1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
|
% \iffalse meta-comment
%
%% File: l3fp-extended.dtx Copyright (C) 2011-2012 The LaTeX3 Project
%%
%% It may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License (LPPL), either version 1.3c of this
%% license or (at your option) any later version. The latest version
%% of this license is in the file
%%
%% http://www.latex-project.org/lppl.txt
%%
%% This file is part of the "l3kernel bundle" (The Work in LPPL)
%% and all files in that bundle must be distributed together.
%%
%% The released version of this bundle is available from CTAN.
%%
%% -----------------------------------------------------------------------
%%
%% The development version of the bundle can be found at
%%
%% http://www.latex-project.org/svnroot/experimental/trunk/
%%
%% for those people who are interested.
%%
%%%%%%%%%%%
%% NOTE: %%
%%%%%%%%%%%
%%
%% Snapshots taken from the repository represent work in progress and may
%% not work or may contain conflicting material! We therefore ask
%% people _not_ to put them into distributions, archives, etc. without
%% prior consultation with the LaTeX Project Team.
%%
%% -----------------------------------------------------------------------
%%
%
%<*driver>
\RequirePackage{l3bootstrap}
\GetIdInfo$Id: l3fp-extended.dtx 4482 2013-04-24 21:05:12Z joseph $
{L3 Floating-point extended precision fixed-points}
\documentclass[full]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{The \textsf{l3fp-extended} package\thanks{This file
% has version number \ExplFileVersion, last
% revised \ExplFileDate.}\\
% Fixed points with extended precision for internal use}
% \author{^^A
% The \LaTeX3 Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
% \date{Released \ExplFileDate}
%
% \maketitle
%
% \begin{documentation}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3fp-extended} implementation}
%
% \begin{macrocode}
%<*initex|package>
% \end{macrocode}
%
% \begin{macrocode}
%<@@=fp>
% \end{macrocode}
%
% \subsection{Description of extended fixed points}
%
% In this module, we work on (almost) fixed-point numbers with
% extended ($24$ digits) precision. This is used in the computation of
% Taylor series for the logarithm, exponential, and trigonometric
% functions. Since we eventually only care about the $16$ first digits
% of the final result, some of the calculations are not performed with
% the full $24$-digit precision. In other words, the last two blocks of
% each fixed point number may be wrong as long as the error is small
% enough to be rounded away when converting back to a floating point
% number. The fixed point numbers are expressed as
% \begin{quote}
% \Arg{a_1} \Arg{a_2} \Arg{a_3} \Arg{a_4} \Arg{a_5} \Arg{a_6} |;|
% \end{quote}
% where each \meta{a_i} is exactly $4$ digits (ranging from |0000| to
% |9999|), except \meta{a_1}, which may be any \enquote{not-too-large}
% non-negative integer, with or without trailing zeros. Here,
% \enquote{not-too-large} depends on the specific function (see the
% corresponding comments for details). Checking for overflow is the
% responsibility of the code calling those functions. The fixed point
% number $a$ corresponding to the representation above is $a =
% \sum_{i=1}^{6} \meta{a_i} \cdot 10^{-4i}$.
%
% Most functions we define here have the form
% \begin{syntax}
% \cs{@@_fixed_\meta{calculation}:wwn} \meta{operand_1} |;| \meta{operand_2} |;| \Arg{continuation}
% \end{syntax}
% They perform the \meta{calculation} on the two \meta{operands}, then
% feed the result ($6$ brace groups followed by a semicolon) to the
% \meta{continuation}, responsible for the next step of the calculation.
% Some functions only accept an \texttt{N}-type \meta{continuation}.
% This allows constructions such as
% \begin{quote}
% \cs{@@_fixed_add:wwn} \meta{X_1} |;| \meta{X_2} |;| \\
% \cs{@@_fixed_mul:wwn} \meta{X_3} |;| \\
% \cs{@@_fixed_add:wwn} \meta{X_4} |;| \\
% \end{quote}
% to compute $(X_1+X_2)\cdot X_3 + X_4$. This turns out to be very
% appropriate for computing continued fractions and Taylor series.
%
% At the end of the calculation, the result is turned back to a floating
% point number using \cs{@@_fixed_to_float:Nw}. This function has to
% change the exponent of the floating point number: it must be used
% after starting an integer expression for the overall exponent of the
% result.
%
% \subsection{Helpers for extended fixed points}
%
% \begin{variable}[int]{\c_@@_one_fixed_tl}
% The extended fixed-point number~$1$, used in \pkg{l3fp-expo}.
% \begin{macrocode}
\tl_const:Nn \c_@@_one_fixed_tl
{ {10000} {0000} {0000} {0000} {0000} {0000} }
% \end{macrocode}
% \end{variable}
%
% \begin{macro}[int, EXP]{\@@_fixed_continue:wn}
% This function does nothing. Of course, there is no bound on
% $a_1$ (except \TeX{}'s own $2^{31}-1$).
% \begin{macrocode}
\cs_new:Npn \@@_fixed_continue:wn #1; #2 { #2 #1; }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int, EXP]{\@@_fixed_add_one:wN}
% \begin{syntax}
% \cs{@@_fixed_add_one:wN} \meta{a} |;| \meta{continuation}
% \end{syntax}
% This function adds $1$ to the fixed point \meta{a}, by changing
% $a_1$ to $10000+a_1$, then calls the \meta{continuation}. This
% requires $a_1 \leq 2^{31} - 10001$.
% \begin{macrocode}
\cs_new:Npn \@@_fixed_add_one:wN #1#2; #3
{
\exp_after:wN #3 \exp_after:wN
{ \int_use:N \__int_eval:w \c_ten_thousand + #1 } #2 ;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]{\@@_fixed_mul_after:wn}
% The fixed point operations which involve multiplication end by
% calling this auxiliary. It braces the last block of digits, and
% places the \meta{continuation} |#2| in front. The
% \meta{continuation} was brought up through the expansions by
% the packing functions.
% \begin{macrocode}
\cs_new:Npn \@@_fixed_mul_after:wn #1; #2 { #2 {#1} }
% \end{macrocode}
% \end{macro}
%
% \subsection{Dividing a fixed point number by a small integer}
%
% \begin{macro}[int, EXP]{\@@_fixed_div_int:wwN}
% \begin{macro}[aux, EXP]
% {
% \@@_fixed_div_int:wnN, \@@_fixed_div_int_auxi:wnn,
% \@@_fixed_div_int_auxii:wnn, \@@_fixed_div_int_pack:Nw,
% \@@_fixed_div_int_after:Nw
% }
% \begin{syntax}
% \cs{@@_fixed_div_int:wwN} \meta{a} |;| \meta{n} |;| \meta{continuation}
% \end{syntax}
% Divides the fixed point number \meta{a} by the (small) integer
% $0<\meta{n}<10^4$ and feeds the result to the \meta{continuation}.
% There is no bound on $a_1$.
%
% The arguments of the \texttt{i} auxiliary are 1: one of the $a_{i}$,
% 2: $n$, 3: the \texttt{ii} or the \texttt{iii} auxiliary. It
% computes a (somewhat tight) lower bound $Q_{i}$ for the ratio
% $a_{i}/n$.
%
% The \texttt{ii} auxiliary receives $Q_{i}$, $n$, and $a_{i}$ as
% arguments. It adds $Q_{i}$ to a surrounding integer expression, and
% starts a new one with the initial value $9999$, which ensures that
% the result of this expression will have $5$ digits. The auxiliary
% also computes $a_{i}-n\cdot Q_{i}$, placing the result in front of
% the $4$ digits of $a_{i+1}$. The resulting $a'_{i+1} = 10^{4}
% (a_{i} - n \cdot Q_{i}) + a_{i+1}$ serves as the first argument for
% a new call to the \texttt{i} auxiliary.
%
% When the \texttt{iii} auxiliary is called, the situation looks like
% this:
% \begin{quote}
% \cs{@@_fixed_div_int_after:Nw} \meta{continuation} \\
% $-1 + Q_{1}$ \\
% \cs{@@_fixed_div_int_pack:Nw} $9999 + Q_{2}$ \\
% \cs{@@_fixed_div_int_pack:Nw} $9999 + Q_{3}$ \\
% \cs{@@_fixed_div_int_pack:Nw} $9999 + Q_{4}$ \\
% \cs{@@_fixed_div_int_pack:Nw} $9999 + Q_{5}$ \\
% \cs{@@_fixed_div_int_pack:Nw} $9999$ \\
% \cs{@@_fixed_div_int_auxii:wnn} $Q_{6}$ |;| \Arg{n} \Arg{a_{6}}
% \end{quote}
% where expansion is happening from the last line up. The
% \texttt{iii} auxiliary adds $Q_{6} + 2 \simeq a_{6}/n + 1$ to the
% last $9999$, giving the integer closest to $10000 + a_{6}/n$.
%
% Each \texttt{pack} auxiliary receives $5$ digits followed by a
% semicolon. The first digit is added as a carry to the integer
% expression above, and the $4$ other digits are braced. Each call to
% the \texttt{pack} auxiliary thus produces one brace group. The last
% brace group is produced by the \texttt{after} auxiliary, which
% places the \meta{continuation} as appropriate.
% \begin{macrocode}
\cs_new:Npn \@@_fixed_div_int:wwN #1#2#3#4#5#6 ; #7 ; #8
{
\exp_after:wN \@@_fixed_div_int_after:Nw
\exp_after:wN #8
\int_use:N \__int_eval:w \c_minus_one
\@@_fixed_div_int:wnN
#1; {#7} \@@_fixed_div_int_auxi:wnn
#2; {#7} \@@_fixed_div_int_auxi:wnn
#3; {#7} \@@_fixed_div_int_auxi:wnn
#4; {#7} \@@_fixed_div_int_auxi:wnn
#5; {#7} \@@_fixed_div_int_auxi:wnn
#6; {#7} \@@_fixed_div_int_auxii:wnn ;
}
\cs_new:Npn \@@_fixed_div_int:wnN #1; #2 #3
{
\exp_after:wN #3
\int_use:N \__int_eval:w #1 / #2 - \c_one ;
{#2}
{#1}
}
\cs_new:Npn \@@_fixed_div_int_auxi:wnn #1; #2 #3
{
+ #1
\exp_after:wN \@@_fixed_div_int_pack:Nw
\int_use:N \__int_eval:w 9999
\exp_after:wN \@@_fixed_div_int:wnN
\int_use:N \__int_eval:w #3 - #1*#2 \__int_eval_end:
}
\cs_new:Npn \@@_fixed_div_int_auxii:wnn #1; #2 #3 { + #1 + \c_two ; }
\cs_new:Npn \@@_fixed_div_int_pack:Nw #1 #2; { + #1; {#2} }
\cs_new:Npn \@@_fixed_div_int_after:Nw #1 #2; { #1 {#2} }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Adding and subtracting fixed points}
%
% \begin{macro}[int, EXP]{\@@_fixed_add:wwn, \@@_fixed_sub:wwn}
% \begin{macro}[aux, EXP]
% {
% \@@_fixed_add:Nnnnnwnn,
% \@@_fixed_add:nnNnnnwn,
% \@@_fixed_add_pack:NNNNNwn,
% \@@_fixed_add_after:NNNNNwn
% }
% \begin{syntax}
% \cs{@@_fixed_add:wwn} \meta{a} |;| \meta{b} |;| \Arg{continuation}
% \end{syntax}
% Computes $a+b$ (resp.\ $a-b$) and feeds the result to the
% \meta{continuation}. This function requires $0\leq
% a_{1},b_{1}<50000$, and requires the result to be positive (this
% happens automatically for addition). The two functions only differ
% a sign, hence use a common auxiliary. It would be nice to grab the
% $12$ brace groups in one go; only $9$ parameters are allowed. Start
% by grabbing the two signs, $a_{1}, \ldots, a_{4}$, the rest of $a$,
% and $b_{1}$ and $b_{2}$. The second auxiliary receives the rest of
% $a$, the sign multiplying $b$, the rest of $b$, and the
% \meta{continuation} as arguments. After going down through the
% various level, we go back up, packing digits and bringing the
% \meta{continuation} (|#8|, then |#7|) from the end of the argument
% list to its start.
% \begin{macrocode}
\cs_new_nopar:Npn \@@_fixed_add:wwn { \@@_fixed_add:Nnnnnwnn + }
\cs_new_nopar:Npn \@@_fixed_sub:wwn { \@@_fixed_add:Nnnnnwnn - }
\cs_new:Npn \@@_fixed_add:Nnnnnwnn #1 #2#3#4#5 #6; #7#8
{
\exp_after:wN \@@_fixed_add_after:NNNNNwn
\int_use:N \__int_eval:w 9 9999 9998 + #2#3 #1 #7#8
\exp_after:wN \@@_fixed_add_pack:NNNNNwn
\int_use:N \__int_eval:w 1 9999 9998 + #4#5
\@@_fixed_add:nnNnnnwn #6 #1
}
\cs_new:Npn \@@_fixed_add:nnNnnnwn #1#2 #3 #4#5 #6#7 ; #8
{
#3 #4#5
\exp_after:wN \@@_fixed_add_pack:NNNNNwn
\int_use:N \__int_eval:w 2 0000 0000 #3 #6#7 + #1#2 ; {#8} ;
}
\cs_new:Npn \@@_fixed_add_pack:NNNNNwn #1 #2#3#4#5 #6; #7
{ + #1 ; {#7} {#2#3#4#5} {#6} }
\cs_new:Npn \@@_fixed_add_after:NNNNNwn 1 #1 #2#3#4#5 #6; #7
{ #7 {#1#2#3#4#5} {#6} }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Multiplying fixed points}
%
% \begin{macro}[int, EXP]{\@@_fixed_mul:wwn}
% \begin{macro}[aux, EXP]{\@@_fixed_mul:nnnnnnnwn}
% \begin{syntax}
% \cs{@@_fixed_mul:wwn} \meta{a} |;| \meta{b} |;| \Arg{continuation}
% \end{syntax}
% Computes $a\times b$ and feeds the result to \meta{continuation}.
% This function requires $0\leq a_{1}, b_{1} < 10000$. Once more, we
% need to play around the limit of $9$ arguments for \TeX{} macros.
% Note that we don't need to obtain an exact rounding, contrarily to
% the |*| operator, so things could be harder. We wish to perform
% carries in
% \begin{align*}
% a \times b =
% & a_{1} \cdot b_{1} \cdot 10^{-8} \\
% & + (a_{1} \cdot b_{2} + a_{2} \cdot b_{1}) \cdot 10^{-12} \\
% & + (a_{1} \cdot b_{3} + a_{2} \cdot b_{2}
% + a_{3} \cdot b_{1}) \cdot 10^{-16} \\
% & + (a_{1} \cdot b_{4} + a_{2} \cdot b_{3}
% + a_{3} \cdot b_{2} + a_{4} \cdot b_{1}) \cdot 10^{-20} \\
% & + \left(a_{2} \cdot b_{4} + a_{3} \cdot b_{3} + a_{4} \cdot b_{2}
% + \frac{a_{3} \cdot b_{4} + a_{4} \cdot b_{3}
% + a_{1} \cdot b_{6} + a_{2} \cdot b_{5}
% + a_{5} \cdot b_{2} + a_{6} \cdot b_{1}}{10^{4}}
% + a_{1} \cdot b_{5} + a_{5} \cdot b_{1}\right) \cdot 10^{-24}
% + O(10^{-24}),
% \end{align*}
% where the $O(10^{-24})$ stands for terms which are at most $5\cdot
% 10^{-24}$; ignoring those leads to an error of at most
% $5$~\texttt{ulp}. Note how the first $15$~terms only depend on
% $a_{1},\ldots{},a_{4}$ and $b_{1},\ldots,b_{4}$, while the last
% $6$~terms only depend on $a_{1},a_{2},a_{5},a_{6}$, and the
% corresponding parts of~$b$. Hence, the first function grabs
% $a_{1},\ldots,a_{4}$, the rest of $a$, and $b_{1},\ldots,b_{4}$, and
% writes the $15$ first terms of the expression, including a left
% parenthesis for the fraction. The \texttt{i} auxiliary receives
% $a_{5}$, $a_{6}$, $b_{1}$, $b_{2}$, $a_{1}$, $a_{2}$, $b_{5}$,
% $b_{6}$ and finally the \meta{continuation} as arguments. It writes
% the end of the expression, including the right parenthesis and the
% denominator of the fraction. The packing auxiliaries bring the
% \meta{continuation} up through the expansion chain, as |#7|, and it
% is finally placed in front of the $6$ brace groups by
% \cs{@@_fixed_mul_after:wn}.
% \begin{macrocode}
\cs_new:Npn \@@_fixed_mul:wwn #1#2#3#4 #5; #6#7#8#9
{
\exp_after:wN \@@_fixed_mul_after:wn
\int_use:N \__int_eval:w \c_@@_leading_shift_int
\exp_after:wN \@@_pack:NNNNNwn
\int_use:N \__int_eval:w \c_@@_middle_shift_int
+ #1*#6
\exp_after:wN \@@_pack:NNNNNwn
\int_use:N \__int_eval:w \c_@@_middle_shift_int
+ #1*#7 + #2*#6
\exp_after:wN \@@_pack:NNNNNwn
\int_use:N \__int_eval:w \c_@@_middle_shift_int
+ #1*#8 + #2*#7 + #3*#6
\exp_after:wN \@@_pack:NNNNNwn
\int_use:N \__int_eval:w \c_@@_middle_shift_int
+ #1*#9 + #2*#8 + #3*#7 + #4*#6
\exp_after:wN \@@_pack:NNNNNwn
\int_use:N \__int_eval:w \c_@@_trailing_shift_int
+ #2*#9 + #3*#8 + #4*#7
+ ( #3*#9 + #4*#8
+ \@@_fixed_mul:nnnnnnnwn #5 {#6}{#7} {#1}{#2}
}
\cs_new:Npn \@@_fixed_mul:nnnnnnnwn #1#2 #3#4 #5#6 #7#8 ; #9
{
#1*#4 + #2*#3 + #5*#8 + #6*#7 ) / \c_ten_thousand
+ #1*#3 + #5*#7 ;
{#9} ;
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Combining product and sum of fixed points}
%
% \begin{macro}[int, EXP]
% {
% \@@_fixed_mul_add:wwwn,
% \@@_fixed_mul_sub_back:wwwn,
% \@@_fixed_mul_one_minus_mul:wwn,
% }
% \begin{syntax}
% \cs{@@_fixed_mul_add:wwwn} \meta{a} |;| \meta{b} |;| \meta{c} |;| \Arg{continuation}
% \cs{@@_fixed_mul_sub_back:wwwn} \meta{a} |;| \meta{b} |;| \meta{c} |;| \Arg{continuation}
% \cs{@@_fixed_one_minus_mul:wwn} \meta{a} |;| \meta{b} |;| \Arg{continuation}
% \end{syntax}
% Compute $a\times b + c$, $c - a\times b$, and $1 - a\times b$ and
% feed the result to the \meta{continuation}. Those functions require
% $0\leq a_{1}, b_{1}, c_{1} \leq 10000$. Since those functions are
% at the heart of the computation of Taylor expansions, we
% over-optimize them a bit, and in particular we do not factor out the
% common parts of the three functions.
%
% For definiteness, consider the task of computing $a\times b + c$.
% We will perform carries in
% \begin{align*}
% a \times b + c =
% & (a_{1} \cdot b_{1} + c_{1} c_{2})\cdot 10^{-8} \\
% & + (a_{1} \cdot b_{2} + a_{2} \cdot b_{1}) \cdot 10^{-12} \\
% & + (a_{1} \cdot b_{3} + a_{2} \cdot b_{2} + a_{3} \cdot b_{1}
% + c_{3} c_{4}) \cdot 10^{-16} \\
% & + (a_{1} \cdot b_{4} + a_{2} \cdot b_{3} + a_{3} \cdot b_{2}
% + a_{4} \cdot b_{1}) \cdot 10^{-20} \\
% & + \Big(a_{2} \cdot b_{4} + a_{3} \cdot b_{3} + a_{4} \cdot b_{2}
% + \frac{a_{3} \cdot b_{4} + a_{4} \cdot b_{3}
% + a_{1} \cdot b_{6} + a_{2} \cdot b_{5}
% + a_{5} \cdot b_{2} + a_{6} \cdot b_{1}}{10^{4}}
% + a_{1} \cdot b_{5} + a_{5} \cdot b_{1}
% + c_{5} c_{6} \Big) \cdot 10^{-24}
% + O(10^{-24}),
% \end{align*}
% where $c_{1} c_{2}$, $c_{3} c_{4}$, $c_{5} c_{6}$ denote the
% $8$-digit number obtained by juxtaposing the two blocks of digits of
% $c$, and $\cdot$ denotes multiplication. The task is obviously
% tough because we have $18$ brace groups in front of us.
%
% Each of the three function starts the first two levels (the first,
% corresponding to $10^{-4}$, is empty), with $c_{1} c_{2}$ in the
% first level, calls the \texttt{i} auxiliary with arguments described
% later, and adds a trailing ${} + c_{5}c_{6}$ |;|
% \Arg{continuation}~|;|. The ${} + c_{5}c_{6}$ piece, which is
% omitted for \cs{@@_fixed_one_minus_mul:wwn}, will be taken in the
% integer expression for the $10^{-24}$ level. The
% \meta{continuation} is placed correctly to be taken upstream by
% packing auxiliaries.
% \begin{macrocode}
\cs_new:Npn \@@_fixed_mul_add:wwwn #1; #2; #3#4#5#6#7#8; #9
{
\exp_after:wN \@@_fixed_mul_after:wn
\int_use:N \__int_eval:w \c_@@_big_leading_shift_int
\exp_after:wN \@@_pack_big:NNNNNNwn
\int_use:N \__int_eval:w \c_@@_big_middle_shift_int + #3 #4
\@@_fixed_mul_add:Nwnnnwnnn +
+ #5 #6 ; #2 ; #1 ; #2 ; +
+ #7 #8 ; {#9} ;
}
\cs_new:Npn \@@_fixed_mul_sub_back:wwwn #1; #2; #3#4#5#6#7#8; #9
{
\exp_after:wN \@@_fixed_mul_after:wn
\int_use:N \__int_eval:w \c_@@_big_leading_shift_int
\exp_after:wN \@@_pack_big:NNNNNNwn
\int_use:N \__int_eval:w \c_@@_big_middle_shift_int + #3 #4
\@@_fixed_mul_add:Nwnnnwnnn -
+ #5 #6 ; #2 ; #1 ; #2 ; -
+ #7 #8 ; {#9} ;
}
\cs_new:Npn \@@_fixed_one_minus_mul:wwn #1; #2; #3
{
\exp_after:wN \@@_fixed_mul_after:wn
\int_use:N \__int_eval:w \c_@@_big_leading_shift_int
\exp_after:wN \@@_pack_big:NNNNNNwn
\int_use:N \__int_eval:w \c_@@_big_middle_shift_int + 1 0000 0000
\@@_fixed_mul_add:Nwnnnwnnn -
; #2 ; #1 ; #2 ; -
; {#3} ;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]{\@@_fixed_mul_add:Nwnnnwnnn}
% \begin{syntax}
% \cs{@@_fixed_mul_add:Nwnnnwnnn} \meta{op} |+| \meta{c_3} \meta{c_4} |;|
% ~~\meta{b} |;| \meta{a} |;| \meta{b} |;| \meta{op}
% ~~|+| \meta{c_5} \meta{c_6} |;|
% \end{syntax}
% Here, \meta{op} is either |+| or |-|. Arguments |#3|, |#4|, |#5|
% are \meta{b_1}, \meta{b_2}, \meta{b_3}; arguments |#7|, |#8|, |#9|
% are \meta{a_1}, \meta{a_2}, \meta{a_3}. We can build three levels:
% $a_{1} \cdot b_{1}$ for $10^{-8}$, $(a_{1} \cdot b_{2} + a_{2} \cdot
% b_{1})$ for $10^{-12}$, and $(a_{1} \cdot b_{3} + a_{2} \cdot b_{2}
% + a_{3} \cdot b_{1} + c_{3} c_{4})$ for $10^{-16}$. The $a$--$b$
% products use the sign |#1|. Note that |#2| is empty for
% \cs{@@_fixed_one_minus_mul:wwn}. We call the \texttt{ii} auxiliary
% for levels $10^{-20}$ and $10^{-24}$, keeping the pieces of \meta{a}
% we've read, but not \meta{b}, since there is another copy later in
% the input stream.
% \begin{macrocode}
\cs_new:Npn \@@_fixed_mul_add:Nwnnnwnnn #1 #2; #3#4#5#6; #7#8#9
{
#1 #7*#3
\exp_after:wN \@@_pack_big:NNNNNNwn
\int_use:N \__int_eval:w \c_@@_big_middle_shift_int
#1 #7*#4 #1 #8*#3
\exp_after:wN \@@_pack_big:NNNNNNwn
\int_use:N \__int_eval:w \c_@@_big_middle_shift_int
#1 #7*#5 #1 #8*#4 #1 #9*#3 #2
\exp_after:wN \@@_pack_big:NNNNNNwn
\int_use:N \__int_eval:w \c_@@_big_middle_shift_int
#1 \@@_fixed_mul_add:nnnnwnnnn {#7}{#8}{#9}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]{\@@_fixed_mul_add:nnnnwnnnn}
% \begin{syntax}
% \cs{@@_fixed_mul_add:nnnnwnnnn} \meta{a} |;| \meta{b} |;| \meta{op}
% ~~|+| \meta{c_5} \meta{c_6} |;|
% \end{syntax}
% Level $10^{-20}$ is $(a_{1} \cdot b_{4} + a_{2} \cdot b_{3} + a_{3}
% \cdot b_{2} + a_{4} \cdot b_{1})$, multiplied by the sign, which was
% inserted by the \texttt{i} auxiliary. Then we prepare level
% $10^{-24}$. We don't have access to all parts of \meta{a} and
% \meta{b} needed to make all products. Instead, we prepare the
% partial expressions
% \begin{align*}
% & b_{1} + a_{4} \cdot b_{2} + a_{3} \cdot b_{3} + a_{2} \cdot b_{4} + a_{1} \\
% & b_{2} + a_{4} \cdot b_{3} + a_{3} \cdot b_{4} + a_{2} .
% \end{align*}
% Obviously, those expressions make no mathematical sense: we will
% complete them with $a_{5} \cdot {}$ and ${} \cdot b_{5}$, and with
% $a_{6} \cdot b_{1} + a_{5} \cdot {}$ and ${} \cdot b_{5} + a_{1}
% \cdot b_{6}$, and of course with the trailing ${} + c_{5} c_{6}$.
% To do all this, we keep $a_{1}$, $a_{5}$, $a_{6}$, and the
% corresponding pieces of \meta{b}.
% \begin{macrocode}
\cs_new:Npn \@@_fixed_mul_add:nnnnwnnnn #1#2#3#4#5; #6#7#8#9
{
( #1*#9 + #2*#8 + #3*#7 + #4*#6 )
\exp_after:wN \@@_pack_big:NNNNNNwn
\int_use:N \__int_eval:w \c_@@_big_trailing_shift_int
\@@_fixed_mul_add:nnnnwnnwN
{ #6 + #4*#7 + #3*#8 + #2*#9 + #1 }
{ #7 + #4*#8 + #3*#9 + #2 }
{#1} #5;
{#6}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux, EXP]{\@@_fixed_mul_add:nnnnwnnwN}
% \begin{syntax}
% \cs{@@_fixed_mul_add:nnnnwnnwN} \Arg{partial_1} \Arg{partial_2}
% ~~\Arg{a_1} \Arg{a_5} \Arg{a_6} |;| \Arg{b_1} \Arg{b_5} \Arg{b_6} |;|
% ~~\meta{op} |+| \meta{c_5} \meta{c_6} |;|
% \end{syntax}
% Complete the \meta{partial_1} and \meta{partial_2} expressions as
% explained for the \texttt{ii} auxiliary. The second one is divided
% by $10000$: this is the carry from level $10^{-28}$. The trailing
% ${} + c_{5} c_{6}$ is taken into the expression for level
% $10^{-24}$. Note that the total of level $10^{-24}$ is in the
% interval $[-5\cdot 10^{8}, 6\cdot 10^{8}$ (give or take a couple of
% $10000$), hence adding it to the shift gives a $10$-digit number, as
% expected by the packing auxiliaries. See \pkg{l3fp-aux} for the
% definition of the shifts and packing auxiliaries.
% \begin{macrocode}
\cs_new:Npn \@@_fixed_mul_add:nnnnwnnwN #1#2 #3#4#5; #6#7#8; #9
{
#9 (#4* #1 *#7)
#9 (#5*#6+#4* #2 *#7+#3*#8) / \c_ten_thousand
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Converting from fixed point to floating point}
%
% \begin{macro}[int, rEXP]
% {\@@_fixed_to_float:wN, \@@_fixed_to_float:Nw}
% \begin{syntax}
% \ldots{} \cs{__int_eval:w} \meta{exponent} \cs{@@_fixed_to_float:wN} \Arg{a_1} \Arg{a_2} \Arg{a_3} \Arg{a_4} \Arg{a_5} \Arg{a_6} |;| \meta{sign}
% \end{syntax}
% yields
% \begin{quote}
% \meta{exponent'} |;| \Arg{a'_1} \Arg{a'_2} \Arg{a'_3} \Arg{a'_4} |;|
% \end{quote}
% And the \texttt{to_fixed} version gives six brace groups instead of
% $4$, ensuring that $1000\leq\meta{a'_1}\leq 9999$. At this stage, we
% know that \meta{a_1} is positive (otherwise, it is sign of an error
% before), and we assume that it is less than $10^8$.\footnote{Bruno:
% I must double check this assumption.}
%
%^^A todo: round properly when rounding to infinity: I need to know the sign.
% \begin{macrocode}
\cs_new:Npn \@@_fixed_to_float:Nw #1#2; { \@@_fixed_to_float:wN #2; #1 }
\cs_new:Npn \@@_fixed_to_float:wN #1#2#3#4#5#6; #7
{
+ \c_four % for the 8-digit-at-the-start thing.
\exp_after:wN \exp_after:wN
\exp_after:wN \@@_fixed_to_loop:N
\exp_after:wN \use_none:n
\int_use:N \__int_eval:w
1 0000 0000 + #1 \exp_after:wN \@@_use_none_stop_f:n
\__int_value:w 1#2 \exp_after:wN \@@_use_none_stop_f:n
\__int_value:w 1#3#4 \exp_after:wN \@@_use_none_stop_f:n
\__int_value:w 1#5#6
\exp_after:wN ;
\exp_after:wN ;
}
\cs_new:Npn \@@_fixed_to_loop:N #1
{
\if_meaning:w 0 #1
- \c_one
\exp_after:wN \@@_fixed_to_loop:N
\else:
\exp_after:wN \@@_fixed_to_loop_end:w
\exp_after:wN #1
\fi:
}
\cs_new:Npn \@@_fixed_to_loop_end:w #1 #2 ;
{
\if_meaning:w ; #1
\exp_after:wN \@@_fixed_to_float_zero:w
\else:
\exp_after:wN \@@_pack_twice_four:wNNNNNNNN
\exp_after:wN \@@_pack_twice_four:wNNNNNNNN
\exp_after:wN \@@_fixed_to_float_pack:ww
\exp_after:wN ;
\fi:
#1 #2 0000 0000 0000 0000 ;
}
\cs_new:Npn \@@_fixed_to_float_zero:w ; 0000 0000 0000 0000 ;
{
- \c_two * \c_@@_max_exponent_int ;
{0000} {0000} {0000} {0000} ;
}
\cs_new:Npn \@@_fixed_to_float_pack:ww #1 ; #2#3 ; ;
{
\if_int_compare:w #2 > \c_four
\exp_after:wN \@@_fixed_to_float_round_up:wnnnnw
\fi:
; #1 ;
}
\cs_new:Npn \@@_fixed_to_float_round_up:wnnnnw ; #1#2#3#4 ;
{
\exp_after:wN \@@_basics_pack_high:NNNNNw
\int_use:N \__int_eval:w 1 #1#2
\exp_after:wN \@@_basics_pack_low:NNNNNw
\int_use:N \__int_eval:w 1 #3#4 + \c_one ;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[rEXP, int]{\@@_fixed_inv_to_float:wN, \@@_fixed_div_to_float:ww}
% Starting from \texttt{fixed_dtf} $A$ |;| $B$ |;| we want to compute
% $A/B$, and express it as a floating point number. Normalize both
% numbers by removing leading brace groups of zeros and leaving the
% appropriate exponent shift in the input stream.
% \begin{macrocode}
\cs_new:Npn \@@_fixed_inv_to_float:wN #1#2; #3
{
+ \__int_eval:w % ^^A todo: remove the +?
\if_int_compare:w #1 < \c_one_thousand
\@@_fixed_dtf_zeros:wNnnnnnn
\fi:
\@@_fixed_dtf_no_zero:Nwn + {#1} #2 \s_@@
\@@_fixed_dtf_approx:n
{10000} {0000} {0000} {0000} {0000} {0000} ;
}
\cs_new:Npn \@@_fixed_div_to_float:ww #1#2; #3#4;
{
\if_int_compare:w #1 < \c_one_thousand
\@@_fixed_dtf_zeros:wNnnnnnn
\fi:
\@@_fixed_dtf_no_zero:Nwn - {#1} #2 \s_@@
{
\if_int_compare:w #3 < \c_one_thousand
\@@_fixed_dtf_zeros:wNnnnnnn
\fi:
\@@_fixed_dtf_no_zero:Nwn + {#3} #4 \s_@@
\@@_fixed_dtf_approx:n
}
}
\cs_new:Npn \@@_fixed_dtf_no_zero:Nwn #1#2 \s_@@ #3 { #3 #2; }
\cs_new:Npn \@@_fixed_dtf_zeros:wNnnnnnn
\fi: \@@_fixed_dtf_no_zero:Nwn #1#2#3#4#5#6#7
{
\fi:
#1 \c_minus_one
\exp_after:wN \use_i_ii:nnn
\exp_after:wN \@@_fixed_dtf_zeros:NN
\exp_after:wN #1
\int_use:N \__int_eval:w 10 0000 + #2 \__int_eval_end: #3#4#5#6#7
; 1 ;
}
\cs_new:Npn \@@_fixed_dtf_zeros:NN #1#2
{
\if_meaning:w 0 #2
#1 \c_one
\else:
\@@_fixed_dtf_zeros_end:wNww #2
\fi:
\@@_fixed_dtf_zeros:NN #1
}
\cs_new:Npn \@@_fixed_dtf_zeros_end:wNww
#1 \fi: \@@_fixed_dtf_zeros:NN #2 #3; #4 \s_@@
{
\fi:
\if_meaning:w ; #1
#2 \c_two * \c_@@_max_exponent_int
\use_i_ii:nnn
\fi:
\@@_fixed_dtf_zeros_auxi:ww
#1#3 0000 0000 0000 0000 0000 0000 ;
}
\cs_new:Npn \@@_fixed_dtf_zeros_auxi:ww
{
\@@_pack_twice_four:wNNNNNNNN
\@@_pack_twice_four:wNNNNNNNN
\@@_pack_twice_four:wNNNNNNNN
\@@_fixed_dtf_zeros_auxii:ww
;
}
\cs_new:Npn \@@_fixed_dtf_zeros_auxii:ww #1; #2; #3 { #3 #1; }
% \end{macrocode}
% \newcommand{\eTeXfrac}[2]{\left[\frac{#1}{#2}\right]}
% We get
% \begin{quote}
% \cs{@@_fixed_dtf_approx:n} \meta{B'} |;| \meta{A'} |;|
% \end{quote}
% where \meta{B'} and \meta{A'} are each $6$ brace groups,
% representing fixed point numbers in the range $[0.1,1)$. Denote by
% $x\in[1000,9999]$ and $y\in[0,9999]$ the first two groups of
% \meta{B'}. We first find an estimate $a$ for the inverse of $B'$ by
% computing
% \begin{align*}
% \alpha &= \eTeXfrac{10^{9}}{x+1} \\
% \beta &= \eTeXfrac{10^{9}}{x} \\
% a &= 10^{3} \alpha + (\beta-\alpha) \cdot
% \left(10^{3}-\eTeXfrac{y}{10}\right) - 1750,
% \end{align*}
% where $\eTeXfrac{\bullet}{\bullet}$ denotes \eTeX{}'s rounding
% division. The idea is to interpolate between $\alpha$ and $\beta$
% with a parameter $y/10^{4}$. The shift by $1750$ helps to ensure
% that $a$ is an underestimate of the correct value. We will prove
% that
% \[
% 1 - 2.255\cdot 10^{-5} < \frac{B'a}{10^{8}} < 1 .
% \]
% We can then compute the inverse $B'a/10^{8}$ using $1/(1-\epsilon)
% \simeq (1+\epsilon)(1+\epsilon^{2})$, which is correct up to a
% relative error of $\epsilon^4 < 2.6\cdot 10^{-19}$. Since we target
% a $16$-digit value, this is small enough.
%
% Let us prove the upper bound first.
% \begin{align}\label{l3fp-fixed-eTeXfrac}
% 10^{7} B'a
% & < \left(10^{3} x + \eTeXfrac{y}{10} + \frac{3}{2}\right)
% \left(\left(10^{3}-\eTeXfrac{y}{10}\right) \beta
% + \eTeXfrac{y}{10} \alpha - 1750\right)
% \\& < \left(10^{3} x + \eTeXfrac{y}{10} + \frac{3}{2}\right)
% \left(\left(10^{3}-\eTeXfrac{y}{10}\right)
% \left(\frac{10^{9}}{x} + \frac{1}{2} \right)
% + \eTeXfrac{y}{10} \left(\frac{10^{9}}{x+1} + \frac{1}{2} \right)
% - 1750\right)
% \\& < \left(10^{3} x + \eTeXfrac{y}{10} + \frac{3}{2}\right)
% \left(\frac{10^{12}}{x}
% - \eTeXfrac{y}{10} \frac{10^{9}}{x(x+1)}
% - 1250\right)
% \end{align}
% We recognize a quadratic polynomial in $[y/10]$ with a negative
% leading coefficient, $([y/10]+a)(b-c[y/10]) \leq (b+ca)^2/(4c)$.
% Hence,
% \[
% 10^{7} B'a
% < \frac{10^{15}}{x(x+1)} \left(
% x + \frac{1}{2} + \frac{3}{4} 10^{-3}
% - 6.25\cdot 10^{-10} x(x+1) \right)^2
% \]
% We want to prove that the squared expression is less than $x(x+1)$,
% which we do by simplifying the difference, and checking its sign,
% \[
% x(x+1) - \left(x + \frac{1}{2} + \frac{3}{4} 10^{-3}
% - 6.25\cdot 10^{-10} x(x+1) \right)^2
% > - \frac{1}{4} (1+1.5\cdot 10^{-3})^2 - 10^{-3} x
% + 1.25\cdot 10^{-9} x(x+1)(x+0.5)
% > 0.
% \]
%
% Now, the lower bound. The same computation as
% \eqref{l3fp-fixed-eTeXfrac} imply
% \[
% 10^{7} B'a
% > \left(10^{3} x + \eTeXfrac{y}{10} - \frac{1}{2}\right)
% \left(\frac{10^{12}}{x} - \eTeXfrac{y}{10} \frac{10^{9}}{x(x+1)}
% - 2250\right)
% \]
% This time, we want to find the minimum of this quadratic polynomial.
% Since the leading coefficient is still negative, the minimum is
% reached for one of the extreme values $y=0$ or $y=9999$, and we
% easily check the bound for those values.
%
% We have proven that the algorithm will give us a precise enough
% answer. Incidentally, the upper bound that we derived tells us that
% $a < 10^{8}/B \leq 10^{9}$, hence we can compute $a$ safely as a
% \TeX{} integer, and even add $10^{9}$ to it to ease grabbing of all
% the digits.
% \begin{macrocode}
\cs_new:Npn \@@_fixed_dtf_approx:n #1
{
\exp_after:wN \@@_fixed_dtf_approx:wnn
\int_use:N \__int_eval:w 10 0000 0000 / ( #1 + \c_one ) ;
{#1}
}
\cs_new:Npn \@@_fixed_dtf_approx:wnn #1; #2#3
{
%<assert> \assert:n { \tl_count:n {#1} = 6 }
\exp_after:wN \@@_fixed_dtf_approx:NNNNNw
\int_use:N \__int_eval:w 10 0000 0000 - 1750
+ #1000 + (10 0000 0000/#2-#1) * (1000-#3/10) ;
{#2}{#3}
}
\cs_new:Npn \@@_fixed_dtf_approx:NNNNNw 1#1#2#3#4#5#6; #7; #8;
{
+ \c_four % because of the line below "dtf_epsilon" here.
\@@_fixed_mul:wwn {000#1}{#2#3#4#5}{#6}{0000}{0000}{0000} ; #7;
\@@_fixed_dtf_epsilon:wN
\@@_fixed_mul:wwn {000#1}{#2#3#4#5}{#6}{0000}{0000}{0000} ;
\@@_fixed_mul:wwn #8;
\@@_fixed_to_float:wN ?
}
\cs_new:Npn \@@_fixed_dtf_epsilon:wN #1#2#3#4#5#6;
{
%<assert> \assert:n { #1 = 0000 }
%<assert> \assert:n { #2 = 9999 }
\exp_after:wN \@@_fixed_dtf_epsilon:NNNNNww
\int_use:N \__int_eval:w 1 9999 9998 - #3#4 +
\exp_after:wN \@@_fixed_dtf_epsilon_pack:NNNNNw
\int_use:N \__int_eval:w 2 0000 0000 - #5#6 ; {0000} ;
}
\cs_new:Npn \@@_fixed_dtf_epsilon_pack:NNNNNw #1#2#3#4#5#6;
{ #1 ; {#2#3#4#5} {#6} }
\cs_new:Npn \@@_fixed_dtf_epsilon:NNNNNww #1#2#3#4#5#6; #7;
{
\@@_fixed_mul:wwn %^^A todo: optimize to use \@@_mul_significand.
{0000} {#2#3#4#5} {#6} #7 ;
{0000} {#2#3#4#5} {#6} #7 ;
\@@_fixed_add_one:wN
\@@_fixed_mul:wwn {10000} {#2#3#4#5} {#6} #7 ;
}
% \end{macrocode}
% \end{macro}
%
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintChanges
%
% \PrintIndex
|