1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
|
% \iffalse meta-comment
%
%% File: l3fp-trig.dtx Copyright (C) 2011-2014,2016 The LaTeX3 Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version. The latest version
% of this license is in the file
%
% http://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
%
% -----------------------------------------------------------------------
%
% The development version of the bundle can be found at
%
% https://github.com/latex3/latex3
%
% for those people who are interested.
%
%<*driver>
\documentclass[full]{l3doc}
\GetIdInfo$Id: l3fp-trig.dtx 6805 2016-12-28 22:15:52Z joseph $
{L3 Floating-point trigonometric functions}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{The \textsf{l3fp-trig} package\thanks{This file
% has version number \ExplFileVersion, last
% revised \ExplFileDate.}\\
% Floating point trigonometric functions}
% \author{^^A
% The \LaTeX3 Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
% \date{Released \ExplFileDate}
%
% \maketitle
%
% \begin{documentation}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3fp-trig} Implementation}
%
% \begin{macrocode}
%<*initex|package>
% \end{macrocode}
%
% \begin{macrocode}
%<@@=fp>
% \end{macrocode}
%
%^^A todo: check EXP/rEXP everywhere.
%
% \subsection{Direct trigonometric functions}
%
% The approach for all trigonometric functions (sine, cosine, tangent,
% cotangent, cosecant, and secant), with arguments given in radians or
% in degrees, is the same.
% \begin{itemize}
% \item Filter out special cases ($\pm 0$, $\pm\inf$ and \nan{}).
% \item Keep the sign for later, and work with the absolute value
% $\lvert x\rvert$ of the argument.
% \item Small numbers ($\lvert x\rvert<1$ in radians, $\lvert
% x\rvert<10$ in degrees) are converted to fixed point numbers (and
% to radians if $\lvert x\rvert$ is in degrees).
% \item For larger numbers, we need argument reduction. Subtract a
% multiple of $\pi/2$ (in degrees,~$90$) to bring the number to the
% range to $[0, \pi/2)$ (in degrees, $[0,90)$).
% \item Reduce further to $[0, \pi/4]$ (in degrees, $[0,45]$) using
% $\sin x = \cos (\pi/2-x)$, and when working in degrees, convert to
% radians.
% \item Use the appropriate power series depending on the octant
% $\lfloor\frac{|x|}{\pi/4}\rfloor \mod 8$ (in degrees, the same
% formula with $\pi/4\to 45$), the sign, and the function to
% compute.
% \end{itemize}
%
% \subsubsection{Filtering special cases}
%
% \begin{macro}[int, EXP]{\@@_sin_o:w}
% This function, and its analogs for \texttt{cos}, \texttt{csc},
% \texttt{sec}, \texttt{tan}, and \texttt{cot} instead of
% \texttt{sin}, are followed either by \cs{use_i:nn} and a float in
% radians or by \cs{use_ii:nn} and a float in degrees. The sine of
% $\pm 0$ or \nan{} is the same float. The sine of $\pm\infty$ raises
% an invalid operation exception with the appropriate function name.
% Otherwise, call the \texttt{trig} function to perform argument
% reduction and if necessary convert the reduced argument to radians.
% Then, \cs{@@_sin_series_o:NNwwww} will be called to compute the
% Taylor series: this function receives a sign~|#3|, an initial octant
% of~$0$, and the function \cs{@@_ep_to_float:wwN} which converts the
% result of the series to a floating point directly rather than taking
% its inverse, since $\sin(x) = \#3 \sin\lvert x\rvert$.
% \begin{macrocode}
\cs_new:Npn \@@_sin_o:w #1 \s_@@ \@@_chk:w #2#3#4; @
{
\if_case:w #2 \exp_stop_f:
\@@_case_return_same_o:w
\or: \@@_case_use:nw
{
\@@_trig:NNNNNwn #1 \@@_sin_series_o:NNwwww
\@@_ep_to_float:wwN #3 \c_zero
}
\or: \@@_case_use:nw
{ \@@_invalid_operation_o:fw { #1 { sin } { sind } } }
\else: \@@_case_return_same_o:w
\fi:
\s_@@ \@@_chk:w #2 #3 #4;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int, EXP]{\@@_cos_o:w}
% The cosine of $\pm 0$ is $1$. The cosine of $\pm\infty$ raises an
% invalid operation exception. The cosine of \nan{} is itself.
% Otherwise, the \texttt{trig} function reduces the argument to at
% most half a right-angle and converts if necessary to radians. We
% will then call the same series as for sine, but using a positive
% sign~|0| regardless of the sign of~$x$, and with an initial octant
% of~$2$, because $\cos(x) = + \sin(\pi/2 + \lvert x\rvert)$.
% \begin{macrocode}
\cs_new:Npn \@@_cos_o:w #1 \s_@@ \@@_chk:w #2#3; @
{
\if_case:w #2 \exp_stop_f:
\@@_case_return_o:Nw \c_one_fp
\or: \@@_case_use:nw
{
\@@_trig:NNNNNwn #1 \@@_sin_series_o:NNwwww
\@@_ep_to_float:wwN 0 \c_two
}
\or: \@@_case_use:nw
{ \@@_invalid_operation_o:fw { #1 { cos } { cosd } } }
\else: \@@_case_return_same_o:w
\fi:
\s_@@ \@@_chk:w #2 #3;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int, EXP]{\@@_csc_o:w}
% The cosecant of $\pm 0$ is $\pm \infty$ with the same sign, with a
% division by zero exception (see \cs{@@_cot_zero_o:Nfw} defined
% below), which requires the function name. The cosecant of
% $\pm\infty$ raises an invalid operation exception. The cosecant of
% \nan{} is itself. Otherwise, the \texttt{trig} function performs
% the argument reduction, and converts if necessary to radians before
% calling the same series as for sine, using the sign~|#3|, a starting
% octant of~$0$, and inverting during the conversion from the fixed
% point sine to the floating point result, because $\csc(x) = \#3
% \big( \sin\lvert x\rvert\big)^{-1}$.
% \begin{macrocode}
\cs_new:Npn \@@_csc_o:w #1 \s_@@ \@@_chk:w #2#3#4; @
{
\if_case:w #2 \exp_stop_f:
\@@_cot_zero_o:Nfw #3 { #1 { csc } { cscd } }
\or: \@@_case_use:nw
{
\@@_trig:NNNNNwn #1 \@@_sin_series_o:NNwwww
\@@_ep_inv_to_float:wwN #3 \c_zero
}
\or: \@@_case_use:nw
{ \@@_invalid_operation_o:fw { #1 { csc } { cscd } } }
\else: \@@_case_return_same_o:w
\fi:
\s_@@ \@@_chk:w #2 #3 #4;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int, EXP]{\@@_sec_o:w}
% The secant of $\pm 0$ is $1$. The secant of $\pm \infty$ raises an
% invalid operation exception. The secant of \nan{} is itself.
% Otherwise, the \texttt{trig} function reduces the argument and turns
% it to radians before calling the same series as for sine, using a
% positive sign~$0$, a starting octant of~$2$, and inverting upon
% conversion, because $\sec(x) = + 1 / \sin(\pi/2 + \lvert x\rvert)$.
% \begin{macrocode}
\cs_new:Npn \@@_sec_o:w #1 \s_@@ \@@_chk:w #2#3; @
{
\if_case:w #2 \exp_stop_f:
\@@_case_return_o:Nw \c_one_fp
\or: \@@_case_use:nw
{
\@@_trig:NNNNNwn #1 \@@_sin_series_o:NNwwww
\@@_ep_inv_to_float:wwN 0 \c_two
}
\or: \@@_case_use:nw
{ \@@_invalid_operation_o:fw { #1 { sec } { secd } } }
\else: \@@_case_return_same_o:w
\fi:
\s_@@ \@@_chk:w #2 #3;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int, EXP]{\@@_tan_o:w}
% The tangent of $\pm 0$ or \nan{} is the same floating point number.
% The tangent of $\pm\infty$ raises an invalid operation exception.
% Once more, the \texttt{trig} function does the argument reduction
% step and conversion to radians before calling
% \cs{@@_tan_series_o:NNwwww}, with a sign~|#3| and an initial octant
% of~$1$ (this shift is somewhat arbitrary). See \cs{@@_cot_o:w} for
% an explanation of the $0$~argument.
% \begin{macrocode}
\cs_new:Npn \@@_tan_o:w #1 \s_@@ \@@_chk:w #2#3#4; @
{
\if_case:w #2 \exp_stop_f:
\@@_case_return_same_o:w
\or: \@@_case_use:nw
{
\@@_trig:NNNNNwn #1
\@@_tan_series_o:NNwwww 0 #3 \c_one
}
\or: \@@_case_use:nw
{ \@@_invalid_operation_o:fw { #1 { tan } { tand } } }
\else: \@@_case_return_same_o:w
\fi:
\s_@@ \@@_chk:w #2 #3 #4;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int, EXP]{\@@_cot_o:w}
% \begin{macro}[aux, EXP]{\@@_cot_zero_o:Nfw}
% The cotangent of $\pm 0$ is $\pm \infty$ with the same sign, with a
% division by zero exception (see \cs{@@_cot_zero_o:Nfw}. The
% cotangent of $\pm\infty$ raises an invalid operation exception. The
% cotangent of \nan{} is itself. We use $\cot x = - \tan (\pi/2 +
% x)$, and the initial octant for the tangent was chosen to be $1$, so
% the octant here starts at $3$. The change in sign is obtained by
% feeding \cs{@@_tan_series_o:NNwwww} two signs rather than just the
% sign of the argument: the first of those indicates whether we
% compute tangent or cotangent. Those signs are eventually combined.
% \begin{macrocode}
\cs_new:Npn \@@_cot_o:w #1 \s_@@ \@@_chk:w #2#3#4; @
{
\if_case:w #2 \exp_stop_f:
\@@_cot_zero_o:Nfw #3 { #1 { cot } { cotd } }
\or: \@@_case_use:nw
{
\@@_trig:NNNNNwn #1
\@@_tan_series_o:NNwwww 2 #3 \c_three
}
\or: \@@_case_use:nw
{ \@@_invalid_operation_o:fw { #1 { cot } { cotd } } }
\else: \@@_case_return_same_o:w
\fi:
\s_@@ \@@_chk:w #2 #3 #4;
}
\cs_new:Npn \@@_cot_zero_o:Nfw #1#2#3 \fi:
{
\fi:
\token_if_eq_meaning:NNTF 0 #1
{ \exp_args:NNf \@@_division_by_zero_o:Nnw \c_inf_fp }
{ \exp_args:NNf \@@_division_by_zero_o:Nnw \c_minus_inf_fp }
{#2}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsubsection{Distinguishing small and large arguments}
%
% \begin{macro}[aux, EXP]{\@@_trig:NNNNNwn}
% The first argument is \cs{use_i:nn} if the operand is in radians and
% \cs{use_ii:nn} if it is in degrees. Arguments |#2| to~|#5| control
% what trigonometric function we compute, and |#6| to~|#8| are pieces
% of a normal floating point number. Call the \texttt{_series}
% function~|#2|, with arguments |#3|, either a conversion function
% (\cs{@@_ep_to_float:wN} or \cs{@@_ep_inv_to_float:wN}) or a sign $0$
% or~$2$ when computing tangent or cotangent; |#4|, a sign $0$ or~$2$;
% the octant, computed in an integer expression starting with~|#5| and
% stopped by a period; and a fixed point number obtained from the
% floating point number by argument reduction (if necessary) and
% conversion to radians (if necessary). Any argument reduction
% adjusts the octant accordingly by leaving a (positive) shift into
% its integer expression. Let us explain the integer comparison. Two
% of the four \cs{exp_after:wN} are expanded, the expansion hits the
% test, which is true if the float is at least~$1$ when working in
% radians, and at least $10$ when working in degrees. Then one of the
% remaining \cs{exp_after:wN} hits |#1|, which picks the \texttt{trig}
% or \texttt{trigd} function in whichever branch of the conditional
% was taken. The final \cs{exp_after:wN} closes the conditional. At
% the end of the day, a number is \texttt{large} if it is $\geq 1$ in
% radians or $\geq 10$ in degrees, and \texttt{small} otherwise. All
% four \texttt{trig}/\texttt{trigd} auxiliaries receive the operand as
% an extended-precision number.
% \begin{macrocode}
\cs_new:Npn \@@_trig:NNNNNwn #1#2#3#4#5 \s_@@ \@@_chk:w 1#6#7#8;
{
\exp_after:wN #2
\exp_after:wN #3
\exp_after:wN #4
\__int_value:w \__int_eval:w #5
\exp_after:wN \exp_after:wN \exp_after:wN \exp_after:wN
\if_int_compare:w #7 > #1 \c_zero \c_one
#1 \@@_trig_large:ww \@@_trigd_large:ww
\else:
#1 \@@_trig_small:ww \@@_trigd_small:ww
\fi:
#7,#8{0000}{0000};
}
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Small arguments}
%
% \begin{macro}[aux, EXP]{\@@_trig_small:ww}
% This receives a small extended-precision number in radians and
% converts it to a fixed point number. Some trailing digits may be
% lost in the conversion, so we keep the original floating point
% number around: when computing sine or tangent (or their inverses),
% the last step will be to multiply by the floating point number (as
% an extended-precision number) rather than the fixed point number.
% The period serves to end the integer expression for the octant.
% \begin{macrocode}
\cs_new:Npn \@@_trig_small:ww #1,#2;
{ \@@_ep_to_fixed:wwn #1,#2; . #1,#2; }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]{\@@_trigd_small:ww}
% Convert the extended-precision number to radians, then call
% \cs{@@_trig_small:ww} to massage it in the form appropriate for the
% \texttt{_series} auxiliary.
% \begin{macrocode}
\cs_new:Npn \@@_trigd_small:ww #1,#2;
{
\@@_ep_mul_raw:wwwwN
-1,{1745}{3292}{5199}{4329}{5769}{2369}; #1,#2;
\@@_trig_small:ww
}
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Argument reduction in degrees}
%
% \begin{macro}[aux, rEXP]
% {
% \@@_trigd_large:ww, \@@_trigd_large_auxi:nnnnwNNNN,
% \@@_trigd_large_auxii:wNw, \@@_trigd_large_auxiii:www
% }
% Note that $25\times 360 = 9000$, so $10^{k+1} \equiv 10^{k}
% \pmod{360}$ for $k\geq 3$. When the exponent~|#1| is very large, we
% can thus safely replace it by~$22$ (or even~$19$). We turn the
% floating point number into a fixed point number with two blocks of
% $8$~digits followed by five blocks of $4$~digits. The original
% float is $100\times\meta{block_1}\cdots\meta{block_3}.
% \meta{block_4}\cdots\meta{block_7}$, or is equal to it modulo~$360$
% if the exponent~|#1| is very large. The first auxiliary finds
% $\meta{block_1} + \meta{block_2} \pmod{9}$, a single digit, and
% prepends it to the $4$~digits of \meta{block_3}. It also unpacks
% \meta{block_4} and grabs the $4$~digits of \meta{block_7}. The
% second auxiliary grabs the \meta{block_3} plus any contribution from
% the first two blocks as~|#1|, the first digit of \meta{block_4}
% (just after the decimal point in hundreds of degrees) as~|#2|, and
% the three other digits as~|#3|. It finds the quotient and remainder
% of |#1#2| modulo~$9$, adds twice the quotient to the integer
% expression for the octant, and places the remainder (between $0$
% and~$8$) before |#3| to form a new \meta{block_4}. The resulting
% fixed point number is $x\in [0, 0.9]$. If $x\geq 0.45$, we add~$1$
% to the octant and feed $0.9-x$ with an exponent of~$2$ (to
% compensate the fact that we are working in units of hundreds of
% degrees rather than degrees) to \cs{@@_trigd_small:ww}. Otherwise,
% we feed it~$x$ with an exponent of~$2$. The third auxiliary also
% discards digits which were not packed into the various
% \meta{blocks}. Since the original exponent~|#1| is at least~$2$,
% those are all~$0$ and no precision is lost (|#6| and~|#7| are
% four~$0$ each).
% \begin{macrocode}
\cs_new:Npn \@@_trigd_large:ww #1, #2#3#4#5#6#7;
{
\exp_after:wN \@@_pack_eight:wNNNNNNNN
\exp_after:wN \@@_pack_eight:wNNNNNNNN
\exp_after:wN \@@_pack_twice_four:wNNNNNNNN
\exp_after:wN \@@_pack_twice_four:wNNNNNNNN
\exp_after:wN \@@_trigd_large_auxi:nnnnwNNNN
\exp_after:wN ;
\exp:w \exp_end_continue_f:w
\prg_replicate:nn { \int_max:nn { 22 - #1 } { 0 } } { 0 }
#2#3#4#5#6#7 0000 0000 0000 !
}
\cs_new:Npn \@@_trigd_large_auxi:nnnnwNNNN #1#2#3#4#5; #6#7#8#9
{
\exp_after:wN \@@_trigd_large_auxii:wNw
\__int_value:w \__int_eval:w #1 + #2
- (#1 + #2 - \c_four) / \c_nine * \c_nine \__int_eval_end:
#3;
#4; #5{#6#7#8#9};
}
\cs_new:Npn \@@_trigd_large_auxii:wNw #1; #2#3;
{
+ (#1#2 - \c_four) / \c_nine * \c_two
\exp_after:wN \@@_trigd_large_auxiii:www
\__int_value:w \__int_eval:w #1#2
- (#1#2 - \c_four) / \c_nine * \c_nine \__int_eval_end: #3 ;
}
\cs_new:Npn \@@_trigd_large_auxiii:www #1; #2; #3!
{
\if_int_compare:w #1 < 4500 \exp_stop_f:
\exp_after:wN \@@_use_i_until_s:nw
\exp_after:wN \@@_fixed_continue:wn
\else:
+ \c_one
\fi:
\@@_fixed_sub:wwn {9000}{0000}{0000}{0000}{0000}{0000};
{#1}#2{0000}{0000};
{ \@@_trigd_small:ww 2, }
}
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Argument reduction in radians}
%
% Arguments greater or equal to~$1$ need to be reduced to a range where
% we only need a few terms of the Taylor series. We reduce to the range
% $[0,2\pi]$ by subtracting multiples of~$2\pi$, then to the smaller
% range $[0,\pi/2]$ by subtracting multiples of~$\pi/2$ (keeping track
% of how many times~$\pi/2$ is subtracted), then to $[0,\pi/4]$ by
% mapping $x\to \pi/2 - x$ if appropriate. When the argument is very
% large, say, $10^{100}$, an equally large multiple of~$2\pi$ must be
% subtracted, hence we must work with a very good approximation
% of~$2\pi$ in order to get a sensible remainder modulo~$2\pi$.
%
% Specifically, we multiply the argument by an approximation
% of~$1/(2\pi)$ with $\ExplSyntaxOn\int_eval:n { \c__fp_max_exponent_int
% + 48 }\ExplSyntaxOff$~digits, then discard the integer part of the
% result, keeping $52$~digits of the fractional part. From the
% fractional part of $x/(2\pi)$ we deduce the octant (quotient of the
% first three digits by~$125$). We then multiply by $8$ or~$-8$ (the
% latter when the octant is odd), ignore any integer part (related to
% the octant), and convert the fractional part to an extended precision
% number, before multiplying by~$\pi/4$ to convert back to a value in
% radians in $[0,\pi/4]$.
%
% It is possible to prove that given the precision of floating points
% and their range of exponents, the $52$~digits may start at most with
% $24$~zeros. The $5$~last digits are affected by carries from
% computations which are not done, hence we are left with at least $52 -
% 24 - 5 = 23$ significant digits, enough to round correctly up to
% $0.6\cdot\text{ulp}$ in all cases.
%
% ^^A todo: if the exponent range is reduced, store 1/2pi as a simple tl
% \begin{variable}[aux, EXP]{\@@_trig_inverse_two_pi:}
% This macro expands to |,,!| or~|,!| followed by $10112$~decimals of
% $10^{-16}/(2\pi)$. The number of decimals we really need is the
% maximum exponent plus the number of digits we will need later,~$52$,
% plus~$12$ ($4-1$~groups of $4$~digits). We store the decimals as a
% control sequence name, and convert it to a token list when required:
% strings take up less memory than their token list representation.
% \begin{macrocode}
\cs_new:Npx \@@_trig_inverse_two_pi:
{
\exp_not:n { \exp_after:wN \use_none:n \token_to_str:N }
\cs:w , , !
0000000000000000159154943091895335768883763372514362034459645740 ~
4564487476673440588967976342265350901138027662530859560728427267 ~
5795803689291184611457865287796741073169983922923996693740907757 ~
3077746396925307688717392896217397661693362390241723629011832380 ~
1142226997557159404618900869026739561204894109369378440855287230 ~
9994644340024867234773945961089832309678307490616698646280469944 ~
8652187881574786566964241038995874139348609983868099199962442875 ~
5851711788584311175187671605465475369880097394603647593337680593 ~
0249449663530532715677550322032477781639716602294674811959816584 ~
0606016803035998133911987498832786654435279755070016240677564388 ~
8495713108801221993761476813777647378906330680464579784817613124 ~
2731406996077502450029775985708905690279678513152521001631774602 ~
0924811606240561456203146484089248459191435211575407556200871526 ~
6068022171591407574745827225977462853998751553293908139817724093 ~
5825479707332871904069997590765770784934703935898280871734256403 ~
6689511662545705943327631268650026122717971153211259950438667945 ~
0376255608363171169525975812822494162333431451061235368785631136 ~
3669216714206974696012925057833605311960859450983955671870995474 ~
6510431623815517580839442979970999505254387566129445883306846050 ~
7852915151410404892988506388160776196993073410389995786918905980 ~
9373777206187543222718930136625526123878038753888110681406765434 ~
0828278526933426799556070790386060352738996245125995749276297023 ~
5940955843011648296411855777124057544494570217897697924094903272 ~
9477021664960356531815354400384068987471769158876319096650696440 ~
4776970687683656778104779795450353395758301881838687937766124814 ~
9530599655802190835987510351271290432315804987196868777594656634 ~
6221034204440855497850379273869429353661937782928735937843470323 ~
0237145837923557118636341929460183182291964165008783079331353497 ~
7909974586492902674506098936890945883050337030538054731232158094 ~
3197676032283131418980974982243833517435698984750103950068388003 ~
9786723599608024002739010874954854787923568261139948903268997427 ~
0834961149208289037767847430355045684560836714793084567233270354 ~
8539255620208683932409956221175331839402097079357077496549880868 ~
6066360968661967037474542102831219251846224834991161149566556037 ~
9696761399312829960776082779901007830360023382729879085402387615 ~
5744543092601191005433799838904654921248295160707285300522721023 ~
6017523313173179759311050328155109373913639645305792607180083617 ~
9548767246459804739772924481092009371257869183328958862839904358 ~
6866663975673445140950363732719174311388066383072592302759734506 ~
0548212778037065337783032170987734966568490800326988506741791464 ~
6835082816168533143361607309951498531198197337584442098416559541 ~
5225064339431286444038388356150879771645017064706751877456059160 ~
8716857857939226234756331711132998655941596890719850688744230057 ~
5191977056900382183925622033874235362568083541565172971088117217 ~
9593683256488518749974870855311659830610139214454460161488452770 ~
2511411070248521739745103866736403872860099674893173561812071174 ~
0478899368886556923078485023057057144063638632023685201074100574 ~
8592281115721968003978247595300166958522123034641877365043546764 ~
6456565971901123084767099309708591283646669191776938791433315566 ~
5066981321641521008957117286238426070678451760111345080069947684 ~
2235698962488051577598095339708085475059753626564903439445420581 ~
7886435683042000315095594743439252544850674914290864751442303321 ~
3324569511634945677539394240360905438335528292434220349484366151 ~
4663228602477666660495314065734357553014090827988091478669343492 ~
2737602634997829957018161964321233140475762897484082891174097478 ~
2637899181699939487497715198981872666294601830539583275209236350 ~
6853889228468247259972528300766856937583659722919824429747406163 ~
8183113958306744348516928597383237392662402434501997809940402189 ~
6134834273613676449913827154166063424829363741850612261086132119 ~
9863346284709941839942742955915628333990480382117501161211667205 ~
1912579303552929241134403116134112495318385926958490443846807849 ~
0973982808855297045153053991400988698840883654836652224668624087 ~
2540140400911787421220452307533473972538149403884190586842311594 ~
6322744339066125162393106283195323883392131534556381511752035108 ~
7459558201123754359768155340187407394340363397803881721004531691 ~
8295194879591767395417787924352761740724605939160273228287946819 ~
3649128949714953432552723591659298072479985806126900733218844526 ~
7943350455801952492566306204876616134365339920287545208555344144 ~
0990512982727454659118132223284051166615650709837557433729548631 ~
2041121716380915606161165732000083306114606181280326258695951602 ~
4632166138576614804719932707771316441201594960110632830520759583 ~
4850305079095584982982186740289838551383239570208076397550429225 ~
9847647071016426974384504309165864528360324933604354657237557916 ~
1366324120457809969715663402215880545794313282780055246132088901 ~
8742121092448910410052154968097113720754005710963406643135745439 ~
9159769435788920793425617783022237011486424925239248728713132021 ~
7667360756645598272609574156602343787436291321097485897150713073 ~
9104072643541417970572226547980381512759579124002534468048220261 ~
7342299001020483062463033796474678190501811830375153802879523433 ~
4195502135689770912905614317878792086205744999257897569018492103 ~
2420647138519113881475640209760554895793785141404145305151583964 ~
2823265406020603311891586570272086250269916393751527887360608114 ~
5569484210322407772727421651364234366992716340309405307480652685 ~
0930165892136921414312937134106157153714062039784761842650297807 ~
8606266969960809184223476335047746719017450451446166382846208240 ~
8673595102371302904443779408535034454426334130626307459513830310 ~
2293146934466832851766328241515210179422644395718121717021756492 ~
1964449396532222187658488244511909401340504432139858628621083179 ~
3939608443898019147873897723310286310131486955212620518278063494 ~
5711866277825659883100535155231665984394090221806314454521212978 ~
9734471488741258268223860236027109981191520568823472398358013366 ~
0683786328867928619732367253606685216856320119489780733958419190 ~
6659583867852941241871821727987506103946064819585745620060892122 ~
8416394373846549589932028481236433466119707324309545859073361878 ~
6290631850165106267576851216357588696307451999220010776676830946 ~
9814975622682434793671310841210219520899481912444048751171059184 ~
4139907889455775184621619041530934543802808938628073237578615267 ~
7971143323241969857805637630180884386640607175368321362629671224 ~
2609428540110963218262765120117022552929289655594608204938409069 ~
0760692003954646191640021567336017909631872891998634341086903200 ~
5796637103128612356988817640364252540837098108148351903121318624 ~
7228181050845123690190646632235938872454630737272808789830041018 ~
9485913673742589418124056729191238003306344998219631580386381054 ~
2457893450084553280313511884341007373060595654437362488771292628 ~
9807423539074061786905784443105274262641767830058221486462289361 ~
9296692992033046693328438158053564864073184440599549689353773183 ~
6726613130108623588021288043289344562140479789454233736058506327 ~
0439981932635916687341943656783901281912202816229500333012236091 ~
8587559201959081224153679499095448881099758919890811581163538891 ~
6339402923722049848375224236209100834097566791710084167957022331 ~
7897107102928884897013099533995424415335060625843921452433864640 ~
3432440657317477553405404481006177612569084746461432976543900008 ~
3826521145210162366431119798731902751191441213616962045693602633 ~
6102355962140467029012156796418735746835873172331004745963339773 ~
2477044918885134415363760091537564267438450166221393719306748706 ~
2881595464819775192207710236743289062690709117919412776212245117 ~
2354677115640433357720616661564674474627305622913332030953340551 ~
3841718194605321501426328000879551813296754972846701883657425342 ~
5016994231069156343106626043412205213831587971115075454063290657 ~
0248488648697402872037259869281149360627403842332874942332178578 ~
7750735571857043787379693402336902911446961448649769719434527467 ~
4429603089437192540526658890710662062575509930379976658367936112 ~
8137451104971506153783743579555867972129358764463093757203221320 ~
2460565661129971310275869112846043251843432691552928458573495971 ~
5042565399302112184947232132380516549802909919676815118022483192 ~
5127372199792134331067642187484426215985121676396779352982985195 ~
8545392106957880586853123277545433229161989053189053725391582222 ~
9232597278133427818256064882333760719681014481453198336237910767 ~
1255017528826351836492103572587410356573894694875444694018175923 ~
0609370828146501857425324969212764624247832210765473750568198834 ~
5641035458027261252285503154325039591848918982630498759115406321 ~
0354263890012837426155187877318375862355175378506956599570028011 ~
5841258870150030170259167463020842412449128392380525772514737141 ~
2310230172563968305553583262840383638157686828464330456805994018 ~
7001071952092970177990583216417579868116586547147748964716547948 ~
8312140431836079844314055731179349677763739898930227765607058530 ~
4083747752640947435070395214524701683884070908706147194437225650 ~
2823145872995869738316897126851939042297110721350756978037262545 ~
8141095038270388987364516284820180468288205829135339013835649144 ~
3004015706509887926715417450706686888783438055583501196745862340 ~
8059532724727843829259395771584036885940989939255241688378793572 ~
7967951654076673927031256418760962190243046993485989199060012977 ~
7469214532970421677817261517850653008552559997940209969455431545 ~
2745856704403686680428648404512881182309793496962721836492935516 ~
2029872469583299481932978335803459023227052612542114437084359584 ~
9443383638388317751841160881711251279233374577219339820819005406 ~
3292937775306906607415304997682647124407768817248673421685881509 ~
9133422075930947173855159340808957124410634720893194912880783576 ~
3115829400549708918023366596077070927599010527028150868897828549 ~
4340372642729262103487013992868853550062061514343078665396085995 ~
0058714939141652065302070085265624074703660736605333805263766757 ~
2018839497277047222153633851135483463624619855425993871933367482 ~
0422097449956672702505446423243957506869591330193746919142980999 ~
3424230550172665212092414559625960554427590951996824313084279693 ~
7113207021049823238195747175985519501864630940297594363194450091 ~
9150616049228764323192129703446093584259267276386814363309856853 ~
2786024332141052330760658841495858718197071242995959226781172796 ~
4438853796763139274314227953114500064922126500133268623021550837
\cs_end:
}
% \end{macrocode}
% \end{variable}
%
% \begin{macro}[aux, rEXP]
% {
% \@@_trig_large:ww,
% \@@_trig_large_auxi:wwwwww,
% \@@_trig_large_auxii:ww,
% \@@_trig_large_auxiii:wNNNNNNNN,
% \@@_trig_large_auxiv:wN
% }
% The exponent~|#1| is between $1$ and~$\ExplSyntaxOn \int_use:N
% \c__fp_max_exponent_int$. We discard the integer part of
% $10^{\text{\texttt{\#1}}-16}/(2\pi)$, that is, the first |#1|~digits
% of $10^{-16}/(2\pi)$, because it yields an integer contribution to
% $x/(2\pi)$. The \texttt{auxii} auxiliary discards~$64$ digits at a
% time thanks to spaces inserted in the result of
% \cs{@@_trig_inverse_two_pi:}, while \texttt{auxiii} discards~$8$
% digits at a time, and \texttt{auxiv} discards digits one at a time.
% Then $64$~digits are packed into groups of~$4$ and the \texttt{auxv}
% auxiliary is called.
% \begin{macrocode}
\cs_new:Npn \@@_trig_large:ww #1, #2#3#4#5#6;
{
\exp_after:wN \@@_trig_large_auxi:wwwwww
\__int_value:w \__int_eval:w (#1 - 32) / 64 \exp_after:wN ,
\__int_value:w \__int_eval:w (#1 - 4) / 8 \exp_after:wN ,
\__int_value:w #1 \@@_trig_inverse_two_pi: ;
{#2}{#3}{#4}{#5} ;
}
\cs_new:Npn \@@_trig_large_auxi:wwwwww #1, #2, #3, #4!
{
\prg_replicate:nn {#1} { \@@_trig_large_auxii:ww }
\prg_replicate:nn { #2 - #1 * \c_eight }
{ \@@_trig_large_auxiii:wNNNNNNNN }
\prg_replicate:nn { #3 - #2 * \c_eight }
{ \@@_trig_large_auxiv:wN }
\prg_replicate:nn { \c_eight } { \@@_pack_twice_four:wNNNNNNNN }
\@@_trig_large_auxv:www
;
}
\cs_new:Npn \@@_trig_large_auxii:ww #1; #2 ~ { #1; }
\cs_new:Npn \@@_trig_large_auxiii:wNNNNNNNN
#1; #2#3#4#5#6#7#8#9 { #1; }
\cs_new:Npn \@@_trig_large_auxiv:wN #1; #2 { #1; }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, rEXP]
% {
% \@@_trig_large_auxv:www,
% \@@_trig_large_auxvi:wnnnnnnnn,
% \@@_trig_large_pack:NNNNNw
% }
% First come the first $64$~digits of the fractional part of
% $10^{\text{\texttt{\#1}}-16}/(2\pi)$, arranged in $16$~blocks
% of~$4$, and ending with a semicolon. Then some more digits of the
% same fractional part, ending with a semicolon, then $4$~blocks of
% $4$~digits holding the significand of the original argument.
% Multiply the $16$-digit significand with the $64$-digit fractional
% part: the \texttt{auxvi} auxiliary receives the significand
% as~|#2#3#4#5| and $16$~digits of the fractional part as~|#6#7#8#9|,
% and computes one step of the usual ladder of \texttt{pack} functions
% we use for multiplication (see \emph{e.g.,} \cs{@@_fixed_mul:wwn}),
% then discards one block of the fractional part to set things up for
% the next step of the ladder. We perform $13$~such steps, replacing
% the last \texttt{middle} shift by the appropriate \texttt{trailing}
% shift, then discard the significand and remaining $3$~blocks from
% the fractional part, as there are not enough digits to compute any
% more step in the ladder. The last semicolon closes the ladder, and
% we return control to the \texttt{auxvii} auxiliary.
% \begin{macrocode}
\cs_new:Npn \@@_trig_large_auxv:www #1; #2; #3;
{
\exp_after:wN \@@_use_i_until_s:nw
\exp_after:wN \@@_trig_large_auxvii:w
\__int_value:w \__int_eval:w \c_@@_leading_shift_int
\prg_replicate:nn { \c_thirteen }
{ \@@_trig_large_auxvi:wnnnnnnnn }
+ \c_@@_trailing_shift_int - \c_@@_middle_shift_int
\@@_use_i_until_s:nw
; #3 #1 ; ;
}
\cs_new:Npn \@@_trig_large_auxvi:wnnnnnnnn #1; #2#3#4#5#6#7#8#9
{
\exp_after:wN \@@_trig_large_pack:NNNNNw
\__int_value:w \__int_eval:w \c_@@_middle_shift_int
+ #2*#9 + #3*#8 + #4*#7 + #5*#6
#1; {#2}{#3}{#4}{#5} {#7}{#8}{#9}
}
\cs_new:Npn \@@_trig_large_pack:NNNNNw #1#2#3#4#5#6;
{ + #1#2#3#4#5 ; #6 }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, rEXP]
% {
% \@@_trig_large_auxvii:w,
% \@@_trig_large_auxviii:w,
% }
% \begin{macro}[aux, EXP]
% {
% \@@_trig_large_auxix:Nw,
% \@@_trig_large_auxx:wNNNNN,
% \@@_trig_large_auxxi:w
% }
% The \texttt{auxvii} auxiliary is followed by $52$~digits and a
% semicolon. We find the octant as the integer part of $8$~times what
% follows, or equivalently as the integer part of $|#1#2#3|/125$, and
% add it to the surrounding integer expression for the octant. We
% then compute $8$~times the $52$-digit number, with a minus sign if
% the octant is odd. Again, the last \texttt{middle} shift is
% converted to a \texttt{trailing} shift. Any integer part (including
% negative values which come up when the octant is odd) is discarded
% by \cs{@@_use_i_until_s:nw}. The resulting fractional part should
% then be converted to radians by multiplying by~$2\pi/8$, but first,
% build an extended precision number by abusing
% \cs{@@_ep_to_ep_loop:N} with the appropriate trailing markers.
% Finally, \cs{@@_trig_small:ww} sets up the argument for the
% functions which compute the Taylor series.
% \begin{macrocode}
\cs_new:Npn \@@_trig_large_auxvii:w #1#2#3
{
\exp_after:wN \@@_trig_large_auxviii:ww
\__int_value:w \__int_eval:w (#1#2#3 - 62) / 125 ;
#1#2#3
}
\cs_new:Npn \@@_trig_large_auxviii:ww #1;
{
+ #1
\if_int_odd:w #1 \exp_stop_f:
\exp_after:wN \@@_trig_large_auxix:Nw
\exp_after:wN -
\else:
\exp_after:wN \@@_trig_large_auxix:Nw
\exp_after:wN +
\fi:
}
\cs_new:Npn \@@_trig_large_auxix:Nw
{
\exp_after:wN \@@_use_i_until_s:nw
\exp_after:wN \@@_trig_large_auxxi:w
\__int_value:w \__int_eval:w \c_@@_leading_shift_int
\prg_replicate:nn { \c_thirteen }
{ \@@_trig_large_auxx:wNNNNN }
+ \c_@@_trailing_shift_int - \c_@@_middle_shift_int
;
}
\cs_new:Npn \@@_trig_large_auxx:wNNNNN #1; #2 #3#4#5#6
{
\exp_after:wN \@@_trig_large_pack:NNNNNw
\__int_value:w \__int_eval:w \c_@@_middle_shift_int
#2 \c_eight * #3#4#5#6
#1; #2
}
\cs_new:Npn \@@_trig_large_auxxi:w #1;
{
\exp_after:wN \@@_ep_mul_raw:wwwwN
\__int_value:w \__int_eval:w \c_zero \@@_ep_to_ep_loop:N #1 ; ; !
0,{7853}{9816}{3397}{4483}{0961}{5661};
\@@_trig_small:ww
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsubsection{Computing the power series}
%
% \begin{macro}[aux, EXP]
% {\@@_sin_series_o:NNwwww, \@@_sin_series_aux_o:NNnwww}
% Here we receive a conversion function \cs{@@_ep_to_float:wwN} or
% \cs{@@_ep_inv_to_float:wwN}, a \meta{sign} ($0$ or~$2$), a
% (non-negative) \meta{octant} delimited by a dot, a \meta{fixed
% point} number delimited by a semicolon, and an extended-precision
% number. The auxiliary receives:
% \begin{itemize}
% \item the conversion function~|#1|;
% \item the final sign, which depends on the octant~|#3| and the
% sign~|#2|;
% \item the octant~|#3|, which will control the series we use;
% \item the square |#4 * #4| of the argument as a fixed point number,
% computed with \cs{@@_fixed_mul:wwn};
% \item the number itself as an extended-precision number.
% \end{itemize}
% If the octant is in $\{1,2,5,6,\ldots{}\}$, we are near an extremum
% of the function and we use the series
% \[
% \cos(x) = 1 - x^2 \bigg( \frac{1}{2!} - x^2 \bigg( \frac{1}{4!}
% - x^2 \bigg( \cdots \bigg) \bigg) \bigg) .
% \]
% Otherwise, the series
% \[
% \sin(x) = x \bigg( 1 - x^2 \bigg( \frac{1}{3!} - x^2 \bigg(
% \frac{1}{5!} - x^2 \bigg( \cdots \bigg) \bigg) \bigg) \bigg)
% \]
% is used. Finally, the extended-precision number is converted to a
% floating point number with the given sign, and \cs{@@_sanitize:Nw}
% checks for overflow and underflow.
% \begin{macrocode}
\cs_new:Npn \@@_sin_series_o:NNwwww #1#2#3. #4;
{
\@@_fixed_mul:wwn #4; #4;
{
\exp_after:wN \@@_sin_series_aux_o:NNnwww
\exp_after:wN #1
\__int_value:w
\if_int_odd:w \__int_eval:w (#3 + \c_two) / \c_four \__int_eval_end:
#2
\else:
\if_meaning:w #2 0 2 \else: 0 \fi:
\fi:
{#3}
}
}
\cs_new:Npn \@@_sin_series_aux_o:NNnwww #1#2#3 #4; #5,#6;
{
\if_int_odd:w \__int_eval:w #3 / \c_two \__int_eval_end:
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_ii:nn
\fi:
{ % 1/18!
\@@_fixed_mul_sub_back:wwwn {0000}{0000}{0000}{0001}{5619}{2070};
#4;{0000}{0000}{0000}{0477}{9477}{3324};
\@@_fixed_mul_sub_back:wwwn #4;{0000}{0000}{0011}{4707}{4559}{7730};
\@@_fixed_mul_sub_back:wwwn #4;{0000}{0000}{2087}{6756}{9878}{6810};
\@@_fixed_mul_sub_back:wwwn #4;{0000}{0027}{5573}{1922}{3985}{8907};
\@@_fixed_mul_sub_back:wwwn #4;{0000}{2480}{1587}{3015}{8730}{1587};
\@@_fixed_mul_sub_back:wwwn #4;{0013}{8888}{8888}{8888}{8888}{8889};
\@@_fixed_mul_sub_back:wwwn #4;{0416}{6666}{6666}{6666}{6666}{6667};
\@@_fixed_mul_sub_back:wwwn #4;{5000}{0000}{0000}{0000}{0000}{0000};
\@@_fixed_mul_sub_back:wwwn#4;{10000}{0000}{0000}{0000}{0000}{0000};
{ \@@_fixed_continue:wn 0, }
}
{ % 1/17!
\@@_fixed_mul_sub_back:wwwn {0000}{0000}{0000}{0028}{1145}{7254};
#4;{0000}{0000}{0000}{7647}{1637}{3182};
\@@_fixed_mul_sub_back:wwwn #4;{0000}{0000}{0160}{5904}{3836}{8216};
\@@_fixed_mul_sub_back:wwwn #4;{0000}{0002}{5052}{1083}{8544}{1719};
\@@_fixed_mul_sub_back:wwwn #4;{0000}{0275}{5731}{9223}{9858}{9065};
\@@_fixed_mul_sub_back:wwwn #4;{0001}{9841}{2698}{4126}{9841}{2698};
\@@_fixed_mul_sub_back:wwwn #4;{0083}{3333}{3333}{3333}{3333}{3333};
\@@_fixed_mul_sub_back:wwwn #4;{1666}{6666}{6666}{6666}{6666}{6667};
\@@_fixed_mul_sub_back:wwwn#4;{10000}{0000}{0000}{0000}{0000}{0000};
{ \@@_ep_mul:wwwwn 0, } #5,#6;
}
{
\exp_after:wN \@@_sanitize:Nw
\exp_after:wN #2
\__int_value:w \__int_eval:w #1
}
#2
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]
% {\@@_tan_series_o:NNwwww, \@@_tan_series_aux_o:Nnwww}
% Contrarily to \cs{@@_sin_series_o:NNwwww} which received a
% conversion auxiliary as~|#1|, here, |#1| is $0$ for tangent
% and $2$ for
% cotangent. Consider first the case of the tangent. The octant |#3|
% starts at $1$, which means that it is $1$ or $2$ for $\lvert
% x\rvert\in[0,\pi/2]$, it is $3$ or $4$ for $\lvert
% x\rvert\in[\pi/2,\pi]$, and so on: the intervals on which
% $\tan\lvert x\rvert\geq 0$ coincide with those for which $\lfloor
% (|#3| + 1) / 2\rfloor$ is odd. We also have to take into account
% the original sign of $x$ to get the sign of the final result; it is
% straightforward to check that the first \cs{__int_value:w} expansion
% produces $0$ for a positive final result, and $2$ otherwise. A
% similar story holds for $\cot(x)$.
%
% The auxiliary receives the sign, the octant, the square of the
% (reduced) input, and the (reduced) input (an extended-precision
% number) as arguments. It then
% computes the numerator and denominator of
% \[
% \tan(x) \simeq
% \frac{x (1 - x^2 (a_1 - x^2 (a_2 - x^2 (a_3 - x^2 (a_4 - x^2 a_5)))))}
% {1 - x^2 (b_1 - x^2 (b_2 - x^2 (b_3 - x^2 (b_4 - x^2 b_5))))} .
% \]
% The ratio is computed by \cs{@@_ep_div:wwwwn}, then converted to a
% floating point number. For octants~|#3| (really, quadrants) next to
% a pole of the
% functions, the fixed point numerator and denominator are exchanged
% before computing the ratio. Note that this \cs{if_int_odd:w} test
% relies on the fact that the octant is at least~$1$.
% \begin{macrocode}
\cs_new:Npn \@@_tan_series_o:NNwwww #1#2#3. #4;
{
\@@_fixed_mul:wwn #4; #4;
{
\exp_after:wN \@@_tan_series_aux_o:Nnwww
\__int_value:w
\if_int_odd:w \__int_eval:w #3 / \c_two \__int_eval_end:
\exp_after:wN \reverse_if:N
\fi:
\if_meaning:w #1#2 2 \else: 0 \fi:
{#3}
}
}
\cs_new:Npn \@@_tan_series_aux_o:Nnwww #1 #2 #3; #4,#5;
{
\@@_fixed_mul_sub_back:wwwn {0000}{0000}{1527}{3493}{0856}{7059};
#3; {0000}{0159}{6080}{0274}{5257}{6472};
\@@_fixed_mul_sub_back:wwwn #3; {0002}{4571}{2320}{0157}{2558}{8481};
\@@_fixed_mul_sub_back:wwwn #3; {0115}{5830}{7533}{5397}{3168}{2147};
\@@_fixed_mul_sub_back:wwwn #3; {1929}{8245}{6140}{3508}{7719}{2982};
\@@_fixed_mul_sub_back:wwwn #3;{10000}{0000}{0000}{0000}{0000}{0000};
{ \@@_ep_mul:wwwwn 0, } #4,#5;
{
\@@_fixed_mul_sub_back:wwwn {0000}{0007}{0258}{0681}{9408}{4706};
#3;{0000}{2343}{7175}{1399}{6151}{7670};
\@@_fixed_mul_sub_back:wwwn #3;{0019}{2638}{4588}{9232}{8861}{3691};
\@@_fixed_mul_sub_back:wwwn #3;{0536}{6357}{0691}{4344}{6852}{4252};
\@@_fixed_mul_sub_back:wwwn #3;{5263}{1578}{9473}{6842}{1052}{6315};
\@@_fixed_mul_sub_back:wwwn#3;{10000}{0000}{0000}{0000}{0000}{0000};
{
\reverse_if:N \if_int_odd:w
\__int_eval:w (#2 - \c_one) / \c_two \__int_eval_end:
\exp_after:wN \@@_reverse_args:Nww
\fi:
\@@_ep_div:wwwwn 0,
}
}
{
\exp_after:wN \@@_sanitize:Nw
\exp_after:wN #1
\__int_value:w \__int_eval:w \@@_ep_to_float:wwN
}
#1
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Inverse trigonometric functions}
%
% All inverse trigonometric functions (arcsine, arccosine, arctangent,
% arccotangent, arccosecant, and arcsecant) are based on a function
% often denoted \texttt{atan2}. This function is accessed directly by
% feeding two arguments to arctangent, and is defined by \(\operatorname{atan}(y, x) =
% \operatorname{atan}(y/x)\) for generic \(y\) and~\(x\). Its advantages over the
% conventional arctangent is that it takes values in $[-\pi,\pi]$ rather
% than $[-\pi/2,\pi/2]$, and that it is better behaved in boundary
% cases. Other inverse trigonometric functions are expressed in terms
% of \(\operatorname{atan}\) as
% \begin{align}
% \operatorname{acos} x & = \operatorname{atan}(\sqrt{1-x^2}, x) \\
% \operatorname{asin} x & = \operatorname{atan}(x, \sqrt{1-x^2}) \\
% \operatorname{asec} x & = \operatorname{atan}(\sqrt{x^2-1}, 1) \\
% \operatorname{acsc} x & = \operatorname{atan}(1, \sqrt{x^2-1}) \\
% \operatorname{atan} x & = \operatorname{atan}(x, 1) \\
% \operatorname{acot} x & = \operatorname{atan}(1, x) .
% \end{align}
% Rather than introducing a new function, \texttt{atan2}, the arctangent
% function \texttt{atan} is overloaded: it can take one or two
% arguments. In the comments below, following many texts, we call the
% first argument~$y$ and the second~$x$, because $\operatorname{atan}(y, x) = \operatorname{atan}(y
% / x)$ is the angular coordinate of the point $(x, y)$.
%
% As for direct trigonometric functions, the first step in computing
% $\operatorname{atan}(y, x)$ is argument reduction. The sign of~$y$ will give that
% of the result. We distinguish eight regions where the point $(x,
% \lvert y\rvert)$ can lie, of angular size roughly $\pi/8$,
% characterized by their \enquote{octant}, between $0$ and~$7$ included. In
% each region, we compute an arctangent as a Taylor series, then shift
% this arctangent by the appropriate multiple of $\pi/4$ and sign to get
% the result. Here is a list of octants, and how we compute the
% arctangent (we assume $y>0$: otherwise replace $y$ by~$-y$ below):
% \begin{itemize}
% \item[0] $0 < \lvert y\rvert < 0.41421 x$, then
% $\operatorname{atan}\frac{\lvert y\rvert}{x}$
% is given by a nicely convergent Taylor series;
% \item[1] $0 < 0.41421 x < \lvert y\rvert < x$, then
% $\operatorname{atan}\frac{\lvert y\rvert}{x}
% = \frac{\pi}{4}-\operatorname{atan}\frac{x-\lvert y\rvert}{x+\lvert y\rvert}$;
% \item[2] $0 < 0.41421 \lvert y\rvert < x < \lvert y\rvert$, then
% $\operatorname{atan}\frac{\lvert y\rvert}{x}
% = \frac{\pi}{4}+\operatorname{atan}\frac{-x+\lvert y\rvert}{x+\lvert y\rvert}$;
% \item[3] $0 < x < 0.41421 \lvert y\rvert$, then
% $\operatorname{atan}\frac{\lvert y\rvert}{x}
% = \frac{\pi}{2}-\operatorname{atan}\frac{x}{\lvert y\rvert}$;
% \item[4] $0 < -x < 0.41421 \lvert y\rvert$, then
% $\operatorname{atan}\frac{\lvert y\rvert}{x}
% = \frac{\pi}{2}+\operatorname{atan}\frac{-x}{\lvert y\rvert}$;
% \item[5] $0 < 0.41421 \lvert y\rvert < -x < \lvert y\rvert$, then
% $\operatorname{atan}\frac{\lvert y\rvert}{x}
% =\frac{3\pi}{4}-\operatorname{atan}\frac{x+\lvert y\rvert}{-x+\lvert y\rvert}$;
% \item[6] $0 < -0.41421 x < \lvert y\rvert < -x$, then
% $\operatorname{atan}\frac{\lvert y\rvert}{x}
% =\frac{3\pi}{4}+\operatorname{atan}\frac{-x-\lvert y\rvert}{-x+\lvert y\rvert}$;
% \item[7] $0 < \lvert y\rvert < -0.41421 x$, then
% $\operatorname{atan}\frac{\lvert y\rvert}{x}
% = \pi-\operatorname{atan}\frac{\lvert y\rvert}{-x}$.
% \end{itemize}
% In the following, we will denote by~$z$ the ratio among
% $\lvert\frac{y}{x}\rvert$, $\lvert\frac{x}{y}\rvert$,
% $\lvert\frac{x+y}{x-y}\rvert$, $\lvert\frac{x-y}{x+y}\rvert$ which
% appears in the right-hand side above.
%
% \subsubsection{Arctangent and arccotangent}
%
% \begin{macro}[int, EXP]{\@@_atan_o:Nw, \@@_acot_o:Nw}
% \begin{macro}[aux, EXP]{\@@_atan_dispatch_o:NNnNw}
% The parsing step manipulates \texttt{atan} and \texttt{acot} like
% \texttt{min} and \texttt{max}, reading in an array of operands, but
% also leaves \cs{use_i:nn} or \cs{use_ii:nn} depending on whether the
% result should be given in radians or in degrees. Here, we dispatch
% according to the number of arguments. The one-argument versions of
% arctangent and arccotangent are special cases of the two-argument
% ones: $\operatorname{atan}(y) = \operatorname{atan}(y, 1) = \operatorname{acot}(1, y)$ and
% $\operatorname{acot}(x) = \operatorname{atan}(1, x) = \operatorname{acot}(x, 1)$.
% \begin{macrocode}
\cs_new:Npn \@@_atan_o:Nw
{
\@@_atan_dispatch_o:NNnNw
\@@_acotii_o:Nww \@@_atanii_o:Nww { atan }
}
\cs_new:Npn \@@_acot_o:Nw
{
\@@_atan_dispatch_o:NNnNw
\@@_atanii_o:Nww \@@_acotii_o:Nww { acot }
}
\cs_new:Npn \@@_atan_dispatch_o:NNnNw #1#2#3#4#5@
{
\if_case:w
\__int_eval:w \@@_array_count:n {#5} - \c_one \__int_eval_end:
\exp_after:wN #1 \exp_after:wN #4 \c_one_fp #5
\exp:w
\or: #2 #4 #5 \exp:w
\else:
\__msg_kernel_expandable_error:nnnnn
{ kernel } { fp-num-args } { #3() } { 1 } { 2 }
\exp_after:wN \c_nan_fp \exp:w
\fi:
\exp_after:wN \exp_end:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[int, EXP]{\@@_atanii_o:Nww, \@@_acotii_o:Nww}
% If either operand is \texttt{nan}, we return it. If both are
% normal, we call \cs{@@_atan_normal_o:NNnwNnw}. If both are zero or
% both infinity, we call \cs{@@_atan_inf_o:NNNw} with argument~$2$,
% leading to a result among $\{\pm\pi/4, \pm 3\pi/4\}$ (in degrees,
% $\{\pm 45, \pm 135\}$). Otherwise, one is much bigger than the
% other, and we call \cs{@@_atan_inf_o:NNNw} with either an argument
% of~$4$, leading to the values $\pm\pi/2$ (in degrees,~$\pm 90$),
% or~$0$, leading to $\{\pm 0, \pm\pi\}$ (in degrees, $\{\pm 0,\pm
% 180\}$). Since $\operatorname{acot}(x, y) = \operatorname{atan}(y, x)$,
% \cs{@@_acotii_o:ww} simply reverses its two arguments.
% \begin{macrocode}
\cs_new:Npn \@@_atanii_o:Nww
#1 \s_@@ \@@_chk:w #2#3#4; \s_@@ \@@_chk:w #5
{
\if_meaning:w 3 #2 \@@_case_return_i_o:ww \fi:
\if_meaning:w 3 #5 \@@_case_return_ii_o:ww \fi:
\if_case:w
\if_meaning:w #2 #5
\if_meaning:w 1 #2 \c_ten \else: \c_zero \fi:
\else:
\if_int_compare:w #2 > #5 \c_one \else: \c_two \fi:
\fi:
\@@_case_return:nw { \@@_atan_inf_o:NNNw #1 #3 \c_two }
\or: \@@_case_return:nw { \@@_atan_inf_o:NNNw #1 #3 \c_four }
\or: \@@_case_return:nw { \@@_atan_inf_o:NNNw #1 #3 \c_zero }
\fi:
\@@_atan_normal_o:NNnwNnw #1
\s_@@ \@@_chk:w #2#3#4;
\s_@@ \@@_chk:w #5
}
\cs_new:Npn \@@_acotii_o:Nww #1#2; #3;
{ \@@_atanii_o:Nww #1#3; #2; }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]{\@@_atan_inf_o:NNNw}
% This auxiliary is called whenever one number is $\pm 0$ or
% $\pm\infty$ (and neither is \nan{}). Then the result only depends
% on the signs, and its value is a multiple of $\pi/4$. We use the
% same auxiliary as for normal numbers,
% \cs{@@_atan_combine_o:NwwwwwN}, with arguments the final sign~|#2|;
% the octant~|#3|; $\operatorname{atan} z/z=1$ as a fixed point number; $z=0$~as a
% fixed point number; and $z=0$~as an extended-precision number.
% Given the values we provide, $\operatorname{atan} z$ will be computed to be~$0$,
% and the result will be $[|#3|/2]\cdot\pi/4$ if the sign~|#5| of~$x$
% is positive, and $[(7-|#3|)/2]\cdot\pi/4$ for negative~$x$, where
% the divisions are rounded up.
% \begin{macrocode}
\cs_new:Npn \@@_atan_inf_o:NNNw #1#2#3 \s_@@ \@@_chk:w #4#5#6;
{
\exp_after:wN \@@_atan_combine_o:NwwwwwN
\exp_after:wN #2
\__int_value:w \__int_eval:w
\if_meaning:w 2 #5 \c_seven - \fi: #3 \exp_after:wN ;
\c_@@_one_fixed_tl ;
{0000}{0000}{0000}{0000}{0000}{0000};
0,{0000}{0000}{0000}{0000}{0000}{0000}; #1
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]{\@@_atan_normal_o:NNnwNnw}
% Here we simply reorder the floating point data into a pair of signed
% extended-precision numbers, that is, a sign, an exponent ending with
% a comma, and a six-block mantissa ending with a semi-colon. This
% extended precision is required by other inverse trigonometric
% functions, to compute things like $\operatorname{atan}(x,\sqrt{1-x^2})$ without
% intermediate rounding errors.
% \begin{macrocode}
\cs_new_protected:Npn \@@_atan_normal_o:NNnwNnw
#1 \s_@@ \@@_chk:w 1#2#3#4; \s_@@ \@@_chk:w 1#5#6#7;
{
\@@_atan_test_o:NwwNwwN
#2 #3, #4{0000}{0000};
#5 #6, #7{0000}{0000}; #1
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]{\@@_atan_test_o:NwwNwwN}
% This receives: the sign~|#1| of~$y$, its exponent~|#2|, its $24$
% digits~|#3| in groups of~$4$, and similarly for~$x$. We prepare to
% call \cs{@@_atan_combine_o:NwwwwwN} which expects the sign~|#1|, the
% octant, the ratio $(\operatorname{atan} z)/z = 1 - \cdots$, and the value of~$z$,
% both as a fixed point number and as an extended-precision floating
% point number with a mantissa in $[0.01,1)$. For now, we place |#1|
% as a first argument, and start an integer expression for the octant.
% The sign of $x$ does not affect what~$z$ will be, so we simply leave
% a contribution to the octant: $\meta{octant} \to 7 - \meta{octant}$
% for negative~$x$. Then we order $\lvert y\rvert$ and $\lvert
% x\rvert$ in a non-decreasing order: if $\lvert y\rvert > \lvert
% x\rvert$, insert $3-$ in the expression for the octant, and swap the
% two numbers. The finer test with $0.41421$ is done by
% \cs{@@_atan_div:wnwwnw} after the operands have been ordered.
% \begin{macrocode}
\cs_new:Npn \@@_atan_test_o:NwwNwwN #1#2,#3; #4#5,#6;
{
\exp_after:wN \@@_atan_combine_o:NwwwwwN
\exp_after:wN #1
\__int_value:w \__int_eval:w
\if_meaning:w 2 #4
\c_seven - \__int_eval:w
\fi:
\if_int_compare:w
\@@_ep_compare:wwww #2,#3; #5,#6; > \c_zero
\c_three -
\exp_after:wN \@@_reverse_args:Nww
\fi:
\@@_atan_div:wnwwnw #2,#3; #5,#6;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, rEXP]{\@@_atan_div:wnwwnw, \@@_atan_near:wwwn}
% \begin{macro}[aux, EXP]{\@@_atan_near_aux:wwn}
% This receives two positive numbers $a$ and~$b$ (equal to $\lvert
% x\rvert$ and~$\lvert y\rvert$ in some order), each as an exponent
% and $6$~blocks of $4$~digits, such that $0<a<b$. If $0.41421b<a$,
% the two numbers are \enquote{near}, hence the point $(y,x)$ that we
% started with is closer to the diagonals $\{\lvert y\rvert = \lvert
% x\rvert\}$ than to the axes $\{xy = 0\}$. In that case, the octant
% is~$1$ (possibly combined with the $7-$ and $3-$ inserted earlier)
% and we wish to compute $\operatorname{atan}\frac{b-a}{a+b}$. Otherwise, the
% octant is~$0$ (again, combined with earlier terms) and we wish to
% compute $\operatorname{atan}\frac{a}{b}$. In any case, call \cs{@@_atan_auxi:ww}
% followed by~$z$, as a comma-delimited exponent and a fixed point
% number.
% \begin{macrocode}
\cs_new:Npn \@@_atan_div:wnwwnw #1,#2#3; #4,#5#6;
{
\if_int_compare:w
\__int_eval:w 41421 * #5 < #2 000
\if_case:w \__int_eval:w #4 - #1 \__int_eval_end: 00 \or: 0 \fi:
\exp_stop_f:
\exp_after:wN \@@_atan_near:wwwn
\fi:
\c_zero
\@@_ep_div:wwwwn #1,{#2}#3; #4,{#5}#6;
\@@_atan_auxi:ww
}
\cs_new:Npn \@@_atan_near:wwwn
\c_zero \@@_ep_div:wwwwn #1,#2; #3,
{
\c_one
\@@_ep_to_fixed:wwn #1 - #3, #2;
\@@_atan_near_aux:wwn
}
\cs_new:Npn \@@_atan_near_aux:wwn #1; #2;
{
\@@_fixed_add:wwn #1; #2;
{ \@@_fixed_sub:wwn #2; #1; { \@@_ep_div:wwwwn 0, } 0, }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[aux, EXP]{\@@_atan_auxi:ww, \@@_atan_auxii:w}
% Convert~$z$ from a representation as an exponent and a fixed point
% number in $[0.01,1)$ to a fixed point number only, then set up the
% call to \cs{@@_atan_Taylor_loop:www}, followed by the fixed point
% representation of~$z$ and the old representation.
% \begin{macrocode}
\cs_new:Npn \@@_atan_auxi:ww #1,#2;
{ \@@_ep_to_fixed:wwn #1,#2; \@@_atan_auxii:w #1,#2; }
\cs_new:Npn \@@_atan_auxii:w #1;
{
\@@_fixed_mul:wwn #1; #1;
{
\@@_atan_Taylor_loop:www 39 ;
{0000}{0000}{0000}{0000}{0000}{0000} ;
}
! #1;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]
% {\@@_atan_Taylor_loop:www, \@@_atan_Taylor_break:w}
% We compute the series of $(\operatorname{atan} z)/z$. A typical intermediate
% stage has $|#1|=2k-1$, $|#2| =
% \frac{1}{2k+1}-z^2(\frac{1}{2k+3}-z^2(\cdots-z^2\frac{1}{39}))$, and
% $|#3|=z^2$. To go to the next step $k\to k-1$, we compute
% $\frac{1}{2k-1}$, then subtract from it $z^2$ times |#2|. The loop
% stops when $k=0$: then |#2| is $(\operatorname{atan} z)/z$, and there is a need to
% clean up all the unnecessary data, end the integer expression
% computing the octant with a semicolon, and leave the result~|#2|
% afterwards.
% \begin{macrocode}
\cs_new:Npn \@@_atan_Taylor_loop:www #1; #2; #3;
{
\if_int_compare:w #1 = - \c_one
\@@_atan_Taylor_break:w
\fi:
\exp_after:wN \@@_fixed_div_int:wwN \c_@@_one_fixed_tl ; #1;
\@@_rrot:www \@@_fixed_mul_sub_back:wwwn #2; #3;
{
\exp_after:wN \@@_atan_Taylor_loop:www
\__int_value:w \__int_eval:w #1 - \c_two ;
}
#3;
}
\cs_new:Npn \@@_atan_Taylor_break:w
\fi: #1 \@@_fixed_mul_sub_back:wwwn #2; #3 !
{ \fi: ; #2 ; }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]
% {\@@_atan_combine_o:NwwwwwN, \@@_atan_combine_aux:ww}
% This receives a \meta{sign}, an \meta{octant}, a fixed point value
% of $(\operatorname{atan} z)/z$, a fixed point number~$z$, and another
% representation of~$z$, as an \meta{exponent} and the fixed point
% number $10^{-\meta{exponent}} z$, followed by either \cs{use_i:nn}
% (when working in radians) or \cs{use_ii:nn} (when working in
% degrees). The function computes the floating point result
% \begin{equation}
% \meta{sign} \left(
% \left\lceil\frac{\meta{octant}}{2}\right\rceil
% \frac{\pi}{4}
% + (-1)^{\meta{octant}} \frac{\operatorname{atan} z}{z} \cdot z\right) \,,
% \end{equation}
% multiplied by $180/\pi$ if working in degrees, and using in any case
% the most appropriate representation of~$z$. The floating point
% result is passed to \cs{@@_sanitize:Nw}, which checks for overflow
% or underflow. If the octant is~$0$, leave the exponent~|#5| for
% \cs{@@_sanitize:Nw}, and multiply $|#3|=\frac{\operatorname{atan} z}{z}$
% with~|#6|, the adjusted~$z$. Otherwise, multiply $|#3|=\frac{\operatorname{atan}
% z}{z}$ with $|#4|=z$, then compute the appropriate multiple of
% $\frac{\pi}{4}$ and add or subtract the product $|#3|\cdot|#4|$. In
% both cases, convert to a floating point with
% \cs{@@_fixed_to_float:wN}.
% \begin{macrocode}
\cs_new:Npn \@@_atan_combine_o:NwwwwwN #1 #2; #3; #4; #5,#6; #7
{
\exp_after:wN \@@_sanitize:Nw
\exp_after:wN #1
\__int_value:w \__int_eval:w
\if_meaning:w 0 #2
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_ii:nn
\fi:
{ #5 \@@_fixed_mul:wwn #3; #6; }
{
\@@_fixed_mul:wwn #3; #4;
{
\exp_after:wN \@@_atan_combine_aux:ww
\__int_value:w \__int_eval:w #2 / \c_two ; #2;
}
}
{ #7 \@@_fixed_to_float:wN \@@_fixed_to_float_rad:wN }
#1
}
\cs_new:Npn \@@_atan_combine_aux:ww #1; #2;
{
\@@_fixed_mul_short:wwn
{7853}{9816}{3397}{4483}{0961}{5661};
{#1}{0000}{0000};
{
\if_int_odd:w #2 \exp_stop_f:
\exp_after:wN \@@_fixed_sub:wwn
\else:
\exp_after:wN \@@_fixed_add:wwn
\fi:
}
}
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Arcsine and arccosine}
%
% \begin{macro}[int, EXP]{\@@_asin_o:w}
% Again, the first argument provided by \pkg{l3fp-parse} is
% \cs{use_i:nn} if we are to work in radians and \cs{use_ii:nn} for
% degrees. Then comes a floating point number. The arcsine of $\pm
% 0$ or \nan{} is the same floating point number. The arcsine of
% $\pm\infty$ raises an invalid operation exception. Otherwise, call
% an auxiliary common with \cs{@@_acos_o:w}, feeding it information
% about what function is being performed (for \enquote{invalid operation}
% exceptions).
% \begin{macrocode}
\cs_new:Npn \@@_asin_o:w #1 \s_@@ \@@_chk:w #2#3; @
{
\if_case:w #2 \exp_stop_f:
\@@_case_return_same_o:w
\or:
\@@_case_use:nw
{ \@@_asin_normal_o:NfwNnnnnw #1 { #1 { asin } { asind } } }
\or:
\@@_case_use:nw
{ \@@_invalid_operation_o:fw { #1 { asin } { asind } } }
\else:
\@@_case_return_same_o:w
\fi:
\s_@@ \@@_chk:w #2 #3;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int, EXP]{\@@_acos_o:w}
% The arccosine of $\pm 0$ is $\pi / 2$ (in degrees,~$90$). The
% arccosine of $\pm\infty$ raises an invalid operation exception. The
% arccosine of \nan{} is itself. Otherwise, call an auxiliary common
% with \cs{@@_sin_o:w}, informing it that it was called by
% \texttt{acos} or \texttt{acosd}, and preparing to swap some
% arguments down the line.
% \begin{macrocode}
\cs_new:Npn \@@_acos_o:w #1 \s_@@ \@@_chk:w #2#3; @
{
\if_case:w #2 \exp_stop_f:
\@@_case_use:nw { \@@_atan_inf_o:NNNw #1 0 \c_four }
\or:
\@@_case_use:nw
{
\@@_asin_normal_o:NfwNnnnnw #1 { #1 { acos } { acosd } }
\@@_reverse_args:Nww
}
\or:
\@@_case_use:nw
{ \@@_invalid_operation_o:fw { #1 { acos } { acosd } } }
\else:
\@@_case_return_same_o:w
\fi:
\s_@@ \@@_chk:w #2 #3;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]{\@@_asin_normal_o:NfwNnnnnw}
% If the exponent~|#5| is strictly less than~$1$, the operand lies
% within $(-1,1)$ and the operation is permitted: call
% \cs{@@_asin_auxi_o:nNww} with the appropriate arguments. If the
% number is exactly~$\pm 1$ (the test works because we know that
% $|#5|\geq 1$, $|#6#7|\geq 10000000$, $|#8#9|\geq 0$, with equality
% only for $\pm 1$), we also call \cs{@@_asin_auxi_o:nNww}.
% Otherwise, \cs{@@_use_i:ww} gets rid of the \texttt{asin} auxiliary,
% and raises instead an invalid operation, because the operand is
% outside the domain of arcsine or arccosine.
% \begin{macrocode}
\cs_new:Npn \@@_asin_normal_o:NfwNnnnnw
#1#2#3 \s_@@ \@@_chk:w 1#4#5#6#7#8#9;
{
\if_int_compare:w #5 < \c_one
\exp_after:wN \@@_use_none_until_s:w
\fi:
\if_int_compare:w \__int_eval:w #5 + #6#7 + #8#9 = 1000 0001 ~
\exp_after:wN \@@_use_none_until_s:w
\fi:
\@@_use_i:ww
\@@_invalid_operation_o:fw {#2}
\s_@@ \@@_chk:w 1#4{#5}{#6}{#7}{#8}{#9};
\@@_asin_auxi_o:NnNww
#1 {#3} #4 #5,{#6}{#7}{#8}{#9}{0000}{0000};
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]{\@@_asin_auxi_o:NnNww, \@@_asin_isqrt:wn}
% We compute $x/\sqrt{1-x^2}$. This function is used by \texttt{asin}
% and \texttt{acos}, but also by \texttt{acsc} and \texttt{asec} after
% inverting the operand, thus it must manipulate extended-precision
% numbers. First evaluate $1-x^2$ as $(1+x)(1-x)$: this behaves
% better near~$x=1$. We do the addition/subtraction with fixed point
% numbers (they are not implemented for extended-precision floats),
% but go back to extended-precision floats to multiply and compute the
% inverse square root $1/\sqrt{1-x^2}$. Finally, multiply by the
% (positive) extended-precision float $\lvert x\rvert$, and feed the
% (signed) result, and the number~$+1$, as arguments to the arctangent
% function. When computing the arccosine, the arguments
% $x/\sqrt{1-x^2}$ and~$+1$ are swapped by~|#2|
% (\cs{@@_reverse_args:Nww} in that case) before
% \cs{@@_atan_test_o:NwwNwwN} is evaluated. Note that the arctangent
% function requires normalized arguments, hence the need for
% \texttt{ep_to_ep} and \texttt{continue} after \texttt{ep_mul}.
% \begin{macrocode}
\cs_new:Npn \@@_asin_auxi_o:NnNww #1#2#3#4,#5;
{
\@@_ep_to_fixed:wwn #4,#5;
\@@_asin_isqrt:wn
\@@_ep_mul:wwwwn #4,#5;
\@@_ep_to_ep:wwN
\@@_fixed_continue:wn
{ #2 \@@_atan_test_o:NwwNwwN #3 }
0 1,{1000}{0000}{0000}{0000}{0000}{0000}; #1
}
\cs_new:Npn \@@_asin_isqrt:wn #1;
{
\exp_after:wN \@@_fixed_sub:wwn \c_@@_one_fixed_tl ; #1;
{
\@@_fixed_add_one:wN #1;
\@@_fixed_continue:wn { \@@_ep_mul:wwwwn 0, } 0,
}
\@@_ep_isqrt:wwn
}
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Arccosecant and arcsecant}
%
% \begin{macro}[int, EXP]{\@@_acsc_o:w}
% Cases are mostly labelled by~|#2|, except when |#2| is~$2$: then we
% use |#3#2|, which is $02=2$ when the number is $+\infty$ and
% $22$~when the number is $-\infty$. The arccosecant of $\pm 0$
% raises an invalid operation exception. The arccosecant of
% $\pm\infty$ is $\pm 0$ with the same sign. The arcosecant of \nan{}
% is itself. Otherwise, \cs{@@_acsc_normal_o:NfwNnw} does some more
% tests, keeping the function name (\texttt{acsc} or \texttt{acscd})
% as an argument for invalid operation exceptions.
% \begin{macrocode}
\cs_new:Npn \@@_acsc_o:w #1 \s_@@ \@@_chk:w #2#3#4; @
{
\if_case:w \if_meaning:w 2 #2 #3 \fi: #2 \exp_stop_f:
\@@_case_use:nw
{ \@@_invalid_operation_o:fw { #1 { acsc } { acscd } } }
\or: \@@_case_use:nw
{ \@@_acsc_normal_o:NfwNnw #1 { #1 { acsc } { acscd } } }
\or: \@@_case_return_o:Nw \c_zero_fp
\or: \@@_case_return_same_o:w
\else: \@@_case_return_o:Nw \c_minus_zero_fp
\fi:
\s_@@ \@@_chk:w #2 #3 #4;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int, EXP]{\@@_asec_o:w}
% The arcsecant of $\pm 0$ raises an invalid operation exception. The
% arcsecant of $\pm\infty$ is $\pi / 2$ (in degrees,~$90$). The
% arcosecant of \nan{} is itself. Otherwise, do some more tests,
% keeping the function name \texttt{asec} (or \texttt{asecd}) as an
% argument for invalid operation exceptions, and a
% \cs{@@_reverse_args:Nww} following precisely that appearing in
% \cs{@@_acos_o:w}.
% \begin{macrocode}
\cs_new:Npn \@@_asec_o:w #1 \s_@@ \@@_chk:w #2#3; @
{
\if_case:w #2 \exp_stop_f:
\@@_case_use:nw
{ \@@_invalid_operation_o:fw { #1 { asec } { asecd } } }
\or:
\@@_case_use:nw
{
\@@_acsc_normal_o:NfwNnw #1 { #1 { asec } { asecd } }
\@@_reverse_args:Nww
}
\or: \@@_case_use:nw { \@@_atan_inf_o:NNNw #1 0 \c_four }
\else: \@@_case_return_same_o:w
\fi:
\s_@@ \@@_chk:w #2 #3;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]{\@@_acsc_normal_o:NfwNnw}
% If the exponent is non-positive, the operand is less than~$1$ in
% absolute value, which is always an invalid operation: complain.
% Otherwise, compute the inverse of the operand, and feed it to
% \cs{@@_asin_auxi_o:nNww} (with all the appropriate arguments). This
% computes what we want thanks to
% $\operatorname{acsc}(x)=\operatorname{asin}(1/x)$ and
% $\operatorname{asec}(x)=\operatorname{acos}(1/x)$.
% \begin{macrocode}
\cs_new:Npn \@@_acsc_normal_o:NfwNnw #1#2#3 \s_@@ \@@_chk:w 1#4#5#6;
{
\int_compare:nNnTF {#5} < \c_one
{
\@@_invalid_operation_o:fw {#2}
\s_@@ \@@_chk:w 1#4{#5}#6;
}
{
\@@_ep_div:wwwwn
1,{1000}{0000}{0000}{0000}{0000}{0000};
#5,#6{0000}{0000};
{ \@@_asin_auxi_o:NnNww #1 {#3} #4 }
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintChanges
%
% \PrintIndex
|