begin{syntax}
% \cs{seq_gpop_left:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream and leaves the \meta{token list variable} unchanged. If the
% \meta{sequence} is non-empty, pops the left-most item from a \meta{sequence}
% in the \meta{token list variable}, \emph{i.e.}~removes the item from a
% \meta{sequence}.
% The \meta{sequence} is modified globally, while the \meta{token list variable}
% is assigned locally.
% \end{function}
%
% \begin{function}[TF]{\seq_pop_right:NN, \seq_pop_right:cN}
% \begin{syntax}
% \cs{seq_pop_right:NNTF} \meta{sequence} \meta{token list variable} \Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream and leaves the \meta{token list variable} unchanged. If the
% \meta{sequence} is non-empty, pops the right-most item from a \meta{sequence}
% in the \meta{token list variable}, \emph{i.e.}~removes the item from a
% \meta{sequence}.
% Both the \meta{sequence} and the \meta{token list variable} are assigned
% locally.
% \end{function}
%
% \begin{function}[TF]{\seq_gpop_right:NN, \seq_gpop_right:cN}
% \begin{syntax}
% \cs{seq_gpop_right:NNTF} \meta{sequence} \meta{token list variable}
% ~~\Arg{true code} \Arg{false code}
% \end{syntax}
% If the \meta{sequence} is empty, leaves the \meta{false code} in the
% input stream and leaves the \meta{token list variable} unchanged. If the
% \meta{sequence} is non-empty, pops the right-most item from a \meta{sequence}
% in the \meta{token list variable}, \emph{i.e.}~removes the item from a
% \meta{sequence}.
% The \meta{sequence} is modified globally, while the \meta{token list variable}
% is assigned locally.
% \end{function}
%
% \begin{function}[EXP]{\seq_length:N, \seq_length:c}
% \begin{syntax}
% \cs{seq_length:N} \meta{sequence}
% \end{syntax}
% Leaves the number of items in the \meta{sequence} in the input
% stream as an \meta{integer denotation}. The total number of items
% in a \meta{sequence} will include those which are empty and duplicates,
% \emph{i.e.}~every item in a \meta{sequence} is unique.
% \end{function}
%
% \begin{function}[EXP, updated = 2012-01-08]{\seq_item:Nn, \seq_item:cn}
% \begin{syntax}
% \cs{seq_item:Nn} \meta{sequence} \Arg{integer expression}
% \end{syntax}
% Indexing items in the \meta{sequence} from $0$ at the top (left), this
% function will evaluate the \meta{integer expression} and leave the
% appropriate item from the sequence in the input stream. If the
% \meta{integer expression} is negative, indexing occurs from the
% bottom (right) of the sequence. When the \meta{integer expression}
% is larger than the number of items in the \meta{sequence} (as
% calculated by \cs{seq_length:N}) then the function will expand to
% nothing.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{item}
% will not expand further when appearing in an x-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \begin{function}[rEXP]{\seq_use:N, \seq_use:c}
% \begin{syntax}
% \cs{seq_use:N} \meta{sequence}
% \end{syntax}
% Places each \meta{item} in the \meta{sequence} in turn in the input stream.
% This occurs in an expandable fashion, and is implemented as a mapping.
% This means that the process may be prematurely terminated using
% \cs{seq_map_break:} or \cs{seq_map_break:n}. The \meta{items} in the
% \meta{sequence} will be used from left (top) to right (bottom).
% \end{function}
%
% \begin{function}[rEXP]
% {
% \seq_mapthread_function:NNN, \seq_mapthread_function:NcN,
% \seq_mapthread_function:cNN, \seq_mapthread_function:ccN
% }
% \begin{syntax}
% \cs{seq_mapthread_function:NNN} \meta{seq1} \meta{seq2} \meta{function}
% \end{syntax}
% Applies \meta{function} to every pair of items
% \meta{seq1-item}--\meta{seq2-item} from the two sequences, returning
% items from both sequences from left to right. The \meta{function} will
% receive two \texttt{n}-type arguments for each iteration. The mapping
% will terminate when
% the end of either sequence is reached (\emph{i.e.}~whichever sequence has
% fewer items determines how many iterations
% occur).
% \end{function}
%
% \begin{function}
% {
% \seq_set_from_clist:NN, \seq_set_from_clist:cN,
% \seq_set_from_clist:Nc, \seq_set_from_clist:cc,
% \seq_set_from_clist:Nn, \seq_set_from_clist:cn,
% \seq_gset_from_clist:NN, \seq_gset_from_clist:cN,
% \seq_gset_from_clist:Nc, \seq_gset_from_clist:cc,
% \seq_gset_from_clist:Nn, \seq_gset_from_clist:cn
% }
% \begin{syntax}
% \cs{seq_set_from_clist:NN} \meta{sequence} \meta{comma-list}
% \end{syntax}
% Sets the \meta{sequence} within the current \TeX{} group to be equal
% to the content of the \meta{comma-list}.
% \end{function}
%
% \begin{function}[added = 2011-11-22, updated = 2011-11-24]
% {\seq_reverse:N, \seq_greverse:N}
% \begin{syntax}
% \cs{seq_reverse:N} \meta{sequence}
% \end{syntax}
% Reverses the order of items in the \meta{sequence}, and
% assigns the result to \meta{sequence}, locally or globally
% according to the variant chosen.
% \end{function}
%
% \begin{function}[added = 2011-12-22]
% {\seq_set_filter:NNn, \seq_gset_filter:NNn}
% \begin{syntax}
% \cs{seq_set_filter:NNn} \meta{sequence1} \meta{sequence2} \Arg{inline boolexpr}
% \end{syntax}
% Evaluates the \meta{inline boolexpr} for every \meta{item} stored
% within the \meta{sequence2}. The \meta{inline boolexpr} will
% receive the \meta{item} as |#1|. The sequence of all \meta{items}
% for which the \meta{inline boolexpr} evaluated to \texttt{true}
% is assigned to \meta{sequence1}.
% \begin{texnote}
% Contrarily to other mapping functions, \cs{seq_map_break:} cannot
% be used in this function, and will lead to low-level \TeX{} errors.
% \end{texnote}
% \end{function}
%
% \begin{function}[added = 2011-12-22]
% {\seq_set_map:NNn, \seq_gset_map:NNn}
% \begin{syntax}
% \cs{seq_set_map:NNn} \meta{sequence1} \meta{sequence2} \Arg{inline function}
% \end{syntax}
% Applies \meta{inline function} to every \meta{item} stored
% within the \meta{sequence2}. The \meta{inline function} should
% consist of code which will receive the \meta{item} as |#1|.
% The sequence resulting from \texttt{x}-expanding
% \meta{inline function} applied to each \meta{item}
% is assigned to \meta{sequence1}. As such, the code
% in \meta{inline function} should be expandable.
% \begin{texnote}
% Contrarily to other mapping functions, \cs{seq_map_break:} cannot
% be used in this function, and will lead to low-level \TeX{} errors.
% \end{texnote}
% \end{function}
%
% \section{Internal sequence functions}
%
% \begin{function}{\seq_if_empty_err_break:N}
% \begin{syntax}
% \cs{seq_if_empty_err_break:N} \meta{sequence}
% \end{syntax}
% Tests if the \meta{sequence} is empty, and if so issues an error
% message before skipping over any tokens up to \cs{prg_break_point:n}.
% This function is used to avoid more serious errors which would
% otherwise occur if some internal functions were applied to an
% empty \meta{sequence}.
% \end{function}
%
% \begin{function}[EXP]{\seq_item:n}
% \begin{syntax}
% \cs{seq_item:n} \meta{item}
% \end{syntax}
% The internal token used to begin each sequence entry. If expanded
% outside of a mapping or manipulation function, an error will be
% raised. The definition should always be set globally.
% \end{function}
%
% \begin{function}{\seq_push_item_def:n, \seq_push_item_def:x}
% \begin{syntax}
% \cs{seq_push_item_def:n} \Arg{code}
% \end{syntax}
% Saves the definition of \cs{seq_item:n} and redefines it to
% accept one parameter and expand to \meta{code}. This function
% should always be balanced by use of \cs{seq_pop_item_def:}.
% \end{function}
%
% \begin{function}{\seq_pop_item_def:}
% \begin{syntax}
% \cs{seq_pop_item_def:}
% \end{syntax}
% Restores the definition of \cs{seq_item:n} most recently saved by
% \cs{seq_push_item_def:n}. This function should always be used in
% a balanced pair with \cs{seq_push_item_def:n}.
% \end{function}
%
% \begin{function}[EXP]{\seq_break:}
% \begin{syntax}
% \cs{seq_break:}
% \end{syntax}
% Used to terminate sequence functions by gobbling all tokens
% up to \cs{prg_break_point:n}. This function is a copy of
% \cs{seq_map_break:}, but is used in situations which are
% not mappings.
% \end{function}
%
% \begin{function}[EXP]{\seq_break:n}
% \begin{syntax}
% \cs{seq_break:n} \Arg{tokens}
% \end{syntax}
% Used to terminate sequence functions by gobbling all tokens
% up to \cs{prg_break_point:n}, then inserting the \meta{tokens}
% before continuing reading the input stream. This function is a copy
% of \cs{seq_map_break:n}, but is used in situations which are
% not mappings.
% \end{function}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3seq} implementation}
%
% \TestFiles{m3seq002,m3seq003}
%
% \begin{macrocode}
%<*initex|package>
% \end{macrocode}
%
% \begin{macrocode}
%<*package>
\ProvidesExplPackage
{\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}
\package_check_loaded_expl:
%</package>
% \end{macrocode}
%
% A sequence is a control sequence whose top-level expansion is of
% the form \enquote{\cs{seq_item:n} \marg{item$_0$}
% \ldots \cs{seq_item:n} \marg{item$_{n-1}$}}. An earlier implementation
% used the structure \enquote{\cs{seq_elt:w} \meta{item$_1$}
% \cs{seq_elt_end:} \ldots \cs{seq_elt:w} \meta{item$_n$}
% \cs{seq_elt_end:}}. This allows rapid searching using a delimited
% function, but is not suitable for items containing |{|, |}| and |#|
% tokens, and also leads to the loss of surrounding braces
% around items.
%
% \begin{macro}[int]{\seq_item:n}
% The delimiter is always defined, but when used incorrectly simply
% removes its argument and hits an undefined control sequence to
% raise an error.
% \begin{macrocode}
\cs_new:Npn \seq_item:n
{
\msg_expandable_kernel_error:nn { seq } { misused }
\use_none:n
}
% \end{macrocode}
% \end{macro}
%
% \begin{variable}{\l_seq_internal_a_tl, \l_seq_internal_b_tl}
% Scratch space for various internal uses.
% \begin{macrocode}
\tl_new:N \l_seq_internal_a_tl
\tl_new:N \l_seq_internal_b_tl
% \end{macrocode}
% \end{variable}
%
% \subsection{Allocation and initialisation}
%
% \begin{macro}{\seq_new:N,\seq_new:c}
% \UnitTested
% Internally, sequences are just token lists.
% \begin{macrocode}
\cs_new_eq:NN \seq_new:N \tl_new:N
\cs_new_eq:NN \seq_new:c \tl_new:c
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\seq_clear:N, \seq_clear:c}
% \UnitTested
% \begin{macro}{\seq_gclear:N, \seq_gclear:c}
% \UnitTested
% Clearing sequences is just the same as clearing token lists.
% \begin{macrocode}
\cs_new_eq:NN \seq_clear:N \tl_clear:N
\cs_new_eq:NN \seq_clear:c \tl_clear:c
\cs_new_eq:NN \seq_gclear:N \tl_gclear:N
\cs_new_eq:NN \seq_gclear:c \tl_gclear:c
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_clear_new:N, \seq_clear_new:c}
% \UnitTested
% \begin{macro}{\seq_gclear_new:N, \seq_gclear_new:c}
% \UnitTested
% Once again a copy from the token list functions.
% \begin{macrocode}
\cs_new_eq:NN \seq_clear_new:N \tl_clear_new:N
\cs_new_eq:NN \seq_clear_new:c \tl_clear_new:c
\cs_new_eq:NN \seq_gclear_new:N \tl_gclear_new:N
\cs_new_eq:NN \seq_gclear_new:c \tl_gclear_new:c
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_set_eq:NN, \seq_set_eq:cN, \seq_set_eq:Nc, \seq_set_eq:cc}
% \UnitTested
% \begin{macro}
% {\seq_gset_eq:NN, \seq_gset_eq:cN, \seq_gset_eq:Nc, \seq_gset_eq:cc}
% \UnitTested
% Once again, these are simple copies from the token list functions.
% \begin{macrocode}
\cs_new_eq:NN \seq_set_eq:NN \tl_set_eq:NN
\cs_new_eq:NN \seq_set_eq:Nc \tl_set_eq:Nc
\cs_new_eq:NN \seq_set_eq:cN \tl_set_eq:cN
\cs_new_eq:NN \seq_set_eq:cc \tl_set_eq:cc
\cs_new_eq:NN \seq_gset_eq:NN \tl_gset_eq:NN
\cs_new_eq:NN \seq_gset_eq:Nc \tl_gset_eq:Nc
\cs_new_eq:NN \seq_gset_eq:cN \tl_gset_eq:cN
\cs_new_eq:NN \seq_gset_eq:cc \tl_gset_eq:cc
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_set_split:Nnn,\seq_gset_split:Nnn}
% \begin{macro}[aux]{\seq_set_split_aux:NNnn}
% \begin{macro}[aux]
% {
% \seq_set_split_aux_i:w, \seq_set_split_aux_ii:w,
% \seq_set_split_aux_end:
% }
% The goal is to split a given token list at a marker,
% strip spaces from each item, and remove one set of
% outer braces if after removing leading and trailing
% spaces the item is enclosed within braces. After
% \cs{tl_replace_all:Nnn}, the token list \cs{l_seq_internal_a_tl}
% is a repetition of the pattern
% \cs{seq_set_split_aux_i:w} \cs{prg_do_nothing:}
% \meta{item with spaces} \cs{seq_set_split_aux_end:}.
% Then, \texttt{x}-expansion causes \cs{seq_set_split_aux_i:w}
% to trim spaces, and leaves its result as
% \cs{seq_set_split_aux_ii:w} \meta{trimmed item}
% \cs{seq_set_split_aux_end:}. This is then converted
% to the \pkg{l3seq} internal structure by another
% \texttt{x}-expansion. In the first step, we insert
% \cs{prg_do_nothing:} to avoid losing braces too early:
% that would cause space trimming to act within those
% lost braces. The second step is solely there to strip
% braces which are outermost after space trimming.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \seq_set_split:Nnn
{ \seq_set_split_aux:NNnn \tl_set:Nx }
\cs_new_protected_nopar:Npn \seq_gset_split:Nnn
{ \seq_set_split_aux:NNnn \tl_gset:Nx }
\cs_new_protected:Npn \seq_set_split_aux:NNnn #1 #2 #3 #4
{
\tl_if_empty:nTF {#3}
{ #1 #2 { \tl_map_function:nN {#4} \seq_wrap_item:n } }
{
\tl_set:Nn \l_seq_internal_a_tl
{
\seq_set_split_aux_i:w \prg_do_nothing:
#4
\seq_set_split_aux_end:
}
\tl_replace_all:Nnn \l_seq_internal_a_tl { #3 }
{
\seq_set_split_aux_end:
\seq_set_split_aux_i:w \prg_do_nothing:
}
\tl_set:Nx \l_seq_internal_a_tl { \l_seq_internal_a_tl }
#1 #2 { \l_seq_internal_a_tl }
}
}
\cs_new:Npn \seq_set_split_aux_i:w #1 \seq_set_split_aux_end:
{
\exp_not:N \seq_set_split_aux_ii:w
\exp_args:No \tl_trim_spaces:n {#1}
\exp_not:N \seq_set_split_aux_end:
}
\cs_new:Npn \seq_set_split_aux_ii:w #1 \seq_set_split_aux_end:
{ \seq_wrap_item:n {#1} }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_concat:NNN, \seq_concat:ccc}
% \UnitTested
% \begin{macro}{\seq_gconcat:NNN, \seq_gconcat:ccc}
% \UnitTested
% Concatenating sequences is easy.
% \begin{macrocode}
\cs_new_protected:Npn \seq_concat:NNN #1#2#3
{ \tl_set:Nx #1 { \exp_not:o {#2} \exp_not:o {#3} } }
\cs_new_protected:Npn \seq_gconcat:NNN #1#2#3
{ \tl_gset:Nx #1 { \exp_not:o {#2} \exp_not:o {#3} } }
\cs_generate_variant:Nn \seq_concat:NNN { ccc }
\cs_generate_variant:Nn \seq_gconcat:NNN { ccc }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Appending data to either end}
%
% \begin{macro}{
% \seq_put_left:Nn, \seq_put_left:NV, \seq_put_left:Nv,
% \seq_put_left:No, \seq_put_left:Nx,
% \seq_put_left:cn, \seq_put_left:cV, \seq_put_left:cv,
% \seq_put_left:co, \seq_put_left:cx
% }
% \UnitTested
% \begin{macro}{
% \seq_put_right:Nn, \seq_put_right:NV, \seq_put_right:Nv,
% \seq_put_right:No, \seq_put_right:Nx,
% \seq_put_right:cn, \seq_put_right:cV, \seq_put_right:cv,
% \seq_put_right:co, \seq_put_right:cx
% }
% \UnitTested
% The code here is just a wrapper for adding to token lists.
% \begin{macrocode}
\cs_new_protected:Npn \seq_put_left:Nn #1#2
{ \tl_put_left:Nn #1 { \seq_item:n {#2} } }
\cs_new_protected:Npn \seq_put_right:Nn #1#2
{ \tl_put_right:Nn #1 { \seq_item:n {#2} } }
\cs_generate_variant:Nn \seq_put_left:Nn { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_put_left:Nn { c , cV , cv , co , cx }
\cs_generate_variant:Nn \seq_put_right:Nn { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_put_right:Nn { c , cV , cv , co , cx }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{
% \seq_gput_left:Nn, \seq_gput_left:NV, \seq_gput_left:Nv,
% \seq_gput_left:No, \seq_gput_left:Nx,
% \seq_gput_left:cn, \seq_gput_left:cV, \seq_gput_left:cv,
% \seq_gput_left:co, \seq_gput_left:cx
% }
% \begin{macro}{
% \seq_gput_right:Nn, \seq_gput_right:NV, \seq_gput_right:Nv,
% \seq_gput_right:No, \seq_gput_right:Nx,
% \seq_gput_right:cn, \seq_gput_right:cV,\seq_gput_right:cv,
% \seq_gput_right:co, \seq_gput_right:cx
% }
% The same for global addition.
% \begin{macrocode}
\cs_new_protected:Npn \seq_gput_left:Nn #1#2
{ \tl_gput_left:Nn #1 { \seq_item:n {#2} } }
\cs_new_protected:Npn \seq_gput_right:Nn #1#2
{ \tl_gput_right:Nn #1 { \seq_item:n {#2} } }
\cs_generate_variant:Nn \seq_gput_left:Nn { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_gput_left:Nn { c , cV , cv , co , cx }
\cs_generate_variant:Nn \seq_gput_right:Nn { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_gput_right:Nn { c , cV , cv , co , cx }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Modifying sequences}
%
% \begin{macro}[aux]{\seq_wrap_item:n}
% This function converts its argument to a proper sequence item
% in an \texttt{x}-expansion context.
% \begin{macrocode}
\cs_new:Npn \seq_wrap_item:n #1 { \exp_not:n { \seq_item:n {#1} } }
% \end{macrocode}
% \end{macro}
%
% \begin{variable}{\l_seq_internal_remove_seq}
% An internal sequence for the removal routines.
% \begin{macrocode}
\seq_new:N \l_seq_internal_remove_seq
% \end{macrocode}
% \end{variable}
%
% \begin{macro}{\seq_remove_duplicates:N, \seq_remove_duplicates:c}
% \UnitTested
% \begin{macro}{\seq_gremove_duplicates:N, \seq_gremove_duplicates:c}
% \UnitTested
% \begin{macro}[aux]{\seq_remove_duplicates_aux:NN}
% Removing duplicates means making a new list then copying it.
% \begin{macrocode}
\cs_new_protected:Npn \seq_remove_duplicates:N
{ \seq_remove_duplicates_aux:NN \seq_set_eq:NN }
\cs_new_protected:Npn \seq_gremove_duplicates:N
{ \seq_remove_duplicates_aux:NN \seq_gset_eq:NN }
\cs_new_protected:Npn \seq_remove_duplicates_aux:NN #1#2
{
\seq_clear:N \l_seq_internal_remove_seq
\seq_map_inline:Nn #2
{
\seq_if_in:NnF \l_seq_internal_remove_seq {##1}
{ \seq_put_right:Nn \l_seq_internal_remove_seq {##1} }
}
#1 #2 \l_seq_internal_remove_seq
}
\cs_generate_variant:Nn \seq_remove_duplicates:N { c }
\cs_generate_variant:Nn \seq_gremove_duplicates:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_remove_all:Nn, \seq_remove_all:cn}
% \UnitTested
% \begin{macro}{\seq_gremove_all:Nn, \seq_gremove_all:cn}
% \UnitTested
% \begin{macro}[aux]{\seq_remove_all_aux:NNn}
% The idea of the code here is to avoid a relatively expensive addition of
% items one at a time to an intermediate sequence.
% The approach taken is therefore similar to
% that in \cs{seq_pop_right_aux_ii:NNN}, using a \enquote{flexible}
% \texttt{x}-type expansion to do most of the work. As \cs{tl_if_eq:nnT}
% is not expandable, a two-part strategy is needed. First, the
% \texttt{x}-type expansion uses \cs{str_if_eq:nnT} to find potential
% matches. If one is found, the expansion is halted and the necessary
% set up takes place to use the \cs{tl_if_eq:NNT} test. The \texttt{x}-type
% is started again, including all of the items copied already. This will
% happen repeatedly until the entire sequence has been scanned. The code
% is set up to avoid needing and intermediate scratch list: the lead-off
% \texttt{x}-type expansion (|#1 #2 {#2}|) will ensure that nothing is
% lost.
% \begin{macrocode}
\cs_new_protected:Npn \seq_remove_all:Nn
{ \seq_remove_all_aux:NNn \tl_set:Nx }
\cs_new_protected:Npn \seq_gremove_all:Nn
{ \seq_remove_all_aux:NNn \tl_gset:Nx }
\cs_new_protected:Npn \seq_remove_all_aux:NNn #1#2#3
{
\seq_push_item_def:n
{
\str_if_eq:nnT {##1} {#3}
{
\if_false: { \fi: }
\tl_set:Nn \l_seq_internal_b_tl {##1}
#1 #2
{ \if_false: } \fi:
\exp_not:o {#2}
\tl_if_eq:NNT \l_seq_internal_a_tl \l_seq_internal_b_tl
{ \use_none:nn }
}
\seq_wrap_item:n {##1}
}
\tl_set:Nn \l_seq_internal_a_tl {#3}
#1 #2 {#2}
\seq_pop_item_def:
}
\cs_generate_variant:Nn \seq_remove_all:Nn { c }
\cs_generate_variant:Nn \seq_gremove_all:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Sequence conditionals}
%
% \begin{macro}[pTF]{\seq_if_empty:N, \seq_if_empty:c}
% \UnitTested
% Simple copies from the token list variable material.
% \begin{macrocode}
\prg_new_eq_conditional:NNn \seq_if_empty:N \tl_if_empty:N
{ p , T , F , TF }
\prg_new_eq_conditional:NNn \seq_if_empty:c \tl_if_empty:c
{ p , T , F , TF }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[TF]
% {
% \seq_if_in:Nn, \seq_if_in:NV, \seq_if_in:Nv, \seq_if_in:No, \seq_if_in:Nx,
% \seq_if_in:cn, \seq_if_in:cV, \seq_if_in:cv, \seq_if_in:co, \seq_if_in:cx
% }
% \UnitTested
% \begin{macro}[aux]{\seq_if_in_aux:}
% The approach here is to define \cs{seq_item:n} to compare its
% argument with the test sequence. If the two items are equal, the
% mapping is terminated and \cs{prg_return_true:} is inserted. On the
% other hand, if there is no match then the loop will break returning
% \cs{prg_return_false:}. In either case, \cs{prg_break_point:n}
% ensures that the group ends before the logical value is returned.
% Everything is inside a group so that \cs{seq_item:n} is preserved
% in nested situations.
% \begin{macrocode}
\prg_new_protected_conditional:Npnn \seq_if_in:Nn #1#2
{ T , F , TF }
{
\group_begin:
\tl_set:Nn \l_seq_internal_a_tl {#2}
\cs_set_protected:Npn \seq_item:n ##1
{
\tl_set:Nn \l_seq_internal_b_tl {##1}
\if_meaning:w \l_seq_internal_a_tl \l_seq_internal_b_tl
\exp_after:wN \seq_if_in_aux:
\fi:
}
#1
\seq_break:n { \prg_return_false: }
\prg_break_point:n { \group_end: }
}
\cs_new_nopar:Npn \seq_if_in_aux: { \seq_break:n { \prg_return_true: } }
\cs_generate_variant:Nn \seq_if_in:NnT { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_if_in:NnT { c , cV , cv , co , cx }
\cs_generate_variant:Nn \seq_if_in:NnF { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_if_in:NnF { c , cV , cv , co , cx }
\cs_generate_variant:Nn \seq_if_in:NnTF { NV , Nv , No , Nx }
\cs_generate_variant:Nn \seq_if_in:NnTF { c , cV , cv , co , cx }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Recovering data from sequences}
%
% \begin{macro}{\seq_get_left:NN, \seq_get_left:cN}
% \UnitTested
% \begin{macro}[aux]{\seq_get_left_aux:NnwN}
% Getting an item from the left of a sequence is pretty easy: just
% trim off the first item after removing the \cs{seq_item:n} at
% the start.
% \begin{macrocode}
\cs_new_protected:Npn \seq_get_left:NN #1#2
{
\seq_if_empty_err_break:N #1
\exp_after:wN \seq_get_left_aux:NnwN #1 \q_stop #2
\prg_break_point:n { }
}
\cs_new_protected:Npn \seq_get_left_aux:NnwN \seq_item:n #1#2 \q_stop #3
{ \tl_set:Nn #3 {#1} }
\cs_generate_variant:Nn \seq_get_left:NN { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_pop_left:NN, \seq_pop_left:cN}
% \UnitTested
% \begin{macro}{\seq_gpop_left:NN, \seq_gpop_left:cN}
% \UnitTested
% \begin{macro}[aux]{\seq_pop_left_aux:NNN}
% \begin{macro}[aux]{\seq_pop_left_aux:NnwNNN}
% The approach to popping an item is pretty similar to that to get
% an item, with the only difference being that the sequence itself has
% to be redefined. This makes it more sensible to use an auxiliary
% function for the local and global cases.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \seq_pop_left:NN
{ \seq_pop_left_aux:NNN \tl_set:Nn }
\cs_new_protected_nopar:Npn \seq_gpop_left:NN
{ \seq_pop_left_aux:NNN \tl_gset:Nn }
\cs_new_protected:Npn \seq_pop_left_aux:NNN #1#2#3
{
\seq_if_empty_err_break:N #2
\exp_after:wN \seq_pop_left_aux:NnwNNN #2 \q_stop #1#2#3
\prg_break_point:n { }
}
\cs_new_protected:Npn \seq_pop_left_aux:NnwNNN \seq_item:n #1#2 \q_stop #3#4#5
{
#3 #4 {#2}
\tl_set:Nn #5 {#1}
}
\cs_generate_variant:Nn \seq_pop_left:NN { c }
\cs_generate_variant:Nn \seq_gpop_left:NN { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_get_right:NN, \seq_get_right:cN}
% \UnitTested
% \begin{macro}[aux]{\seq_get_right_aux:NN}
% \begin{macro}[aux]{\seq_get_right_loop:nn}
% The idea here is to remove the very first \cs{seq_item:n} from the
% sequence, leaving a token list starting with the first braced entry.
% Two arguments at a time are then grabbed: apart from the right-hand end of
% the sequence, this will be a brace group followed by \cs{seq_item:n}. The
% set up code means that these all disappear. At the end of the sequence,
% the assignment is placed in front of the very last entry in the sequence,
% before a tidying-up step takes place to remove the loop and reset the
% meaning of \cs{seq_item:n}.
% \begin{macrocode}
\cs_new_protected:Npn \seq_get_right:NN #1#2
{
\seq_if_empty_err_break:N #1
\seq_get_right_aux:NN #1#2
\prg_break_point:n { }
}
\cs_new_protected:Npn \seq_get_right_aux:NN #1#2
{
\seq_push_item_def:n { }
\exp_after:wN \exp_after:wN \exp_after:wN \seq_get_right_loop:nn
\exp_after:wN \use_none:n #1
{ \tl_set:Nn #2 }
{ }
{
\seq_pop_item_def:
\seq_break:
}
}
\cs_new:Npn \seq_get_right_loop:nn #1#2
{
#2 {#1}
\seq_get_right_loop:nn
}
\cs_generate_variant:Nn \seq_get_right:NN { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_pop_right:NN, \seq_pop_right:cN}
% \UnitTested
% \begin{macro}{\seq_gpop_right:NN, \seq_gpop_right:cN}
% \UnitTested
% \begin{macro}[aux]{\seq_pop_right_aux:NNN, \seq_pop_right_aux_ii:NNN}
% The approach to popping from the right is a bit more involved, but does
% use some of the same ideas as getting from the right. What is needed is a
% \enquote{flexible length} way to set a token list variable. This is
% supplied by the |{ \if_false:} \fi:| \ldots
% |\if_false: { \fi: }| construct. Using an \texttt{x}-type
% expansion and a \enquote{non-expanding} definition for \cs{seq_item:n},
% the left-most $n - 1$ entries in a sequence of $n$ items will be stored
% back in the sequence. That needs a loop of unknown length, hence using the
% strange \cs{if_false:} way of including brackets. When the last item
% of the sequence is reached, the closing bracket for the assignment is
% inserted, and |\tl_set:Nn #3| is inserted in front of the final entry.
% This therefore does the pop assignment, then a final loop clears up the
% code.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \seq_pop_right:NN
{ \seq_pop_right_aux:NNN \tl_set:Nx }
\cs_new_protected_nopar:Npn \seq_gpop_right:NN
{ \seq_pop_right_aux:NNN \tl_gset:Nx }
\cs_new_protected:Npn \seq_pop_right_aux:NNN #1#2#3
{
\seq_if_empty_err_break:N #2
\seq_pop_right_aux_ii:NNN #1 #2 #3
\prg_break_point:n { }
}
\cs_new_protected:Npn \seq_pop_right_aux_ii:NNN #1#2#3
{
\seq_push_item_def:n { \seq_wrap_item:n {##1} }
#1 #2 { \if_false: } \fi:
\exp_after:wN \exp_after:wN \exp_after:wN \seq_get_right_loop:nn
\exp_after:wN \use_none:n #2
{
\if_false: { \fi: }
\tl_set:Nn #3
}
{ }
{
\seq_pop_item_def:
\seq_break:
}
}
\cs_generate_variant:Nn \seq_pop_right:NN { c }
\cs_generate_variant:Nn \seq_gpop_right:NN { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Mapping to sequences}
%
% \begin{macro}{\seq_map_break:}
% \UnitTested
% \begin{macro}{\seq_map_break:n}
% \UnitTested
% \begin{macro}[int]{\seq_break:}
% \begin{macro}[int]{\seq_break:n}
% To break a function, the special token \cs{prg_break_point:n} is
% used to find the end of the code. Any ending code is then inserted
% before the return value of \cs{seq_map_break:n} is inserted.
% Semantically-logical copies of the break functions for use inside
% mappings.
% \begin{macrocode}
\cs_new_eq:NN \seq_break: \prg_map_break:
\cs_new_eq:NN \seq_break:n \prg_map_break:n
\cs_new_eq:NN \seq_map_break: \prg_map_break:
\cs_new_eq:NN \seq_map_break:n \prg_map_break:n
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[int]{\seq_if_empty_err_break:N}
% A function to check that sequences really have some content. This
% is optimised for speed, hence the direct primitive use.
% \begin{macrocode}
\cs_new_protected:Npn \seq_if_empty_err_break:N #1
{
\if_meaning:w #1 \c_empty_tl
\msg_kernel_error:nnx { seq } { empty-sequence } { \token_to_str:N #1 }
\exp_after:wN \seq_break:
\fi:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\seq_map_function:NN, \seq_map_function:cN}
% \UnitTested
% \begin{macro}[aux]{\seq_map_function_aux:NNn}
% The idea here is to apply the code of |#2| to each item in the
% sequence without altering the definition of \cs{seq_item:n}. This
% is done as by noting that every odd token in the sequence must be
% \cs{seq_item:n}, which can be gobbled by \cs{use_none:n}. At the end of
% the loop, |#2| is instead |? \seq_map_break:|, which therefore breaks the
% loop without needing to do a (relatively-expensive) quark test.
% \begin{macrocode}
\cs_new:Npn \seq_map_function:NN #1#2
{
\exp_after:wN \seq_map_function_aux:NNn \exp_after:wN #2 #1
{ ? \seq_map_break: } { }
\prg_break_point:n { }
}
\cs_new:Npn \seq_map_function_aux:NNn #1#2#3
{
\use_none:n #2
#1 {#3}
\seq_map_function_aux:NNn #1
}
\cs_generate_variant:Nn \seq_map_function:NN { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[int]{\seq_push_item_def:n, \seq_push_item_def:x}
% \begin{macro}[aux]{\seq_push_item_def_aux:}
% \begin{macro}[int]{\seq_pop_item_def:}
% The definition of \cs{seq_item:n} needs to be saved and restored at
% various points within the mapping and manipulation code. That is handled
% here: as always, this approach uses global assignments.
% \begin{macrocode}
\cs_new_protected:Npn \seq_push_item_def:n
{
\seq_push_item_def_aux:
\cs_gset:Npn \seq_item:n ##1
}
\cs_new_protected:Npn \seq_push_item_def:x
{
\seq_push_item_def_aux:
\cs_gset:Npx \seq_item:n ##1
}
\cs_new_protected:Npn \seq_push_item_def_aux:
{
\cs_gset_eq:cN { seq_item_ \int_use:N \g_prg_map_int :n }
\seq_item:n
\int_gincr:N \g_prg_map_int
}
\cs_new_protected_nopar:Npn \seq_pop_item_def:
{
\int_gdecr:N \g_prg_map_int
\cs_gset_eq:Nc \seq_item:n
{ seq_item_ \int_use:N \g_prg_map_int :n }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_map_inline:Nn, \seq_map_inline:cn}
% \UnitTested
% The idea here is that \cs{seq_item:n} is already \enquote{applied} to
% each item in a sequence, and so an in-line mapping is just a case of
% redefining \cs{seq_item:n}.
% \begin{macrocode}
\cs_new_protected:Npn \seq_map_inline:Nn #1#2
{
\seq_push_item_def:n {#2}
#1
\prg_break_point:n { \seq_pop_item_def: }
}
\cs_generate_variant:Nn \seq_map_inline:Nn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \seq_map_variable:NNn,\seq_map_variable:Ncn,
% \seq_map_variable:cNn,\seq_map_variable:ccn
% }
% \UnitTested
% This is just a specialised version of the in-line mapping function,
% using an \texttt{x}-type expansion for the code set up so that the
% number of |#| tokens required is as expected.
% \begin{macrocode}
\cs_new_protected:Npn \seq_map_variable:NNn #1#2#3
{
\seq_push_item_def:x
{
\tl_set:Nn \exp_not:N #2 {##1}
\exp_not:n {#3}
}
#1
\prg_break_point:n { \seq_pop_item_def: }
}
\cs_generate_variant:Nn \seq_map_variable:NNn { Nc }
\cs_generate_variant:Nn \seq_map_variable:NNn { c , cc }
% \end{macrocode}
% \end{macro}
%
% \subsection{Sequence stacks}
%
% The same functions as for sequences, but with the correct naming.
%
% \begin{macro}{
% \seq_push:Nn, \seq_push:NV, \seq_push:Nv, \seq_push:No, \seq_push:Nx,
% \seq_push:cn, \seq_push:cV, \seq_push:cV, \seq_push:co, \seq_push:cx
% }
% \UnitTested
% \begin{macro}{
% \seq_gpush:Nn, \seq_gpush:NV, \seq_gpush:Nv, \seq_gpush:No, \seq_gpush:Nx,
% \seq_gpush:cn, \seq_gpush:cV, \seq_gpush:cv, \seq_gpush:co, \seq_gpush:cx
% }
% \UnitTested
% Pushing to a sequence is the same as adding on the left.
% \begin{macrocode}
\cs_new_eq:NN \seq_push:Nn \seq_put_left:Nn
\cs_new_eq:NN \seq_push:NV \seq_put_left:NV
\cs_new_eq:NN \seq_push:Nv \seq_put_left:Nv
\cs_new_eq:NN \seq_push:No \seq_put_left:No
\cs_new_eq:NN \seq_push:Nx \seq_put_left:Nx
\cs_new_eq:NN \seq_push:cn \seq_put_left:cn
\cs_new_eq:NN \seq_push:cV \seq_put_left:cV
\cs_new_eq:NN \seq_push:cv \seq_put_left:cv
\cs_new_eq:NN \seq_push:co \seq_put_left:co
\cs_new_eq:NN \seq_push:cx \seq_put_left:cx
\cs_new_eq:NN \seq_gpush:Nn \seq_gput_left:Nn
\cs_new_eq:NN \seq_gpush:NV \seq_gput_left:NV
\cs_new_eq:NN \seq_gpush:Nv \seq_gput_left:Nv
\cs_new_eq:NN \seq_gpush:No \seq_gput_left:No
\cs_new_eq:NN \seq_gpush:Nx \seq_gput_left:Nx
\cs_new_eq:NN \seq_gpush:cn \seq_gput_left:cn
\cs_new_eq:NN \seq_gpush:cV \seq_gput_left:cV
\cs_new_eq:NN \seq_gpush:cv \seq_gput_left:cv
\cs_new_eq:NN \seq_gpush:co \seq_gput_left:co
\cs_new_eq:NN \seq_gpush:cx \seq_gput_left:cx
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_get:NN, \seq_get:cN}
% \UnitTested
% \begin{macro}{\seq_pop:NN, \seq_pop:cN}
% \UnitTested
% \begin{macro}{\seq_gpop:NN, \seq_gpop:cN}
% \UnitTested
% In most cases, getting items from the stack does not need to specify
% that this is from the left. So alias are provided.
% \begin{macrocode}
\cs_new_eq:NN \seq_get:NN \seq_get_left:NN
\cs_new_eq:NN \seq_get:cN \seq_get_left:cN
\cs_new_eq:NN \seq_pop:NN \seq_pop_left:NN
\cs_new_eq:NN \seq_pop:cN \seq_pop_left:cN
\cs_new_eq:NN \seq_gpop:NN \seq_gpop_left:NN
\cs_new_eq:NN \seq_gpop:cN \seq_gpop_left:cN
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Viewing sequences}
%
% \begin{macro}{\seq_show:N, \seq_show:c}
% \UnitTested
% Apply the general \cs{msg_aux_show:Nnx}.
% \begin{macrocode}
\cs_new_protected:Npn \seq_show:N #1
{
\msg_aux_show:Nnx
#1
{ seq }
{ \seq_map_function:NN #1 \msg_aux_show:n }
}
\cs_generate_variant:Nn \seq_show:N { c }
% \end{macrocode}
% \end{macro}
%
% \subsection{Experimental functions}
%
% \begin{macro}[aux]{\seq_if_empty_break_return_false:N}
% The name says it all: of the sequence is empty, returns logical
% \texttt{false}.
% \begin{macrocode}
\cs_new:Npn \seq_if_empty_break_return_false:N #1
{
\if_meaning:w #1 \c_empty_tl
\prg_return_false:
\exp_after:wN \seq_break:
\fi:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[TF]{\seq_get_left:NN, \seq_get_left:cN}
% \begin{macro}[TF]{\seq_get_right:NN, \seq_get_right:cN}
% Getting from the left or right with a check on the results.
% \begin{macrocode}
\prg_new_protected_conditional:Npnn \seq_get_left:NN #1 #2 { T , F , TF }
{
\seq_if_empty_break_return_false:N #1
\exp_after:wN \seq_get_left_aux:Nw #1 \q_stop #2
\prg_return_true:
\seq_break:
\prg_break_point:n { }
}
\prg_new_protected_conditional:Npnn \seq_get_right:NN #1#2 { T , F , TF }
{
\seq_if_empty_break_return_false:N #1
\seq_get_right_aux:NN #1#2
\prg_return_true: \seq_break:
\prg_break_point:n { }
}
\cs_generate_variant:Nn \seq_get_left:NNT { c }
\cs_generate_variant:Nn \seq_get_left:NNF { c }
\cs_generate_variant:Nn \seq_get_left:NNTF { c }
\cs_generate_variant:Nn \seq_get_right:NNT { c }
\cs_generate_variant:Nn \seq_get_right:NNF { c }
\cs_generate_variant:Nn \seq_get_right:NNTF { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[TF]{\seq_pop_left:NN, \seq_pop_left:cN}
% \begin{macro}[TF]{\seq_gpop_left:NN, \seq_gpop_left:cN}
% \begin{macro}[TF]{\seq_pop_right:NN, \seq_pop_right:cN}
% \begin{macro}[TF]{\seq_gpop_right:NN, \seq_gpop_right:cN}
% More or less the same for popping.
% \begin{macrocode}
\prg_new_protected_conditional:Npnn \seq_pop_left:NN #1#2 { T , F , TF }
{
\seq_if_empty_break_return_false:N #1
\exp_after:wN \seq_pop_left_aux:NnwNNN #1 \q_stop \tl_set:Nn #1#2
\prg_return_true: \seq_break:
\prg_break_point:n { }
}
\prg_new_protected_conditional:Npnn \seq_gpop_left:NN #1#2 { T , F , TF }
{
\seq_if_empty_break_return_false:N #1
\exp_after:wN \seq_pop_left_aux:NnwNNN #1 \q_stop \tl_gset:Nn #1#2
\prg_return_true: \seq_break:
\prg_break_point:n { }
}
\prg_new_protected_conditional:Npnn \seq_pop_right:NN #1#2 { T , F , TF }
{
\seq_if_empty_break_return_false:N #1
\seq_pop_right_aux_ii:NNN \tl_set:Nx #1 #2
\prg_return_true: \seq_break:
\prg_break_point:n { }
}
\prg_new_protected_conditional:Npnn \seq_gpop_right:NN #1#2 { T , F , TF }
{
\seq_if_empty_break_return_false:N #1
\seq_pop_right_aux_ii:NNN \tl_gset:Nx #1 #2
\prg_return_true: \seq_break:
\prg_break_point:n { }
}
\cs_generate_variant:Nn \seq_pop_left:NNT { c }
\cs_generate_variant:Nn \seq_pop_left:NNF { c }
\cs_generate_variant:Nn \seq_pop_left:NNTF { c }
\cs_generate_variant:Nn \seq_gpop_left:NNT { c }
\cs_generate_variant:Nn \seq_gpop_left:NNF { c }
\cs_generate_variant:Nn \seq_gpop_left:NNTF { c }
\cs_generate_variant:Nn \seq_pop_right:NNT { c }
\cs_generate_variant:Nn \seq_pop_right:NNF { c }
\cs_generate_variant:Nn \seq_pop_right:NNTF { c }
\cs_generate_variant:Nn \seq_gpop_right:NNT { c }
\cs_generate_variant:Nn \seq_gpop_right:NNF { c }
\cs_generate_variant:Nn \seq_gpop_right:NNTF { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_length:N, \seq_length:c}
% \begin{macro}[aux]{\seq_length_aux:n}
% Counting the items in a sequence is done using the same approach as for
% other length functions: turn each entry into a \texttt{+1} then use
% integer evaluation to actually do the mathematics.
% \begin{macrocode}
\cs_new:Npn \seq_length:N #1
{
\int_eval:n
{
0
\seq_map_function:NN #1 \seq_length_aux:n
}
}
\cs_new:Npn \seq_length_aux:n #1 { +1 }
\cs_generate_variant:Nn \seq_length:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_item:Nn, \seq_item:cn}
% \begin{macro}[aux]{\seq_item_aux:nnn}
% The idea here is to find the offset of the item from the left, then use
% a loop to grab the correct item. If the resulting offset is too large,
% then the stop code |{ ? \seq_break: } { }| will be used by the auxiliary,
% terminating the loop and returning nothing at all.
% \begin{macrocode}
\cs_new:Npn \seq_item:Nn #1#2
{
\exp_last_unbraced:Nfo \seq_item_aux:nnn
{
\int_eval:n
{
\int_compare:nNnT {#2} < \c_zero
{ \seq_length:N #1 + }
#2
}
}
#1
{ ? \seq_break: }
{ }
\prg_break_point:n { }
}
\cs_new:Npn \seq_item_aux:nnn #1#2#3
{
\use_none:n #2
\int_compare:nNnTF {#1} = \c_zero
{ \seq_break:n { \exp_not:n {#3} } }
{ \exp_args:Nf \seq_item_aux:nnn { \int_eval:n { #1 - 1 } } }
}
\cs_generate_variant:Nn \seq_item:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_use:N, \seq_use:c}
% A simple short cut for a mapping.
% \begin{macrocode}
\cs_new:Npn \seq_use:N #1 { \seq_map_function:NN #1 \use:n }
\cs_generate_variant:Nn \seq_use:N { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \seq_mapthread_function:NNN, \seq_mapthread_function:NcN,
% \seq_mapthread_function:cNN, \seq_mapthread_function:ccN
% }
% \begin{macro}[aux]{\seq_mapthread_function_aux:NN}
% \begin{macro}[aux]{\seq_mapthread_function_aux:Nnnwnn}
% The idea here is to first expand both of the sequences, adding the usual
% |{ ? \seq_break: } { }| to the end of each on. This is most conveniently
% done in two steps using an auxiliary function. The mapping then throws
% away the first token of |#2| and |#5|, which for items in the sequences
% will both be \cs{seq_item:n}. The function to be mapped will then be
% applied to the two entries. When the code hits the end of one of the
% sequences, the break material will stop the entire loop and tidy up. This
% avoids needing to find the length of the two sequences, or worrying about
% which is longer.
% \begin{macrocode}
\cs_new:Npn \seq_mapthread_function:NNN #1#2#3
{
\exp_after:wN \seq_mapthread_function_aux:NN
\exp_after:wN #3
\exp_after:wN #1
#2
{ ? \seq_break: } { }
\prg_break_point:n { }
}
\cs_new:Npn \seq_mapthread_function_aux:NN #1#2
{
\exp_after:wN \seq_mapthread_function_aux:Nnnwnn
\exp_after:wN #1
#2
{ ? \seq_break: } { }
\q_stop
}
\cs_new:Npn \seq_mapthread_function_aux:Nnnwnn #1#2#3#4 \q_stop #5#6
{
\use_none:n #2
\use_none:n #5
#1 {#3} {#6}
\seq_mapthread_function_aux:Nnnwnn #1 #4 \q_stop
}
\cs_generate_variant:Nn \seq_mapthread_function:NNN { Nc }
\cs_generate_variant:Nn \seq_mapthread_function:NNN { c , cc }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \seq_set_from_clist:NN, \seq_set_from_clist:cN,
% \seq_set_from_clist:Nc, \seq_set_from_clist:cc,
% \seq_set_from_clist:Nn, \seq_set_from_clist:cn
% }
% \begin{macro}
% {
% \seq_gset_from_clist:NN, \seq_gset_from_clist:cN,
% \seq_gset_from_clist:Nc, \seq_gset_from_clist:cc,
% \seq_gset_from_clist:Nn, \seq_gset_from_clist:cn
% }
% Setting a sequence from a comma-separated list is done using a simple
% mapping.
% \begin{macrocode}
\cs_new_protected:Npn \seq_set_from_clist:NN #1#2
{
\tl_set:Nx #1
{ \clist_map_function:NN #2 \seq_wrap_item:n }
}
\cs_new_protected:Npn \seq_set_from_clist:Nn #1#2
{
\tl_set:Nx #1
{ \clist_map_function:nN {#2} \seq_wrap_item:n }
}
\cs_new_protected:Npn \seq_gset_from_clist:NN #1#2
{
\tl_gset:Nx #1
{ \clist_map_function:NN #2 \seq_wrap_item:n }
}
\cs_new_protected:Npn \seq_gset_from_clist:Nn #1#2
{
\tl_gset:Nx #1
{ \clist_map_function:nN {#2} \seq_wrap_item:n }
}
\cs_generate_variant:Nn \seq_set_from_clist:NN { Nc }
\cs_generate_variant:Nn \seq_set_from_clist:NN { c , cc }
\cs_generate_variant:Nn \seq_set_from_clist:Nn { c }
\cs_generate_variant:Nn \seq_gset_from_clist:NN { Nc }
\cs_generate_variant:Nn \seq_gset_from_clist:NN { c , cc }
\cs_generate_variant:Nn \seq_gset_from_clist:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {\seq_reverse:N, \seq_reverse:c, \seq_greverse:N, \seq_greverse:c}
% \begin{macro}[aux]{\seq_reverse_aux:NN}
% \begin{macro}[aux]{\seq_reverse_aux_item:nwn}
% Previously, \cs{seq_reverse:N} was coded by collecting the items
% in reverse order after an \cs{exp_stop_f:} marker.
% \begin{verbatim}
% \cs_new_protected:Npn \seq_reverse:N #1
% {
% \cs_set_eq:NN \seq_item:n \seq_reverse_aux_item:nw
% \tl_set:Nf #2 { #2 \exp_stop_f: }
% }
% \cs_new:Npn \seq_reverse_aux_item:nw #1 #2 \exp_stop_f:
% {
% #2 \exp_stop_f:
% \seq_item:n {#1}
% }
% \end{verbatim}
% At first, this seems optimal, since we can forget about each item
% as soon as it is placed after \cs{exp_stop_f:}. Unfortunately,
% \TeX{}'s usual tail recursion does not take place in this case:
% since the following \cs{seq_reverse_aux_item:nw} only reads
% tokens until \cs{exp_stop_f:}, and never reads the
% |\seq_item:n {#1}| left by the previous call, \TeX{} cannot
% remove that previous call from the stack, and in particular
% must retain the various macro paramters in memory, until the
% end of the replacement text is reached. The stack is thus
% only flushed after all the \cs{seq_reverse_aux_item:nw} are
% expanded. Keeping track of the arguments of all those calls
% uses up a memory quadratic in the length of the sequence.
% \TeX{} can then not cope with more than a few thousand items.
%
% Instead, we collect the items in the argument
% of \cs{exp_not:n}. The previous calls are cleanly removed
% from the stack, and the memory consumption becomes linear.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \seq_tmp:w { }
\cs_new_protected_nopar:Npn \seq_reverse:N
{ \seq_reverse_aux:NN \tl_set:Nx }
\cs_new_protected_nopar:Npn \seq_greverse:N
{ \seq_reverse_aux:NN \tl_gset:Nx }
\cs_new_protected:Npn \seq_reverse_aux:NN #1 #2
{
\cs_set_eq:NN \seq_tmp:w \seq_item:n
\cs_set_eq:NN \seq_item:n \seq_reverse_aux_item:nwn
#1 #2 { #2 \exp_not:n { } }
\cs_set_eq:NN \seq_item:n \seq_tmp:w
}
\cs_new:Npn \seq_reverse_aux_item:nwn #1 #2 \exp_not:n #3
{
#2
\exp_not:n { \seq_item:n {#1} #3 }
}
\cs_generate_variant:Nn \seq_reverse:N { c }
\cs_generate_variant:Nn \seq_greverse:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_set_filter:NNn, \seq_gset_filter:NNn}
% \begin{macro}[aux]{\seq_set_filter_aux:NNNn}
% Similar to \cs{seq_map_inline:Nn}, without a
% \cs{prg_break_point:n} because the user's code
% is performed within the evaluation of a boolean expression,
% and skipping out of that would break horribly.
% The \cs{seq_wrap_item:n} function inserts the relevant
% \cs{seq_item:n} without expansion in the input stream,
% hence in the \texttt{x}-expanding assignment.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \seq_set_filter:NNn
{ \seq_set_filter_aux:NNNn \tl_set:Nx }
\cs_new_protected_nopar:Npn \seq_gset_filter:NNn
{ \seq_set_filter_aux:NNNn \tl_gset:Nx }
\cs_new_protected:Npn \seq_set_filter_aux:NNNn #1#2#3#4
{
\seq_push_item_def:n { \bool_if:nT {#4} { \seq_wrap_item:n {##1} } }
#1 #2 { #3 \prg_break_point:n { } }
\seq_pop_item_def:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_set_map:NNn,\seq_gset_map:NNn}
% \begin{macro}[aux]{\seq_set_map_aux:NNNn}
% Very similar to \cs{seq_set_filter:NNn}. We could actually
% merge the two within a single function, but it would have weird
% semantics.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \seq_set_map:NNn
{ \seq_set_map_aux:NNNn \tl_set:Nx }
\cs_new_protected_nopar:Npn \seq_gset_map:NNn
{ \seq_set_map_aux:NNNn \tl_gset:Nx }
\cs_new_protected:Npn \seq_set_map_aux:NNNn #1#2#3#4
{
\seq_push_item_def:n { \exp_not:N \seq_item:n {#4} }
#1 #2 { #3 }
\seq_pop_item_def:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Deprecated interfaces}
%
% A few functions which are no longer documented: these were moved
% here on or before 2011-04-20, and will be removed entirely by
% 2011-07-20.
%
% \begin{macro}{\seq_top:NN, \seq_top:cN}
% These are old stack functions.
% \begin{macrocode}
%<*deprecated>
\cs_new_eq:NN \seq_top:NN \seq_get_left:NN
\cs_new_eq:NN \seq_top:cN \seq_get_left:cN
%</deprecated>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\seq_display:N, \seq_display:c}
% An older name for \cs{seq_show:N}.
% \begin{macrocode}
%<*deprecated>
\cs_new_eq:NN \seq_display:N \seq_show:N
\cs_new_eq:NN \seq_display:c \seq_show:c
%</deprecated>
% \end{macrocode}
% \end{macro}
%
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex
|