1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
% \iffalse meta-comment
%
%% File: l3fp-convert.dtx
%
% Copyright (C) 2011-2019 The LaTeX3 Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version. The latest version
% of this license is in the file
%
% https://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
%
% -----------------------------------------------------------------------
%
% The development version of the bundle can be found at
%
% https://github.com/latex3/latex3
%
% for those people who are interested.
%
%<*driver>
\documentclass[full,kernel]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{^^A
% The \textsf{l3fp-convert} package\\ Floating point conversion^^A
% }
%
% \author{^^A
% The \LaTeX3 Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released 2019-10-24}
%
% \maketitle
%
% \begin{documentation}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\texttt{l3fp-convert} implementation}
%
% \begin{macrocode}
%<*initex|package>
% \end{macrocode}
%
% \begin{macrocode}
%<@@=fp>
% \end{macrocode}
%
% \subsection{Dealing with tuples}
%
% \begin{macro}[EXP]
% {\@@_tuple_convert:Nw, \@@_tuple_convert_loop:nNw, \@@_tuple_convert_end:w}
% The first argument is for instance \cs{@@_to_tl_dispatch:w}, which
% converts any floating point object to the appropriate
% representation. We loop through all items, putting |,~| between all
% of them and making sure to remove the leading |,~|.
% \begin{macrocode}
\cs_new:Npn \@@_tuple_convert:Nw #1 \s_@@_tuple \@@_tuple_chk:w #2 ;
{
\int_case:nnF { \@@_array_count:n {#2} }
{
{ 0 } { ( ) }
{ 1 } { \@@_tuple_convert_end:w @ { #1 #2 , } }
}
{
\@@_tuple_convert_loop:nNw { } #1
#2 { ? \@@_tuple_convert_end:w } ;
@ { \use_none:nn }
}
}
\cs_new:Npn \@@_tuple_convert_loop:nNw #1#2#3#4; #5 @ #6
{
\use_none:n #3
\exp_args:Nf \@@_tuple_convert_loop:nNw { #2 #3#4 ; } #2 #5
@ { #6 , ~ #1 }
}
\cs_new:Npn \@@_tuple_convert_end:w #1 @ #2
{ \exp_after:wN ( \exp:w \exp_end_continue_f:w #2 ) }
% \end{macrocode}
% \end{macro}
%
% \subsection{Trimming trailing zeros}
%
% \begin{macro}[EXP]{\@@_trim_zeros:w}
% \begin{macro}[EXP]
% {\@@_trim_zeros_loop:w, \@@_trim_zeros_dot:w, \@@_trim_zeros_end:w}
% If |#1| ends with a $0$, the \texttt{loop} auxiliary takes that zero
% as an end-delimiter for its first argument, and the second argument
% is the same \texttt{loop} auxiliary. Once the last trailing zero is
% reached, the second argument is the \texttt{dot} auxiliary,
% which removes a trailing dot if any. We then clean-up with the
% \texttt{end} auxiliary, keeping only the number.
% \begin{macrocode}
\cs_new:Npn \@@_trim_zeros:w #1 ;
{
\@@_trim_zeros_loop:w #1
; \@@_trim_zeros_loop:w 0; \@@_trim_zeros_dot:w .; \s_stop
}
\cs_new:Npn \@@_trim_zeros_loop:w #1 0; #2 { #2 #1 ; #2 }
\cs_new:Npn \@@_trim_zeros_dot:w #1 .; { \@@_trim_zeros_end:w #1 ; }
\cs_new:Npn \@@_trim_zeros_end:w #1 ; #2 \s_stop { #1 }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Scientific notation}
%
% \begin{macro}[EXP]
% {\fp_to_scientific:N, \fp_to_scientific:c, \fp_to_scientific:n}
% The three public functions evaluate their argument, then pass it to
% \cs{@@_to_scientific_dispatch:w}.
% \begin{macrocode}
\cs_new:Npn \fp_to_scientific:N #1
{ \exp_after:wN \@@_to_scientific_dispatch:w #1 }
\cs_generate_variant:Nn \fp_to_scientific:N { c }
\cs_new:Npn \fp_to_scientific:n
{
\exp_after:wN \@@_to_scientific_dispatch:w
\exp:w \exp_end_continue_f:w \@@_parse:n
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]
% {\@@_to_scientific_dispatch:w, \@@_to_scientific_recover:w, \@@_tuple_to_scientific:w}
% We allow tuples.
% \begin{macrocode}
\cs_new:Npn \@@_to_scientific_dispatch:w #1
{
\@@_change_func_type:NNN
#1 \@@_to_scientific:w \@@_to_scientific_recover:w
#1
}
\cs_new:Npn \@@_to_scientific_recover:w #1 #2 ;
{
\@@_error:nffn { fp-unknown-type } { \tl_to_str:n { #2 ; } } { } { }
nan
}
\cs_new:Npn \@@_tuple_to_scientific:w
{ \@@_tuple_convert:Nw \@@_to_scientific_dispatch:w }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]
% {
% \@@_to_scientific:w,
% \@@_to_scientific_normal:wnnnnn,
% \@@_to_scientific_normal:wNw
% }
% Expressing an internal floating point number in scientific notation
% is quite easy: no rounding, and the format is very well defined.
% First cater for the sign: negative numbers ($|#2|=2$) start
% with~|-|; we then only need to care about positive numbers and
% \texttt{nan}. Then filter the special cases: $\pm0$~are represented
% as~|0|; infinities are converted to a number slightly larger than
% the largest after an \enquote{invalid_operation} exception;
% \texttt{nan} is represented as~|0| after an
% \enquote{invalid_operation} exception. In the normal case,
% decrement the exponent and unbrace the $4$ brace groups, then in a
% second step grab the first digit (previously hidden in braces) to
% order the various parts correctly.
% \begin{macrocode}
\cs_new:Npn \@@_to_scientific:w \s_@@ \@@_chk:w #1#2
{
\if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi:
\if_case:w #1 \exp_stop_f:
\@@_case_return:nw { 0.000000000000000e0 }
\or: \exp_after:wN \@@_to_scientific_normal:wnnnnn
\or:
\@@_case_use:nw
{
\@@_invalid_operation:nnw
{ \fp_to_scientific:N \c_@@_overflowing_fp }
{ fp_to_scientific }
}
\or:
\@@_case_use:nw
{
\@@_invalid_operation:nnw
{ \fp_to_scientific:N \c_zero_fp }
{ fp_to_scientific }
}
\fi:
\s_@@ \@@_chk:w #1 #2
}
\cs_new:Npn \@@_to_scientific_normal:wnnnnn
\s_@@ \@@_chk:w 1 #1 #2 #3#4#5#6 ;
{
\exp_after:wN \@@_to_scientific_normal:wNw
\exp_after:wN e
\int_value:w \@@_int_eval:w #2 - 1
; #3 #4 #5 #6 ;
}
\cs_new:Npn \@@_to_scientific_normal:wNw #1 ; #2#3;
{ #2.#3 #1 }
% \end{macrocode}
% \end{macro}
%
% \subsection{Decimal representation}
%
% \begin{macro}[EXP]
% {\fp_to_decimal:N, \fp_to_decimal:c, \fp_to_decimal:n}
% All three public variants are based on the same
% \cs{@@_to_decimal_dispatch:w}
% after evaluating their argument to an internal floating point.
% \begin{macrocode}
\cs_new:Npn \fp_to_decimal:N #1
{ \exp_after:wN \@@_to_decimal_dispatch:w #1 }
\cs_generate_variant:Nn \fp_to_decimal:N { c }
\cs_new:Npn \fp_to_decimal:n
{
\exp_after:wN \@@_to_decimal_dispatch:w
\exp:w \exp_end_continue_f:w \@@_parse:n
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]
% {\@@_to_decimal_dispatch:w, \@@_to_decimal_recover:w, \@@_tuple_to_decimal:w}
% We allow tuples.
% \begin{macrocode}
\cs_new:Npn \@@_to_decimal_dispatch:w #1
{
\@@_change_func_type:NNN
#1 \@@_to_decimal:w \@@_to_decimal_recover:w
#1
}
\cs_new:Npn \@@_to_decimal_recover:w #1 #2 ;
{
\@@_error:nffn { fp-unknown-type } { \tl_to_str:n { #2 ; } } { } { }
nan
}
\cs_new:Npn \@@_tuple_to_decimal:w
{ \@@_tuple_convert:Nw \@@_to_decimal_dispatch:w }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]
% {
% \@@_to_decimal:w,
% \@@_to_decimal_normal:wnnnnn,
% \@@_to_decimal_large:Nnnw,
% \@@_to_decimal_huge:wnnnn,
% }
% The structure is similar to \cs{@@_to_scientific:w}.
% Insert |-| for
% negative numbers. Zero gives $0$, $\pm\infty$ and \nan{} yield an
% \enquote{invalid operation} exception; note that $\pm\infty$
% produces a very large output, which we don't expand now since it
% most likely won't be needed. Normal numbers with an exponent in the
% range $[1,15]$ have that number of digits before the decimal
% separator: \enquote{decimate} them, and remove leading zeros with
% \cs{int_value:w}, then trim trailing zeros and dot. Normal
% numbers with an exponent $16$ or larger have no decimal separator,
% we only need to add trailing zeros. When the exponent is
% non-positive, the result should be $0.\meta{zeros}\meta{digits}$,
% trimmed.
% \begin{macrocode}
\cs_new:Npn \@@_to_decimal:w \s_@@ \@@_chk:w #1#2
{
\if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi:
\if_case:w #1 \exp_stop_f:
\@@_case_return:nw { 0 }
\or: \exp_after:wN \@@_to_decimal_normal:wnnnnn
\or:
\@@_case_use:nw
{
\@@_invalid_operation:nnw
{ \fp_to_decimal:N \c_@@_overflowing_fp }
{ fp_to_decimal }
}
\or:
\@@_case_use:nw
{
\@@_invalid_operation:nnw
{ 0 }
{ fp_to_decimal }
}
\fi:
\s_@@ \@@_chk:w #1 #2
}
\cs_new:Npn \@@_to_decimal_normal:wnnnnn
\s_@@ \@@_chk:w 1 #1 #2 #3#4#5#6 ;
{
\int_compare:nNnTF {#2} > 0
{
\int_compare:nNnTF {#2} < \c_@@_prec_int
{
\@@_decimate:nNnnnn { \c_@@_prec_int - #2 }
\@@_to_decimal_large:Nnnw
}
{
\exp_after:wN \exp_after:wN
\exp_after:wN \@@_to_decimal_huge:wnnnn
\prg_replicate:nn { #2 - \c_@@_prec_int } { 0 } ;
}
{#3} {#4} {#5} {#6}
}
{
\exp_after:wN \@@_trim_zeros:w
\exp_after:wN 0
\exp_after:wN .
\exp:w \exp_end_continue_f:w \prg_replicate:nn { - #2 } { 0 }
#3#4#5#6 ;
}
}
\cs_new:Npn \@@_to_decimal_large:Nnnw #1#2#3#4;
{
\exp_after:wN \@@_trim_zeros:w \int_value:w
\if_int_compare:w #2 > 0 \exp_stop_f:
#2
\fi:
\exp_stop_f:
#3.#4 ;
}
\cs_new:Npn \@@_to_decimal_huge:wnnnn #1; #2#3#4#5 { #2#3#4#5 #1 }
% \end{macrocode}
% \end{macro}
%
% \subsection{Token list representation}
%
% \begin{macro}[EXP]{\fp_to_tl:N, \fp_to_tl:c, \fp_to_tl:n}
% These three public functions evaluate their argument, then pass it
% to \cs{@@_to_tl_dispatch:w}.
% \begin{macrocode}
\cs_new:Npn \fp_to_tl:N #1 { \exp_after:wN \@@_to_tl_dispatch:w #1 }
\cs_generate_variant:Nn \fp_to_tl:N { c }
\cs_new:Npn \fp_to_tl:n
{
\exp_after:wN \@@_to_tl_dispatch:w
\exp:w \exp_end_continue_f:w \@@_parse:n
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_to_tl_dispatch:w, \@@_to_tl_recover:w, \@@_tuple_to_tl:w}
% We allow tuples.
% \begin{macrocode}
\cs_new:Npn \@@_to_tl_dispatch:w #1
{ \@@_change_func_type:NNN #1 \@@_to_tl:w \@@_to_tl_recover:w #1 }
\cs_new:Npn \@@_to_tl_recover:w #1 #2 ;
{
\@@_error:nffn { fp-unknown-type } { \tl_to_str:n { #2 ; } } { } { }
nan
}
\cs_new:Npn \@@_tuple_to_tl:w
{ \@@_tuple_convert:Nw \@@_to_tl_dispatch:w }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]
% {
% \@@_to_tl:w, \@@_to_tl_normal:nnnnn,
% \@@_to_tl_scientific:wnnnnn, \@@_to_tl_scientific:wNw
% }
% A structure similar to \cs{@@_to_scientific_dispatch:w} and
% \cs{@@_to_decimal_dispatch:w}, but without the \enquote{invalid operation}
% exception. First filter special cases. We express normal numbers
% in decimal notation if the exponent is in the range $[-2,16]$, and
% otherwise use scientific notation.
% \begin{macrocode}
\cs_new:Npn \@@_to_tl:w \s_@@ \@@_chk:w #1#2
{
\if_meaning:w 2 #2 \exp_after:wN - \exp:w \exp_end_continue_f:w \fi:
\if_case:w #1 \exp_stop_f:
\@@_case_return:nw { 0 }
\or: \exp_after:wN \@@_to_tl_normal:nnnnn
\or: \@@_case_return:nw { inf }
\else: \@@_case_return:nw { nan }
\fi:
}
\cs_new:Npn \@@_to_tl_normal:nnnnn #1
{
\int_compare:nTF
{ -2 <= #1 <= \c_@@_prec_int }
{ \@@_to_decimal_normal:wnnnnn }
{ \@@_to_tl_scientific:wnnnnn }
\s_@@ \@@_chk:w 1 0 {#1}
}
\cs_new:Npn \@@_to_tl_scientific:wnnnnn
\s_@@ \@@_chk:w 1 #1 #2 #3#4#5#6 ;
{
\exp_after:wN \@@_to_tl_scientific:wNw
\exp_after:wN e
\int_value:w \@@_int_eval:w #2 - 1
; #3 #4 #5 #6 ;
}
\cs_new:Npn \@@_to_tl_scientific:wNw #1 ; #2#3;
{ \@@_trim_zeros:w #2.#3 ; #1 }
% \end{macrocode}
% \end{macro}
%
% \subsection{Formatting}
%
% This is not implemented yet, as it is not yet clear what a correct
% interface would be, for this kind of structured conversion from a
% floating point (or other types of variables) to a string. Ideas
% welcome.
%
% \subsection{Convert to dimension or integer}
%
% \begin{macro}[EXP]{\fp_to_dim:N, \fp_to_dim:c, \fp_to_dim:n}
% \begin{macro}[EXP]{\@@_to_dim_dispatch:w, \@@_to_dim_recover:w, \@@_to_dim:w}
% All three public variants are based on the same
% \cs{@@_to_dim_dispatch:w} after evaluating their argument to an
% internal floating point.
% We only allow floating point numbers, not tuples.
% \begin{macrocode}
\cs_new:Npn \fp_to_dim:N #1
{ \exp_after:wN \@@_to_dim_dispatch:w #1 }
\cs_generate_variant:Nn \fp_to_dim:N { c }
\cs_new:Npn \fp_to_dim:n
{
\exp_after:wN \@@_to_dim_dispatch:w
\exp:w \exp_end_continue_f:w \@@_parse:n
}
\cs_new:Npn \@@_to_dim_dispatch:w #1#2 ;
{
\@@_change_func_type:NNN #1 \@@_to_dim:w \@@_to_dim_recover:w
#1 #2 ;
}
\cs_new:Npn \@@_to_dim_recover:w #1
{ \@@_invalid_operation:nnw { 0pt } { fp_to_dim } }
\cs_new:Npn \@@_to_dim:w #1 ; { \@@_to_decimal:w #1 ; pt }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\fp_to_int:N, \fp_to_int:c, \fp_to_int:n}
% \begin{macro}[EXP]{\@@_to_int_dispatch:w, \@@_to_int_recover:w}
% For the most part identical to \cs{fp_to_dim:N} but without |pt|,
% and where \cs{@@_to_int:w} does more work.
% To convert to an integer, first round to $0$ places (to the nearest
% integer), then express the result as a decimal number: the
% definition of \cs{@@_to_decimal_dispatch:w} is such that there are no
% trailing dot nor zero.
% \begin{macrocode}
\cs_new:Npn \fp_to_int:N #1 { \exp_after:wN \@@_to_int_dispatch:w #1 }
\cs_generate_variant:Nn \fp_to_int:N { c }
\cs_new:Npn \fp_to_int:n
{
\exp_after:wN \@@_to_int_dispatch:w
\exp:w \exp_end_continue_f:w \@@_parse:n
}
\cs_new:Npn \@@_to_int_dispatch:w #1#2 ;
{
\@@_change_func_type:NNN #1 \@@_to_int:w \@@_to_int_recover:w
#1 #2 ;
}
\cs_new:Npn \@@_to_int_recover:w #1
{ \@@_invalid_operation:nnw { 0 } { fp_to_int } }
\cs_new:Npn \@@_to_int:w #1;
{
\exp_after:wN \@@_to_decimal:w \exp:w \exp_end_continue_f:w
\@@_round:Nwn \@@_round_to_nearest:NNN #1; { 0 }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Convert from a dimension}
%
% \begin{macro}[EXP]{\dim_to_fp:n}
% \begin{macro}[EXP]
% {
% \@@_from_dim_test:ww,
% \@@_from_dim:wNw,
% \@@_from_dim:wNNnnnnnn,
% \@@_from_dim:wnnnnwNw,
% }
% The dimension expression (which can in fact be a glue expression) is
% evaluated, converted to a number (\emph{i.e.}, expressed in scaled
% points), then multiplied by $2^{-16} = 0.0000152587890625$ to give a
% value expressed in points. The auxiliary \cs{@@_mul_npos_o:Nww}
% expects the desired \meta{final sign} and two floating point
% operands (of the form \cs{s_@@} \ldots{} |;|) as arguments.
% This set of functions is also used to convert dimension registers to
% floating points while parsing expressions: in this context there is
% an additional exponent, which is the first argument of
% \cs{@@_from_dim_test:ww}, and is combined with the exponent $-4$
% of $2^{-16}$. There is also a need to expand afterwards: this is
% performed by \cs{@@_mul_npos_o:Nww}, and cancelled by
% \cs{prg_do_nothing:} here.
% \begin{macrocode}
\cs_new:Npn \dim_to_fp:n #1
{
\exp_after:wN \@@_from_dim_test:ww
\exp_after:wN 0
\exp_after:wN ,
\int_value:w \tex_glueexpr:D #1 ;
}
\cs_new:Npn \@@_from_dim_test:ww #1, #2
{
\if_meaning:w 0 #2
\@@_case_return:nw { \exp_after:wN \c_zero_fp }
\else:
\exp_after:wN \@@_from_dim:wNw
\int_value:w \@@_int_eval:w #1 - 4
\if_meaning:w - #2
\exp_after:wN , \exp_after:wN 2 \int_value:w
\else:
\exp_after:wN , \exp_after:wN 0 \int_value:w #2
\fi:
\fi:
}
\cs_new:Npn \@@_from_dim:wNw #1,#2#3;
{
\@@_pack_twice_four:wNNNNNNNN \@@_from_dim:wNNnnnnnn ;
#3 000 0000 00 {10}987654321; #2 {#1}
}
\cs_new:Npn \@@_from_dim:wNNnnnnnn #1; #2#3#4#5#6#7#8#9
{ \@@_from_dim:wnnnnwNn #1 {#2#300} {0000} ; }
\cs_new:Npn \@@_from_dim:wnnnnwNn #1; #2#3#4#5#6; #7#8
{
\@@_mul_npos_o:Nww #7
\s_@@ \@@_chk:w 1 #7 {#5} #1 ;
\s_@@ \@@_chk:w 1 0 {#8} {1525} {8789} {0625} {0000} ;
\prg_do_nothing:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Use and eval}
%
% \begin{macro}[EXP]{\fp_use:N, \fp_use:c, \fp_eval:n}
% Those public functions are simple copies of the decimal conversions.
% \begin{macrocode}
\cs_new_eq:NN \fp_use:N \fp_to_decimal:N
\cs_generate_variant:Nn \fp_use:N { c }
\cs_new_eq:NN \fp_eval:n \fp_to_decimal:n
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\fp_sign:n}
% Trivial but useful. See the implementation of \cs{fp_add:Nn} for an
% explanation of why to use \cs{@@_parse:n}, namely, for better error
% reporting.
% \begin{macrocode}
\cs_new:Npn \fp_sign:n #1
{ \fp_to_decimal:n { sign \@@_parse:n {#1} } }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\fp_abs:n}
% Trivial but useful. See the implementation of \cs{fp_add:Nn} for an
% explanation of why to use \cs{@@_parse:n}, namely, for better error
% reporting.
% \begin{macrocode}
\cs_new:Npn \fp_abs:n #1
{ \fp_to_decimal:n { abs \@@_parse:n {#1} } }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\fp_max:nn, \fp_min:nn}
% Similar to \cs{fp_abs:n}, for consistency with \cs{int_max:nn}, \emph{etc.}
% \begin{macrocode}
\cs_new:Npn \fp_max:nn #1#2
{ \fp_to_decimal:n { max ( \@@_parse:n {#1} , \@@_parse:n {#2} ) } }
\cs_new:Npn \fp_min:nn #1#2
{ \fp_to_decimal:n { min ( \@@_parse:n {#1} , \@@_parse:n {#2} ) } }
% \end{macrocode}
% \end{macro}
%
% \subsection{Convert an array of floating points to a comma list}
%
% \begin{macro}[EXP]{\@@_array_to_clist:n}
% \begin{macro}[EXP]{\@@_array_to_clist_loop:Nw}
% Converts an array of floating point numbers to a comma-list. If
% speed here ends up irrelevant, we can simplify the code for the
% auxiliary to become
% \begin{verbatim}
% \cs_new:Npn \__fp_array_to_clist_loop:Nw #1#2;
% {
% \use_none:n #1
% { , ~ } \fp_to_tl:n { #1 #2 ; }
% \__fp_array_to_clist_loop:Nw
% }
% \end{verbatim}
% The \cs{use_ii:nn} function is expanded after \cs{@@_expand:n} is
% done, and it removes |,~| from the start of the representation.
% \begin{macrocode}
\cs_new:Npn \@@_array_to_clist:n #1
{
\tl_if_empty:nF {#1}
{
\exp_last_unbraced:Ne \use_ii:nn
{
\@@_array_to_clist_loop:Nw #1 { ? \prg_break: } ;
\prg_break_point:
}
}
}
\cs_new:Npn \@@_array_to_clist_loop:Nw #1#2;
{
\use_none:n #1
, ~
\exp_not:f { \@@_to_tl_dispatch:w #1 #2 ; }
\@@_array_to_clist_loop:Nw
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintChanges
%
% \PrintIndex
|