summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/l3kernel/l3fp-expo.dtx
blob: 89769f7ad82e72a1f36baa40769863d5b4b054c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
% \iffalse meta-comment
%
%% File: l3fp-expo.dtx
%
% Copyright (C) 2011-2021 The LaTeX Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version.  The latest version
% of this license is in the file
%
%    https://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
%
% -----------------------------------------------------------------------
%
% The development version of the bundle can be found at
%
%    https://github.com/latex3/latex3
%
% for those people who are interested.
%
%<*driver>
\documentclass[full,kernel]{l3doc}
\begin{document}
  \DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{The \textsf{l3fp-expo} package\\
%   Floating point exponential-related functions}
% \author{^^A
%  The \LaTeX{} Project\thanks
%    {^^A
%      E-mail:
%        \href{mailto:latex-team@latex-project.org}
%          {latex-team@latex-project.org}^^A
%    }^^A
% }
% \date{Released 2021-11-12}
%
% \maketitle
%
% \begin{documentation}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3fp-expo} implementation}
%
%    \begin{macrocode}
%<*package>
%    \end{macrocode}
%
%    \begin{macrocode}
%<@@=fp>
%    \end{macrocode}
%
% \begin{macro}[EXP]
%   {
%     \@@_parse_word_exp:N   ,
%     \@@_parse_word_ln:N    ,
%     \@@_parse_word_fact:N,
%   }
%   Unary functions.
%    \begin{macrocode}
\cs_new:Npn \@@_parse_word_exp:N
  { \@@_parse_unary_function:NNN \@@_exp_o:w ? }
\cs_new:Npn \@@_parse_word_ln:N
  { \@@_parse_unary_function:NNN \@@_ln_o:w ? }
\cs_new:Npn \@@_parse_word_fact:N
  { \@@_parse_unary_function:NNN \@@_fact_o:w ? }
%    \end{macrocode}
% \end{macro}
%
% \subsection{Logarithm}
%
% \subsubsection{Work plan}
%
% As for many other functions, we filter out special cases in
% \cs{@@_ln_o:w}.  Then \cs{@@_ln_npos_o:w} receives a positive normal
% number, which we write in the form $a\cdot 10^{b}$ with $a\in[0.1,1)$.
%
% \emph{The rest of this section is actually not in sync with the code.
%   Or is the code not in sync with the section?  In the current code,
%   $c\in [1,10]$ is such that $0.7\leq ac < 1.4$.}
%
% We are given a positive normal number, of the form $a\cdot 10^{b}$
% with $a\in[0.1,1)$.  To compute its logarithm, we find a small integer
% $5\leq c < 50$ such that $0.91 \leq a c / 5 < 1.1$, and use the
% relation
% \begin{equation*}
%   \ln (a \cdot 10^b) = b \cdot \ln (10) - \ln (c/5) + \ln (ac/5).
% \end{equation*}
% The logarithms $\ln(10)$ and $\ln(c/5)$ are looked up in a table.  The
% last term is computed using the following Taylor series of $\ln$ near
% $1$:
% \begin{equation*}
%   \ln\left(\frac{ac}{5}\right)
%   = \ln\left(\frac{1+t}{1-t}\right)
%   = 2t\left(1 + t^2 \left(\frac{1}{3} + t^2 \left(\frac{1}{5}
%         + t^2 \left(\frac{1}{7} + t^2 \left( \frac{1}{9} + \cdots
%           \right)\right)\right)\right)\right)
% \end{equation*}
% where $t=1-10/(ac+5)$.  We can now see one reason for the choice of
% $ac\sim 5$: then $ac+5=10(1-\epsilon)$ with $-0.05<\epsilon\leq
% 0.045$, hence
% \begin{equation*}
%   t = \frac{\epsilon}{1-\epsilon}
%   = \epsilon (1+\epsilon)(1+\epsilon^2)(1+\epsilon^4)\ldots,
% \end{equation*}
% is not too difficult to compute.
%
% \subsubsection{Some constants}
%
% \begin{variable}
%   {
%     \c_@@_ln_i_fixed_tl ,
%     \c_@@_ln_ii_fixed_tl ,
%     \c_@@_ln_iii_fixed_tl ,
%     \c_@@_ln_iv_fixed_tl ,
%     \c_@@_ln_vi_fixed_tl ,
%     \c_@@_ln_vii_fixed_tl ,
%     \c_@@_ln_viii_fixed_tl ,
%     \c_@@_ln_ix_fixed_tl ,
%     \c_@@_ln_x_fixed_tl,
%   }
%   A few values of the logarithm as extended fixed point numbers.
%   Those are needed in the implementation.  It turns out that we don't
%   need the value of $\ln(5)$.
%    \begin{macrocode}
\tl_const:Nn \c_@@_ln_i_fixed_tl   { {0000}{0000}{0000}{0000}{0000}{0000};}
\tl_const:Nn \c_@@_ln_ii_fixed_tl  { {6931}{4718}{0559}{9453}{0941}{7232};}
\tl_const:Nn \c_@@_ln_iii_fixed_tl {{10986}{1228}{8668}{1096}{9139}{5245};}
\tl_const:Nn \c_@@_ln_iv_fixed_tl  {{13862}{9436}{1119}{8906}{1883}{4464};}
\tl_const:Nn \c_@@_ln_vi_fixed_tl  {{17917}{5946}{9228}{0550}{0081}{2477};}
\tl_const:Nn \c_@@_ln_vii_fixed_tl {{19459}{1014}{9055}{3133}{0510}{5353};}
\tl_const:Nn \c_@@_ln_viii_fixed_tl{{20794}{4154}{1679}{8359}{2825}{1696};}
\tl_const:Nn \c_@@_ln_ix_fixed_tl  {{21972}{2457}{7336}{2193}{8279}{0490};}
\tl_const:Nn \c_@@_ln_x_fixed_tl   {{23025}{8509}{2994}{0456}{8401}{7991};}
%    \end{macrocode}
% \end{variable}
%
% \subsubsection{Sign, exponent, and special numbers}
%
% \begin{macro}[EXP]{\@@_ln_o:w}
%   The logarithm of negative numbers (including $-\infty$ and $-0$)
%   raises the \enquote{invalid} exception.  The logarithm of $+0$ is
%   $-\infty$, raising a division by zero exception.  The logarithm of
%   $+\infty$ or a \texttt{nan} is itself.  Positive normal numbers call
%   \cs{@@_ln_npos_o:w}.
%    \begin{macrocode}
\cs_new:Npn \@@_ln_o:w #1 \s_@@ \@@_chk:w #2#3#4; @
  {
    \if_meaning:w 2 #3
      \@@_case_use:nw { \@@_invalid_operation_o:nw { ln } }
    \fi:
    \if_case:w #2 \exp_stop_f:
      \@@_case_use:nw
        { \@@_division_by_zero_o:Nnw \c_minus_inf_fp { ln } }
    \or:
    \else:
      \@@_case_return_same_o:w
    \fi:
    \@@_ln_npos_o:w \s_@@ \@@_chk:w #2#3#4;
  }
%    \end{macrocode}
% \end{macro}
%
% \subsubsection{Absolute ln}
%
% \begin{macro}[EXP]{\@@_ln_npos_o:w}
%   We catch the case of a significand very close to $0.1$ or to $1$.
%   In all other cases, the final result is at least $10^{-4}$, and
%   then an error of $0.5\cdot 10^{-20}$ is acceptable.
%    \begin{macrocode}
\cs_new:Npn \@@_ln_npos_o:w \s_@@ \@@_chk:w 10#1#2#3;
  { %^^A todo: ln(1) should be "exact zero", not "underflow"
    \exp_after:wN \@@_sanitize:Nw
    \int_value:w % for the overall sign
      \if_int_compare:w #1 < \c_one_int
        2
      \else:
        0
      \fi:
      \exp_after:wN \exp_stop_f:
      \int_value:w \@@_int_eval:w % for the exponent
        \@@_ln_significand:NNNNnnnN #2#3
        \@@_ln_exponent:wn {#1}
  }
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_ln_significand:NNNNnnnN}
%   \begin{syntax}
%     \cs{@@_ln_significand:NNNNnnnN} \meta{X_1} \Arg{X_2} \Arg{X_3} \Arg{X_4} \meta{continuation}
%   \end{syntax}
%   This function expands to
%   \begin{syntax}
%     \meta{continuation} \Arg{Y_1} \Arg{Y_2} \Arg{Y_3} \Arg{Y_4} \Arg{Y_5} \Arg{Y_6} |;|
%   \end{syntax}
%   where $Y = - \ln(X)$ as an extended fixed point.
%    \begin{macrocode}
\cs_new:Npn \@@_ln_significand:NNNNnnnN #1#2#3#4
  {
    \exp_after:wN \@@_ln_x_ii:wnnnn
    \int_value:w
      \if_case:w #1 \exp_stop_f:
      \or:
        \if_int_compare:w #2 < 4 \exp_stop_f:
          \@@_int_eval:w 10 - #2
        \else:
          6
        \fi:
      \or: 4
      \or: 3
      \or: 2
      \or: 2
      \or: 2
      \else: 1
      \fi:
    ; { #1 #2 #3 #4 }
  }
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_ln_x_ii:wnnnn}
%   We have thus found $c \in [1,10]$ such that $0.7\leq ac < 1.4$
%   in all cases. Compute $ 1 + x = 1 + ac \in [1.7,2.4)$.
%    \begin{macrocode}
\cs_new:Npn \@@_ln_x_ii:wnnnn #1; #2#3#4#5
  {
    \exp_after:wN \@@_ln_div_after:Nw
    \cs:w c_@@_ln_ \@@_int_to_roman:w #1 _fixed_tl \exp_after:wN \cs_end:
    \int_value:w
      \exp_after:wN \@@_ln_x_iv:wnnnnnnnn
      \int_value:w \@@_int_eval:w
        \exp_after:wN \@@_ln_x_iii_var:NNNNNw
        \int_value:w \@@_int_eval:w 9999 9990 + #1*#2#3 +
          \exp_after:wN \@@_ln_x_iii:NNNNNNw
          \int_value:w \@@_int_eval:w 10 0000 0000 + #1*#4#5 ;
    {20000} {0000} {0000} {0000}
  } %^^A todo: reoptimize (a generalization attempt failed).
\cs_new:Npn \@@_ln_x_iii:NNNNNNw #1#2 #3#4#5#6 #7;
  { #1#2; {#3#4#5#6} {#7} }
\cs_new:Npn \@@_ln_x_iii_var:NNNNNw #1 #2#3#4#5 #6;
  {
    #1#2#3#4#5 + 1 ;
    {#1#2#3#4#5} {#6}
  }
%    \end{macrocode}
%   The Taylor series to be used is expressed in terms of
%   $t = (x-1)/(x+1) = 1 - 2/(x+1)$. We now compute the
%   quotient with extended precision, reusing some code
%   from \cs{@@_/_o:ww}. Note that $1+x$ is known exactly.
%
%   To reuse notations from \pkg{l3fp-basics}, we want to
%   compute $ A / Z $ with $ A = 2 $ and $ Z = x + 1 $.
%   In \pkg{l3fp-basics}, we considered the case where
%   both $A$ and $Z$ are arbitrary, in the range $[0.1,1)$,
%   and we had to monitor the growth of the sequence of
%   remainders $A$, $B$, $C$, etc. to ensure that no overflow
%   occurred during the computation of the next quotient.
%   The main source of risk was our choice to define the
%   quotient as roughly $10^9 \cdot A / 10^5 \cdot Z$: then
%   $A$ was bound to be below $2.147\cdots$, and this limit
%   was never far.
%
%   In our case, we can simply work with $10^8 \cdot A$ and
%   $10^4 \cdot Z$, because our reason to work with higher
%   powers has gone: we needed the integer $y \simeq 10^5 \cdot Z$
%   to be at least $10^4$, and now, the definition
%   $y \simeq 10^4 \cdot Z$ suffices.
%
%   Let us thus define $y = \left\lfloor 10^4 \cdot Z \right\rfloor + 1
%   \in ( 1.7 \cdot 10^4, 2.4 \cdot 10^4 ] $, and
%   \[
%   Q_{1}
%   =
%   \left\lfloor
%     \frac {\left\lfloor 10^8 \cdot A\right\rfloor} {y} - \frac{1}{2}
%   \right\rfloor.
%   \]
%   (The $1/2$ comes from how \eTeX{} rounds.) As for division, it is
%   easy to see that $Q_{1} \leq 10^4 A / Z$, \emph{i.e.}, $Q_{1}$
%   is an underestimate.
%
%   Exactly as we did for division, we set $B = 10^4 A - Q_{1}Z$. Then
%   \begin{align*}
%     10^4 B
%     & \leq
%     A_{1}A_{2}.A_{3}A_{4}
%     - \left( \frac{A_{1}A_{2}}{y} - \frac{3}{2} \right) 10^4 Z
%     \\
%     & \leq
%     A_{1}A_{2} \left( 1 - \frac{10^4 Z}{y} \right) + 1 + \frac{3}{2} y
%     \\
%     & \leq
%     10^8 \frac{A}{y} + 1 + \frac{3}{2} y
%   \end{align*}
%   In the same way, and using $1.7\cdot 10^4\leq y\leq 2.4\cdot 10^4$,
%   and convexity, we get
%   \begin{align*}
%     10^4 A &= 2\cdot 10^4 \\
%     10^4 B &\leq 10^8 \frac{A}{y} + 1.6 y \leq 4.7\cdot 10^4\\
%     10^4 C &\leq 10^8 \frac{B}{y} + 1.6 y \leq 5.8\cdot 10^4\\
%     10^4 D &\leq 10^8 \frac{C}{y} + 1.6 y \leq 6.3\cdot 10^4\\
%     10^4 E &\leq 10^8 \frac{D}{y} + 1.6 y \leq 6.5\cdot 10^4\\
%     10^4 F &\leq 10^8 \frac{E}{y} + 1.6 y \leq 6.6\cdot 10^4\\
%   \end{align*}
%   Note that we compute more steps than for division: since $t$ is
%   not the end result, we need to know it with more accuracy
%   (on the other hand, the ending is much simpler, as we don't
%   need an exact rounding for transcendental functions, but just
%   a faithful rounding).
%   ^^A todo: doc
%
%   \begin{syntax}
%     \cs{@@_ln_x_iv:wnnnnnnnn} \meta{1 or 2} \meta{8d} |;| \Arg{4d} \Arg{4d} \meta{fixed-tl}
%   \end{syntax}
%   The number is $x$. Compute $y$ by adding 1 to the five first digits.
%    \begin{macrocode}
\cs_new:Npn \@@_ln_x_iv:wnnnnnnnn #1; #2#3#4#5 #6#7#8#9
  {
    \exp_after:wN \@@_div_significand_pack:NNN
    \int_value:w \@@_int_eval:w
    \@@_ln_div_i:w #1 ;
      #6 #7 ; {#8} {#9}
      {#2} {#3} {#4} {#5}
      { \exp_after:wN \@@_ln_div_ii:wwn \int_value:w #1 }
      { \exp_after:wN \@@_ln_div_ii:wwn \int_value:w #1 }
      { \exp_after:wN \@@_ln_div_ii:wwn \int_value:w #1 }
      { \exp_after:wN \@@_ln_div_ii:wwn \int_value:w #1 }
      { \exp_after:wN \@@_ln_div_vi:wwn \int_value:w #1 }
  }
\cs_new:Npn \@@_ln_div_i:w #1;
  {
    \exp_after:wN \@@_div_significand_calc:wwnnnnnnn
    \int_value:w \@@_int_eval:w 999999 + 2 0000 0000 / #1 ; % Q1
  }
\cs_new:Npn \@@_ln_div_ii:wwn #1; #2;#3 % y; B1;B2 <- for k=1
  {
    \exp_after:wN \@@_div_significand_pack:NNN
    \int_value:w \@@_int_eval:w
      \exp_after:wN \@@_div_significand_calc:wwnnnnnnn
      \int_value:w \@@_int_eval:w 999999 + #2 #3 / #1 ; % Q2
      #2 #3 ;
  }
\cs_new:Npn \@@_ln_div_vi:wwn #1; #2;#3#4#5 #6#7#8#9 %y;F1;F2F3F4x1x2x3x4
  {
    \exp_after:wN \@@_div_significand_pack:NNN
    \int_value:w \@@_int_eval:w 1000000 + #2 #3 / #1 ; % Q6
  }
%    \end{macrocode}
%   We now have essentially
%   ^^A todo: determine error on $Q_{6}$ (probably $6.7$),
%   ^^A todo: conclude the final result is off by $<10^{-23}$
%   \begin{syntax}
%     \cs{@@_ln_div_after:Nw} \meta{fixed tl}
%     \cs{@@_div_significand_pack:NNN} $10^6 + Q_{1}$
%     \cs{@@_div_significand_pack:NNN} $10^6 + Q_{2}$
%     \cs{@@_div_significand_pack:NNN} $10^6 + Q_{3}$
%     \cs{@@_div_significand_pack:NNN} $10^6 + Q_{4}$
%     \cs{@@_div_significand_pack:NNN} $10^6 + Q_{5}$
%     \cs{@@_div_significand_pack:NNN} $10^6 + Q_{6}$ |;|
%     \meta{exponent} |;| \meta{continuation}
%   \end{syntax}
%   where \meta{fixed tl} holds the logarithm of a number
%   in $[1,10]$, and \meta{exponent} is
%   the exponent. Also, the expansion is done backwards. Then
%   \cs{@@_div_significand_pack:NNN} puts things in the
%   correct order to add the $Q_{i}$ together and put semicolons
%   between each piece. Once those have been expanded, we get
%   \begin{syntax}
%     \cs{@@_ln_div_after:Nw} \meta{fixed-tl} \meta{1d} |;| \meta{4d} |;| \meta{4d} |;|
%     ~~\meta{4d} |;| \meta{4d} |;| \meta{4d} |;| \meta{4d} |;| \meta{exponent} |;|
%   \end{syntax}
%   ^^A todo: redoc.
%   Just as with division, we know that the first two digits
%   are |1| and |0| because of bounds on the final result of
%   the division $2/(x+1)$, which is between roughly $0.8$ and $1.2$.
%   We then compute $1-2/(x+1)$, after testing whether $2/(x+1)$ is
%   greater than or smaller than $1$.
%    \begin{macrocode}
\cs_new:Npn \@@_ln_div_after:Nw #1#2;
  {
    \if_meaning:w 0 #2
      \exp_after:wN \@@_ln_t_small:Nw
    \else:
      \exp_after:wN \@@_ln_t_large:NNw
      \exp_after:wN -
    \fi:
    #1
  }
\cs_new:Npn \@@_ln_t_small:Nw #1 #2; #3; #4; #5; #6; #7;
  {
    \exp_after:wN \@@_ln_t_large:NNw
    \exp_after:wN + % <sign>
    \exp_after:wN #1
    \int_value:w \@@_int_eval:w 9999 - #2 \exp_after:wN ;
    \int_value:w \@@_int_eval:w 9999 - #3 \exp_after:wN ;
    \int_value:w \@@_int_eval:w 9999 - #4 \exp_after:wN ;
    \int_value:w \@@_int_eval:w 9999 - #5 \exp_after:wN ;
    \int_value:w \@@_int_eval:w 9999 - #6 \exp_after:wN ;
    \int_value:w \@@_int_eval:w 1 0000 - #7 ;
  }
%    \end{macrocode}
%
%   \begin{syntax}
%     \cs{@@_ln_t_large:NNw} \meta{sign} \meta{fixed tl}
%     ~~\meta{t_1}|;| \meta{t_2} |;| \meta{t_3}|;| \meta{t_4}|;| \meta{t_5} |;| \meta{t_6}|;|
%     ~~\meta{exponent} |;| \meta{continuation}
%   \end{syntax}
%   Compute the square $|t|^2$, and keep $|t|$ at the end with its
%   sign. We know that $|t|<0.1765$, so every piece has at most $4$
%   digits. However, since we were not careful in \cs{@@_ln_t_small:w},
%   they can have less than $4$ digits.
%    \begin{macrocode}
\cs_new:Npn \@@_ln_t_large:NNw #1 #2 #3; #4; #5; #6; #7; #8;
  {
    \exp_after:wN \@@_ln_square_t_after:w
    \int_value:w \@@_int_eval:w 9999 0000 + #3*#3
      \exp_after:wN \@@_ln_square_t_pack:NNNNNw
      \int_value:w \@@_int_eval:w 9999 0000 + 2*#3*#4
        \exp_after:wN \@@_ln_square_t_pack:NNNNNw
        \int_value:w \@@_int_eval:w 9999 0000 + 2*#3*#5 + #4*#4
          \exp_after:wN \@@_ln_square_t_pack:NNNNNw
          \int_value:w \@@_int_eval:w 9999 0000 + 2*#3*#6 + 2*#4*#5
            \exp_after:wN \@@_ln_square_t_pack:NNNNNw
            \int_value:w \@@_int_eval:w
              1 0000 0000 + 2*#3*#7 + 2*#4*#6 + #5*#5
              + (2*#3*#8 + 2*#4*#7 + 2*#5*#6) / 1 0000
              % ; ; ;
    \exp_after:wN \@@_ln_twice_t_after:w
    \int_value:w \@@_int_eval:w -1 + 2*#3
      \exp_after:wN \@@_ln_twice_t_pack:Nw
      \int_value:w \@@_int_eval:w 9999 + 2*#4
        \exp_after:wN \@@_ln_twice_t_pack:Nw
        \int_value:w \@@_int_eval:w 9999 + 2*#5
          \exp_after:wN \@@_ln_twice_t_pack:Nw
          \int_value:w \@@_int_eval:w 9999 + 2*#6
            \exp_after:wN \@@_ln_twice_t_pack:Nw
            \int_value:w \@@_int_eval:w 9999 + 2*#7
              \exp_after:wN \@@_ln_twice_t_pack:Nw
              \int_value:w \@@_int_eval:w 10000 + 2*#8 ; ;
    { \@@_ln_c:NwNw #1 }
    #2
  }
\cs_new:Npn \@@_ln_twice_t_pack:Nw #1 #2; { + #1 ; {#2} }
\cs_new:Npn \@@_ln_twice_t_after:w #1; { ;;; {#1} }
\cs_new:Npn \@@_ln_square_t_pack:NNNNNw #1 #2#3#4#5 #6;
  { + #1#2#3#4#5 ; {#6} }
\cs_new:Npn \@@_ln_square_t_after:w 1 0 #1#2#3 #4;
  { \@@_ln_Taylor:wwNw {0#1#2#3} {#4} }
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_ln_Taylor:wwNw}
%   Denoting $T=t^2$, we get
%   \begin{syntax}
%     \cs{@@_ln_Taylor:wwNw}
%     ~~\Arg{T_1} \Arg{T_2} \Arg{T_3} \Arg{T_4} \Arg{T_5} \Arg{T_6} |;| |;|
%     ~~\Arg{(2t)_1} \Arg{(2t)_2} \Arg{(2t)_3} \Arg{(2t)_4} \Arg{(2t)_5} \Arg{(2t)_6} |;|
%     ~~|{| \cs{@@_ln_c:NwNw} \meta{sign} |}|
%     ~~\meta{fixed tl} \meta{exponent} |;| \meta{continuation}
%   \end{syntax}
%   And we want to compute
%   \[
%   \ln\left(\frac{1+t}{1-t}\right)
%   = 2t\left(1 + T \left(\frac{1}{3} + T \left(\frac{1}{5}
%         + T \left(\frac{1}{7} + T \left( \frac{1}{9} + \cdots
%           \right)\right)\right)\right)\right)
%   \]
%   The process looks as follows
%   \begin{verbatim}
%     \loop 5; A;
%     \div_int 5; 1.0; \add A; \mul T; {\loop \eval 5-2;}
%     \add 0.2; A; \mul T; {\loop \eval 5-2;}
%     \mul B; T; {\loop 3;}
%     \loop 3; C;
%   \end{verbatim}
%   ^^A todo: doc
%
%   This uses the routine for dividing a number by a small integer
%   (${}<10^4$).
%    \begin{macrocode}
\cs_new:Npn \@@_ln_Taylor:wwNw
  { \@@_ln_Taylor_loop:www 21 ; {0000}{0000}{0000}{0000}{0000}{0000} ; }
\cs_new:Npn \@@_ln_Taylor_loop:www #1; #2; #3;
  {
    \if_int_compare:w #1 = \c_one_int
      \@@_ln_Taylor_break:w
    \fi:
    \exp_after:wN \@@_fixed_div_int:wwN \c_@@_one_fixed_tl #1;
    \@@_fixed_add:wwn #2;
    \@@_fixed_mul:wwn #3;
    {
      \exp_after:wN \@@_ln_Taylor_loop:www
      \int_value:w \@@_int_eval:w #1 - 2 ;
    }
    #3;
  }
\cs_new:Npn \@@_ln_Taylor_break:w \fi: #1 \@@_fixed_add:wwn #2#3; #4 ;;
  {
    \fi:
    \exp_after:wN \@@_fixed_mul:wwn
    \exp_after:wN { \int_value:w \@@_int_eval:w 10000 + #2 } #3;
  }
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_ln_c:NwNw}
%   \begin{syntax}
%     \cs{@@_ln_c:NwNw} \meta{sign}
%     ~~\Arg{r_1} \Arg{r_2} \Arg{r_3} \Arg{r_4} \Arg{r_5} \Arg{r_6} |;|
%     ~~\meta{fixed tl} \meta{exponent} |;| \meta{continuation}
%   \end{syntax}
%   We are now reduced to finding $\ln(c)$ and $\meta{exponent}\ln(10)$
%   in a table, and adding it to the mixture. The first step is to
%   get $\ln(c) - \ln(x) = - \ln(a)$, then we get $|b|\ln(10)$ and add
%   or subtract.
%
%   For now, $\ln(x)$ is given as $\cdot 10^0$. Unless both the exponent
%   is $1$ and $c=1$, we shift to working in units of $\cdot 10^4$,
%   since the final result is at least $\ln(10/7) \simeq 0.35$.
%    \begin{macrocode}
\cs_new:Npn \@@_ln_c:NwNw #1 #2; #3
  {
    \if_meaning:w + #1
      \exp_after:wN \exp_after:wN \exp_after:wN \@@_fixed_sub:wwn
    \else:
      \exp_after:wN \exp_after:wN \exp_after:wN \@@_fixed_add:wwn
    \fi:
    #3 #2 ;
  }
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_ln_exponent:wn}
%   \begin{syntax}
%     \cs{@@_ln_exponent:wn}
%     ~~\Arg{s_1} \Arg{s_2} \Arg{s_3} \Arg{s_4} \Arg{s_5} \Arg{s_6} |;|
%     ~~\Arg{exponent}
%   \end{syntax}
%   Compute \meta{exponent} times $\ln(10)$. Apart from the cases where
%   \meta{exponent} is $0$ or $1$, the result is necessarily at
%   least $\ln(10) \simeq 2.3$ in magnitude. We can thus drop the least
%   significant $4$ digits. In the case of a very large (positive or
%   negative) exponent, we can (and we need to) drop $4$ additional
%   digits, since the result is of order $10^4$. Naively, one would
%   think that in both cases we can drop $4$ more digits than we do,
%   but that would be slightly too tight for rounding to happen correctly.
%   Besides, we already have addition and subtraction for $24$ digits
%   fixed point numbers.
%    \begin{macrocode}
\cs_new:Npn \@@_ln_exponent:wn #1; #2
  {
    \if_case:w #2 \exp_stop_f:
      0 \@@_case_return:nw { \@@_fixed_to_float_o:Nw 2 }
    \or:
      \exp_after:wN \@@_ln_exponent_one:ww \int_value:w
    \else:
      \if_int_compare:w #2 > \c_zero_int
        \exp_after:wN \@@_ln_exponent_small:NNww
        \exp_after:wN 0
        \exp_after:wN \@@_fixed_sub:wwn \int_value:w
      \else:
        \exp_after:wN \@@_ln_exponent_small:NNww
        \exp_after:wN 2
        \exp_after:wN \@@_fixed_add:wwn \int_value:w -
      \fi:
    \fi:
    #2; #1;
  }
%    \end{macrocode}
%   Now we painfully write all the cases.\footnote{Bruno: do rounding.}
%   No overflow nor underflow can happen, except when computing \texttt{ln(1)}.
%    \begin{macrocode}
\cs_new:Npn \@@_ln_exponent_one:ww 1; #1;
  {
    0
    \exp_after:wN \@@_fixed_sub:wwn \c_@@_ln_x_fixed_tl #1;
    \@@_fixed_to_float_o:wN 0
  }
%    \end{macrocode}
%   For small exponents, we just drop one block of digits, and set the
%   exponent of the log to $4$ (minus any shift coming from leading zeros
%   in the conversion from fixed point to floating point). Note that here
%   the exponent has been made positive.
%    \begin{macrocode}
\cs_new:Npn \@@_ln_exponent_small:NNww #1#2#3; #4#5#6#7#8#9;
  {
    4
    \exp_after:wN \@@_fixed_mul:wwn
      \c_@@_ln_x_fixed_tl
      {#3}{0000}{0000}{0000}{0000}{0000} ;
    #2
      {0000}{#4}{#5}{#6}{#7}{#8};
    \@@_fixed_to_float_o:wN #1
  }
%    \end{macrocode}
% \end{macro}
%
% \subsection{Exponential}
%
% \subsubsection{Sign, exponent, and special numbers}
%
% \begin{macro}[EXP]{\@@_exp_o:w}
%    \begin{macrocode}
\cs_new:Npn \@@_exp_o:w #1 \s_@@ \@@_chk:w #2#3#4; @
  {
    \if_case:w #2 \exp_stop_f:
      \@@_case_return_o:Nw \c_one_fp
    \or:
      \exp_after:wN \@@_exp_normal_o:w
    \or:
      \if_meaning:w 0 #3
        \exp_after:wN \@@_case_return_o:Nw
        \exp_after:wN \c_inf_fp
      \else:
        \exp_after:wN \@@_case_return_o:Nw
        \exp_after:wN \c_zero_fp
      \fi:
    \or:
      \@@_case_return_same_o:w
    \fi:
    \s_@@ \@@_chk:w #2#3#4;
  }
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_exp_normal_o:w, \@@_exp_pos_o:Nnwnw, \@@_exp_overflow:NN}
%   \begin{macrocode}
\cs_new:Npn \@@_exp_normal_o:w \s_@@ \@@_chk:w 1#1
  {
    \if_meaning:w 0 #1
      \@@_exp_pos_o:NNwnw + \@@_fixed_to_float_o:wN
    \else:
      \@@_exp_pos_o:NNwnw - \@@_fixed_inv_to_float_o:wN
    \fi:
  }
\cs_new:Npn \@@_exp_pos_o:NNwnw #1#2#3 \fi: #4#5;
  {
    \fi:
    \if_int_compare:w #4 > \c_@@_max_exp_exponent_int
      \token_if_eq_charcode:NNTF + #1
        { \@@_exp_overflow:NN \@@_overflow:w \c_inf_fp }
        { \@@_exp_overflow:NN \@@_underflow:w \c_zero_fp }
      \exp:w
    \else:
      \exp_after:wN \@@_sanitize:Nw
      \exp_after:wN 0
      \int_value:w #1 \@@_int_eval:w
        \if_int_compare:w #4 < \c_zero_int
          \exp_after:wN \use_i:nn
        \else:
          \exp_after:wN \use_ii:nn
        \fi:
        {
          0
          \@@_decimate:nNnnnn { - #4 }
            \@@_exp_Taylor:Nnnwn
        }
        {
          \@@_decimate:nNnnnn { \c_@@_prec_int - #4 }
            \@@_exp_pos_large:NnnNwn
        }
        #5
        {#4}
        #1 #2 0
        \exp:w
    \fi:
    \exp_after:wN \exp_end:
  }
\cs_new:Npn \@@_exp_overflow:NN #1#2
  {
    \exp_after:wN \exp_after:wN
    \exp_after:wN #1
    \exp_after:wN #2
  }
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_exp_Taylor:Nnnwn}
% \begin{macro}[EXP]{\@@_exp_Taylor_loop:www, \@@_exp_Taylor_break:Nww}
%   This function is called for numbers in the range $[10^{-9},
%   10^{-1})$.  We compute $10$ terms of the Taylor series.  The
%   first argument is irrelevant (rounding digit used by some other
%   functions).  The next three arguments, at least $16$ digits,
%   delimited by a semicolon, form a fixed point number, so we pack it
%   in blocks of $4$ digits.
%    \begin{macrocode}
\cs_new:Npn \@@_exp_Taylor:Nnnwn #1#2#3 #4; #5 #6
  {
    #6
    \@@_pack_twice_four:wNNNNNNNN
    \@@_pack_twice_four:wNNNNNNNN
    \@@_pack_twice_four:wNNNNNNNN
    \@@_exp_Taylor_ii:ww
    ; #2#3#4 0000 0000 ;
  }
\cs_new:Npn \@@_exp_Taylor_ii:ww #1; #2;
  { \@@_exp_Taylor_loop:www 10 ; #1 ; #1 ; \s_@@_stop }
\cs_new:Npn \@@_exp_Taylor_loop:www #1; #2; #3;
  {
    \if_int_compare:w #1 = \c_one_int
      \exp_after:wN \@@_exp_Taylor_break:Nww
    \fi:
    \@@_fixed_div_int:wwN #3 ; #1 ;
    \@@_fixed_add_one:wN
    \@@_fixed_mul:wwn #2 ;
    {
      \exp_after:wN \@@_exp_Taylor_loop:www
      \int_value:w \@@_int_eval:w #1 - 1 ;
      #2 ;
    }
  }
\cs_new:Npn \@@_exp_Taylor_break:Nww #1 #2; #3 \s_@@_stop
  { \@@_fixed_add_one:wN #2 ; }
%    \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{variable}{\c_@@_exp_intarray}
%   The integer array has $6\times 9\times 4=216$ items encoding the
%   values of $\exp(j\times 10^i)$ for $j=1,\dots,9$ and $i=-1,\dots,4$.
%   Each value is expressed as $\simeq 10^p \times 0.m_1m_2m_3$ with
%   three $8$-digit blocks $m_1$, $m_2$, $m_3$ and an integer
%   exponent~$p$ (one more than the scientific exponent), and these are
%   stored in the integer array as four items: $p$, $10^8+m_1$,
%   $10^8+m_2$, $10^8+m_3$.  The various exponentials are stored in
%   increasing order of $j\times 10^i$.
%
%   Storing this data in an integer array makes it slightly harder to
%   access (slower, too), but uses $16$ bytes of memory per exponential
%   stored, while storing as tokens used around $40$ tokens; tokens have
%   an especially large footprint in Unicode-aware engines.
%    \begin{macrocode}
\intarray_const_from_clist:Nn \c_@@_exp_intarray
  {
         1 , 1 1105 1709 , 1 1807 5647 , 1 6248 1171 ,
         1 , 1 1221 4027 , 1 5816 0169 , 1 8339 2107 ,
         1 , 1 1349 8588 , 1 0757 6003 , 1 1039 8374 ,
         1 , 1 1491 8246 , 1 9764 1270 , 1 3178 2485 ,
         1 , 1 1648 7212 , 1 7070 0128 , 1 1468 4865 ,
         1 , 1 1822 1188 , 1 0039 0508 , 1 9748 7537 ,
         1 , 1 2013 7527 , 1 0747 0476 , 1 5216 2455 ,
         1 , 1 2225 5409 , 1 2849 2467 , 1 6045 7954 ,
         1 , 1 2459 6031 , 1 1115 6949 , 1 6638 0013 ,
         1 , 1 2718 2818 , 1 2845 9045 , 1 2353 6029 ,
         1 , 1 7389 0560 , 1 9893 0650 , 1 2272 3043 ,
         2 , 1 2008 5536 , 1 9231 8766 , 1 7740 9285 ,
         2 , 1 5459 8150 , 1 0331 4423 , 1 9078 1103 ,
         3 , 1 1484 1315 , 1 9102 5766 , 1 0342 1116 ,
         3 , 1 4034 2879 , 1 3492 7351 , 1 2260 8387 ,
         4 , 1 1096 6331 , 1 5842 8458 , 1 5992 6372 ,
         4 , 1 2980 9579 , 1 8704 1728 , 1 2747 4359 ,
         4 , 1 8103 0839 , 1 2757 5384 , 1 0077 1000 ,
         5 , 1 2202 6465 , 1 7948 0671 , 1 6516 9579 ,
         9 , 1 4851 6519 , 1 5409 7902 , 1 7796 9107 ,
        14 , 1 1068 6474 , 1 5815 2446 , 1 2146 9905 ,
        18 , 1 2353 8526 , 1 6837 0199 , 1 8540 7900 ,
        22 , 1 5184 7055 , 1 2858 7072 , 1 4640 8745 ,
        27 , 1 1142 0073 , 1 8981 5684 , 1 2836 6296 ,
        31 , 1 2515 4386 , 1 7091 9167 , 1 0062 6578 ,
        35 , 1 5540 6223 , 1 8439 3510 , 1 0525 7117 ,
        40 , 1 1220 4032 , 1 9431 7840 , 1 8020 0271 ,
        44 , 1 2688 1171 , 1 4181 6135 , 1 4484 1263 ,
        87 , 1 7225 9737 , 1 6812 5749 , 1 2581 7748 ,
       131 , 1 1942 4263 , 1 9524 1255 , 1 9365 8421 ,
       174 , 1 5221 4696 , 1 8976 4143 , 1 9505 8876 ,
       218 , 1 1403 5922 , 1 1785 2837 , 1 4107 3977 ,
       261 , 1 3773 0203 , 1 0092 9939 , 1 8234 0143 ,
       305 , 1 1014 2320 , 1 5473 5004 , 1 5094 5533 ,
       348 , 1 2726 3745 , 1 7211 2566 , 1 5673 6478 ,
       391 , 1 7328 8142 , 1 2230 7421 , 1 7051 8866 ,
       435 , 1 1970 0711 , 1 1401 7046 , 1 9938 8888 ,
       869 , 1 3881 1801 , 1 9428 4368 , 1 5764 8232 ,
      1303 , 1 7646 2009 , 1 8905 4704 , 1 8893 1073 ,
      1738 , 1 1506 3559 , 1 7005 0524 , 1 9009 7592 ,
      2172 , 1 2967 6283 , 1 8402 3667 , 1 0689 6630 ,
      2606 , 1 5846 4389 , 1 5650 2114 , 1 7278 5046 ,
      3041 , 1 1151 7900 , 1 5080 6878 , 1 2914 4154 ,
      3475 , 1 2269 1083 , 1 0850 6857 , 1 8724 4002 ,
      3909 , 1 4470 3047 , 1 3316 5442 , 1 6408 6591 ,
      4343 , 1 8806 8182 , 1 2566 2921 , 1 5872 6150 ,
      8686 , 1 7756 0047 , 1 2598 6861 , 1 0458 3204 ,
     13029 , 1 6830 5723 , 1 7791 4884 , 1 1932 7351 ,
     17372 , 1 6015 5609 , 1 3095 3052 , 1 3494 7574 ,
     21715 , 1 5297 7951 , 1 6443 0315 , 1 3251 3576 ,
     26058 , 1 4665 6719 , 1 0099 3379 , 1 5527 2929 ,
     30401 , 1 4108 9724 , 1 3326 3186 , 1 5271 5665 ,
     34744 , 1 3618 6973 , 1 3140 0875 , 1 3856 4102 ,
     39087 , 1 3186 9209 , 1 6113 3900 , 1 6705 9685 ,
  }
%    \end{macrocode}
% \end{variable}
%
% \begin{macro}[rEXP]
%   {
%     \@@_exp_pos_large:NnnNwn ,
%     \@@_exp_large_after:wwn ,
%     \@@_exp_large:NwN ,
%     \@@_exp_intarray:w ,
%     \@@_exp_intarray_aux:w ,
%   }
%   The first two arguments are irrelevant (a rounding digit, and a
%   brace group with $8$ zeros).  The third argument is the integer part
%   of our number, then we have the decimal part delimited by a
%   semicolon, and finally the exponent, in the range $[0,5]$.  Remove
%   leading zeros from the integer part: putting |#4| in there too
%   ensures that an integer part of $0$ is also removed.  Then read
%   digits one by one, looking up $\exp(\meta{digit}\cdot
%   10^{\meta{exponent}})$ in a table, and multiplying that to the
%   current total.  The loop is done by \cs{@@_exp_large:NwN}, whose
%   |#1| is the \meta{exponent}, |#2| is the current mantissa, and |#3|
%   is the \meta{digit}.  At the end, \cs{@@_exp_large_after:wwn} moves
%   on to the Taylor series, eventually multiplied with the mantissa
%   that we have just computed.
%    \begin{macrocode}
\cs_new:Npn \@@_exp_pos_large:NnnNwn #1#2#3 #4#5; #6
  {
    \exp_after:wN \exp_after:wN \exp_after:wN \@@_exp_large:NwN
    \exp_after:wN \exp_after:wN \exp_after:wN #6
    \exp_after:wN \c_@@_one_fixed_tl
    \int_value:w #3 #4 \exp_stop_f:
    #5 00000 ;
  }
\cs_new:Npn \@@_exp_large:NwN #1#2; #3
  {
    \if_case:w #3 ~
      \exp_after:wN \@@_fixed_continue:wn
    \else:
      \exp_after:wN \@@_exp_intarray:w
      \int_value:w \@@_int_eval:w 36 * #1 + 4 * #3 \exp_after:wN ;
    \fi:
    #2;
    {
      \if_meaning:w 0 #1
        \exp_after:wN \@@_exp_large_after:wwn
      \else:
        \exp_after:wN \@@_exp_large:NwN
        \int_value:w \@@_int_eval:w #1 - 1 \exp_after:wN \scan_stop:
      \fi:
    }
  }
\cs_new:Npn \@@_exp_intarray:w #1 ;
  {
    +
    \__kernel_intarray_item:Nn \c_@@_exp_intarray
      { \@@_int_eval:w #1 - 3 \scan_stop: }
    \exp_after:wN \use_i:nnn
    \exp_after:wN \@@_fixed_mul:wwn
    \int_value:w 0
    \exp_after:wN \@@_exp_intarray_aux:w
    \int_value:w \__kernel_intarray_item:Nn
                   \c_@@_exp_intarray { \@@_int_eval:w #1 - 2 }
    \exp_after:wN \@@_exp_intarray_aux:w
    \int_value:w \__kernel_intarray_item:Nn
                   \c_@@_exp_intarray { \@@_int_eval:w #1 - 1 }
    \exp_after:wN \@@_exp_intarray_aux:w
    \int_value:w \__kernel_intarray_item:Nn \c_@@_exp_intarray {#1} ; ;
  }
\cs_new:Npn \@@_exp_intarray_aux:w 1 #1#2#3#4#5 ; { ; {#1#2#3#4} {#5} }
\cs_new:Npn \@@_exp_large_after:wwn #1; #2; #3
  {
    \@@_exp_Taylor:Nnnwn ? { } { } 0 #2; {} #3
    \@@_fixed_mul:wwn #1;
  }
%    \end{macrocode}
% \end{macro}
%
% \subsection{Power}
%
% Raising a number $a$ to a power $b$ leads to many distinct situations.
% \begin{center}\def\abs#1{\lvert #1\rvert}
%   \begin{tabular}{>{$}c<{$}|*8{>{$}l<{$}}}
%     a^b          &-\infty &(-\infty,-0)  &-\text{integer}     &\pm 0 &+\text{integer}   &(0,\infty)      &+\infty &\nan \\ \hline
%     +\infty      &+0      &\multicolumn{2}{c}{$+0$}           &+1    &\multicolumn{2}{c}{$+\infty$}      &+\infty &\nan \\
%     (1,\infty)   &+0      &\multicolumn{2}{c}{$+\abs{a}^{b}$} &+1    &\multicolumn{2}{c}{$+\abs{a}^{b}$} &+\infty &\nan \\
%     +1           &+1      &\multicolumn{2}{c}{$+1$}           &+1    &\multicolumn{2}{c}{$+1$}           &+1      &+1   \\
%     (0,1)        &+\infty &\multicolumn{2}{c}{$+\abs{a}^{b}$} &+1    &\multicolumn{2}{c}{$+\abs{a}^{b}$} &+0      &\nan \\
%     +0           &+\infty &\multicolumn{2}{c}{$+\infty$}      &+1    &\multicolumn{2}{c}{$+0$}           &+0      &\nan \\
%     -0           &+\infty &\nan          &(-1)^b\infty        &+1    &(-1)^b 0          &+0              &+0      &\nan \\
%     (-1,0)       &+\infty &\nan          &(-1)^b\abs{a}^{b}   &+1    &(-1)^b\abs{a}^{b} &\nan            &+0      &\nan \\
%     -1           &+1      &\nan          &(-1)^b              &+1    &(-1)^b            &\nan            &+1      &\nan \\
%     (-\infty,-1) &+0      &\nan          &(-1)^b\abs{a}^{b}   &+1    &(-1)^b\abs{a}^{b} &\nan            &+\infty &\nan \\
%     -\infty      &+0      &+0            &(-1)^b 0            &+1    &(-1)^b\infty      &\nan            &+\infty &\nan \\
%     \nan         &\nan    &\nan          &\nan                &+1    &\nan              &\nan            &\nan    &\nan \\
%   \end{tabular}
% \end{center}
% We distinguished in this table the cases of finite (positive or
% negative) integer exponents, as $(-1)^b$ is defined in that case.
% One peculiarity of this operation is that $\nan^0 = 1^\nan = 1$,
% because this relation is obeyed for any number, even $\pm\infty$.
%
% \begin{macro}[EXP]+\@@_^_o:ww+
%   We cram most of the tests into a single function to save csnames.
%   First treat the case $b=0$: $a^0=1$ for any $a$, even \texttt{nan}.
%   Then test the sign of $a$.
%   \begin{itemize}
%   \item If it is positive, and $a$ is a normal number, call
%     \cs{@@_pow_normal_o:ww} followed by the two \texttt{fp} $a$ and $b$.
%     For $a=+0$ or $+\inf$, call \cs{@@_pow_zero_or_inf:ww} instead, to
%     return either $+0$ or $+\infty$ as appropriate.
%   \item If $a$ is a \texttt{nan}, then skip to the next semicolon
%     (which happens to be conveniently the end of $b$) and return
%     \texttt{nan}.
%   \item Finally, if $a$ is negative, compute $|a|^b$
%     (\cs{@@_pow_normal_o:ww} which ignores the sign of its first
%     operand), and keep an extra copy of $a$ and $b$ (the second brace
%     group, containing \{~$b$~$a$~\}, is inserted between $a$ and $b$).
%     Then do some tests to find the final sign of the result if it
%     exists.
%   \end{itemize}
%    \begin{macrocode}
\cs_new:cpn { @@_ \iow_char:N \^ _o:ww }
    \s_@@ \@@_chk:w #1#2#3; \s_@@ \@@_chk:w #4#5#6;
  {
    \if_meaning:w 0 #4
      \@@_case_return_o:Nw \c_one_fp
    \fi:
    \if_case:w #2 \exp_stop_f:
      \exp_after:wN \use_i:nn
    \or:
      \@@_case_return_o:Nw \c_nan_fp
    \else:
      \exp_after:wN \@@_pow_neg:www
      \exp:w \exp_end_continue_f:w \exp_after:wN \use:nn
    \fi:
    {
      \if_meaning:w 1 #1
        \exp_after:wN \@@_pow_normal_o:ww
      \else:
        \exp_after:wN \@@_pow_zero_or_inf:ww
      \fi:
      \s_@@ \@@_chk:w #1#2#3;
    }
    { \s_@@ \@@_chk:w #4#5#6; \s_@@ \@@_chk:w #1#2#3; }
    \s_@@ \@@_chk:w #4#5#6;
  }
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_pow_zero_or_inf:ww}
%   Raising $-0$ or $-\infty$ to \texttt{nan} yields \texttt{nan}.  For
%   other powers, the result is $+0$ if $0$ is raised to a positive
%   power or $\infty$ to a negative power, and $+\infty$ otherwise.
%   Thus, if the type of $a$ and the sign of $b$ coincide, the result
%   is~$0$, since those conveniently take the same possible values, $0$
%   and~$2$.  Otherwise, either $a=\pm\infty$ and $b>0$ and the result
%   is $+\infty$, or $a=\pm 0$ with $b<0$ and we have a division by zero
%   unless $b=-\infty$.
%    \begin{macrocode}
\cs_new:Npn \@@_pow_zero_or_inf:ww
    \s_@@ \@@_chk:w #1#2; \s_@@ \@@_chk:w #3#4
  {
    \if_meaning:w 1 #4
      \@@_case_return_same_o:w
    \fi:
    \if_meaning:w #1 #4
      \@@_case_return_o:Nw \c_zero_fp
    \fi:
    \if_meaning:w 2 #1
      \@@_case_return_o:Nw \c_inf_fp
    \fi:
    \if_meaning:w 2 #3
      \@@_case_return_o:Nw \c_inf_fp
    \else:
      \@@_case_use:nw
        {
          \@@_division_by_zero_o:NNww \c_inf_fp ^
            \s_@@ \@@_chk:w #1 #2 ;
        }
    \fi:
    \s_@@ \@@_chk:w #3#4
  }
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_pow_normal_o:ww}
%   We have in front of us $a$, and $b\neq 0$, we know that $a$ is a
%   normal number, and we wish to compute $\lvert a\rvert^{b}$.  If
%   $\lvert a\rvert=1$, we return $1$, unless $a=-1$ and $b$ is
%   \texttt{nan}.  Indeed, returning $1$ at this point would wrongly
%   raise \enquote{invalid} when the sign is considered.  If $\lvert
%   a\rvert\neq 1$, test the type of $b$:
%   \begin{itemize}
%   \item[0] Impossible, we already filtered $b=\pm 0$.
%   \item[1] Call \cs{@@_pow_npos_o:Nww}.
%   \item[2] Return $+\infty$ or $+0$ depending on the sign of $b$ and
%     whether the exponent of $a$ is positive or not.
%   \item[3] Return $b$.
%   \end{itemize}
%    \begin{macrocode}
\cs_new:Npn \@@_pow_normal_o:ww
    \s_@@ \@@_chk:w 1 #1#2#3; \s_@@ \@@_chk:w #4#5
  {
    \if:w 0 \@@_str_if_eq:nn { #2 #3 } { 1 {1000} {0000} {0000} {0000} }
      \if_int_compare:w #4 #1 = 32 \exp_stop_f:
        \exp_after:wN \@@_case_return_ii_o:ww
      \fi:
      \@@_case_return_o:Nww \c_one_fp
    \fi:
    \if_case:w #4 \exp_stop_f:
    \or:
      \exp_after:wN \@@_pow_npos_o:Nww
      \exp_after:wN #5
    \or:
      \if_meaning:w 2 #5 \exp_after:wN \reverse_if:N \fi:
      \if_int_compare:w #2 > \c_zero_int
        \exp_after:wN \@@_case_return_o:Nww
        \exp_after:wN \c_inf_fp
      \else:
        \exp_after:wN \@@_case_return_o:Nww
        \exp_after:wN \c_zero_fp
      \fi:
    \or:
      \@@_case_return_ii_o:ww
    \fi:
    \s_@@ \@@_chk:w 1 #1 {#2} #3 ;
    \s_@@ \@@_chk:w #4 #5
  }
%    \end{macrocode}
% \end{macro}
%
% ^^A todo: check that we compute ln to 21 digits!
% \begin{macro}[EXP]{\@@_pow_npos_o:Nww}
%   We now know that $a\neq\pm 1$ is a normal number, and $b$ is a
%   normal number too.  We want to compute $\lvert a\rvert^{b} = (\lvert
%   x\rvert\cdot 10^{n})^{y\cdot 10^{p}} = \exp((\ln\lvert x\rvert + n
%   \ln(10))\cdot y \cdot 10^{p}) = \exp(z)$.  To compute the
%   exponential accurately, we need to know the digits of $z$ up to the
%   $16$-th position.  Since the exponential of $10^{5}$ is infinite, we
%   only need at most $21$ digits, hence the fixed point result of
%   \cs{@@_ln_o:w} is precise enough for our needs.  Start an integer
%   expression for the decimal exponent of $e^{\lvert z\rvert}$.  If $z$
%   is negative, negate that decimal exponent, and prepare to take the
%   inverse when converting from the fixed point to the floating point result.
%    \begin{macrocode}
\cs_new:Npn \@@_pow_npos_o:Nww #1 \s_@@ \@@_chk:w 1#2#3
  {
    \exp_after:wN \@@_sanitize:Nw
    \exp_after:wN 0
    \int_value:w
      \if:w #1 \if_int_compare:w #3 > \c_zero_int 0 \else: 2 \fi:
        \exp_after:wN \@@_pow_npos_aux:NNnww
        \exp_after:wN +
        \exp_after:wN \@@_fixed_to_float_o:wN
      \else:
        \exp_after:wN \@@_pow_npos_aux:NNnww
        \exp_after:wN -
        \exp_after:wN \@@_fixed_inv_to_float_o:wN
      \fi:
      {#3}
  }
%    \end{macrocode}
% \end{macro}
%
%^^A begin[todo]
% \begin{macro}[EXP]{\@@_pow_npos_aux:NNnww}
%   The first argument is the conversion function from fixed point to
%   float.  Then comes an exponent and the $4$ brace groups of $x$,
%   followed by $b$.  Compute $-\ln(x)$.
%    \begin{macrocode}
\cs_new:Npn \@@_pow_npos_aux:NNnww #1#2#3#4#5; \s_@@ \@@_chk:w 1#6#7#8;
  {
    #1
    \@@_int_eval:w
      \@@_ln_significand:NNNNnnnN #4#5
      \@@_pow_exponent:wnN {#3}
      \@@_fixed_mul:wwn #8 {0000}{0000} ;
      \@@_pow_B:wwN #7;
      #1 #2 0 % fixed_to_float_o:wN
  }
\cs_new:Npn \@@_pow_exponent:wnN #1; #2
  {
    \if_int_compare:w #2 > \c_zero_int
      \exp_after:wN \@@_pow_exponent:Nwnnnnnw % n\ln(10) - (-\ln(x))
      \exp_after:wN +
    \else:
      \exp_after:wN \@@_pow_exponent:Nwnnnnnw % -(|n|\ln(10) + (-\ln(x)))
      \exp_after:wN -
    \fi:
    #2; #1;
  }
\cs_new:Npn \@@_pow_exponent:Nwnnnnnw #1#2; #3#4#5#6#7#8;
  { %^^A todo: use that in ln.
    \exp_after:wN \@@_fixed_mul_after:wwn
    \int_value:w \@@_int_eval:w \c_@@_leading_shift_int
      \exp_after:wN \@@_pack:NNNNNw
      \int_value:w \@@_int_eval:w \c_@@_middle_shift_int
        #1#2*23025 - #1 #3
        \exp_after:wN \@@_pack:NNNNNw
        \int_value:w \@@_int_eval:w \c_@@_middle_shift_int
          #1 #2*8509 - #1 #4
          \exp_after:wN \@@_pack:NNNNNw
          \int_value:w \@@_int_eval:w \c_@@_middle_shift_int
            #1 #2*2994 - #1 #5
            \exp_after:wN \@@_pack:NNNNNw
            \int_value:w \@@_int_eval:w \c_@@_middle_shift_int
              #1 #2*0456 - #1 #6
              \exp_after:wN \@@_pack:NNNNNw
              \int_value:w \@@_int_eval:w \c_@@_trailing_shift_int
                #1 #2*8401 - #1 #7
                #1 ( #2*7991 - #8 ) / 1 0000 ; ;
  }
\cs_new:Npn \@@_pow_B:wwN #1#2#3#4#5#6; #7;
  {
    \if_int_compare:w #7 < \c_zero_int
      \exp_after:wN \@@_pow_C_neg:w \int_value:w -
    \else:
      \if_int_compare:w #7 < 22 \exp_stop_f:
        \exp_after:wN \@@_pow_C_pos:w \int_value:w
      \else:
        \exp_after:wN \@@_pow_C_overflow:w \int_value:w
      \fi:
    \fi:
    #7 \exp_after:wN ;
    \int_value:w \@@_int_eval:w 10 0000 + #1 \@@_int_eval_end:
    #2#3#4#5#6 0000 0000 0000 0000 0000 0000 ; %^^A todo: how many 0?
  }
\cs_new:Npn \@@_pow_C_overflow:w #1; #2; #3
  {
    + 2 * \c_@@_max_exponent_int
    \exp_after:wN \@@_fixed_continue:wn \c_@@_one_fixed_tl
  }
\cs_new:Npn \@@_pow_C_neg:w #1 ; 1
  {
    \exp_after:wN \exp_after:wN \exp_after:wN \@@_pow_C_pack:w
    \prg_replicate:nn {#1} {0}
  }
\cs_new:Npn \@@_pow_C_pos:w #1; 1
  { \@@_pow_C_pos_loop:wN #1; }
\cs_new:Npn \@@_pow_C_pos_loop:wN #1; #2
  {
    \if_meaning:w 0 #1
      \exp_after:wN \@@_pow_C_pack:w
      \exp_after:wN #2
    \else:
      \if_meaning:w 0 #2
        \exp_after:wN \@@_pow_C_pos_loop:wN \int_value:w
      \else:
        \exp_after:wN \@@_pow_C_overflow:w \int_value:w
      \fi:
      \@@_int_eval:w #1 - 1 \exp_after:wN ;
    \fi:
  }
\cs_new:Npn \@@_pow_C_pack:w
  {
    \exp_after:wN \@@_exp_large:NwN
    \exp_after:wN 5
    \c_@@_one_fixed_tl
  }
%    \end{macrocode}
% \end{macro}
%^^A end[todo]
%
% \begin{macro}[EXP]{\@@_pow_neg:www, \@@_pow_neg_aux:wNN}
%   This function is followed by three floating point numbers: $|a|^b$,
%   $a\in[-\infty,-0]$, and $b$.  If $b$ is an even integer (case $-1$),
%   $a^b=|a|^b$.  If $b$ is an odd integer (case $0$), $a^b=-|a|^b$,
%   obtained by a call to \cs{@@_pow_neg_aux:wNN}.  Otherwise, the sign is
%   undefined.  This is invalid, unless $|a|^b$ turns out to be $+0$ or
%   \texttt{nan}, in which case we return that as $a^b$.  In particular,
%   since the underflow detection occurs before \cs{@@_pow_neg:www} is
%   called, |(-0.1)**(12345.67)| gives $+0$ rather than complaining
%   that the sign is not defined.
%    \begin{macrocode}
\cs_new:Npn \@@_pow_neg:www \s_@@ \@@_chk:w #1#2; #3; #4;
  {
    \if_case:w \@@_pow_neg_case:w #4 ;
      \exp_after:wN \@@_pow_neg_aux:wNN
    \or:
      \if_int_compare:w \@@_int_eval:w #1 / 2 = \c_one_int
        \@@_invalid_operation_o:Nww ^ #3; #4;
        \exp:w \exp_end_continue_f:w
        \exp_after:wN \exp_after:wN
        \exp_after:wN \@@_use_none_until_s:w
      \fi:
    \fi:
    \@@_exp_after_o:w
    \s_@@ \@@_chk:w #1#2;
  }
\cs_new:Npn \@@_pow_neg_aux:wNN #1 \s_@@ \@@_chk:w #2#3
  {
    \exp_after:wN \@@_exp_after_o:w
    \exp_after:wN \s_@@
    \exp_after:wN \@@_chk:w
    \exp_after:wN #2
    \int_value:w \@@_int_eval:w 2 - #3 \@@_int_eval_end:
  }
%    \end{macrocode}
% ^^A todo: is this \@@_exp_after_o:w necessary?  Appropriate?
% \end{macro}
%
% \begin{macro}[rEXP]
%   {
%     \@@_pow_neg_case:w, \@@_pow_neg_case_aux:nnnnn,
%     \@@_pow_neg_case_aux:Nnnw
%   }
%   This function expects a floating point number, and determines its
%   \enquote{parity}.  It should be used after \cs{if_case:w} or in an
%   integer expression.  It gives $-1$ if the number is an even integer,
%   $0$~if the number is an odd integer, and $1$~otherwise.  Zeros and
%   $\pm\infty$ are even (because very large finite floating points are
%   even), while \texttt{nan} is a non-integer.  The sign of normal
%   numbers is irrelevant to parity.  After \cs{@@_decimate:nNnnnn} the
%   argument |#1| of \cs{@@_pow_neg_case_aux:Nnnw} is a rounding digit,
%   |0|~if and only if the number was an integer, and |#3| is the $8$
%   least significant digits of that integer.
%    \begin{macrocode}
\cs_new:Npn \@@_pow_neg_case:w \s_@@ \@@_chk:w #1#2#3;
  {
    \if_case:w #1 \exp_stop_f:
           -1
    \or:   \@@_pow_neg_case_aux:nnnnn #3
    \or:   -1
    \else: 1
    \fi:
    \exp_stop_f:
  }
\cs_new:Npn \@@_pow_neg_case_aux:nnnnn #1#2#3#4#5
  {
    \if_int_compare:w #1 > \c_@@_prec_int
      -1
    \else:
      \@@_decimate:nNnnnn { \c_@@_prec_int - #1 }
        \@@_pow_neg_case_aux:Nnnw
        {#2} {#3} {#4} {#5}
    \fi:
  }
\cs_new:Npn \@@_pow_neg_case_aux:Nnnw #1#2#3#4 ;
  {
    \if_meaning:w 0 #1
      \if_int_odd:w #3 \exp_stop_f:
        0
      \else:
        -1
      \fi:
    \else:
      1
    \fi:
  }
%    \end{macrocode}
% \end{macro}
%
% \subsection{Factorial}
%
% \begin{variable}{\c_@@_fact_max_arg_int}
%   The maximum integer whose factorial fits in the exponent range is
%   $3248$, as $3249!\sim 10^{10000.8}$
%    \begin{macrocode}
\int_const:Nn \c_@@_fact_max_arg_int { 3248 }
%    \end{macrocode}
% \end{variable}
%
% \begin{macro}[EXP]{\@@_fact_o:w}
%   First detect $\pm 0$ and $+\infty$ and \texttt{nan}.  Then note that
%   factorial of anything with a negative sign (except $-0$) is
%   undefined.  Then call \cs{@@_small_int:wTF} to get an integer as the
%   argument, and start a loop.  This is not the most efficient way of
%   computing the factorial, but it works all right.  Of course we work
%   with $24$ digits instead of~$16$.  It is easy to check that
%   computing factorials with this precision is enough.
%    \begin{macrocode}
\cs_new:Npn \@@_fact_o:w #1 \s_@@ \@@_chk:w #2#3#4; @
  {
    \if_case:w #2 \exp_stop_f:
      \@@_case_return_o:Nw \c_one_fp
    \or:
    \or:
      \if_meaning:w 0 #3
        \exp_after:wN \@@_case_return_same_o:w
      \fi:
    \or:
      \@@_case_return_same_o:w
    \fi:
    \if_meaning:w 2 #3
      \@@_case_use:nw { \@@_invalid_operation_o:fw { fact } }
    \fi:
    \@@_fact_pos_o:w
    \s_@@ \@@_chk:w #2 #3 #4 ;
  }
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_fact_pos_o:w, \@@_fact_int_o:w}
%   Then check the input is an integer, and call
%   \cs{@@_facorial_int_o:n} with that \texttt{int} as an argument.  If
%   it's too big the factorial overflows.  Otherwise call
%   \cs{@@_sanitize:Nw} with a positive sign marker~|0| and an integer
%   expression that will mop up any exponent in the calculation.
%    \begin{macrocode}
\cs_new:Npn \@@_fact_pos_o:w #1;
  {
    \@@_small_int:wTF #1;
      { \@@_fact_int_o:n }
      { \@@_invalid_operation_o:fw { fact } #1; }
  }
\cs_new:Npn \@@_fact_int_o:n #1
  {
    \if_int_compare:w #1 > \c_@@_fact_max_arg_int
      \@@_case_return:nw
        {
          \exp_after:wN \exp_after:wN \exp_after:wN \@@_overflow:w
          \exp_after:wN \c_inf_fp
        }
    \fi:
    \exp_after:wN \@@_sanitize:Nw
    \exp_after:wN 0
    \int_value:w \@@_int_eval:w
    \@@_fact_loop_o:w #1 . 4 , { 1 } { } { } { } { } { } ;
  }
%    \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_fact_loop_o:w}
%   The loop receives an integer |#1| whose factorial we want to
%   compute, which we progressively decrement, and the result so far as
%   an extended-precision number |#2| in the form
%   \meta{exponent}|,|\meta{mantissa}|;|.  The loop goes in steps of two
%   because we compute |#1*#1-1| as an integer expression (it must fit
%   since |#1| is at most $3248$), then multiply with the result so far.
%   We don't need to fill in most of the mantissa with zeros because
%   \cs{@@_ep_mul:wwwwn} first normalizes the extended precision number
%   to avoid loss of precision.  When reaching a small enough number
%   simply use a table of factorials less than $10^8$.  This limit is
%   chosen because the normalization step cannot deal with larger
%   integers.
%    \begin{macrocode}
\cs_new:Npn \@@_fact_loop_o:w #1 . #2 ;
  {
    \if_int_compare:w #1 < 12 \exp_stop_f:
      \@@_fact_small_o:w #1
    \fi:
    \exp_after:wN \@@_ep_mul:wwwwn
    \exp_after:wN 4 \exp_after:wN ,
    \exp_after:wN { \int_value:w \@@_int_eval:w #1 * (#1 - 1) }
    { } { } { } { } { } ;
    #2 ;
    {
      \exp_after:wN \@@_fact_loop_o:w
      \int_value:w \@@_int_eval:w #1 - 2 .
    }
  }
\cs_new:Npn \@@_fact_small_o:w #1 \fi: #2 ; #3 ; #4
  {
    \fi:
    \exp_after:wN \@@_ep_mul:wwwwn
    \exp_after:wN 4 \exp_after:wN ,
    \exp_after:wN
      {
        \int_value:w
        \if_case:w #1 \exp_stop_f:
        1 \or: 1 \or: 2 \or: 6 \or: 24 \or: 120 \or: 720 \or: 5040
        \or: 40320 \or: 362880 \or: 3628800 \or: 39916800
        \fi:
      } { } { } { } { } { } ;
    #3 ;
    \@@_ep_to_float_o:wwN 0
  }
%    \end{macrocode}
% \end{macro}
%
%    \begin{macrocode}
%</package>
%    \end{macrocode}
%
% \end{implementation}
%
% \PrintChanges
%
% \PrintIndex