1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
|
% \iffalse meta-comment
%
%% File: l3intarray.dtx
%
% Copyright (C) 2017-2019 The LaTeX3 Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version. The latest version
% of this license is in the file
%
% https://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
%
% -----------------------------------------------------------------------
%
% The development version of the bundle can be found at
%
% https://github.com/latex3/latex3
%
% for those people who are interested.
%
%<*driver>
\documentclass[full,kernel]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
%
% \title{^^A
% The \textsf{l3intarray} package: fast global integer arrays^^A
% }
%
% \author{^^A
% The \LaTeX3 Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released 2019-11-07}
%
% \maketitle
%
% \begin{documentation}
%
% \section{\pkg{l3intarray} documentation}
%
% For applications requiring heavy use of integers, this module provides
% arrays which can be accessed in constant time (contrast \pkg{l3seq},
% where access time is linear). These arrays have several important
% features
% \begin{itemize}
% \item The size of the array is fixed and must be given at
% point of initialisation
% \item The absolute value of each entry has maximum $2^{30}-1$
% (\emph{i.e.}~one power lower than the usual \cs{c_max_int}
% ceiling of $2^{31}-1$)
% \end{itemize}
% The use of \texttt{intarray} data is therefore recommended for cases where
% the need for fast access is of paramount importance.
%
% \begin{function}[added = 2018-03-29]{\intarray_new:Nn, \intarray_new:cn}
% \begin{syntax}
% \cs{intarray_new:Nn} \meta{intarray~var} \Arg{size}
% \end{syntax}
% Evaluates the integer expression \meta{size} and allocates an
% \meta{integer array variable} with that number of (zero) entries.
% The variable name should start with |\g_| because assignments are
% always global.
% \end{function}
%
% \begin{function}[EXP, added = 2018-03-29]{\intarray_count:N, \intarray_count:c}
% \begin{syntax}
% \cs{intarray_count:N} \meta{intarray~var}
% \end{syntax}
% Expands to the number of entries in the \meta{integer array variable}.
% Contrarily to \cs{seq_count:N} this is performed in constant time.
% \end{function}
%
% \begin{function}[added = 2018-03-29]{\intarray_gset:Nnn, \intarray_gset:cnn}
% \begin{syntax}
% \cs{intarray_gset:Nnn} \meta{intarray~var} \Arg{position} \Arg{value}
% \end{syntax}
% Stores the result of evaluating the integer expression \meta{value}
% into the \meta{integer array variable} at the (integer expression)
% \meta{position}. If the \meta{position} is not between $1$ and the
% \cs{intarray_count:N}, or the \meta{value}'s absolute value is
% bigger than $2^{30}-1$, an error occurs. Assignments are always
% global.
% \end{function}
%
% \begin{function}[added = 2018-05-04]
% {\intarray_const_from_clist:Nn, \intarray_const_from_clist:cn}
% \begin{syntax}
% \cs{intarray_const_from_clist:Nn} \meta{intarray~var} \meta{intexpr clist}
% \end{syntax}
% Creates a new constant \meta{integer array variable} or raises an
% error if the name is already taken. The \meta{integer array
% variable} is set (globally) to contain as its items the results of
% evaluating each \meta{integer expression} in the \meta{comma list}.
% \end{function}
%
% \begin{function}[added = 2018-05-04]{\intarray_gzero:N, \intarray_gzero:c}
% \begin{syntax}
% \cs{intarray_gzero:N} \meta{intarray~var}
% \end{syntax}
% Sets all entries of the \meta{integer array variable} to zero.
% Assignments are always global.
% \end{function}
%
% \begin{function}[EXP, added = 2018-03-29]{\intarray_item:Nn, \intarray_item:cn}
% \begin{syntax}
% \cs{intarray_item:Nn} \meta{intarray~var} \Arg{position}
% \end{syntax}
% Expands to the integer entry stored at the (integer expression)
% \meta{position} in the \meta{integer array variable}. If the
% \meta{position} is not between $1$ and the \cs{intarray_count:N}, an
% error occurs.
% \end{function}
%
% \begin{function}[EXP, added = 2018-05-05]
% {\intarray_rand_item:N, \intarray_rand_item:c}
% \begin{syntax}
% \cs{intarray_rand_item:N} \meta{intarray~var}
% \end{syntax}
% Selects a pseudo-random item of the \meta{integer array}. If the
% \meta{integer array} is empty, produce an error.
% \end{function}
%
% \begin{function}[added = 2018-05-04]
% {\intarray_show:N, \intarray_show:c, \intarray_log:N, \intarray_log:c}
% \begin{syntax}
% \cs{intarray_show:N} \meta{intarray~var}
% \cs{intarray_log:N} \meta{intarray~var}
% \end{syntax}
% Displays the items in the \meta{integer array variable} in the
% terminal or writes them in the log file.
% \end{function}
%
% \subsection{Implementation notes}
%
% It is a wrapper around the \tn{fontdimen} primitive, used to store
% arrays of integers (with a restricted range: absolute value at most
% $2^{30}-1$). In contrast to \pkg{l3seq} sequences the access to
% individual entries is done in constant time rather than linear time,
% but only integers can be stored. More precisely, the primitive
% \tn{fontdimen} stores dimensions but the \pkg{l3intarray} package
% transparently converts these from/to integers. Assignments are always
% global.
%
% While \LuaTeX{}'s memory is extensible, other engines can
% \enquote{only} deal with a bit less than $4\times 10^6$ entries in all
% \tn{fontdimen} arrays combined (with default \TeX{}Live settings).
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3intarray} implementation}
%
% \begin{macrocode}
%<*initex|package>
% \end{macrocode}
%
% \begin{macrocode}
%<@@=intarray>
% \end{macrocode}
%
% \subsection{Allocating arrays}
%
% \begin{macro}{\@@_entry:w, \@@_count:w}
% We use these primitives quite a lot in this module.
% \begin{macrocode}
\cs_new_eq:NN \@@_entry:w \tex_fontdimen:D
\cs_new_eq:NN \@@_count:w \tex_hyphenchar:D
% \end{macrocode}
% \end{macro}
%
% \begin{variable}{\l_@@_loop_int}
% A loop index.
% \begin{macrocode}
\int_new:N \l_@@_loop_int
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\c_@@_sp_dim}
% Used to convert integers to dimensions fast.
% \begin{macrocode}
\dim_const:Nn \c_@@_sp_dim { 1 sp }
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\g_@@_font_int}
% Used to assign one font per array.
% \begin{macrocode}
\int_new:N \g_@@_font_int
% \end{macrocode}
% \end{variable}
%
% \begin{macrocode}
\__kernel_msg_new:nnn { kernel } { negative-array-size }
{ Size~of~array~may~not~be~negative:~#1 }
% \end{macrocode}
%
% \begin{macro}{\intarray_new:Nn, \intarray_new:cn}
% \begin{macro}{\@@_new:N}
% Declare |#1| to be a font (arbitrarily |cmr10| at a never-used
% size). Store the array's size as the \tn{hyphenchar} of that font
% and make sure enough \tn{fontdimen} are allocated, by setting the
% last one. Then clear any \tn{fontdimen} that |cmr10| starts with.
% It seems \LuaTeX{}'s |cmr10| has an extra \tn{fontdimen} parameter
% number $8$ compared to other engines (for a math font we would
% replace $8$ by $22$ or some such).
% Every \texttt{intarray} must be global; it's enough to run this
% check in \cs{intarray_new:Nn}.
% \begin{macrocode}
\cs_new_protected:Npn \@@_new:N #1
{
\__kernel_chk_if_free_cs:N #1
\int_gincr:N \g_@@_font_int
\tex_global:D \tex_font:D #1
= cmr10~at~ \g_@@_font_int \c_@@_sp_dim \scan_stop:
\int_step_inline:nn { 8 }
{ \__kernel_intarray_gset:Nnn #1 {##1} \c_zero_int }
}
\cs_new_protected:Npn \intarray_new:Nn #1#2
{
\@@_new:N #1
\@@_count:w #1 = \int_eval:n {#2} \scan_stop:
\int_compare:nNnT { \intarray_count:N #1 } < 0
{
\__kernel_msg_error:nnx { kernel } { negative-array-size }
{ \intarray_count:N #1 }
}
\int_compare:nNnT { \intarray_count:N #1 } > 0
{ \__kernel_intarray_gset:Nnn #1 { \intarray_count:N #1 } { 0 } }
}
\cs_generate_variant:Nn \intarray_new:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\intarray_count:N, \intarray_count:c}
% Size of an array.
% \begin{macrocode}
\cs_new:Npn \intarray_count:N #1 { \int_value:w \@@_count:w #1 }
\cs_generate_variant:Nn \intarray_count:N { c }
% \end{macrocode}
% \end{macro}
%
% \subsection{Array items}
%
% \begin{macro}[EXP]{\@@_signed_max_dim:n}
% Used when an item to be stored is larger than \cs{c_max_dim} in
% absolute value; it is replaced by $\pm\cs{c_max_dim}$.
% \begin{macrocode}
\cs_new:Npn \@@_signed_max_dim:n #1
{ \int_value:w \int_compare:nNnT {#1} < 0 { - } \c_max_dim }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_bounds:NNnTF, \@@_bounds_error:NNn}
% The functions \cs{intarray_gset:Nnn} and \cs{intarray_item:Nn} share
% bounds checking. The |T| branch is used if |#3| is within bounds of
% the array |#2|.
% \begin{macrocode}
\cs_new:Npn \@@_bounds:NNnTF #1#2#3#4#5
{
\if_int_compare:w 1 > #3 \exp_stop_f:
\@@_bounds_error:NNn #1 #2 {#3}
#5
\else:
\if_int_compare:w #3 > \intarray_count:N #2 \exp_stop_f:
\@@_bounds_error:NNn #1 #2 {#3}
#5
\else:
#4
\fi:
\fi:
}
\cs_new:Npn \@@_bounds_error:NNn #1#2#3
{
#1 { kernel } { out-of-bounds }
{ \token_to_str:N #2 } {#3} { \intarray_count:N #2 }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\intarray_gset:Nnn, \intarray_gset:cnn, \__kernel_intarray_gset:Nnn}
% \begin{macro}{\@@_gset:Nnn, \@@_gset_overflow:Nnn}
% Set the appropriate \tn{fontdimen}. The
% \cs{__kernel_intarray_gset:Nnn} function does not use
% \cs{int_eval:n}, namely its arguments must be suitable for
% \cs{int_value:w}. The user version checks the position and value
% are within bounds.
% \begin{macrocode}
\cs_new_protected:Npn \__kernel_intarray_gset:Nnn #1#2#3
{ \@@_entry:w #2 #1 #3 \c_@@_sp_dim }
\cs_new_protected:Npn \intarray_gset:Nnn #1#2#3
{
\exp_after:wN \@@_gset:Nww
\exp_after:wN #1
\int_value:w \int_eval:n {#2} \exp_after:wN ;
\int_value:w \int_eval:n {#3} ;
}
\cs_generate_variant:Nn \intarray_gset:Nnn { c }
\cs_new_protected:Npn \@@_gset:Nww #1#2 ; #3 ;
{
\@@_bounds:NNnTF \__kernel_msg_error:nnxxx #1 {#2}
{
\@@_gset_overflow_test:nw {#3}
\__kernel_intarray_gset:Nnn #1 {#2} {#3}
}
{ }
}
\cs_if_exist:NTF \tex_ifabsnum:D
{
\cs_new_protected:Npn \@@_gset_overflow_test:nw #1
{
\tex_ifabsnum:D #1 > \c_max_dim
\exp_after:wN \@@_gset_overflow:NNnn
\fi:
}
}
{
\cs_new_protected:Npn \@@_gset_overflow_test:nw #1
{
\if_int_compare:w \int_abs:n {#1} > \c_max_dim
\exp_after:wN \@@_gset_overflow:NNnn
\fi:
}
}
\cs_new_protected:Npn \@@_gset_overflow:NNnn #1#2#3#4
{
\__kernel_msg_error:nnxxxx { kernel } { overflow }
{ \token_to_str:N #2 } {#3} {#4} { \@@_signed_max_dim:n {#4} }
#1 #2 {#3} { \@@_signed_max_dim:n {#4} }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\intarray_gzero:N, \intarray_gzero:c}
% Set the appropriate \tn{fontdimen} to zero. No bound checking
% needed. The \cs{prg_replicate:nn} possibly uses quite a lot of
% memory, but this is somewhat comparable to the size of the array,
% and it is much faster than an \cs{int_step_inline:nn} loop.
% \begin{macrocode}
\cs_new_protected:Npn \intarray_gzero:N #1
{
\int_zero:N \l_@@_loop_int
\prg_replicate:nn { \intarray_count:N #1 }
{
\int_incr:N \l_@@_loop_int
\@@_entry:w \l_@@_loop_int #1 \c_zero_dim
}
}
\cs_generate_variant:Nn \intarray_gzero:N { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\intarray_item:Nn, \intarray_item:cn, \__kernel_intarray_item:Nn}
% \begin{macro}{\@@_item:Nn}
% Get the appropriate \tn{fontdimen} and perform bound checks. The
% \cs{__kernel_intarray_item:Nn} function omits bound checks and omits
% \cs{int_eval:n}, namely its argument must be a \TeX{} integer
% suitable for \cs{int_value:w}.
% \begin{macrocode}
\cs_new:Npn \__kernel_intarray_item:Nn #1#2
{ \int_value:w \@@_entry:w #2 #1 }
\cs_new:Npn \intarray_item:Nn #1#2
{
\exp_after:wN \@@_item:Nw
\exp_after:wN #1
\int_value:w \int_eval:n {#2} ;
}
\cs_generate_variant:Nn \intarray_item:Nn { c }
\cs_new:Npn \@@_item:Nw #1#2 ;
{
\@@_bounds:NNnTF \__kernel_msg_expandable_error:nnfff #1 {#2}
{ \__kernel_intarray_item:Nn #1 {#2} }
{ 0 }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\intarray_rand_item:N, \intarray_rand_item:c}
% Importantly, \cs{intarray_item:Nn} only evaluates its argument once.
% \begin{macrocode}
\cs_new:Npn \intarray_rand_item:N #1
{ \intarray_item:Nn #1 { \int_rand:n { \intarray_count:N #1 } } }
\cs_generate_variant:Nn \intarray_rand_item:N { c }
% \end{macrocode}
% \end{macro}
%
% \subsection{Working with contents of integer arrays}
%
% \begin{macro}{\intarray_const_from_clist:Nn, \intarray_const_from_clist:cn}
% \begin{macro}{\@@_const_from_clist:nN}
% Similar to \cs{intarray_new:Nn} (which we don't use because when
% debugging is enabled that function checks the variable name starts
% with |g_|). We make use of the fact that \TeX{} allows allocation
% of successive \tn{fontdimen} as long as no other font has been
% declared: no need to count the comma list items first. We need the
% code in \cs{intarray_gset:Nnn} that checks the item value is not too
% big, namely \cs{@@_gset_overflow_test:nw}, but not the code that
% checks bounds. At the end, set the size of the intarray.
% \begin{macrocode}
\cs_new_protected:Npn \intarray_const_from_clist:Nn #1#2
{
\@@_new:N #1
\int_zero:N \l_@@_loop_int
\clist_map_inline:nn {#2}
{ \exp_args:Nf \@@_const_from_clist:nN { \int_eval:n {##1} } #1 }
\@@_count:w #1 \l_@@_loop_int
}
\cs_generate_variant:Nn \intarray_const_from_clist:Nn { c }
\cs_new_protected:Npn \@@_const_from_clist:nN #1#2
{
\int_incr:N \l_@@_loop_int
\@@_gset_overflow_test:nw {#1}
\__kernel_intarray_gset:Nnn #2 \l_@@_loop_int {#1}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[rEXP]{\intarray_to_clist:N, \intarray_to_clist:c}
% \begin{macro}[rEXP]{\@@_to_clist:Nn, \@@_to_clist:w}
% Loop through the array, putting a comma before each item. Remove
% the leading comma with |f|-expansion. We also use the auxiliary in
% \cs{intarray_show:N} with argument comma, space.
% \begin{macrocode}
\cs_new:Npn \intarray_to_clist:N #1 { \@@_to_clist:Nn #1 { , } }
\cs_generate_variant:Nn \intarray_to_clist:N { c }
\cs_new:Npn \@@_to_clist:Nn #1#2
{
\int_compare:nNnF { \intarray_count:N #1 } = \c_zero_int
{
\exp_last_unbraced:Nf \use_none:n
{ \@@_to_clist:w 1 ; #1 {#2} \prg_break_point: }
}
}
\cs_new:Npn \@@_to_clist:w #1 ; #2#3
{
\if_int_compare:w #1 > \@@_count:w #2
\prg_break:n
\fi:
#3 \__kernel_intarray_item:Nn #2 {#1}
\exp_after:wN \@@_to_clist:w
\int_value:w \int_eval:w #1 + \c_one_int ; #2 {#3}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\intarray_show:N, \intarray_show:c, \intarray_log:N, \intarray_log:c}
% Convert the list to a comma list (with spaces after each comma)
% \begin{macrocode}
\cs_new_protected:Npn \intarray_show:N { \@@_show:NN \msg_show:nnxxxx }
\cs_generate_variant:Nn \intarray_show:N { c }
\cs_new_protected:Npn \intarray_log:N { \@@_show:NN \msg_log:nnxxxx }
\cs_generate_variant:Nn \intarray_log:N { c }
\cs_new_protected:Npn \@@_show:NN #1#2
{
\__kernel_chk_defined:NT #2
{
#1 { LaTeX/kernel } { show-intarray }
{ \token_to_str:N #2 }
{ \intarray_count:N #2 }
{ >~ \@@_to_clist:Nn #2 { , ~ } }
{ }
}
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Random arrays}
%
% \begin{macro}{\intarray_gset_rand:Nn, \intarray_gset_rand:cn}
% \begin{macro}{\intarray_gset_rand:Nnn, \intarray_gset_rand:cnn}
% \begin{macro}
% {
% \@@_gset_rand:Nnn,
% \@@_gset_rand:Nff,
% \@@_gset_rand_auxi:Nnnn,
% \@@_gset_rand_auxii:Nnnn,
% \@@_gset_rand_auxiii:Nnnn,
% \@@_gset_all_same:Nn,
% }
% We only perform the bounds checks once. This is done by two
% \cs{@@_gset_overflow_test:nw}, with an appropriate empty argument to
% avoid a spurious \enquote{at position \texttt{\#1}} part in the
% error message. Then calculate the number of choices: this is at
% most $(2^{30}-1)-(-(2^{30}-1))+1=2^{31}-1$, which just barely does
% not overflow. For small ranges use \cs{__kernel_randint:n} (making
% sure to subtract~$1$ \emph{before} adding the random number to the
% \meta{min}, to avoid overflow when \meta{min} or \meta{max} are
% $\pm\cs{c_max_int}$), otherwise \cs{__kernel_randint:nn}. Finally,
% if there are no random numbers do not define any of the auxiliaries.
% \begin{macrocode}
\cs_new_protected:Npn \intarray_gset_rand:Nn #1
{ \intarray_gset_rand:Nnn #1 { 1 } }
\cs_generate_variant:Nn \intarray_gset_rand:Nn { c }
\sys_if_rand_exist:TF
{
\cs_new_protected:Npn \intarray_gset_rand:Nnn #1#2#3
{
\@@_gset_rand:Nff #1
{ \int_eval:n {#2} } { \int_eval:n {#3} }
}
\cs_new_protected:Npn \@@_gset_rand:Nnn #1#2#3
{
\int_compare:nNnTF {#2} > {#3}
{
\__kernel_msg_expandable_error:nnnn
{ kernel } { randint-backward-range } {#2} {#3}
\@@_gset_rand:Nnn #1 {#3} {#2}
}
{
\@@_gset_overflow_test:nw {#2}
\@@_gset_rand_auxi:Nnnn #1 { } {#2} {#3}
}
}
\cs_generate_variant:Nn \@@_gset_rand:Nnn { Nff }
\cs_new_protected:Npn \@@_gset_rand_auxi:Nnnn #1#2#3#4
{
\@@_gset_overflow_test:nw {#4}
\@@_gset_rand_auxii:Nnnn #1 { } {#4} {#3}
}
\cs_new_protected:Npn \@@_gset_rand_auxii:Nnnn #1#2#3#4
{
\exp_args:NNf \@@_gset_rand_auxiii:Nnnn #1
{ \int_eval:n { #3 - #4 + 1 } } {#4} {#3}
}
\cs_new_protected:Npn \@@_gset_rand_auxiii:Nnnn #1#2#3#4
{
\exp_args:NNf \@@_gset_all_same:Nn #1
{
\int_compare:nNnTF {#2} > \c__kernel_randint_max_int
{
\exp_stop_f:
\int_eval:n { \__kernel_randint:nn {#3} {#4} }
}
{
\exp_stop_f:
\int_eval:n { \__kernel_randint:n {#2} - 1 + #3 }
}
}
}
\cs_new_protected:Npn \@@_gset_all_same:Nn #1#2
{
\int_zero:N \l_@@_loop_int
\prg_replicate:nn { \intarray_count:N #1 }
{
\int_incr:N \l_@@_loop_int
\__kernel_intarray_gset:Nnn #1 \l_@@_loop_int {#2}
}
}
}
{
\cs_new_protected:Npn \intarray_gset_rand:Nnn #1#2#3
{
\__kernel_msg_error:nnn { kernel } { fp-no-random }
{ \intarray_gset_rand:Nnn #1 {#2} {#3} }
}
}
\cs_generate_variant:Nn \intarray_gset_rand:Nnn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex
|