1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
|
% \iffalse meta-comment
%
%% File: l3intarray.dtx
%
% Copyright (C) 2017-2022 The LaTeX Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version. The latest version
% of this license is in the file
%
% https://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
%
% -----------------------------------------------------------------------
%
% The development version of the bundle can be found at
%
% https://github.com/latex3/latex3
%
% for those people who are interested.
%
%<*driver>
\documentclass[full,kernel]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
%
% \title{^^A
% The \textsf{l3intarray} package: fast global integer arrays^^A
% }
%
% \author{^^A
% The \LaTeX{} Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released 2022-01-12}
%
% \maketitle
%
% \begin{documentation}
%
% \section{\pkg{l3intarray} documentation}
%
% For applications requiring heavy use of integers, this module provides
% arrays which can be accessed in constant time (contrast \pkg{l3seq},
% where access time is linear). These arrays have several important
% features
% \begin{itemize}
% \item The size of the array is fixed and must be given at
% point of initialisation
% \item The absolute value of each entry has maximum $2^{30}-1$
% (\emph{i.e.}~one power lower than the usual \cs{c_max_int}
% ceiling of $2^{31}-1$)
% \end{itemize}
% The use of \texttt{intarray} data is therefore recommended for cases where
% the need for fast access is of paramount importance.
%
% \begin{function}[added = 2018-03-29]{\intarray_new:Nn, \intarray_new:cn}
% \begin{syntax}
% \cs{intarray_new:Nn} \meta{intarray~var} \Arg{size}
% \end{syntax}
% Evaluates the integer expression \meta{size} and allocates an
% \meta{integer array variable} with that number of (zero) entries.
% The variable name should start with |\g_| because assignments are
% always global.
% \end{function}
%
% \begin{function}[EXP, added = 2018-03-29]{\intarray_count:N, \intarray_count:c}
% \begin{syntax}
% \cs{intarray_count:N} \meta{intarray~var}
% \end{syntax}
% Expands to the number of entries in the \meta{integer array variable}.
% Contrarily to \cs{seq_count:N} this is performed in constant time.
% \end{function}
%
% \begin{function}[added = 2018-03-29]{\intarray_gset:Nnn, \intarray_gset:cnn}
% \begin{syntax}
% \cs{intarray_gset:Nnn} \meta{intarray~var} \Arg{position} \Arg{value}
% \end{syntax}
% Stores the result of evaluating the integer expression \meta{value}
% into the \meta{integer array variable} at the (integer expression)
% \meta{position}. If the \meta{position} is not between $1$ and the
% \cs{intarray_count:N}, or the \meta{value}'s absolute value is
% bigger than $2^{30}-1$, an error occurs. Assignments are always
% global.
% \end{function}
%
% \begin{function}[added = 2018-05-04]
% {\intarray_const_from_clist:Nn, \intarray_const_from_clist:cn}
% \begin{syntax}
% \cs{intarray_const_from_clist:Nn} \meta{intarray~var} \meta{intexpr clist}
% \end{syntax}
% Creates a new constant \meta{integer array variable} or raises an
% error if the name is already taken. The \meta{integer array
% variable} is set (globally) to contain as its items the results of
% evaluating each \meta{integer expression} in the \meta{comma list}.
% \end{function}
%
% \begin{function}[added = 2018-05-04]{\intarray_gzero:N, \intarray_gzero:c}
% \begin{syntax}
% \cs{intarray_gzero:N} \meta{intarray~var}
% \end{syntax}
% Sets all entries of the \meta{integer array variable} to zero.
% Assignments are always global.
% \end{function}
%
% \begin{function}[EXP, added = 2018-03-29]{\intarray_item:Nn, \intarray_item:cn}
% \begin{syntax}
% \cs{intarray_item:Nn} \meta{intarray~var} \Arg{position}
% \end{syntax}
% Expands to the integer entry stored at the (integer expression)
% \meta{position} in the \meta{integer array variable}. If the
% \meta{position} is not between $1$ and the \cs{intarray_count:N}, an
% error occurs.
% \end{function}
%
% \begin{function}[EXP, added = 2018-05-05]
% {\intarray_rand_item:N, \intarray_rand_item:c}
% \begin{syntax}
% \cs{intarray_rand_item:N} \meta{intarray~var}
% \end{syntax}
% Selects a pseudo-random item of the \meta{integer array}. If the
% \meta{integer array} is empty, produce an error.
% \end{function}
%
% \begin{function}[added = 2018-05-04]
% {\intarray_show:N, \intarray_show:c, \intarray_log:N, \intarray_log:c}
% \begin{syntax}
% \cs{intarray_show:N} \meta{intarray~var}
% \cs{intarray_log:N} \meta{intarray~var}
% \end{syntax}
% Displays the items in the \meta{integer array variable} in the
% terminal or writes them in the log file.
% \end{function}
%
% \subsection{Implementation notes}
%
% It is a wrapper around the \tn{fontdimen} primitive, used to store
% arrays of integers (with a restricted range: absolute value at most
% $2^{30}-1$). In contrast to \pkg{l3seq} sequences the access to
% individual entries is done in constant time rather than linear time,
% but only integers can be stored. More precisely, the primitive
% \tn{fontdimen} stores dimensions but the \pkg{l3intarray} package
% transparently converts these from/to integers. Assignments are always
% global.
%
% While \LuaTeX{}'s memory is extensible, other engines can
% \enquote{only} deal with a bit less than $4\times 10^6$ entries in all
% \tn{fontdimen} arrays combined (with default \TeX{} Live settings).
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3intarray} implementation}
%
% \begin{macrocode}
%<*package>
% \end{macrocode}
%
% \begin{macrocode}
%<@@=intarray>
% \end{macrocode}
%
% There are two implementations for this module: One \cs{fontdimen} based one
% for more traditional \TeX\ engines and a Lua based one for engines with Lua support.
%
% Both versions do not allow negative array sizes.
% \begin{macrocode}
%<*tex>
\msg_new:nnn { kernel } { negative-array-size }
{ Size~of~array~may~not~be~negative:~#1 }
% \end{macrocode}
%
% \begin{variable}{\l_@@_loop_int}
% A loop index.
% \begin{macrocode}
\int_new:N \l_@@_loop_int
% \end{macrocode}
% \end{variable}
%
% \subsection{Lua implementation}
% First, let's look at the Lua variant:
%
% We select the Lua version if the Lua helpers were defined. This can be detected by
% the presence of \cs{@@_gset_count:Nw}.
%
% \begin{macrocode}
\cs_if_exist:NTF \@@_gset_count:Nw
{
% \end{macrocode}
%
% \subsubsection{Allocating arrays}
%
% \begin{variable}{\g_@@_table_int, \l_@@_bad_index_int}
% Used to differentiate intarrays in Lua and to record an invalid index.
% \begin{macrocode}
\int_new:N \g_@@_table_int
\int_new:N \l_@@_bad_index_int
%</tex>
% \end{macrocode}
% \end{variable}
%
% \begin{macro}{\@@:w}
% Used as marker for intarrays in Lua. Followed by an unbraced number
% identifying the array and a single space. This format is used to make it
% easy to scan from Lua.
% \begin{macrocode}
%<*lua>
luacmd('@@:w', function()
scan_int()
tex.error'LaTeX Error: Isolated intarray ignored'
end, 'protected', 'global')
%</lua>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\intarray_new:Nn, \intarray_new:cn}
% \begin{macro}{\@@_new:N}
% Declare |#1| as a tokenlist with the scanmark and a unique number.
% Pass the array's size to the Lua helper.
% Every \texttt{intarray} must be global; it's enough to run this
% check in \cs{intarray_new:Nn}.
% \begin{macrocode}
%<*tex>
\cs_new_protected:Npn \@@_new:N #1
{
\__kernel_chk_if_free_cs:N #1
\int_gincr:N \g_@@_table_int
\cs_gset_nopar:Npx #1 { \@@:w \int_use:N \g_@@_table_int \c_space_tl }
}
\cs_new_protected:Npn \intarray_new:Nn #1#2
{
\@@_new:N #1
\@@_gset_count:Nw #1 \int_eval:n {#2} \scan_stop:
\int_compare:nNnT { \intarray_count:N #1 } < 0
{
\msg_error:nnx { kernel } { negative-array-size }
{ \intarray_count:N #1 }
}
}
\cs_generate_variant:Nn \intarray_new:Nn { c }
%</tex>
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% Before we get to the first command implmented in Lua, we first need some
% definitions. Since \texttt{token.create} only works correctly if \TeX{}
% has seen the tokens before, we first run a short \TeX{} sequence to ensure
% that all relevant control sequences are known.
% \begin{macrocode}
%<*lua>
local scan_token = token.scan_token
local put_next = token.put_next
local intarray_marker = token_create_safe'@@:w'
local use_none = token_create_safe'use_none:n'
local use_i = token_create_safe'use:n'
local expand_after_scan_stop = {token_create_safe'exp_after:wN',
token_create_safe'scan_stop:'}
local comma = token_create(string.byte',')
% \end{macrocode}
%
% \begin{macro}{@@_table}
% Internal helper to scan an intarray token, extract the associated
% Lua table and return an error if the input is invalid.
%
% \begin{macrocode}
local @@_table do
local tables = get_luadata and get_luadata'@@' or {[0] = {}}
function @@_table()
local t = scan_token()
if t ~= intarray_marker then
put_next(t)
tex.error'LaTeX Error: intarray expected'
return tables[0]
end
local i = scan_int()
local current_table = tables[i]
if current_table then return current_table end
current_table = {}
tables[i] = current_table
return current_table
end
% \end{macrocode}
% Since in \LaTeX{} this is loaded in the format, we want to preserve any intarrays
% which are created while format building for the actual run.
%
% To do this, we use the \texttt{register_luadata} mechanism from \pkg{l3luatex}:
% Directly before the format get dumped, the following function gets invoked and serializes
% all existing tables into a string. This string gets compiled and dumped into the format and
% is made available at the beginning of regular runs as \texttt{get_luadata'@@'}.
% \begin{macrocode}
if register_luadata then
register_luadata('@@', function()
local t = "{[0]={},"
for i=1, #tables do
t = string.format("%s{%s},", t, table.concat(tables[i], ','))
end
return t .. "}"
end)
end
end
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\intarray_count:N, \intarray_count:c}
% \begin{macro}[EXP]{\@@_gset_count:Nw}
% Set and get the size of an array. ``Setting the size'' means in this context that
% we add zeros until we reach the desired size.
% \begin{macrocode}
local sprint = tex.sprint
luacmd('@@_gset_count:Nw', function()
local t = @@_table()
local n = scan_int()
for i=#t+1, n do t[i] = 0 end
end, 'protected', 'global')
luacmd('intarray_count:N', function()
sprint(-2, #@@_table())
end, 'global')
%</lua>
% \end{macrocode}
%
% \begin{macrocode}
%<*tex>
\cs_generate_variant:Nn \intarray_count:N { c }
%</tex>
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsubsection{Array items}
%
% \begin{macro}{\@@_gset:wF, \@@_gset:w}
% The setter provided by Lua. The argument order somewhat emulates the |\fontdimen|:
% First the array index, followed by the intarray and then the new value.
% This has been chosen over a more conventional order to provide a delimiter for the numbers.
% \begin{macrocode}
%<*lua>
luacmd('@@_gset:wF', function()
local i = scan_int()
local t = @@_table()
if t[i] then
t[i] = scan_int()
put_next(use_none)
else
tex.count.l_@@_bad_index_int = i
scan_int()
put_next(use_i)
end
end, 'protected', 'global')
luacmd('@@_gset:w', function()
local i = scan_int()
local t = @@_table()
t[i] = scan_int()
end, 'protected', 'global')
%</lua>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\intarray_gset:Nnn, \intarray_gset:cnn, \__kernel_intarray_gset:Nnn}
% The \cs{__kernel_intarray_gset:Nnn} function does not use
% \cs{int_eval:n}, namely its arguments must be suitable for
% \cs{int_value:w}. The user version checks the position and value
% are within bounds.
% \begin{macrocode}
%<*tex>
\cs_new_protected:Npn \__kernel_intarray_gset:Nnn #1#2#3
{ \@@_gset:w #2 #1 #3 \scan_stop: }
\cs_new_protected:Npn \intarray_gset:Nnn #1#2#3
{
\@@_gset:wF \int_eval:n {#2} #1 \int_eval:n{#3}
{
\msg_error:nnxxx { kernel } { out-of-bounds }
{ \token_to_str:N #1 } { \int_use:N \l_@@_bad_index_int } { \intarray_count:N #1 }
}
}
\cs_generate_variant:Nn \intarray_gset:Nnn { c }
%</tex>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\intarray_gzero:N, \intarray_gzero:c}
% Set the appropriate array entry to zero. No bound checking
% needed.
% \begin{macrocode}
%<*lua>
luacmd('intarray_gzero:N', function()
local t = @@_table()
for i=1, #t do
t[i] = 0
end
end, 'global', 'protected')
%</lua>
%<*tex>
\cs_generate_variant:Nn \intarray_gzero:N { c }
%</tex>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\intarray_item:Nn, \intarray_item:cn, \__kernel_intarray_item:Nn}
% \begin{macro}{\@@_item:wF,\@@_item:w}
% Get the appropriate entry and perform bound checks. The
% \cs{__kernel_intarray_item:Nn} function omits bound checks and omits
% \cs{int_eval:n}, namely its argument must be a \TeX{} integer
% suitable for \cs{int_value:w}.
% \begin{macrocode}
%<*lua>
luacmd('@@_item:wF', function()
local i = scan_int()
local t = @@_table()
local item = t[i]
if item then
put_next(use_none)
else
tex.l_@@_bad_index_int = i
put_next(use_i)
end
put_next(expand_after_scan_stop)
scan_token()
if item then
sprint(-2, item)
end
end, 'global')
luacmd('@@_item:w', function()
local i = scan_int()
local t = @@_table()
sprint(-2, t[i])
end, 'global')
%</lua>
% \end{macrocode}
%
% \begin{macrocode}
%<*tex>
\cs_new:Npn \__kernel_intarray_item:Nn #1#2
{ \@@_item:w #2 #1 }
\cs_new:Npn \intarray_item:Nn #1#2
{
\@@_item:wF \int_eval:n {#2} #1
{
\msg_expandable_error:nnfff { kernel } { out-of-bounds }
{ \token_to_str:N #1 } { \int_use:N \l_@@_bad_index_int } { \intarray_count:N #1 }
0
}
}
\cs_generate_variant:Nn \intarray_item:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\intarray_rand_item:N, \intarray_rand_item:c}
% Importantly, \cs{intarray_item:Nn} only evaluates its argument once.
% \begin{macrocode}
\cs_new:Npn \intarray_rand_item:N #1
{ \intarray_item:Nn #1 { \int_rand:n { \intarray_count:N #1 } } }
\cs_generate_variant:Nn \intarray_rand_item:N { c }
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Working with contents of integer arrays}
%
% \begin{macro}{\intarray_const_from_clist:Nn, \intarray_const_from_clist:cn}
% We use the \cs{__kernel_intarray_gset:Nnn} which does not do bounds checking
% and instead automatically resizes the array.
% This is not implemented in Lua to ensure that the clist parsing is consistent
% with the clist module.
% \begin{macrocode}
\cs_new_protected:Npn \intarray_const_from_clist:Nn #1#2
{
\@@_new:N #1
\int_zero:N \l_@@_loop_int
\clist_map_inline:nn {#2}
{
\int_incr:N \l_@@_loop_int
\__kernel_intarray_gset:Nnn #1 \l_@@_loop_int { \int_eval:n {##1} } }
}
\cs_generate_variant:Nn \intarray_const_from_clist:Nn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[rEXP]{\intarray_to_clist:N, \intarray_to_clist:c}
% \begin{macro}[rEXP]{\@@_to_clist:Nn, \@@_to_clist:w}
% The \cs{@@_to_clist:Nn} auxiliary allows to choose the delimiter and
% is also used in \cs{intarray_show:N}. Here we just pass the information
% to Lua and let \texttt{table.concat} do the actual work.
% We discard the category codes of the passed delimiter but this is not
% an issue since the delimiter is always just a comma or a comma and a space.
% In both cases \texttt{sprint(2, ...)} provides the right catcodes.
% \begin{macrocode}
\cs_new:Npn \intarray_to_clist:N #1 { \@@_to_clist:Nn #1 { , } }
\cs_generate_variant:Nn \intarray_to_clist:N { c }
%</tex>
%<*lua>
local concat = table.concat
luacmd('@@_to_clist:Nn', function()
local t = @@_table()
local sep = token.scan_string()
sprint(-2, concat(t, sep))
end, 'global')
%</lua>
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[rEXP]{\__kernel_intarray_range_to_clist:Nnn, \@@_range_to_clist:w}
% Loop through part of the array.
% \begin{macrocode}
%<*tex>
\cs_new:Npn \__kernel_intarray_range_to_clist:Nnn #1#2#3
{
\@@_range_to_clist:w #1
\int_eval:n {#2} ~ \int_eval:n {#3} ~
}
%</tex>
%<*lua>
luacmd('@@_range_to_clist:w', function()
local t = @@_table()
local from = scan_int()
local to = scan_int()
sprint(-2, concat(t, ',', from, to))
end, 'global')
%</lua>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\__kernel_intarray_gset_range_from_clist:Nnn, \@@_gset_range:nNw}
% Loop through part of the array. We allow additional commas at the end.
% \begin{macrocode}
%<*tex>
\cs_new_protected:Npn \__kernel_intarray_gset_range_from_clist:Nnn #1#2#3
{
\@@_gset_range:w \int_eval:w #2 #1 #3 , , \scan_stop:
}
%</tex>
%<*lua>
luacmd('@@_gset_range:w', function()
local from = scan_int()
local t = @@_table()
while true do
local tok = scan_token()
if tok == comma then
repeat
tok = scan_token()
until tok ~= comma
break
else
put_next(tok)
end
t[from] = scan_int()
scan_token()
from = from + 1
end
end, 'global', 'protected')
%</lua>
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_gset_overflow_test:nw}
% In order to allow some code sharing later we provide the
% \cs{@@_gset_overflow_test:nw} name here. It doesn't actually test anything
% since the Lua implementation accepts all integers which could be tested with
% \cs{tex_ifabsnum:D}.
% \begin{macrocode}
%<*tex>
\cs_new_protected:Npn \@@_gset_overflow_test:nw #1
{
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Font dimension based implementation}
%
% Go to the false branch of the conditional above.
% \begin{macrocode}
}
{
% \end{macrocode}
%
% \subsubsection{Allocating arrays}
%
% \begin{macro}{\@@_entry:w, \@@_count:w}
% We use these primitives quite a lot in this module.
% \begin{macrocode}
\cs_new_eq:NN \@@_entry:w \tex_fontdimen:D
\cs_new_eq:NN \@@_count:w \tex_hyphenchar:D
% \end{macrocode}
% \end{macro}
%
% \begin{variable}{\c_@@_sp_dim}
% Used to convert integers to dimensions fast.
% \begin{macrocode}
\dim_const:Nn \c_@@_sp_dim { 1 sp }
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\g_@@_font_int}
% Used to assign one font per array.
% \begin{macrocode}
\int_new:N \g_@@_font_int
% \end{macrocode}
% \end{variable}
%
% \begin{macro}{\intarray_new:Nn, \intarray_new:cn}
% \begin{macro}{\@@_new:N}
% Declare |#1| to be a font (arbitrarily |cmr10| at a never-used
% size). Store the array's size as the \tn{hyphenchar} of that font
% and make sure enough \tn{fontdimen} are allocated, by setting the
% last one. Then clear any \tn{fontdimen} that |cmr10| starts with.
% It seems \LuaTeX{}'s |cmr10| has an extra \tn{fontdimen} parameter
% number $8$ compared to other engines (for a math font we would
% replace $8$ by $22$ or some such).
% Every \texttt{intarray} must be global; it's enough to run this
% check in \cs{intarray_new:Nn}.
% \begin{macrocode}
\cs_new_protected:Npn \@@_new:N #1
{
\__kernel_chk_if_free_cs:N #1
\int_gincr:N \g_@@_font_int
\tex_global:D \tex_font:D #1
= cmr10~at~ \g_@@_font_int \c_@@_sp_dim \scan_stop:
\int_step_inline:nn { 8 }
{ \__kernel_intarray_gset:Nnn #1 {##1} \c_zero_int }
}
\cs_new_protected:Npn \intarray_new:Nn #1#2
{
\@@_new:N #1
\@@_count:w #1 = \int_eval:n {#2} \scan_stop:
\int_compare:nNnT { \intarray_count:N #1 } < 0
{
\msg_error:nnx { kernel } { negative-array-size }
{ \intarray_count:N #1 }
}
\int_compare:nNnT { \intarray_count:N #1 } > 0
{ \__kernel_intarray_gset:Nnn #1 { \intarray_count:N #1 } { 0 } }
}
\cs_generate_variant:Nn \intarray_new:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\intarray_count:N, \intarray_count:c}
% Size of an array.
% \begin{macrocode}
\cs_new:Npn \intarray_count:N #1 { \int_value:w \@@_count:w #1 }
\cs_generate_variant:Nn \intarray_count:N { c }
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Array items}
%
% \begin{macro}[EXP]{\@@_signed_max_dim:n}
% Used when an item to be stored is larger than \cs{c_max_dim} in
% absolute value; it is replaced by $\pm\cs{c_max_dim}$.
% \begin{macrocode}
\cs_new:Npn \@@_signed_max_dim:n #1
{ \int_value:w \int_compare:nNnT {#1} < 0 { - } \c_max_dim }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_bounds:NNnTF, \@@_bounds_error:NNnw}
% The functions \cs{intarray_gset:Nnn} and \cs{intarray_item:Nn} share
% bounds checking. The |T| branch is used if |#3| is within bounds of
% the array |#2|.
% \begin{macrocode}
\cs_new:Npn \@@_bounds:NNnTF #1#2#3
{
\if_int_compare:w 1 > #3 \exp_stop_f:
\@@_bounds_error:NNnw #1 #2 {#3}
\else:
\if_int_compare:w #3 > \intarray_count:N #2 \exp_stop_f:
\@@_bounds_error:NNnw #1 #2 {#3}
\fi:
\fi:
\use_i:nn
}
\cs_new:Npn \@@_bounds_error:NNnw #1#2#3#4 \use_i:nn #5#6
{
#4
#1 { kernel } { out-of-bounds }
{ \token_to_str:N #2 } {#3} { \intarray_count:N #2 }
#6
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\intarray_gset:Nnn, \intarray_gset:cnn, \__kernel_intarray_gset:Nnn}
% \begin{macro}{\@@_gset:Nnn, \@@_gset_overflow:Nnn}
% Set the appropriate \tn{fontdimen}. The
% \cs{__kernel_intarray_gset:Nnn} function does not use
% \cs{int_eval:n}, namely its arguments must be suitable for
% \cs{int_value:w}. The user version checks the position and value
% are within bounds.
% \begin{macrocode}
\cs_new_protected:Npn \__kernel_intarray_gset:Nnn #1#2#3
{ \@@_entry:w #2 #1 #3 \c_@@_sp_dim }
\cs_new_protected:Npn \intarray_gset:Nnn #1#2#3
{
\exp_after:wN \@@_gset:Nww
\exp_after:wN #1
\int_value:w \int_eval:n {#2} \exp_after:wN ;
\int_value:w \int_eval:n {#3} ;
}
\cs_generate_variant:Nn \intarray_gset:Nnn { c }
\cs_new_protected:Npn \@@_gset:Nww #1#2 ; #3 ;
{
\@@_bounds:NNnTF \msg_error:nnxxx #1 {#2}
{
\@@_gset_overflow_test:nw {#3}
\__kernel_intarray_gset:Nnn #1 {#2} {#3}
}
{ }
}
\cs_if_exist:NTF \tex_ifabsnum:D
{
\cs_new_protected:Npn \@@_gset_overflow_test:nw #1
{
\tex_ifabsnum:D #1 > \c_max_dim
\exp_after:wN \@@_gset_overflow:NNnn
\fi:
}
}
{
\cs_new_protected:Npn \@@_gset_overflow_test:nw #1
{
\if_int_compare:w \int_abs:n {#1} > \c_max_dim
\exp_after:wN \@@_gset_overflow:NNnn
\fi:
}
}
\cs_new_protected:Npn \@@_gset_overflow:NNnn #1#2#3#4
{
\msg_error:nnxxxx { kernel } { overflow }
{ \token_to_str:N #2 } {#3} {#4} { \@@_signed_max_dim:n {#4} }
#1 #2 {#3} { \@@_signed_max_dim:n {#4} }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\intarray_gzero:N, \intarray_gzero:c}
% Set the appropriate \tn{fontdimen} to zero. No bound checking
% needed. The \cs{prg_replicate:nn} possibly uses quite a lot of
% memory, but this is somewhat comparable to the size of the array,
% and it is much faster than an \cs{int_step_inline:nn} loop.
% \begin{macrocode}
\cs_new_protected:Npn \intarray_gzero:N #1
{
\int_zero:N \l_@@_loop_int
\prg_replicate:nn { \intarray_count:N #1 }
{
\int_incr:N \l_@@_loop_int
\@@_entry:w \l_@@_loop_int #1 \c_zero_dim
}
}
\cs_generate_variant:Nn \intarray_gzero:N { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\intarray_item:Nn, \intarray_item:cn, \__kernel_intarray_item:Nn}
% \begin{macro}{\@@_item:Nn}
% Get the appropriate \tn{fontdimen} and perform bound checks. The
% \cs{__kernel_intarray_item:Nn} function omits bound checks and omits
% \cs{int_eval:n}, namely its argument must be a \TeX{} integer
% suitable for \cs{int_value:w}.
% \begin{macrocode}
\cs_new:Npn \__kernel_intarray_item:Nn #1#2
{ \int_value:w \@@_entry:w #2 #1 }
\cs_new:Npn \intarray_item:Nn #1#2
{
\exp_after:wN \@@_item:Nw
\exp_after:wN #1
\int_value:w \int_eval:n {#2} ;
}
\cs_generate_variant:Nn \intarray_item:Nn { c }
\cs_new:Npn \@@_item:Nw #1#2 ;
{
\@@_bounds:NNnTF \msg_expandable_error:nnfff #1 {#2}
{ \__kernel_intarray_item:Nn #1 {#2} }
{ 0 }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\intarray_rand_item:N, \intarray_rand_item:c}
% Importantly, \cs{intarray_item:Nn} only evaluates its argument once.
% \begin{macrocode}
\cs_new:Npn \intarray_rand_item:N #1
{ \intarray_item:Nn #1 { \int_rand:n { \intarray_count:N #1 } } }
\cs_generate_variant:Nn \intarray_rand_item:N { c }
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Working with contents of integer arrays}
%
% \begin{macro}{\intarray_const_from_clist:Nn, \intarray_const_from_clist:cn}
% \begin{macro}{\@@_const_from_clist:nN}
% Similar to \cs{intarray_new:Nn} (which we don't use because when
% debugging is enabled that function checks the variable name starts
% with |g_|). We make use of the fact that \TeX{} allows allocation
% of successive \tn{fontdimen} as long as no other font has been
% declared: no need to count the comma list items first. We need the
% code in \cs{intarray_gset:Nnn} that checks the item value is not too
% big, namely \cs{@@_gset_overflow_test:nw}, but not the code that
% checks bounds. At the end, set the size of the intarray.
% \begin{macrocode}
\cs_new_protected:Npn \intarray_const_from_clist:Nn #1#2
{
\@@_new:N #1
\int_zero:N \l_@@_loop_int
\clist_map_inline:nn {#2}
{ \exp_args:Nf \@@_const_from_clist:nN { \int_eval:n {##1} } #1 }
\@@_count:w #1 \l_@@_loop_int
}
\cs_generate_variant:Nn \intarray_const_from_clist:Nn { c }
\cs_new_protected:Npn \@@_const_from_clist:nN #1#2
{
\int_incr:N \l_@@_loop_int
\@@_gset_overflow_test:nw {#1}
\__kernel_intarray_gset:Nnn #2 \l_@@_loop_int {#1}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[rEXP]{\intarray_to_clist:N, \intarray_to_clist:c}
% \begin{macro}[rEXP]{\@@_to_clist:Nn, \@@_to_clist:w}
% Loop through the array, putting a comma before each item. Remove
% the leading comma with |f|-expansion. We also use the auxiliary in
% \cs{intarray_show:N} with argument comma, space.
% \begin{macrocode}
\cs_new:Npn \intarray_to_clist:N #1 { \@@_to_clist:Nn #1 { , } }
\cs_generate_variant:Nn \intarray_to_clist:N { c }
\cs_new:Npn \@@_to_clist:Nn #1#2
{
\int_compare:nNnF { \intarray_count:N #1 } = \c_zero_int
{
\exp_last_unbraced:Nf \use_none:n
{ \@@_to_clist:w 1 ; #1 {#2} \prg_break_point: }
}
}
\cs_new:Npn \@@_to_clist:w #1 ; #2#3
{
\if_int_compare:w #1 > \@@_count:w #2
\prg_break:n
\fi:
#3 \__kernel_intarray_item:Nn #2 {#1}
\exp_after:wN \@@_to_clist:w
\int_value:w \int_eval:w #1 + \c_one_int ; #2 {#3}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[rEXP]{\__kernel_intarray_range_to_clist:Nnn, \@@_range_to_clist:ww}
% Loop through part of the array.
% \begin{macrocode}
\cs_new:Npn \__kernel_intarray_range_to_clist:Nnn #1#2#3
{
\exp_last_unbraced:Nf \use_none:n
{
\exp_after:wN \@@_range_to_clist:ww
\int_value:w \int_eval:w #2 \exp_after:wN ;
\int_value:w \int_eval:w #3 ;
#1 \prg_break_point:
}
}
\cs_new:Npn \@@_range_to_clist:ww #1 ; #2 ; #3
{
\if_int_compare:w #1 > #2 \exp_stop_f:
\prg_break:n
\fi:
, \__kernel_intarray_item:Nn #3 {#1}
\exp_after:wN \@@_range_to_clist:ww
\int_value:w \int_eval:w #1 + \c_one_int ; #2 ; #3
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\__kernel_intarray_gset_range_from_clist:Nnn, \@@_gset_range:Nw}
% Loop through part of the array.
% \begin{macrocode}
\cs_new_protected:Npn \__kernel_intarray_gset_range_from_clist:Nnn #1#2#3
{
\int_set:Nn \l_@@_loop_int {#2}
\@@_gset_range:Nw #1 #3 , , \prg_break_point:
}
\cs_new_protected:Npn \@@_gset_range:Nw #1 #2 ,
{
\if_catcode:w \scan_stop: \tl_to_str:n {#2} \scan_stop:
\prg_break:n
\fi:
\__kernel_intarray_gset:Nnn #1 \l_@@_loop_int {#2}
\int_incr:N \l_@@_loop_int
\@@_gset_range:Nw #1
}
% \end{macrocode}
% \end{macro}
%
% \begin{macrocode}
}
% \end{macrocode}
%
% \subsection{Common parts}
%
% \begin{macro}{\intarray_show:N, \intarray_show:c, \intarray_log:N, \intarray_log:c}
% Convert the list to a comma list (with spaces after each comma)
% \begin{macrocode}
\cs_new_protected:Npn \intarray_show:N { \@@_show:NN \msg_show:nnxxxx }
\cs_generate_variant:Nn \intarray_show:N { c }
\cs_new_protected:Npn \intarray_log:N { \@@_show:NN \msg_log:nnxxxx }
\cs_generate_variant:Nn \intarray_log:N { c }
\cs_new_protected:Npn \@@_show:NN #1#2
{
\__kernel_chk_defined:NT #2
{
#1 { intarray } { show }
{ \token_to_str:N #2 }
{ \intarray_count:N #2 }
{ >~ \@@_to_clist:Nn #2 { , ~ } }
{ }
}
}
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Random arrays}
%
% \begin{macro}{\intarray_gset_rand:Nn, \intarray_gset_rand:cn}
% \begin{macro}{\intarray_gset_rand:Nnn, \intarray_gset_rand:cnn}
% \begin{macro}
% {
% \@@_gset_rand:Nnn,
% \@@_gset_rand:Nff,
% \@@_gset_rand_auxi:Nnnn,
% \@@_gset_rand_auxii:Nnnn,
% \@@_gset_rand_auxiii:Nnnn,
% \@@_gset_all_same:Nn,
% }
% We only perform the bounds checks once. This is done by two
% \cs{@@_gset_overflow_test:nw}, with an appropriate empty argument to
% avoid a spurious \enquote{at position \texttt{\#1}} part in the
% error message. Then calculate the number of choices: this is at
% most $(2^{30}-1)-(-(2^{30}-1))+1=2^{31}-1$, which just barely does
% not overflow. For small ranges use \cs{__kernel_randint:n} (making
% sure to subtract~$1$ \emph{before} adding the random number to the
% \meta{min}, to avoid overflow when \meta{min} or \meta{max} are
% $\pm\cs{c_max_int}$), otherwise \cs{__kernel_randint:nn}. Finally,
% if there are no random numbers do not define any of the auxiliaries.
% \begin{macrocode}
\cs_new_protected:Npn \intarray_gset_rand:Nn #1
{ \intarray_gset_rand:Nnn #1 { 1 } }
\cs_generate_variant:Nn \intarray_gset_rand:Nn { c }
\sys_if_rand_exist:TF
{
\cs_new_protected:Npn \intarray_gset_rand:Nnn #1#2#3
{
\@@_gset_rand:Nff #1
{ \int_eval:n {#2} } { \int_eval:n {#3} }
}
\cs_new_protected:Npn \@@_gset_rand:Nnn #1#2#3
{
\int_compare:nNnTF {#2} > {#3}
{
\msg_expandable_error:nnnn
{ kernel } { randint-backward-range } {#2} {#3}
\@@_gset_rand:Nnn #1 {#3} {#2}
}
{
\@@_gset_overflow_test:nw {#2}
\@@_gset_rand_auxi:Nnnn #1 { } {#2} {#3}
}
}
\cs_generate_variant:Nn \@@_gset_rand:Nnn { Nff }
\cs_new_protected:Npn \@@_gset_rand_auxi:Nnnn #1#2#3#4
{
\@@_gset_overflow_test:nw {#4}
\@@_gset_rand_auxii:Nnnn #1 { } {#4} {#3}
}
\cs_new_protected:Npn \@@_gset_rand_auxii:Nnnn #1#2#3#4
{
\exp_args:NNf \@@_gset_rand_auxiii:Nnnn #1
{ \int_eval:n { #3 - #4 + 1 } } {#4} {#3}
}
\cs_new_protected:Npn \@@_gset_rand_auxiii:Nnnn #1#2#3#4
{
\exp_args:NNf \@@_gset_all_same:Nn #1
{
\int_compare:nNnTF {#2} > \c__kernel_randint_max_int
{
\exp_stop_f:
\int_eval:n { \__kernel_randint:nn {#3} {#4} }
}
{
\exp_stop_f:
\int_eval:n { \__kernel_randint:n {#2} - 1 + #3 }
}
}
}
\cs_new_protected:Npn \@@_gset_all_same:Nn #1#2
{
\int_zero:N \l_@@_loop_int
\prg_replicate:nn { \intarray_count:N #1 }
{
\int_incr:N \l_@@_loop_int
\__kernel_intarray_gset:Nnn #1 \l_@@_loop_int {#2}
}
}
}
{
\cs_new_protected:Npn \intarray_gset_rand:Nnn #1#2#3
{
\msg_error:nnn { kernel } { fp-no-random }
{ \intarray_gset_rand:Nnn #1 {#2} {#3} }
}
}
\cs_generate_variant:Nn \intarray_gset_rand:Nnn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macrocode}
%</tex>
%</package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex
|