1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
|
% \iffalse meta-comment
%
%% File: l3expan.dtx Copyright (C) 1990-2011 The LaTeX3 project
%%
%% It may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License (LPPL), either version 1.3c of this
%% license or (at your option) any later version. The latest version
%% of this license is in the file
%%
%% http://www.latex-project.org/lppl.txt
%%
%% This file is part of the "l3kernel bundle" (The Work in LPPL)
%% and all files in that bundle must be distributed together.
%%
%% The released version of this bundle is available from CTAN.
%%
%% -----------------------------------------------------------------------
%%
%% The development version of the bundle can be found at
%%
%% http://www.latex-project.org/svnroot/experimental/trunk/
%%
%% for those people who are interested.
%%
%%%%%%%%%%%
%% NOTE: %%
%%%%%%%%%%%
%%
%% Snapshots taken from the repository represent work in progress and may
%% not work or may contain conflicting material! We therefore ask
%% people _not_ to put them into distributions, archives, etc. without
%% prior consultation with the LaTeX3 Project.
%%
%% -----------------------------------------------------------------------
%
%<*driver|package>
\RequirePackage{l3names}
\GetIdInfo$Id: l3expan.dtx 3031 2011-12-07 05:27:05Z bruno $
{L3 Experimental argument expansion}
%</driver|package>
%<*driver>
\documentclass[full]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{^^A
% The \pkg{l3expan} package\\ Argument expansion^^A
% \thanks{This file describes v\ExplFileVersion,
% last revised \ExplFileDate.}^^A
% }
%
% \author{^^A
% The \LaTeX3 Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released \ExplFileDate}
%
% \maketitle
%
% \begin{documentation}
%
% This module provides generic methods for expanding \TeX{} arguments in a
% systematic manner. The functions in this module all have prefix |exp|.
%
% Not all possible variations are implemented for every base
% function. Instead only those that are used within the \LaTeX3 kernel
% or otherwise seem to be of general interest are implemented.
% Consult the module description to find out which functions are
% actually defined. The next section explains how to define missing
% variants.
%
% \section{Defining new variants}
%
% The definition of variant forms for base functions may be necessary
% when writing new functions or when applying a kernel function in a
% situation that we haven't thought of before.
%
% Internally preprocessing of arguments is done with functions from the
% |\exp_| module. They all look alike, an example would be
% |\exp_args:NNo|. This function has three arguments, the first and the
% second are a single tokens the third argument gets
% expanded once. If |\seq_gpush:No| was not defined the example
% above could be coded in the following way:
% \begin{verbatim}
% \exp_args:NNo \seq_gpush:Nn
% \g_file_name_stack
% \l_tmpa_tl
% \end{verbatim}
% In other words, the first argument to |\exp_args:NNo| is the base
% function and the other arguments are preprocessed and then passed to
% this base function. In the example the first argument to the base
% function should be a single token which is left unchanged while the
% second argument is expanded once. From this example we can also see
% how the variants are defined. They just expand into the appropriate
% |\exp_| function followed by the desired base function, \emph{e.g.}
% \begin{quote}
% |\cs_new_nopar:Npn\seq_gpush:No{\exp_args:NNo\seq_gpush:Nn}|
% \end{quote}
% Providing variants in this way in style files is uncritical as the
% |\cs_new_nopar:Npn| function will silently accept definitions whenever the
% new definition is identical to an already given one. Therefore adding
% such definition to later releases of the kernel will not make such
% style files obsolete.
%
% The steps above may be automated by using the function
% |\cs_generate_variant:Nn|, described next.
%
% \section{Methods for defining variants}
%
% \begin{function}[updated = 2011-09-15]{\cs_generate_variant:Nn}
% \begin{syntax}
% \cs{cs_generate_variant:Nn} \meta{parent control sequence} \Arg{variant argument specifiers}
% \end{syntax}
% This function is used to define argument-specifier variants of the
% \meta{parent control sequence} for \LaTeX3 code-level macros. The
% \meta{parent control sequence} is first separated into the
% \meta{base name} and \meta{original argument specifier}. The
% comma-separated list of \meta{variant argument specifiers} is
% then used to define variants of the
% \meta{original argument specifier} where these are not already
% defined. For each \meta{variant} given, a function is created
% which will expand its arguments as detailed and pass them
% to the \meta{parent control sequence}. So for example
% \begin{verbatim}
% \cs_set:Npn \foo:Nn #1#2 { code here }
% \cs_generate_variant:Nn \foo:Nn { c }
% \end{verbatim}
% will create a new function \cs{foo:cn} which will expand its first
% argument into a control sequence name and pass the result to
% \cs{foo:Nn}. Similarly
% \begin{verbatim}
% \cs_generate_variant:Nn \foo:Nn { NV , cV }
% \end{verbatim}
% would generate the functions \cs{foo:NV} and \cs{foo:cV} in the
% same way. The \cs{cs_generate_variant:Nn} function can only be
% applied if the \meta{parent control sequence} is already defined. If
% the \meta{parent control sequence} is protected then the new sequence
% will also be protected. The \meta{variant} is created globally, as
% is any \cs{exp_args:N\meta{variant}} function needed to carry out
% the expansion.
% \end{function}
%
% \section{Introducing the variants}
%
% The available internal functions for argument expansion come in two
% flavours, some of them are faster then others. Therefore it is usually
% best to follow the following guidelines when defining new functions
% that are supposed to come with variant forms:
% \begin{itemize}
% \item
% Arguments that might need expansion should come first in the list of
% arguments to make processing faster.
% \item
% Arguments that should consist of single tokens should come first.
% \item
% Arguments that need full expansion (\emph{i.e.}, are denoted
% with |x|) should be avoided if possible as they can not be
% processed expandably, \emph{i.e.}, functions of this type will
% not work correctly in arguments that are itself subject to |x|
% expansion.
% \item
% In general, unless in the last position, multi-token arguments
% |n|, |f|, and |o| will need special processing which is not fast.
% Therefore it is best to use the optimized functions, namely
% those that contain only |N|, |c|, |V|, and |v|, and, in the last
% position, |o|, |f|, with possible trailing |N| or |n|, which are
% not expanded.
% \end{itemize}
%
% The |V| type returns the value of a register, which can be one of
% |tl|, |num|, |int|, |skip|, |dim|, |toks|, or built-in \TeX{}
% registers. The |v| type is the same except it first creates a
% control sequence out of its argument before returning the
% value. This recent addition to the argument specifiers may shake
% things up a bit as most places where |o| is used will be replaced by
% |V|. The documentation you are currently reading will therefore
% require a fair bit of re-writing.
%
% In general, the programmer should not need to be concerned with
% expansion control. When simply using the content of a variable,
% functions with a |V| specifier should be used. For those referred to by
% (cs)name, the |v| specifier is available for the same purpose. Only when
% specific expansion steps are needed, such as when using delimited
% arguments, should the lower-level functions with |o| specifiers be employed.
%
% The |f| type is so special that it deserves an example.
% Let's pretend we want to set |\aaa| equal to the control sequence
% stemming from turning |b \l_tmpa_tl b| into a control
% sequence. Furthermore we want to store the execution of it in a
% \meta{tl~var}. In this example we assume |\l_tmpa_tl| contains
% the text string |lur|. The straightforward approach is
% \begin{quote}
% |\tl_set:No \l_tmpb_tl {\cs_set_eq:Nc \aaa { b \l_tmpa_tl b } }|
% \end{quote}
% Unfortunately this only puts
% |\exp_args:NNc \cs_set_eq:NN \aaa {b \l_tmpa_tl b}| into |\l_tmpb_tl|
% and not |\cs_set_eq:NN \aaa = \blurb| as we probably wanted. Using
% |\tl_set:Nx| is not an option as that will die horribly. Instead
% we can do a
% \begin{quote}
% |\tl_set:Nf \l_tmpb_tl {\cs_set_eq:Nc \aaa { b \l_tmpa_tl b } }|
% \end{quote}
% which puts the desired result in |\l_tmpb_tl|. It requires
% |\toks_set:Nf| to be defined as
% \begin{quote}
% |\cs_set_nopar:Npn \tl_set:Nf { \exp_args:NNf \tl_set:Nn }|
% \end{quote}
% If you use this type of expansion in conditional processing then
% you should stick to using |TF| type functions only as it does not
% try to finish any |\if... \fi:| itself!
%
% \section{Manipulating the first argument}
%
% These functions are described in detail: expansion of multiple tokens follows
% the same rules but is described in a shorter fashion.
%
% \begin{function}[EXP]{\exp_args:No}
% \begin{syntax}
% \cs{exp_args:No} \meta{function} \Arg{tokens} \Arg{tokens2} ...
% \end{syntax}
% This function absorbs two arguments (the \meta{function} name and
% the \meta{tokens}). The \meta{tokens} are expanded once, and the result
% is inserted in braces into the input stream \emph{after} reinsertion
% of the \meta{function}. Thus the \meta{function} may take more than
% one argument: all others will be left unchanged.
% \end{function}
%
% \begin{function}[EXP]{\exp_args:Nc, \exp_args:cc}
% \begin{syntax}
% \cs{exp_args:Nc} \meta{function} \Arg{tokens} \Arg{tokens2} ...
% \end{syntax}
% This function absorbs two arguments (the \meta{function} name and
% the \meta{tokens}). The \meta{tokens} are expanded until only characters
% remain, and are then turned into a control sequence. (An internal error
% will occur if such a conversion is not possible). The result
% is inserted into the input stream \emph{after} reinsertion
% of the \meta{function}. Thus the \meta{function} may take more than
% one argument: all others will be left unchanged.
%
% The |:cc| variant constructs the \meta{function} name in the same
% manner as described for the \meta{tokens}.
% \end{function}
%
% \begin{function}[EXP]{\exp_args:NV}
% \begin{syntax}
% \cs{exp_args:NV} \meta{function} \meta{variable} \Arg{tokens2} ...
% \end{syntax}
% This function absorbs two arguments (the names of the \meta{function} and
% the the \meta{variable}). The content of the \meta{variable} are recovered
% and placed inside braces into the input stream \emph{after} reinsertion
% of the \meta{function}. Thus the \meta{function} may take more than
% one argument: all others will be left unchanged.
% \end{function}
%
% \begin{function}[EXP]{\exp_args:Nv}
% \begin{syntax}
% \cs{exp_args:Nv} \meta{function} \Arg{tokens} \Arg{tokens2} ...
% \end{syntax}
% This function absorbs two arguments (the \meta{function} name and
% the \meta{tokens}). The \meta{tokens} are expanded until only characters
% remain, and are then turned into a control sequence. (An internal error
% will occur if such a conversion is not possible). This control sequence
% should
% be the name of a \meta{variable}. The content of the \meta{variable} are
% recovered and placed inside braces into the input stream \emph{after}
% reinsertion of the \meta{function}. Thus the \meta{function} may take more
% than one argument: all others will be left unchanged.
% \end{function}
%
% \begin{function}[EXP]{\exp_args:Nf}
% \begin{syntax}
% \cs{exp_args:Nf} \meta{function} \Arg{tokens} \Arg{tokens2} ...
% \end{syntax}
% This function absorbs two arguments (the \meta{function} name and
% the \meta{tokens}). The \meta{tokens} are fully expanded until the
% first non-expandable token or space is found, and the result
% is inserted in braces into the input stream \emph{after} reinsertion
% of the \meta{function}. Thus the \meta{function} may take more than
% one argument: all others will be left unchanged.
% \end{function}
%
% \begin{function}{\exp_args:Nx}
% \begin{syntax}
% \cs{exp_args:Nx} \meta{function} \Arg{tokens} \Arg{tokens2} ...
% \end{syntax}
% This function absorbs two arguments (the \meta{function} name and
% the \meta{tokens}) and exhaustively expands the \meta{tokens}
% second. The result is inserted in braces into the input stream
% \emph{after} reinsertion of the \meta{function}.
% Thus the \meta{function} may take more
% than one argument: all others will be left unchanged.
% \end{function}
%
% \section{Manipulating two arguments}
%
% \begin{function}[EXP]
% {
% \exp_args:NNo,
% \exp_args:NNc,
% \exp_args:NNv,
% \exp_args:NNV,
% \exp_args:NNf,
% \exp_args:Nco,
% \exp_args:Ncf,
% \exp_args:Ncc,
% \exp_args:NVV
% }
% \begin{syntax}
% \cs{exp_args:NNc} \meta{token1} \meta{token2} \Arg{tokens}
% \end{syntax}
% These optimized functions absorb three arguments and expand the second and
% third as detailed by their argument specifier. The first argument
% of the function is then the next item on the input stream, followed
% by the expansion of the second and third arguments.
% \end{function}
%
% \begin{function}[EXP]
% {
% \exp_args:Nno,
% \exp_args:NnV,
% \exp_args:Nnf,
% \exp_args:Noo,
% \exp_args:Noc,
% \exp_args:Nff,
% \exp_args:Nfo,
% \exp_args:Nnc
% }
% \begin{syntax}
% \cs{exp_args:Noo} \meta{token} \Arg{tokens1} \Arg{tokens2}
% \end{syntax}
% These functions absorb three arguments and expand the second and
% third as detailed by their argument specifier. The first argument
% of the function is then the next item on the input stream, followed
% by the expansion of the second and third arguments.
% These functions need special (slower) processing.
% \end{function}
%
% \begin{function}
% {
% \exp_args:NNx,
% \exp_args:Nnx,
% \exp_args:Ncx,
% \exp_args:Nox,
% \exp_args:Nxo,
% \exp_args:Nxx
% }
% \begin{syntax}
% \cs{exp_args:NNx} \meta{token1} \meta{token2} \Arg{tokens}
% \end{syntax}
% These functions absorb three arguments and expand the second and
% third as detailed by their argument specifier. The first argument
% of the function is then the next item on the input stream, followed
% by the expansion of the second and third arguments. These functions
% are not expandable.
% \end{function}
%
% \section{Manipulating three arguments}
%
% \begin{function}[EXP]
% {
% \exp_args:NNNo,
% \exp_args:NNNV,
% \exp_args:Nccc,
% \exp_args:NcNc,
% \exp_args:NcNo,
% \exp_args:Ncco
% }
% \begin{syntax}
% \cs{exp_args:NNNo} \meta{token1} \meta{token2} \meta{token3} \Arg{tokens}
% \end{syntax}
% These optimized functions absorb four arguments and expand the second, third
% and fourth as detailed by their argument specifier. The first
% argument of the function is then the next item on the input stream,
% followed by the expansion of the second argument, \emph{etc}.
% \end{function}
%
% \begin{function}[EXP]
% {
% \exp_args:NNoo,
% \exp_args:NNno,
% \exp_args:Nnno,
% \exp_args:Nnnc,
% \exp_args:Nooo,
% }
% \begin{syntax}
% \cs{exp_args:NNNo} \meta{token1} \meta{token2} \meta{token3} \Arg{tokens}
% \end{syntax}
% These functions absorb four arguments and expand the second, third
% and fourth as detailed by their argument specifier. The first
% argument of the function is then the next item on the input stream,
% followed by the expansion of the second argument, \emph{etc}.
% These functions need special (slower) processing.
% \end{function}
%
% \begin{function}
% {
% \exp_args:NNnx,
% \exp_args:NNox,
% \exp_args:Nnnx,
% \exp_args:Nnox,
% \exp_args:Noox,
% \exp_args:Ncnx,
% \exp_args:Nccx
% }
% \begin{syntax}
% \cs{exp_args:NNnx} \meta{token1} \meta{token2} \Arg{tokens1} \Arg{tokens2}
% \end{syntax}
% These functions absorb four arguments and expand the second, third
% and fourth as detailed by their argument specifier. The first
% argument of the function is then the next item on the input stream,
% followed by the expansion of the second argument, \emph{etc.}
% \end{function}
%
% \section{Unbraced expansion}
%
% \begin{function}[EXP]
% {
% \exp_last_unbraced:Nf,
% \exp_last_unbraced:NV,
% \exp_last_unbraced:No,
% \exp_last_unbraced:Nv,
% \exp_last_unbraced:Nco,
% \exp_last_unbraced:NcV,
% \exp_last_unbraced:NNV,
% \exp_last_unbraced:NNo,
% \exp_last_unbraced:Nno,
% \exp_last_unbraced:Noo,
% \exp_last_unbraced:Nfo,
% \exp_last_unbraced:NNNV,
% \exp_last_unbraced:NNNo
% }
% \begin{syntax}
% \cs{exp_last_unbraced:Nno} \meta{token} \meta{tokens1} \meta{tokens2}
% \end{syntax}
% These functions absorb the number of arguments given by their
% specification, carry out the expansion
% indicated and leave the the results in the input stream, with the
% last argument not surrounded by the usual braces.
% Of these, the \texttt{:Nno}, \texttt{:Noo}, and \texttt{:Nfo}
% variants need special (slower) processing.
% \begin{texnote}
% As an optimization, the last argument is unbraced by some
% of those functions before expansion. This can cause problems
% if the argument is empty: for instance,
% \cs{exp_last_unbraced:Nf} \cs{mypkg_foo:w} |{ }| \cs{q_stop}
% leads to an infinite loop, as the quark is \texttt{f}-expanded.
% \end{texnote}
% \end{function}
%
% \begin{function}{\exp_last_unbraced:Nx}
% \begin{syntax}
% \cs{exp_last_unbraced:Nx} \meta{function} \Arg{tokens}
% \end{syntax}
% This functions fully expands the \meta{tokens} and leaves
% the result in the input stream after reinsertion of \meta{function}.
% This function is not expandable.
% \end{function}
%
% \begin{function}[EXP]{\exp_last_two_unbraced:Noo}
% \begin{syntax}
% \cs{exp_last_two_unbraced:Noo} \meta{token} \meta{tokens1} \Arg{tokens2}
% \end{syntax}
% This function absorbs three arguments and expand the second and third
% once. The first argument of the function is then the next item on the
% input stream, followed by the expansion of the second and third arguments,
% which are not wrapped in braces.
% This function needs special (slower) processing.
% \end{function}
%
% \begin{function}[EXP]{\exp_after:wN}
% \begin{syntax}
% \cs{exp_after:wN} \meta{token1} \meta{token2}
% \end{syntax}
% Carries out a single expansion of \meta{token2} prior to expansion
% of \meta{token1}. If \meta{token2} is a \TeX{} primitive, it will
% be executed rather than expanded, while if \meta{token2} has not
% expansion (for example, if it is a character) then it will be left
% unchanged. It is important to notice that \meta{token1} may be
% \emph{any} single token, including group-opening and -closing
% tokens (|{| or |}"| assuming normal \TeX{} category codes). Unless
% specifically required, expansion should be carried out using an
% appropriate argument specifier variant or the appropriate
% \cs{exp_arg:N} function.
% \begin{texnote}
% This is the \TeX{} primitive \tn{expandafter} renamed.
% \end{texnote}
% \end{function}
%
% \section{Preventing expansion}
%
% Despite the fact that the following functions are all about preventing
% expansion, they're designed to be used in an expandable context and hence
% are all marked as being `expandable' since they themselves will not appear
% after the expansion has completed.
%
% \begin{function}[EXP]{\exp_not:N}
% \begin{syntax}
% \cs{exp_not:N} \meta{token}
% \end{syntax}
% Prevents expansion of the \meta{token} in a context where it would otherwise
% be expanded, for example an |x|-type argument.
% \begin{texnote}
% This is the \TeX{} \tn{noexpand} primitive.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP]{\exp_not:c}
% \begin{syntax}
% \cs{exp_not:c} \Arg{tokens}
% \end{syntax}
% Expands the \meta{tokens} until only unexpandable content remains, and then
% converts this into a control sequence. Further expansion of this control
% sequence is then inhibited.
% \end{function}
%
% \begin{function}[EXP]{\exp_not:n}
% \begin{syntax}
% \cs{exp_not:n} \Arg{tokens}
% \end{syntax}
% Prevents expansion of the \meta{tokens} in a context where they would
% otherwise
% be expanded, for example an |x|-type argument.
% \begin{texnote}
% This is the \eTeX{} \tn{unexpanded} primitive.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP]{\exp_not:V}
% \begin{syntax}
% \cs{exp_not:V} \meta{variable}
% \end{syntax}
% Recovers the content of the \meta{variable}, then prevents expansion
% of the this material in a context where it would otherwise
% be expanded, for example an |x|-type argument.
% \end{function}
%
% \begin{function}[EXP]{\exp_not:v}
% \begin{syntax}
% \cs{exp_not:v} \Arg{tokens}
% \end{syntax}
% Expands the \meta{tokens} until only unexpandable content remains, and then
% converts this into a control sequence (which should be a \meta{variable}
% name). The content of the \meta{variable} is recovered, and further
% expansion is prevented in a context where it would otherwise
% be expanded, for example an |x|-type argument.
% \end{function}
%
% \begin{function}[EXP]{\exp_not:o}
% \begin{syntax}
% \cs{exp_not:o} \Arg{tokens}
% \end{syntax}
% Expands the \meta{tokens} once, then prevents any further expansion in a
% context where they would otherwise
% be expanded, for example an |x|-type argument.
% \end{function}
%
% \begin{function}[EXP]{\exp_not:f}
% \begin{syntax}
% \cs{exp_not:f} \Arg{tokens}
% \end{syntax}
% Expands \meta{tokens} fully until the first unexpandable token
% is found. Expansion then stops, and the result of the expansion
% (including any tokens which were not expanded) is protected from
% further expansion.
% \end{function}
%
% \begin{function}[updated = 2011-06-03, EXP]{\exp_stop_f:}
% \begin{syntax}
% \cs{function:f} \meta{tokens} \cs{exp_stop_f:} \meta{more tokens}
% \end{syntax}
% This function terminates an \texttt{f}-type expansion. Thus if
% a function \cs{function:f} starts an \texttt{f}-type expansion
% and all of \meta{tokens} are expandable \cs{exp_stop:f} will
% terminate the expansion of tokens even if \meta{more tokens}
% are also expandable. The function itself is an implicit space
% token. Inside an \texttt{x}-type expansion, it will retain its
% form, but when typeset it produces the underlying space (\verb*| |).
% \end{function}
%
% \section{Internal functions and variables}
%
% \begin{variable}{\l_exp_tl}
% The |\exp_| module has its private variables to temporarily store
% results of the argument expansion. This is done to avoid interference
% with other functions using temporary variables.
% \end{variable}
%
% \begin{function}[EXP]{\exp_eval_register:N, \exp_eval_register:c}
% \begin{syntax}
% \cs{exp_eval_register:N} \meta{variable}
% \end{syntax}
% These functions evaluates a \meta{variable} as part of a |V| or |v|
% expansion (respectively), preceeded by \cs{c_zero} which stops
% the expansion of a previous \tn{romannumeral}.
% A \meta{variable} might exist as
% one of two things: a parameter-less non-long, non-protected macro
% or a built-in \TeX{} register such as |\count|.
% \end{function}
%
% \begin{function}{\::n, \::N, \::c, \::o, \::f, \::x, \::v, \::V, \:::}
% \begin{syntax}
% |\cs_set_nopar:Npn \exp_args:Ncof { \::c \::o \::f \::: }|
% \end{syntax}
% Internal forms for the base expansion types. These names do \emph{not}
% conform to the general \LaTeX3 approach as this makes them more readily
% visible in the log and so forth.
% \end{function}
%
% \begin{function}{\cs_generate_internal_variant:n}
% \begin{syntax}
% \cs{cs_generate_internal_variant:n} \meta{arg~spec}
% \end{syntax}
% Tests if the function |\exp_args:N|\meta{arg~spec} exists, and defines it
% if it does not. The \meta{arg~spec} should be a series of one or more
% of the letters |N|, |c|, |n|, |o|, |V|, |v|, |f| and |x|.
% \end{function}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3expan} implementation}
%
% \begin{macrocode}
%<*initex|package>
% \end{macrocode}
%
% We start by ensuring that the required packages are loaded.
% \begin{macrocode}
%<*package>
\ProvidesExplPackage
{\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}
\package_check_loaded_expl:
%</package>
% \end{macrocode}
%
% \begin{macro}{\exp_after:wN}
% \begin{macro}{\exp_not:N}
% \begin{macro}{\exp_not:n}
% These are defined in \pkg{l3basics}.
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{General expansion}
%
% In this section a general mechanism for defining functions to handle
% argument handling is defined. These general expansion functions are
% expandable unless |x| is used. (Any version of |x| is going to have
% to use one of the \LaTeX3 names for |\cs_set_nopar:Npx| at some point, and
% so is never going to be expandable.\footnote{However, some
% primitives have certain characteristics that means that their
% arguments undergo an \texttt{x} type expansion but the primitive
% is in fact still expandable. We shall make it very clear when such
% a function is expandable.})
%
% The definition of expansion functions with this technique happens
% in section~\ref{sec:gendef}.
% In section~\ref{sec:handtune} some common cases are coded by a more direct
% method for efficiency, typically using calls to |\exp_after:wN|.
%
% \begin{variable}{\l_exp_tl}
% We need a scratch token list variable.
% We don't use |tl| methods so that \pkg{l3expan} can be loaded earlier.
% \begin{macrocode}
\cs_new_nopar:Npn \l_exp_tl { }
% \end{macrocode}
% \end{variable}
%
% This code uses internal functions with names that start with |\::|
% to perform the expansions. All macros are |long| as this turned out
% to be desirable since the tokens undergoing expansion may be
% arbitrary user input.
%
% An argument manipulator |\::|\meta{Z} always has signature |#1\:::#2#3|
% where |#1| holds the remaining argument manipulations to be performed,
% |\:::| serves as an end marker for the list of manipulations, |#2|
% is the carried over result of the previous expansion steps and |#3| is
% the argument about to be processed.
%
% \begin{macro}[aux]{\exp_arg_next:nnn}
% \begin{macro}[aux]{\exp_arg_next_nobrace:nnn}
% |#1| is the result of an expansion step, |#2| is the remaining
% argument manipulations and |#3| is the current result of the
% expansion chain. This auxiliary function moves |#1| back after
% |#3| in the input stream and checks if any expansion is left to
% be done by calling |#2|. In by far the most cases we will require
% to add a set of braces to the result of an argument manipulation
% so it is more effective to do it directly here. Actually, so far
% only the |c| of the final argument manipulation variants does not
% require a set of braces.
% \begin{macrocode}
\cs_new:Npn \exp_arg_next:nnn #1#2#3 { #2 \::: { #3 {#1} } }
\cs_new:Npn \exp_arg_next_nobrace:nnn #1#2#3 { #2 \::: { #3 #1 } }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[int]{\:::}
% The end marker is just another name for the identity function.
% \begin{macrocode}
\cs_new:Npn \::: #1 {#1}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int]{\::n}
% This function is used to skip an argument that doesn't need to
% be expanded.
% \begin{macrocode}
\cs_new:Npn \::n #1 \::: #2#3 { #1 \::: { #2 {#3} } }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int]{\::N}
% This function is used to skip an argument that consists of a
% single token and doesn't need to be expanded.
% \begin{macrocode}
\cs_new:Npn \::N #1 \::: #2#3 { #1 \::: {#2#3} }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int]{\::c}
% This function is used to skip an argument that is turned into
% as control sequence without expansion.
% \begin{macrocode}
\cs_new:Npn \::c #1 \::: #2#3
{ \exp_after:wN \exp_arg_next_nobrace:nnn \cs:w #3 \cs_end: {#1} {#2} }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int]{\::o}
% This function is used to expand an argument once.
% \begin{macrocode}
\cs_new:Npn \::o #1 \::: #2#3
{ \exp_after:wN \exp_arg_next:nnn \exp_after:wN {#3} {#1} {#2} }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\::f}
% \begin{macro}{\exp_stop_f:}
% This function is used to expand a token list until the first
% unexpandable token is found. The underlying \tn{romannumeral} |-`0|
% expands everything in its way to find something terminating the
% number and thereby expands the function in front of it. This
% scanning procedure is terminated once the expansion hits
% something non-expandable or a space. We introduce |\exp_stop_f:|
% to mark such an end of expansion marker; in case the scanner hits
% a number, this number also terminates the scanning and is left
% untouched. In the example shown earlier the scanning was stopped
% once \TeX{} had fully expanded |\cs_set_eq:Nc \aaa { b \l_tmpa_tl b }|
% into |\cs_set_eq:NN \aaa = \blurb| which then turned out to contain
% the non-expandable token |\cs_set_eq:NN|. Since the expansion of
% \tn{romannumeral} |-`0| is \meta{null}, we wind up with a fully
% expanded list, only \TeX{} has not tried to execute any of the
% non-expandable tokens. This is what differentiates this function
% from the |x| argument type.
% \begin{macrocode}
\cs_new:Npn \::f #1 \::: #2#3
{
\exp_after:wN \exp_arg_next:nnn
\exp_after:wN { \tex_romannumeral:D -`0 #3 }
{#1} {#2}
}
\use:nn { \cs_new_eq:NN \exp_stop_f: } { ~ }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[int]{\::x}
% This function is used to expand an argument fully.
% \begin{macrocode}
\cs_new_protected:Npn \::x #1 \::: #2#3
{
\cs_set_nopar:Npx \l_exp_tl { {#3} }
\exp_after:wN \exp_arg_next:nnn \l_exp_tl {#1} {#2}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int]{\::v}
% \begin{macro}[int]{\::V}
% These functions return the value of a register, i.e., one of
% |tl|, |num|, |int|, |skip|, |dim| and |muskip|. The |V| version
% expects a single token whereas |v| like |c| creates a csname from
% its argument given in braces and then evaluates it as if it was a
% |V|. The primitive \tn{romannumeral} sets off an expansion
% similar to an |f| type expansion, which we will terminate using
% \cs{c_zero}. The argument is returned in braces.
% \begin{macrocode}
\cs_new:Npn \::V #1 \::: #2#3
{
\exp_after:wN \exp_arg_next:nnn
\exp_after:wN { \tex_romannumeral:D \exp_eval_register:N #3 }
{#1} {#2}
}
\cs_new:Npn \::v # 1\::: #2#3
{
\exp_after:wN \exp_arg_next:nnn
\exp_after:wN { \tex_romannumeral:D \exp_eval_register:c {#3} }
{#1} {#2}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[int]{\exp_eval_register:N, \exp_eval_register:c}
% \begin{macro}[aux]{\exp_eval_error_msg:w}
% This function evaluates a register. Now a register might exist as
% one of two things: A parameter-less macro or a built-in \TeX{}
% register such as |\count|. For the \TeX{} registers we have to
% utilize a \tn{the} whereas for the macros we merely have to
% expand them once. The trick is to find out when to use
% \tn{the} and when not to. What we do here is try to find out
% whether the token will expand to something else when hit with
% |\exp_after:wN|. The technique is to compare the meaning of the
% register in question when it has been prefixed with |\exp_not:N|
% and the register itself. If it is a macro, the prefixed
% |\exp_not:N| will temporarily turn it into the primitive
% |\scan_stop:|.
% \begin{macrocode}
\cs_new_nopar:Npn \exp_eval_register:N #1
{
\exp_after:wN \if_meaning:w \exp_not:N #1 #1
% \end{macrocode}
% If the token was not a macro it may be a malformed variable from a
% |c| expansion in which case it is equal to the primitive
% |\scan_stop:|. In that case we throw an error. We could let \TeX{}
% do it for us but that would result in the rather obscure
% \begin{quote}
% |! You can't use `\relax' after \the.|
% \end{quote}
% which while quite true doesn't give many hints as to what actually
% went wrong. We provide something more sensible.
% \begin{macrocode}
\if_meaning:w \scan_stop: #1
\exp_eval_error_msg:w
\fi:
% \end{macrocode}
% The next bit requires some explanation. The function must be
% initiated by the primitive \tn{romannumeral} and we want to
% terminate this expansion chain by inserting the \cs{c_zero} integer
% constant. However, we have to expand the register |#1| before we do
% that. If it is a \TeX{} register, we need to execute the sequence
% |\exp_after:wN \c_zero \tex_the:D #1| and if it is a macro we
% need to execute |\exp_after:wN \c_zero #1|. We therefore issue
% the longer of the two sequences and if the register is a macro, we
% remove the |\tex_the:D|.
% \begin{macrocode}
\else:
\exp_after:wN \use_i_ii:nnn
\fi:
\exp_after:wN \c_zero \tex_the:D #1
}
\cs_new_nopar:Npn \exp_eval_register:c #1
{ \exp_after:wN \exp_eval_register:N \cs:w #1 \cs_end: }
% \end{macrocode}
% Clean up nicely, then call the undefined control sequence. The
% result is an error message looking like this:
% \begin{verbatim}
% ! Undefined control sequence.
% <argument> \LaTeX3 error:
% Erroneous variable used!
% l.55 \tl_set:Nv \l_tmpa_tl {undefined_tl}
% \end{verbatim}
% \begin{macrocode}
\cs_new:Npn \exp_eval_error_msg:w #1 \tex_the:D #2
{
\fi:
\fi:
\msg_expandable_kernel_error:nnn { kernel } { bad-var } {#2}
\c_zero
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Hand-tuned definitions}
% \label{sec:handtune}
%
% One of the most important features of these functions is that they
% are fully expandable and therefore allow to prefix them with
% |\tex_global:D| for example.
%
% \begin{macro}{\exp_args:No}
% \begin{macro}{\exp_args:NNo}
% \begin{macro}{\exp_args:NNNo}
% Those lovely runs of expansion!
% \begin{macrocode}
\cs_new:Npn \exp_args:No #1#2 { \exp_after:wN #1 \exp_after:wN {#2} }
\cs_new:Npn \exp_args:NNo #1#2#3
{ \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN {#3} }
\cs_new:Npn \exp_args:NNNo #1#2#3#4
{ \exp_after:wN #1 \exp_after:wN#2 \exp_after:wN #3 \exp_after:wN {#4} }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\exp_args:Nc}
% In \pkg{l3basics}
%\end{macro}
%
% \begin{macro}{\exp_args:cc, \exp_args:NNc, \exp_args:Ncc, \exp_args:Nccc}
% Here are the functions that turn their argument into csnames but
% are expandable.
% \begin{macrocode}
\cs_new:Npn \exp_args:cc #1#2
{ \cs:w #1 \exp_after:wN \cs_end: \cs:w #2 \cs_end: }
\cs_new:Npn \exp_args:NNc #1#2#3
{ \exp_after:wN #1 \exp_after:wN #2 \cs:w # 3\cs_end: }
\cs_new:Npn \exp_args:Ncc #1#2#3
{ \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: \cs:w #3 \cs_end: }
\cs_new:Npn \exp_args:Nccc #1#2#3#4
{
\exp_after:wN #1
\cs:w #2 \exp_after:wN \cs_end:
\cs:w #3 \exp_after:wN \cs_end:
\cs:w #4 \cs_end:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\exp_args:Nf, \exp_args:NV, \exp_args:Nv, \exp_args:Nx}
% \begin{macrocode}
\cs_new:Npn \exp_args:Nf #1#2
{ \exp_after:wN #1 \exp_after:wN { \tex_romannumeral:D -`0 #2 } }
\cs_new:Npn \exp_args:Nv #1#2
{
\exp_after:wN #1 \exp_after:wN
{ \tex_romannumeral:D \exp_eval_register:c {#2} }
}
\cs_new:Npn \exp_args:NV #1#2
{
\exp_after:wN #1 \exp_after:wN
{ \tex_romannumeral:D \exp_eval_register:N #2 }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\exp_args:NNV,\exp_args:NNv,\exp_args:NNf,
% \exp_args:NVV,
% \exp_args:Ncf,\exp_args:Nco}
% Some more hand-tuned function with three arguments.
% If we force that an |o| argument always has braces,
% we could implement \cs{exp_args:Nco} with less tokens
% and only two arguments.
% \begin{macrocode}
\cs_new:Npn \exp_args:NNf #1#2#3
{
\exp_after:wN #1
\exp_after:wN #2
\exp_after:wN { \tex_romannumeral:D -`0 #3 }
}
\cs_new:Npn \exp_args:NNv #1#2#3
{
\exp_after:wN #1
\exp_after:wN #2
\exp_after:wN { \tex_romannumeral:D \exp_eval_register:c {#3} }
}
\cs_new:Npn \exp_args:NNV #1#2#3
{
\exp_after:wN #1
\exp_after:wN #2
\exp_after:wN { \tex_romannumeral:D \exp_eval_register:N #3 }
}
\cs_new:Npn \exp_args:Nco #1#2#3
{
\exp_after:wN #1
\cs:w #2 \exp_after:wN \cs_end:
\exp_after:wN {#3}
}
\cs_new:Npn \exp_args:Ncf #1#2#3
{
\exp_after:wN #1
\cs:w #2 \exp_after:wN \cs_end:
\exp_after:wN { \tex_romannumeral:D -`0 #3 }
}
\cs_new_nopar:Npn \exp_args:NVV #1#2#3
{
\exp_after:wN #1
\exp_after:wN { \tex_romannumeral:D \exp_after:wN
\exp_eval_register:N \exp_after:wN #2 \exp_after:wN }
\exp_after:wN { \tex_romannumeral:D \exp_eval_register:N #3 }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\exp_args:Ncco,
% \exp_args:NcNc,
% \exp_args:NcNo,
% \exp_args:NNNV}
% A few more that we can hand-tune.
% \begin{macrocode}
\cs_new:Npn \exp_args:NNNV #1#2#3#4
{
\exp_after:wN #1
\exp_after:wN #2
\exp_after:wN #3
\exp_after:wN { \tex_romannumeral:D \exp_eval_register:N #4 }
}
\cs_new:Npn \exp_args:NcNc #1#2#3#4
{
\exp_after:wN #1
\cs:w #2 \exp_after:wN \cs_end:
\exp_after:wN #3
\cs:w #4 \cs_end:
}
\cs_new:Npn \exp_args:NcNo #1#2#3#4
{
\exp_after:wN #1
\cs:w #2 \exp_after:wN \cs_end:
\exp_after:wN #3
\exp_after:wN {#4}
}
\cs_new:Npn \exp_args:Ncco #1#2#3#4
{
\exp_after:wN #1
\cs:w #2 \exp_after:wN \cs_end:
\cs:w #3 \exp_after:wN \cs_end:
\exp_after:wN {#4}
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Definitions with the automated technique}
% \label{sec:gendef}
%
% Some of these could be done more efficiently, but the complexity of
% coding then becomes an issue. Notice that the auto-generated functions
% are all not long: they don't actually take any arguments themselves.
%
% \begin{macro}{\exp_args:Nx}
% \begin{macrocode}
\cs_new_protected_nopar:Npn \exp_args:Nx { \::x \::: }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\exp_args:NNx,
% \exp_args:Nnc,
% \exp_args:Ncx,
% \exp_args:Nfo,\exp_args:Nff,
% \exp_args:Nnf,\exp_args:Nno,\exp_args:NnV,\exp_args:Nnx,
% \exp_args:Noo,\exp_args:Noc,\exp_args:Nox,
% \exp_args:Nxo,\exp_args:Nxx}
% Here are the actual function definitions, using the helper functions
% above.
% \begin{macrocode}
\cs_new_nopar:Npn \exp_args:Nnc { \::n \::c \::: }
\cs_new_nopar:Npn \exp_args:Nfo { \::f \::o \::: }
\cs_new_nopar:Npn \exp_args:Nff { \::f \::f \::: }
\cs_new_nopar:Npn \exp_args:Nnf { \::n \::f \::: }
\cs_new_nopar:Npn \exp_args:Nno { \::n \::o \::: }
\cs_new_nopar:Npn \exp_args:NnV { \::n \::V \::: }
\cs_new_nopar:Npn \exp_args:Noc { \::o \::c \::: }
\cs_new_nopar:Npn \exp_args:Noo { \::o \::o \::: }
\cs_new_protected_nopar:Npn \exp_args:NNx { \::N \::x \::: }
\cs_new_protected_nopar:Npn \exp_args:Ncx { \::c \::x \::: }
\cs_new_protected_nopar:Npn \exp_args:Nnx { \::n \::x \::: }
\cs_new_protected_nopar:Npn \exp_args:Nox { \::o \::x \::: }
\cs_new_protected_nopar:Npn \exp_args:Nxo { \::x \::o \::: }
\cs_new_protected_nopar:Npn \exp_args:Nxx { \::x \::x \::: }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\exp_args:Nccx,
% \exp_args:Ncnx,
% \exp_args:NNno,
% \exp_args:Nnno,
% \exp_args:Nnnx,
% \exp_args:Nnox,
% \exp_args:Nooo,
% \exp_args:Noox,
% \exp_args:Nnnc,
% \exp_args:NNnx,
% \exp_args:NNoo,
% \exp_args:NNox}
% \begin{macrocode}
\cs_new_nopar:Npn \exp_args:NNno { \::N \::n \::o \::: }
\cs_new_nopar:Npn \exp_args:NNoo { \::N \::o \::o \::: }
\cs_new_nopar:Npn \exp_args:Nnnc { \::n \::n \::c \::: }
\cs_new_nopar:Npn \exp_args:Nnno { \::n \::n \::o \::: }
\cs_new_nopar:Npn \exp_args:Nooo { \::o \::o \::o \::: }
\cs_new_protected_nopar:Npn \exp_args:NNnx { \::N \::n \::x \::: }
\cs_new_protected_nopar:Npn \exp_args:NNox { \::N \::o \::x \::: }
\cs_new_protected_nopar:Npn \exp_args:Nnnx { \::n \::n \::x \::: }
\cs_new_protected_nopar:Npn \exp_args:Nnox { \::n \::o \::x \::: }
\cs_new_protected_nopar:Npn \exp_args:Nccx { \::c \::c \::x \::: }
\cs_new_protected_nopar:Npn \exp_args:Ncnx { \::c \::n \::x \::: }
\cs_new_protected_nopar:Npn \exp_args:Noox { \::o \::o \::x \::: }
% \end{macrocode}
% \end{macro}
%
% \subsection{Last-unbraced versions}
%
% \begin{macro}[aux]{\exp_arg_last_unbraced:nn}
% \begin{macro}[aux]{\::f_unbraced}
% \begin{macro}[aux]{\::o_unbraced}
% \begin{macro}[aux]{\::V_unbraced}
% \begin{macro}[aux]{\::v_unbraced}
% \begin{macro}[aux]{\::x_unbraced}
% There are a few places where the last argument needs to be available
% unbraced. First some helper macros.
% \begin{macrocode}
\cs_new:Npn \exp_arg_last_unbraced:nn #1#2 { #2#1 }
\cs_new:Npn \::f_unbraced \::: #1#2
{
\exp_after:wN \exp_arg_last_unbraced:nn
\exp_after:wN { \tex_romannumeral:D -`0 #2 } {#1}
}
\cs_new:Npn \::o_unbraced \::: #1#2
{ \exp_after:wN \exp_arg_last_unbraced:nn \exp_after:wN {#2} {#1} }
\cs_new:Npn \::V_unbraced \::: #1#2
{
\exp_after:wN \exp_arg_last_unbraced:nn
\exp_after:wN { \tex_romannumeral:D \exp_eval_register:N #2 } {#1}
}
\cs_new:Npn \::v_unbraced \::: #1#2
{
\exp_after:wN \exp_arg_last_unbraced:nn
\exp_after:wN { \tex_romannumeral:D \exp_eval_register:c {#2} } {#1}
}
\cs_new_protected:Npn \::x_unbraced \::: #1#2
{
\cs_set_nopar:Npx \l_exp_tl { \exp_not:n {#1} #2 }
\l_exp_tl
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\exp_last_unbraced:NV}
% \begin{macro}{\exp_last_unbraced:Nv}
% \begin{macro}{\exp_last_unbraced:Nf}
% \begin{macro}{\exp_last_unbraced:No}
% \begin{macro}{\exp_last_unbraced:Nco}
% \begin{macro}{\exp_last_unbraced:NcV}
% \begin{macro}{\exp_last_unbraced:NNV}
% \begin{macro}{\exp_last_unbraced:NNo}
% \begin{macro}{\exp_last_unbraced:NNNV}
% \begin{macro}{\exp_last_unbraced:NNNo}
% \begin{macro}{\exp_last_unbraced:Nno}
% \begin{macro}{\exp_last_unbraced:Noo}
% \begin{macro}{\exp_last_unbraced:Nfo}
% \begin{macro}{\exp_last_unbraced:Nx}
% Now the business end: most of these are hand-tuned for speed, but the
% general system is in place.
% \begin{macrocode}
\cs_new:Npn \exp_last_unbraced:NV #1#2
{ \exp_after:wN #1 \tex_romannumeral:D \exp_eval_register:N #2 }
\cs_new:Npn \exp_last_unbraced:Nv #1#2
{ \exp_after:wN #1 \tex_romannumeral:D \exp_eval_register:c {#2} }
\cs_new:Npn \exp_last_unbraced:No #1#2 { \exp_after:wN #1 #2 }
\cs_new:Npn \exp_last_unbraced:Nf #1#2
{ \exp_after:wN #1 \tex_romannumeral:D -`0 #2 }
\cs_new:Npn \exp_last_unbraced:Nco #1#2#3
{ \exp_after:wN #1 \cs:w #2 \exp_after:wN \cs_end: #3 }
\cs_new:Npn \exp_last_unbraced:NcV #1#2#3
{
\exp_after:wN #1
\cs:w #2 \exp_after:wN \cs_end:
\tex_romannumeral:D \exp_eval_register:N #3
}
\cs_new:Npn \exp_last_unbraced:NNV #1#2#3
{
\exp_after:wN #1
\exp_after:wN #2
\tex_romannumeral:D \exp_eval_register:N #3
}
\cs_new:Npn \exp_last_unbraced:NNo #1#2#3
{ \exp_after:wN #1 \exp_after:wN #2 #3 }
\cs_new:Npn \exp_last_unbraced:NNNV #1#2#3#4
{
\exp_after:wN #1
\exp_after:wN #2
\exp_after:wN #3
\tex_romannumeral:D \exp_eval_register:N #4
}
\cs_new:Npn \exp_last_unbraced:NNNo #1#2#3#4
{ \exp_after:wN #1 \exp_after:wN #2 \exp_after:wN #3 #4 }
\cs_new_nopar:Npn \exp_last_unbraced:Nno { \::n \::o_unbraced \::: }
\cs_new_nopar:Npn \exp_last_unbraced:Noo { \::o \::o_unbraced \::: }
\cs_new_nopar:Npn \exp_last_unbraced:Nfo { \::f \::o_unbraced \::: }
\cs_new_protected_nopar:Npn \exp_last_unbraced:Nx { \::x_unbraced \::: }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\exp_last_two_unbraced:Noo}
% If |#2| is a single token then this can be implemented as
% \begin{verbatim}
% \cs_new:Npn \exp_last_two_unbraced:Noo #1 #2 #3
% { \exp_after:wN \exp_after:wN \exp_after:wN #1 \exp_after:wN #2 #3 }
% \end{verbatim}
% However, for robustness this is not suitable. Instead, a bit of a
% shuffle is used to ensure that |#2| can be multiple tokens.
% \begin{macrocode}
\cs_new:Npn \exp_last_two_unbraced:Noo #1#2#3
{ \exp_after:wN \exp_last_two_unbraced_aux:noN \exp_after:wN {#3} {#2} #1 }
\cs_new:Npn \exp_last_two_unbraced_aux:noN #1#2#3
{ \exp_after:wN #3 #2 #1 }
% \end{macrocode}
% \end{macro}
%
% \subsection{Preventing expansion}
%
% \begin{macro}{\exp_not:o}
% \begin{macro}{\exp_not:f}
% \begin{macro}{\exp_not:V}
% \begin{macro}{\exp_not:v}
% \begin{macrocode}
\cs_new:Npn \exp_not:o #1 { \etex_unexpanded:D \exp_after:wN {#1} }
\cs_new:Npn \exp_not:f #1
{ \etex_unexpanded:D \exp_after:wN { \tex_romannumeral:D -`0 #1 } }
\cs_new:Npn \exp_not:V #1
{
\etex_unexpanded:D \exp_after:wN
{ \tex_romannumeral:D \exp_eval_register:N #1 }
}
\cs_new:Npn \exp_not:v #1
{
\etex_unexpanded:D \exp_after:wN
{ \tex_romannumeral:D \exp_eval_register:c {#1} }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\exp_not:c}
% A helper function.
% \begin{macrocode}
\cs_new:Npn \exp_not:c #1 { \exp_after:wN \exp_not:N \cs:w #1 \cs_end: }
% \end{macrocode}
% \end{macro}
%
% \subsection{Defining function variants}
%
% \begin{macro}{\cs_generate_variant:Nn}
% \begin{macro}[aux]{\cs_generate_variant_aux:nnNNn}
% \begin{macro}[aux]{\cs_generate_variant_aux:Nnnw}
% \begin{macro}[aux]{\cs_generate_variant_aux:NNn}
% \begin{arguments}
% \item Base form of a function; \emph{e.g.},~|\tl_set:Nn|
% \item One or more variant argument specifiers; e.g., |{Nx,c,cx}|
% \end{arguments}
% Test whether the base function is protected or not
% and define \cs{cs_tmp:w} as either \cs{cs_new_nopar:Npx} or
% \cs{cs_new_protected_nopar:Npx}, then used to define all the
% variants.
% Split up the original base function to grab its name and signature
% consisting of $k$ letters. Then we wish to iterate through the list
% of variant argument specifiers, and for each one construct a new
% function name using the original base name, the variant signature
% consisting of $l$ letters and the last $k-l$ letters of the base
% signature. For example, for a base function |\tl_set:Nn| which
% needs a |c| variant form, we want the new signature to be |cn|.
% \begin{macrocode}
\cs_new_protected:Npn \cs_generate_variant:Nn #1
{
\chk_if_exist_cs:N #1
\cs_generate_variant_aux:N #1
\cs_split_function:NN #1 \cs_generate_variant_aux:nnNNn
#1
}
% \end{macrocode}
% We discard the boolean |#3| and then set off a loop through the desired
% variant forms. The original function is retained as |#4| for efficiency.
% \begin{macrocode}
\cs_new:Npn \cs_generate_variant_aux:nnNNn #1#2#3#4#5
{ \cs_generate_variant_aux:Nnnw #4 {#1}{#2} #5 , ? , \q_recursion_stop }
% \end{macrocode}
% Next is the real work to be done. We now have 1: original function,
% 2: base name, 3: base signature, 4: beginning of variant signature.
% To construct the new
% csname and the |\exp_args:Ncc| form, we need the variant signature.
% In our example, we wanted to discard the first two letters of the
% base signature because the variant form started with |cc|. This is
% the same as putting first |cc| in the signature and then
% |\use_none:nn| followed by the base signature |NNn|. Depending on
% the number of characters in |#4|, the relevant \cs{use_none:n\ldots{}n}
% is called.
%
% Firstly though, we check whether to terminate the loop.
% Then build the variant function once, to avoid repeating this
% relatively expensive operation. Then recurse.
% \begin{macrocode}
\cs_new:Npn \cs_generate_variant_aux:Nnnw #1#2#3#4 ,
{
\if:w ? #4
\exp_after:wN \use_none_delimit_by_q_recursion_stop:w
\fi:
\exp_args:NNc \cs_generate_variant_aux:NNn
#1
{
#2 : #4
\exp_after:wN \use_i_delimit_by_q_stop:nw
\use_none:nnnnnnnnn #4
\use_none:nnnnnnnnn
\use_none:nnnnnnnn
\use_none:nnnnnnn
\use_none:nnnnnn
\use_none:nnnnn
\use_none:nnnn
\use_none:nnn
\use_none:nn
\use_none:n
{ }
\q_stop
#3
}
{#4}
\cs_generate_variant_aux:Nnnw #1 {#2} {#3}
}
% \end{macrocode}
% Check if the variant form has already been defined.
% If not, then define it and then additionally check if
% the |\exp_args:N| form needed is defined.
% Otherwise tell that it was already defined.
% \begin{macrocode}
\cs_new:Npn \cs_generate_variant_aux:NNn #1 #2 #3
{
\cs_if_free:NTF #2
{
\cs_tmp:w #2 { \exp_not:c { exp_args:N #3 } \exp_not:N #1 }
\cs_generate_internal_variant:n {#3}
}
{
\iow_log:x
{
Variant~\token_to_str:N #2~%
already~defined;~ not~ changing~ it~on~line~%
\tex_the:D \tex_inputlineno:D
}
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[aux]{\cs_generate_variant_aux:N}
% \begin{macro}[aux]{\cs_generate_variant_aux:w}
% The idea here is to pick up protected parent functions, using the
% nature of the meaning string that they generate. The test here is
% almost the same as \cs{tl_if_empty:nTF}, but has to be hard-coded as
% that function is not yet available and because it has to match both
% long and short macros.
% \begin{macrocode}
\group_begin:
\tex_lccode:D `\Z = `\d \scan_stop:
\tex_lccode:D `\? =`\\ \scan_stop:
\tex_catcode:D `\P = 12 \scan_stop:
\tex_catcode:D `\R = 12 \scan_stop:
\tex_catcode:D `\O = 12 \scan_stop:
\tex_catcode:D `\T = 12 \scan_stop:
\tex_catcode:D `\E = 12 \scan_stop:
\tex_catcode:D `\C = 12 \scan_stop:
\tex_catcode:D `\Z = 12 \scan_stop:
\tex_lowercase:D
{
\group_end:
\cs_new_nopar:Npn \cs_generate_variant_aux:N #1
{
\exp_after:wN \cs_generate_variant_aux:w
\token_to_meaning:N #1
\q_mark \cs_new_protected_nopar:Npx
? PROTECTEZ
\q_mark \cs_new_nopar:Npx
\q_stop
}
\cs_new:Npn \cs_generate_variant_aux:w
#1 ? PROTECTEZ #2 \q_mark #3 #4 \q_stop
{
\cs_set_eq:NN \cs_tmp:w #3
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[int]{\cs_generate_internal_variant:n}
% \begin{macro}[aux]{\cs_generate_internal_variant_aux:N}
% Test if |exp_args:N #1| is already defined
% and if not define it via the
% |\::| commands using the chars in |#1|
% \begin{macrocode}
\cs_new_protected:Npn \cs_generate_internal_variant:n #1
{
\cs_if_free:cT { exp_args:N #1 }
{
\cs_new:cpx { exp_args:N #1 }
{ \cs_generate_internal_variant_aux:N #1 : }
}
}
% \end{macrocode}
% This command grabs char by char outputting |\::#1| (not expanded
% further) until we see a |:|. That colon is in fact also turned into
% |\:::| so that the required structure for |\exp_args...| commands
% is correctly terminated.
% \begin{macrocode}
\cs_new:Npn \cs_generate_internal_variant_aux:N #1
{
\exp_not:c { :: #1 }
\if_meaning:w : #1
\exp_after:wN \use_none:n
\fi:
\cs_generate_internal_variant_aux:N
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
%\subsection{Variants which cannot be created earlier}
%
% \begin{macro}[pTF]
% {\str_if_eq:Vn, \str_if_eq:on, \str_if_eq:nV, \str_if_eq:no, \str_if_eq:VV}
% These cannot come earlier as they need \cs{cs_generate_variant:Nn}.
% \begin{macrocode}
\cs_generate_variant:Nn \str_if_eq_p:nn { V , o }
\cs_generate_variant:Nn \str_if_eq_p:nn { nV , no , VV }
\cs_generate_variant:Nn \str_if_eq:nnT { V , o }
\cs_generate_variant:Nn \str_if_eq:nnT { nV , no , VV }
\cs_generate_variant:Nn \str_if_eq:nnF { V , o }
\cs_generate_variant:Nn \str_if_eq:nnF { nV , no , VV }
\cs_generate_variant:Nn \str_if_eq:nnTF { V , o }
\cs_generate_variant:Nn \str_if_eq:nnTF { nV , no , VV }
% \end{macrocode}
% \end{macro}
%
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex
|