1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
|
% \iffalse meta-comment
%
%% File: l3candidates.dtx Copyright (C) 2012-2018 The LaTeX3 Project
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version. The latest version
% of this license is in the file
%
% https://www.latex-project.org/lppl.txt
%
% This file is part of the "l3kernel bundle" (The Work in LPPL)
% and all files in that bundle must be distributed together.
%
% -----------------------------------------------------------------------
%
% The development version of the bundle can be found at
%
% https://github.com/latex3/latex3
%
% for those people who are interested.
%
%<*driver>
\documentclass[full,kernel]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{^^A
% The \textsf{l3candidates} package\\ Experimental additions to
% \pkg{l3kernel}^^A
% }
%
% \author{^^A
% The \LaTeX3 Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released 2018-10-17}
%
% \maketitle
%
% \begin{documentation}
%
% \section{Important notice}
%
% This module provides a space in which functions can be added to
% \pkg{l3kernel} (\pkg{expl3}) while still being experimental.
% \begin{quote}
% \bfseries
% As such, the
% functions here may not remain in their current form, or indeed at all,
% in \pkg{l3kernel} in the future.
% \end{quote}
% In contrast to the material in
% \pkg{l3experimental}, the functions here are all \emph{small} additions to
% the kernel. We encourage programmers to test them out and report back on
% the \texttt{LaTeX-L} mailing list.
%
% \medskip
%
% Thus, if you intend to use any of these functions from the candidate module in a public package
% offered to others for productive use (e.g., being placed on CTAN) please consider the following points carefully:
% \begin{itemize}
% \item Be prepared that your public packages might require updating when such functions
% are being finalized.
% \item Consider informing us that you use a particular function in your public package, e.g., by
% discussing this on the \texttt{LaTeX-L}
% mailing list. This way it becomes easier to coordinate any updates necessary without issues
% for the users of your package.
% \item Discussing and understanding use cases for a particular addition or concept also helps to
% ensure that we provide the right interfaces in the final version so please give us feedback
% if you consider a certain candidate function useful (or not).
% \end{itemize}
% We only add functions in this space if we consider them being serious candidates for a final inclusion
% into the kernel. However, real use sometimes leads to better ideas, so functions from this module are
% \textbf{not necessarily stable} and we may have to adjust them!
%
% \section{Additions to \pkg{l3basics}}
%
% \begin{function}[added = 2017-07-16, updated = 2017-08-02]{\debug_on:n, \debug_off:n}
% \begin{syntax}
% \cs{debug_on:n} |{| \meta{comma-separated list} |}|
% \cs{debug_off:n} |{| \meta{comma-separated list} |}|
% \end{syntax}
% Turn on and off within a group various debugging code, some of which
% is also available as \pkg{expl3} load-time options. The items that
% can be used in the \meta{list} are
% \begin{itemize}
% \item \texttt{check-declarations} that checks all \pkg{expl3}
% variables used were previously declared and that local/global
% variables (based on their name or on their first assignment) are
% only locally/globally assigned;
% \item \texttt{check-expressions} that checks integer, dimension,
% skip, and muskip expressions are not terminated prematurely;
% \item \texttt{deprecation} that makes soon-to-be-deprecated commands produce errors;
% \item \texttt{log-functions} that logs function definitions;
% \item \texttt{all} that does all of the above.
% \end{itemize}
% Providing these as switches rather than options allows testing code
% even if it relies on other packages: load all other packages, call
% \cs{debug_on:n}, and load the code that one is interested in
% testing. These functions can only be used in \LaTeXe{} package mode
% loaded with \texttt{enable-debug} or another option implying it.
% \end{function}
%
% \begin{function}[added = 2017-11-28]{\debug_suspend:, \debug_resume:}
% \begin{syntax}
% \cs{debug_suspend:} \ldots{} \cs{debug_resume:}
% \end{syntax}
% Suppress (locally) errors and logging from \texttt{debug} commands,
% except for the \texttt{deprecation} errors or warnings. These pairs
% of commands can be nested. This can be used around pieces of code
% that are known to fail checks, if such failures should be ignored.
% See for instance \pkg{l3coffins}.
% \end{function}
%
% \begin{function}[added = 2017-07-04]{\mode_leave_vertical:}
% \begin{syntax}
% \cs{mode_leave_vertical:}
% \end{syntax}
% Ensures that \TeX{} is not in vertical (inter-paragraph) mode. In
% horizontal or math mode this command has no effect, in vertical mode it
% switches to horizontal mode, and inserts a box of width
% \tn{parindent}, followed by the \tn{everypar} token list.
% \begin{texnote}
% This results in the contents of the \tn{everypar} token register being
% inserted, after \cs{mode_leave_vertical:} is complete. Notice that in
% contrast to the \LaTeXe{} \tn{leavevmode} approach, no box is used
% by the method implemented here.
% \end{texnote}
% \end{function}
%
% \section{Additions to \pkg{l3box}}
%
% \subsection{Viewing part of a box}
%
% \begin{function}{\box_clip:N, \box_clip:c}
% \begin{syntax}
% \cs{box_clip:N} \meta{box}
% \end{syntax}
% Clips the \meta{box} in the output so that only material inside the
% bounding box is displayed in the output. The updated \meta{box} is an
% hbox, irrespective of the nature of the \meta{box} before the clipping is
% applied. The clipping applies within the current \TeX{} group level.
%
% \textbf{These functions require the \LaTeX3 native drivers: they do
% not work with the \LaTeXe{} \pkg{graphics} drivers!}
%
% \begin{texnote}
% Clipping is implemented by the driver, and as such the full content of
% the box is placed in the output file. Thus clipping does not remove
% any information from the raw output, and hidden material can therefore
% be viewed by direct examination of the file.
% \end{texnote}
% \end{function}
%
% \begin{function}{\box_trim:Nnnnn, \box_trim:cnnnn}
% \begin{syntax}
% \cs{box_trim:Nnnnn} \meta{box} \Arg{left} \Arg{bottom} \Arg{right} \Arg{top}
% \end{syntax}
% Adjusts the bounding box of the \meta{box} \meta{left} is removed from
% the left-hand edge of the bounding box, \meta{right} from the right-hand
% edge and so fourth. All adjustments are \meta{dimension expressions}.
% Material outside of the bounding box is still displayed in the output
% unless \cs{box_clip:N} is subsequently applied.
% The updated \meta{box} is an
% hbox, irrespective of the nature of the \meta{box} before the trim
% operation is applied. The adjustment applies within the current \TeX{}
% group level. The behavior of the operation where the trims requested is
% greater than the size of the box is undefined.
% \end{function}
%
% \begin{function}{\box_viewport:Nnnnn, \box_viewport:cnnnn}
% \begin{syntax}
% \cs{box_viewport:Nnnnn} \meta{box} \Arg{llx} \Arg{lly} \Arg{urx} \Arg{ury}
% \end{syntax}
% Adjusts the bounding box of the \meta{box} such that it has lower-left
% co-ordinates (\meta{llx}, \meta{lly}) and upper-right co-ordinates
% (\meta{urx}, \meta{ury}). All four co-ordinate positions are
% \meta{dimension expressions}. Material outside of the bounding box is
% still displayed in the output unless \cs{box_clip:N} is
% subsequently applied.
% The updated \meta{box} is an
% hbox, irrespective of the nature of the \meta{box} before the viewport
% operation is applied. The adjustment applies within the current \TeX{}
% group level.
% \end{function}
%
% \section{Additions to \pkg{l3clist}}
%
% \begin{function}[EXP, added = 2016-12-06]
% {\clist_rand_item:N, \clist_rand_item:n, \clist_rand_item:c}
% \begin{syntax}
% \cs{clist_rand_item:N} \meta{clist~var}
% \cs{clist_rand_item:n} \Arg{comma list}
% \end{syntax}
% Selects a pseudo-random item of the \meta{comma list}. If the
% \meta{comma list} has no item, the result is empty. This not
% yet available in \XeTeX{}.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{item}
% does not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \section{Additions to \pkg{l3coffins}}
%
% \begin{function}{\coffin_resize:Nnn, \coffin_resize:cnn}
% \begin{syntax}
% \cs{coffin_resize:Nnn} \meta{coffin} \Arg{width} \Arg{total-height}
% \end{syntax}
% Resized the \meta{coffin} to \meta{width} and \meta{total-height},
% both of which should be given as dimension expressions.
% \end{function}
%
% \begin{function}{\coffin_rotate:Nn, \coffin_rotate:cn}
% \begin{syntax}
% \cs{coffin_rotate:Nn} \meta{coffin} \Arg{angle}
% \end{syntax}
% Rotates the \meta{coffin} by the given \meta{angle} (given in
% degrees counter-clockwise). This process rotates both the
% coffin content and poles. Multiple rotations do not result in
% the bounding box of the coffin growing unnecessarily.
% \end{function}
%
% \begin{function}{\coffin_scale:Nnn, \coffin_scale:cnn}
% \begin{syntax}
% \cs{coffin_scale:Nnn} \meta{coffin} \Arg{x-scale} \Arg{y-scale}
% \end{syntax}
% Scales the \meta{coffin} by a factors \meta{x-scale} and
% \meta{y-scale} in the horizontal and vertical directions,
% respectively. The two scale factors should be given as real numbers.
% \end{function}
%
% \section{Additions to \pkg{l3expan}}
%
% \begin{function}[added = 2017-12-12]{\prg_generate_conditional_variant:Nnn}
% \begin{syntax}
% \cs{prg_generate_conditional_variant:Nnn} \cs[no-index]{\meta{name}:\meta{arg spec}} \Arg{variant argument specifiers} \Arg{condition specifiers}
% \end{syntax}
% Defines argument-specifier variants of conditionals. This is
% equivalent to running \cs{cs_generate_variant:Nn} \meta{conditional}
% \Arg{variant argument specifiers} on each \meta{conditional}
% described by the \meta{condition specifiers}. These base-form
% \meta{conditionals} are obtained from the \meta{name} and \meta{arg
% spec} as described for \cs{prg_new_conditional:Npnn}, and they
% should be defined.
% \end{function}
%
% \begin{function}[added = 2018-04-04]{\exp_args_generate:n}
% \begin{syntax}
% \cs{exp_args_generate:n} \Arg{variant argument specifiers}
% \end{syntax}
% Defines \cs[no-index]{exp_args:N\meta{variant}} functions for each
% \meta{variant} given in the comma list \Arg{variant argument
% specifiers}. Each \meta{variant} should consist of the letters |N|,
% |c|, |n|, |V|, |v|, |o|, |f|, |x|, |p| and the resulting function is
% protected if the letter |x| appears in the \meta{variant}. This is
% only useful for cases where \cs{cs_generate_variant:Nn} is not
% applicable.
% \end{function}
%
% \section{Additions to \pkg{l3fparray}}
%
% \begin{function}[added = 2018-05-05]{\fparray_new:Nn}
% \begin{syntax}
% \cs{fparray_new:Nn} \meta{fparray~var} \Arg{size}
% \end{syntax}
% Evaluates the integer expression \meta{size} and allocates an
% \meta{floating point array variable} with that number of (zero)
% entries. The variable name should start with |\g_| because
% assignments are always global.
% \end{function}
%
% \begin{function}[EXP, added = 2018-05-05]{\fparray_count:N}
% \begin{syntax}
% \cs{fparray_count:N} \meta{fparray~var}
% \end{syntax}
% Expands to the number of entries in the \meta{floating point array
% variable}. This is performed in constant time.
% \end{function}
%
% \begin{function}[added = 2018-05-05]{\fparray_gset:Nnn}
% \begin{syntax}
% \cs{fparray_gset:Nnn} \meta{fparray~var} \Arg{position} \Arg{value}
% \end{syntax}
% Stores the result of evaluating the floating point expression
% \meta{value} into the \meta{floating point array variable} at the
% (integer expression) \meta{position}. If the \meta{position} is not
% between $1$ and the \cs{fparray_count:N}, an error occurs.
% Assignments are always global.
% \end{function}
%
% \begin{function}[added = 2018-05-05]{\fparray_gzero:N}
% \begin{syntax}
% \cs{fparray_gzero:N} \meta{fparray~var}
% \end{syntax}
% Sets all entries of the \meta{floating point array variable} to
% $+0$. Assignments are always global.
% \end{function}
%
% \begin{function}[EXP, added = 2018-05-05]
% {\fparray_item:Nn, \fparray_item_to_tl:Nn}
% \begin{syntax}
% \cs{fparray_item:Nn} \meta{fparray~var} \Arg{position}
% \end{syntax}
% Applies \cs{fp_use:N} or \cs{fp_to_tl:N} (respectively) to the
% floating point entry stored at the (integer expression)
% \meta{position} in the \meta{floating point array variable}. If the
% \meta{position} is not between $1$ and the \cs{fparray_count:N}, an
% error occurs.
% \end{function}
%
% \section{Additions to \pkg{l3file}}
%
% \begin{function}[added = 2017-07-11]{\file_get_mdfive_hash:nN}
% \begin{syntax}
% \cs{file_get_mdfive_hash:nN} \Arg{file name} \meta{str var}
% \end{syntax}
% Searches for \meta{file name} using the current \TeX{} search
% path and the additional paths controlled by \cs{file_path_include:n}.
% If found, sets the \meta{str var} to the MD5 sum generated from the
% content of the file. The file is read as bytes, which means that in
% contrast to most \TeX{} behaviour there will be a difference in result
% depending on the line endings used in text files. The same file will
% produce the same result between different engines: the algorithm used
% is the same in all cases.
% Where the file is not found, the \meta{str var} will be empty.
% \end{function}
%
% \begin{function}[added = 2017-07-09]{\file_get_size:nN}
% \begin{syntax}
% \cs{file_get_size:nN} \Arg{file name} \meta{str var}
% \end{syntax}
% Searches for \meta{file name} using the current \TeX{} search
% path and the additional paths controlled by \cs{file_path_include:n}.
% If found, sets the \meta{str var} to the size of the file in bytes.
% Where the file is not found, the \meta{str var} will be empty.
% \begin{texnote}
% Currently this is not available with \XeTeX{}.
% \end{texnote}
% \end{function}
%
% \begin{function}[added = 2017-07-09]{\file_get_timestamp:nN}
% \begin{syntax}
% \cs{file_get_timestamp:nN} \Arg{file name} \meta{str var}
% \end{syntax}
% Searches for \meta{file name} using the current \TeX{} search
% path and the additional paths controlled by \cs{file_path_include:n}.
% If found, sets the \meta{str var} to the modification timestamp of
% the file in the form |D:|\meta{year}\meta{month}\meta{day}\meta{hour}^^A
% \meta{minute}\meta{second}\meta{offset}, where the latter may be |Z|
% (UTC) or \meta{plus-minus}\meta{hours}|'|\meta{minutes}|'|.
% Where the file is not found, the \meta{str var} will be empty.
% \begin{texnote}
% Currently this is not available with \XeTeX{}.
% \end{texnote}
% \end{function}
%
% \begin{function}[added = 2014-07-02]{\file_if_exist_input:n, \file_if_exist_input:nF}
% \begin{syntax}
% \cs{file_if_exist_input:n} \Arg{file name}
% \cs{file_if_exist_input:nF} \Arg{file name} \Arg{false code}
% \end{syntax}
% Searches for \meta{file name} using the current \TeX{} search
% path and the additional paths controlled by
% \cs{file_path_include:n}. If found then
% reads in the file as additional \LaTeX{} source as described for
% \cs{file_input:n}, otherwise inserts the \meta{false code}.
% Note that these functions do not raise
% an error if the file is not found, in contrast to \cs{file_input:n}.
% \end{function}
%
% \begin{function}[added = 2017-07-07]{\file_input_stop:}
% \begin{syntax}
% \cs{file_input_stop:}
% \end{syntax}
% Ends the reading of a file started by \cs{file_input:n} or similar before
% the end of the file is reached. Where the file reading is being terminated
% due to an error, \cs{msg_critical:nn(nn)} should be preferred.
% \begin{texnote}
% This function must be used on a line on its own: \TeX{} reads files
% line-by-line and so any additional tokens in the \enquote{current} line
% will still be read.
%
% This is also true if the function is hidden inside another function
% (which will be the normal case), i.e., all tokens on the same line
% in the source file are still processed. Putting it on a line by itself
% in the definition doesn't help as it is the line where it is used that
% counts!
% \end{texnote}
% \end{function}
%
% \section{Additions to \pkg{l3flag}}
%
% \begin{function}[EXP, added = 2018-04-02]{\flag_raise_if_clear:n}
% \begin{syntax}
% \cs{flag_raise_if_clear:n} \Arg{flag name}
% \end{syntax}
% Ensures the \meta{flag} is raised by making its height at least~$1$,
% locally.
% \end{function}
%
% \section{Additions to \pkg{l3int}}
%
% \begin{function}[EXP, added = 2018-05-05]{\int_rand:n}
% \begin{syntax}
% \cs{int_rand:n} \Arg{intexpr}
% \end{syntax}
% Evaluates the \meta{integer expression} then produces a
% pseudo-random number between $1$ and the \meta{intexpr} (included).
% This is not yet available in \XeTeX{}.
% \end{function}
%
% \section{Additions to \pkg{l3intarray}}
%
% \begin{function}[EXP, added = 2018-05-05]{\intarray_rand_item:N}
% \begin{syntax}
% \cs{intarray_rand_item:N} \meta{intarray~var}
% \end{syntax}
% Selects a pseudo-random item of the \meta{integer array}. If the
% \meta{integer array} is empty, produce an error. This is not yet
% available in \XeTeX{}.
% \end{function}
%
% \begin{function}[added = 2018-05-05]{\intarray_gset_rand:Nnn, \intarray_gset_rand:Nn}
% \begin{syntax}
% \cs{intarray_gset_rand:Nnn} \meta{intarray~var} \Arg{minimum} \Arg{maximum}
% \cs{intarray_gset_rand:Nn} \meta{intarray~var} \Arg{maximum}
% \end{syntax}
% Evaluates the integer expressions \meta{minimum} and \meta{maximum}
% then sets each entry (independently) of the \meta{integer array
% variable} to a pseudo-random number between the two (with bounds
% included). If the absolute value of either bound is bigger than
% $2^{30}-1$, an error occurs. Entries are generated in the same way
% as repeated calls to \cs{int_rand:nn} or \cs{int_rand:n}
% respectively, in particular for the second function the
% \meta{minimum} is $1$. This is not yet available in \XeTeX{}.
% Assignments are always global.
% \end{function}
%
% \subsection{Working with contents of integer arrays}
%
% \begin{function}[added = 2018-05-04, rEXP]{\intarray_const_from_clist:Nn}
% \begin{syntax}
% \cs{intarray_const_from_clist:Nn} \meta{intarray~var} \meta{intexpr clist}
% \end{syntax}
% Creates a new constant \meta{integer array variable} or raises an
% error if the name is already taken. The \meta{integer array
% variable} is set (globally) to contain as its items the results of
% evaluating each \meta{integer expression} in the \meta{comma list}.
% \end{function}
%
% \begin{function}[added = 2018-05-04, rEXP]{\intarray_to_clist:N}
% \begin{syntax}
% \cs{intarray_to_clist:N} \meta{intarray~var}
% \end{syntax}
% Converts the \meta{intarray} to integer denotations separated by
% commas. All tokens have category code other. If the
% \meta{intarray} has no entry the result is empty; otherwise the
% result has one fewer comma than the number of items.
% \end{function}
%
% \begin{function}[added = 2018-05-04]{\intarray_show:N, \intarray_log:N}
% \begin{syntax}
% \cs{intarray_show:N} \meta{intarray~var}
% \cs{intarray_log:N} \meta{intarray~var}
% \end{syntax}
% Displays the items in the \meta{integer array variable} in the
% terminal or writes them in the log file.
% \end{function}
%
% \section{Additions to \pkg{l3msg}}
%
% In very rare cases it may be necessary to produce errors in an
% expansion-only context. The functions in this section should only be
% used if there is no alternative approach using \cs{msg_error:nnnnnn}
% or other non-expandable commands from the previous section. Despite
% having a similar interface as non-expandable messages, expandable
% errors must be handled internally very differently from normal error
% messages, as none of the tools to print to the terminal or the log
% file are expandable. As a result, the message text and arguments are
% not expanded, and messages must be very short (with default settings,
% they are truncated after approximately 50 characters). It is
% advisable to ensure that the message is understandable even when
% truncated. Another particularity of expandable messages is that they
% cannot be redirected or turned off by the user.
%
% \begin{function}[EXP, added = 2015-08-06]
% {
% \msg_expandable_error:nnnnnn ,
% \msg_expandable_error:nnnnn ,
% \msg_expandable_error:nnnn ,
% \msg_expandable_error:nnn ,
% \msg_expandable_error:nn ,
% \msg_expandable_error:nnffff ,
% \msg_expandable_error:nnfff ,
% \msg_expandable_error:nnff ,
% \msg_expandable_error:nnf ,
% }
% \begin{syntax}
% \cs{msg_expandable_error:nnnnnn} \Arg{module} \Arg{message} \Arg{arg one} \Arg{arg two} \Arg{arg three} \Arg{arg four}
% \end{syntax}
% Issues an \enquote{Undefined error} message from \TeX{} itself
% using the undefined control sequence \cs{::error} then prints
% \enquote{! \meta{module}: }\meta{error message}, which should be
% short. With default settings, anything beyond approximately $60$
% characters long (or bytes in some engines) is cropped. A leading
% space might be removed as well.
% \end{function}
%
% \begin{function}[added = 2017-12-04]{\msg_show_eval:Nn, \msg_log_eval:Nn}
% \begin{syntax}
% \cs{msg_show_eval:Nn} \meta{function} \Arg{expression}
% \end{syntax}
% Shows or logs the \meta{expression} (turned into a string), an equal
% sign, and the result of applying the \meta{function} to the
% \Arg{expression} (with \texttt{f}-expansion). For instance, if the
% \meta{function} is \cs{int_eval:n} and the \meta{expression} is
% |1+2| then this logs |> 1+2=3.|
% \end{function}
%
% \begin{function}[added = 2017-12-04]
% {
% \msg_show:nnnnnn ,
% \msg_show:nnnnn ,
% \msg_show:nnnn ,
% \msg_show:nnn ,
% \msg_show:nn ,
% \msg_show:nnxxxx ,
% \msg_show:nnxxx ,
% \msg_show:nnxx ,
% \msg_show:nnx
% }
% \begin{syntax}
% \cs{msg_show:nnnnnn} \Arg{module} \Arg{message} \Arg{arg one} \Arg{arg two} \Arg{arg three} \Arg{arg four}
% \end{syntax}
% Issues \meta{module} information \meta{message}, passing \meta{arg
% one} to \meta{arg four} to the text-creating functions. The
% information text is shown on the terminal and the \TeX{} run is
% interrupted in a manner similar to \cs{tl_show:n}. This is used in
% conjunction with \cs{msg_show_item:n} and similar functions to print
% complex variable contents completely. If the formatted text does
% not contain |>~| at the start of a line, an additional line |>~.|
% will be put at the end. In addition, a final period is added if not
% present.
% \end{function}
%
% \begin{function}[EXP, added = 2017-12-04]
% {\msg_show_item:n, \msg_show_item_unbraced:n, \msg_show_item:nn, \msg_show_item_unbraced:nn}
% \begin{syntax}
% \cs{seq_map_function:NN} \meta{seq} \cs{msg_show_item:n}
% \cs{prop_map_function:NN} \meta{prop} \cs{msg_show_item:nn}
% \end{syntax}
% Used in the text of messages for \cs{msg_show:nnxxxx} to show or log
% a list of items or key--value pairs. The one-argument functions are
% used for sequences, clist or token lists and the others for property
% lists. These functions turn their arguments to strings.
% \end{function}
%
% \section{Additions to \pkg{l3prg}}
%
% \begin{function}[added = 2017-11-28]{\bool_const:Nn, \bool_const:cn}
% \begin{syntax}
% \cs{bool_const:Nn} \meta{boolean} \Arg{boolexpr}
% \end{syntax}
% Creates a new constant \meta{boolean} or raises an error if the name
% is already taken. The value of the \meta{boolean} is set globally to
% the result of evaluating the \meta{boolexpr}.
% \end{function}
%
% \begin{function}[added = 2018-05-10]
% {
% \bool_set_inverse:N , \bool_set_inverse:c ,
% \bool_gset_inverse:N, \bool_gset_inverse:c
% }
% \begin{syntax}
% \cs{bool_set_inverse:N} \meta{boolean}
% \end{syntax}
% Toggles the \meta{boolean} from \texttt{true} to \texttt{false} and
% conversely: sets it to the inverse of its current value.
% \end{function}
%
% \section{Additions to \pkg{l3prop}}
%
% \begin{function}[EXP]{\prop_count:N, \prop_count:c}
% \begin{syntax}
% \cs{prop_count:N} \meta{property list}
% \end{syntax}
% Leaves the number of key--value pairs in the \meta{property list} in
% the input stream as an \meta{integer denotation}.
% \end{function}
%
% \begin{function}[rEXP]
% {\prop_map_tokens:Nn, \prop_map_tokens:cn}
% \begin{syntax}
% \cs{prop_map_tokens:Nn} \meta{property list} \Arg{code}
% \end{syntax}
% Analogue of \cs{prop_map_function:NN} which maps several tokens
% instead of a single function. The \meta{code} receives each
% key--value pair in the \meta{property list} as two trailing brace
% groups. For instance,
% \begin{verbatim}
% \prop_map_tokens:Nn \l_my_prop { \str_if_eq:nnT { mykey } }
% \end{verbatim}
% expands to the value corresponding to \texttt{mykey}: for each
% pair in |\l_my_prop| the function \cs{str_if_eq:nnT} receives
% \texttt{mykey}, the \meta{key} and the \meta{value} as its three
% arguments. For that specific task, \cs{prop_item:Nn} is faster.
% \end{function}
%
% \begin{function}[EXP, added = 2016-12-06]
% {\prop_rand_key_value:N, \prop_rand_key_value:c}
% \begin{syntax}
% \cs{prop_rand_key_value:N} \meta{prop~var}
% \end{syntax}
% Selects a pseudo-random key--value pair from the \meta{property list}
% and returns \Arg{key} and \Arg{value}. If the \meta{property list} is
% empty the result is empty. This is not yet available in \XeTeX{}.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{value}
% does not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \begin{function}[added = 2017-11-28]
% {
% \prop_set_from_keyval:Nn, \prop_set_from_keyval:cn,
% \prop_gset_from_keyval:Nn, \prop_gset_from_keyval:cn,
% }
% \begin{syntax}
% \cs{prop_set_from_keyval:Nn} \meta{prop~var}
% \{
% \meta{key1} |=| \meta{value1} |,|
% \meta{key2} |=| \meta{value2} |,| \ldots{}
% \}
% \end{syntax}
% Sets \meta{prop~var} to contain key--value pairs given in the second
% argument.
% \end{function}
%
% \begin{function}[added = 2017-11-28]
% {\prop_const_from_keyval:Nn, \prop_const_from_keyval:cn}
% \begin{syntax}
% \cs{prop_const_from_keyval:Nn} \meta{prop~var}
% \{
% \meta{key1} |=| \meta{value1} |,|
% \meta{key2} |=| \meta{value2} |,| \ldots{}
% \}
% \end{syntax}
% Creates a new constant \meta{prop~var} or raises an error if the
% name is already taken. The \meta{prop~var} is set globally to
% contain key--value pairs given in the second argument.
% \end{function}
%
% \section{Additions to \pkg{l3seq}}
%
% \begin{function}[rEXP]
% {
% \seq_mapthread_function:NNN, \seq_mapthread_function:NcN,
% \seq_mapthread_function:cNN, \seq_mapthread_function:ccN
% }
% \begin{syntax}
% \cs{seq_mapthread_function:NNN} \meta{seq_1} \meta{seq_2} \meta{function}
% \end{syntax}
% Applies \meta{function} to every pair of items
% \meta{seq_1-item}--\meta{seq_2-item} from the two sequences, returning
% items from both sequences from left to right. The \meta{function}
% receives two \texttt{n}-type arguments for each iteration. The mapping
% terminates when
% the end of either sequence is reached (\emph{i.e.}~whichever sequence has
% fewer items determines how many iterations
% occur).
% \end{function}
%
% \begin{function}{\seq_set_filter:NNn, \seq_gset_filter:NNn}
% \begin{syntax}
% \cs{seq_set_filter:NNn} \meta{sequence_1} \meta{sequence_2} \Arg{inline boolexpr}
% \end{syntax}
% Evaluates the \meta{inline boolexpr} for every \meta{item} stored
% within the \meta{sequence_2}. The \meta{inline boolexpr}
% receives the \meta{item} as |#1|. The sequence of all \meta{items}
% for which the \meta{inline boolexpr} evaluated to \texttt{true}
% is assigned to \meta{sequence_1}.
% \begin{texnote}
% Contrarily to other mapping functions, \cs{seq_map_break:} cannot
% be used in this function, and would lead to low-level \TeX{} errors.
% \end{texnote}
% \end{function}
%
% \begin{function}[added = 2011-12-22]
% {\seq_set_map:NNn, \seq_gset_map:NNn}
% \begin{syntax}
% \cs{seq_set_map:NNn} \meta{sequence_1} \meta{sequence_2} \Arg{inline function}
% \end{syntax}
% Applies \meta{inline function} to every \meta{item} stored
% within the \meta{sequence_2}. The \meta{inline function} should
% consist of code which will receive the \meta{item} as |#1|.
% The sequence resulting from \texttt{x}-expanding
% \meta{inline function} applied to each \meta{item}
% is assigned to \meta{sequence_1}. As such, the code
% in \meta{inline function} should be expandable.
% \begin{texnote}
% Contrarily to other mapping functions, \cs{seq_map_break:} cannot
% be used in this function, and would lead to low-level \TeX{} errors.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP, added = 2016-12-06]{\seq_rand_item:N, \seq_rand_item:c}
% \begin{syntax}
% \cs{seq_rand_item:N} \meta{seq~var}
% \end{syntax}
% Selects a pseudo-random item of the \meta{sequence}. If the
% \meta{sequence} is empty the result is empty. This is not yet
% available in \XeTeX{}.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{item}
% does not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \begin{function}[added = 2017-11-28]
% {\seq_const_from_clist:Nn, \seq_const_from_clist:cn}
% \begin{syntax}
% \cs{seq_const_from_clist:Nn} \meta{seq~var} \Arg{comma-list}
% \end{syntax}
% Creates a new constant \meta{seq~var} or raises an error if the name
% is already taken. The \meta{seq~var} is set globally to contain the
% items in the \meta{comma list}.
% \end{function}
%
% \begin{function}[added = 2018-04-06]
% {\seq_set_from_function:NnN, \seq_gset_from_function:NnN}
% \begin{syntax}
% \cs{seq_set_from_function:NnN} \meta{seq~var} \Arg{loop~code} \meta{function}
% \end{syntax}
% Sets the \meta{seq~var} equal to a sequence whose items are obtained
% by \texttt{x}-expanding \meta{loop~code} \meta{function}. This
% expansion must result in successive calls to the \meta{function}
% with no nonexpandable tokens in between. More precisely the
% \meta{function} is replaced by a wrapper function that inserts the
% appropriate separators between items in the sequence. The
% \meta{loop~code} must be expandable; it can be for example
% \cs{tl_map_function:NN} \meta{tl~var} or \cs{clist_map_function:nN}
% \Arg{clist} or \cs{int_step_function:nnnN} \Arg{initial value}
% \Arg{step} \Arg{final value}.
% \end{function}
%
% \begin{function}[added = 2018-04-06]
% {\seq_set_from_inline_x:Nnn, \seq_gset_from_inline_x:Nnn}
% \begin{syntax}
% \cs{seq_set_from_inline_x:Nnn} \meta{seq~var} \Arg{loop~code} \Arg{inline~code}
% \end{syntax}
% Sets the \meta{seq~var} equal to a sequence whose items are obtained
% by \texttt{x}-expanding \meta{loop~code} applied to a
% \meta{function} derived from the \meta{inline~code}. A
% \meta{function} is defined, that takes one argument,
% \texttt{x}-expands the \meta{inline~code} with that argument
% as~|#1|, then adds appropriate separators to turn the result into an
% item of the sequence. The \texttt{x}-expansion of \meta{loop~code}
% \meta{function} must result in successive calls to the
% \meta{function} with no nonexpandable tokens in between. The
% \meta{loop~code} must be expandable; it can be for example
% \cs{tl_map_function:NN} \meta{tl~var} or \cs{clist_map_function:nN}
% \Arg{clist} or \cs{int_step_function:nnnN} \Arg{initial value}
% \Arg{step} \Arg{final value}, but not the analogous \enquote{inline}
% mappings.
% \end{function}
%
% \begin{function}[added = 2018-04-29]{\seq_shuffle:N, \seq_gshuffle:N}
% \begin{syntax}
% \cs{seq_shuffle:N} \meta{seq~var}
% \end{syntax}
% Sets the \meta{seq~var} to the result of placing the items of the
% \meta{seq~var} in a random order. Each item is (roughly) as likely
% to end up in any given position.
% \begin{texnote}
% For sequences with more than $13$ items or so, only a small
% proportion of all possible permutations can be reached, because
% the random seed \cs{sys_rand_seed:} only has $28$-bits. The use
% of \tn{toks} internally means that sequences with more than
% $32767$ or $65535$ items (depending on the engine) cannot be
% shuffled.
% \end{texnote}
% \end{function}
%
% \begin{function}[added = 2018-05-03]{\seq_indexed_map_function:NN}
% \begin{syntax}
% \cs{seq_indexed_map_function:NN} \meta{seq~var} \meta{function}
% \end{syntax}
% Applies \meta{function} to every entry in the \meta{sequence
% variable}. The \meta{function} should have signature |:nn|. It
% receives two arguments for each iteration: the \meta{index} (namely
% |1| for the first entry, then |2| and so on) and the \meta{item}.
% \end{function}
%
% \begin{function}[added = 2018-05-03]{\seq_indexed_map_inline:Nn}
% \begin{syntax}
% \cs{seq_indexed_map_inline:Nn} \meta{seq~var} \Arg{inline function}
% \end{syntax}
% Applies \meta{inline function} to every entry in the \meta{sequence
% variable}. The \meta{inline function} should consist of code which
% receives the \meta{index} (namely |1| for the first entry, then |2|
% and so on) as~|#1| and the \meta{item} as~|#2|.
% \end{function}
%
% \section{Additions to \pkg{l3skip}}
%
% \begin{function}{\skip_split_finite_else_action:nnNN}
% \begin{syntax}
% \cs{skip_split_finite_else_action:nnNN} \Arg{skipexpr} \Arg{action}
% ~~\meta{dimen_1} \meta{dimen_2}
% \end{syntax}
% Checks if the \meta{skipexpr} contains finite glue. If it does then it
% assigns
% \meta{dimen_1} the stretch component and \meta{dimen_2} the shrink
% component. If
% it contains infinite glue set \meta{dimen_1} and \meta{dimen_2} to $0$\,pt
% and place |#2| into the input stream: this is usually an error or
% warning message of some sort.
% \end{function}
%
% \section{Additions to \pkg{l3sys}}
%
% \begin{variable}[added = 2018-05-02]{\c_sys_engine_version_str}
% The version string of the current engine, in the same form as
% given in the banner issued when running a job. For \pdfTeX{}
% and \LuaTeX{} this is of the form
% \begin{quote}
% \meta{major}.\meta{minor}.\meta{revision}
% \end{quote}
% For \XeTeX{}, the form is
% \begin{quote}
% \meta{major}.\meta{minor}
% \end{quote}
% For \pTeX{} and \upTeX{}, only releases since \TeX{} Live 2018
% make the data available, and the form is more complex, as it comprises
% the \pTeX{} version, the \upTeX{} version and the e-\pTeX{} version.
% \begin{quote}
% p\meta{major}.\meta{minor}.\meta{revision}-u\meta{major}.\meta{minor}^^A
% -\meta{epTeX}
% \end{quote}
% where the |u| part is only present for \upTeX{}.
% \end{variable}
%
% \begin{function}[added = 2017-05-27, EXP, pTF]{\sys_if_rand_exist:}
% \begin{syntax}
% \cs{sys_if_rand_exist_p:}
% \cs{sys_if_rand_exist:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests if the engine has a pseudo-random number generator. Currently
% this is the case in \pdfTeX{}, \LuaTeX{}, \pTeX{} and \upTeX{}.
% \end{function}
%
% \begin{function}[added = 2017-05-27, EXP]{\sys_rand_seed:}
% \begin{syntax}
% \cs{sys_rand_seed:}
% \end{syntax}
% Expands to the current value of the engine's random seed, a
% non-negative integer. In engines without random number support this
% expands to $0$.
% \end{function}
%
% \begin{function}[added = 2017-05-27]{\sys_gset_rand_seed:n}
% \begin{syntax}
% \cs{sys_gset_rand_seed:n} \Arg{intexpr}
% \end{syntax}
% Globally sets the seed for the engine's pseudo-random number
% generator to the \meta{integer expression}. This random seed
% affects all \cs[no-index]{\ldots{}_rand} functions (such as
% \cs{int_rand:nn} or \cs{clist_rand_item:n}) as well as other
% packages relying on the engine's random number generator. In
% engines without random number support this produces an error.
% \begin{texnote}
% While a $32$-bit (signed) integer can be given as a seed, only the
% absolute value is used and any number beyond $2^{28}$ is divided
% by an appropriate power of~$2$. We recommend using an integer in
% $[0,2^{28}-1]$.
% \end{texnote}
% \end{function}
%
% \begin{function}[added = 2018-07-27, EXP, pTF]
% {
% \sys_if_platform_unix:,
% \sys_if_platform_windows:
% }
% \begin{syntax}
% \cs{sys_if_platform_unix:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Conditionals which allow platform-specific code to be used. The names
% follow the \Lua{} |os.type()| function, \emph{i.e.}~all Unix-like systems
% are |unix| (including Linux and MacOS).
% \end{function}
%
% \begin{variable}[added = 2018-07-27]{\c_sys_platform_str}
% The current platform given as a lower case string: one of
% |unix|, |windows| or |unknown|.
% \end{variable}
%
% \begin{variable}[added = 2017-05-27]{\c_sys_shell_escape_int}
% This variable exposes the internal triple of the shell escape
% status. The possible values are
% \begin{description}
% \item[0] Shell escape is disabled
% \item[1] Unrestricted shell escape is enabled
% \item[2] Restricted shell escape is enabled
% \end{description}
% \end{variable}
%
% \begin{function}[added = 2017-05-27, EXP, pTF]{\sys_if_shell:}
% \begin{syntax}
% \cs{sys_if_shell_p:}
% \cs{sys_if_shell:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Performs a check for whether shell escape is enabled. This
% returns true if either of restricted or unrestricted shell escape
% is enabled.
% \end{function}
%
% \begin{function}[added = 2017-05-27, EXP, pTF]{\sys_if_shell_unrestricted:}
% \begin{syntax}
% \cs{sys_if_shell_unrestricted_p:}
% \cs{sys_if_shell_unrestricted:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Performs a check for whether \emph{unrestricted} shell escape is
% enabled.
% \end{function}
%
% \begin{function}[added = 2017-05-27, EXP, pTF]{\sys_if_shell_restricted:}
% \begin{syntax}
% \cs{sys_if_shell_restricted_p:}
% \cs{sys_if_shell_restricted:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Performs a check for whether \emph{restricted} shell escape is
% enabled. This returns false if unrestricted shell escape is
% enabled. Unrestricted shell escape is not considered a superset
% of restricted shell escape in this case. To find whether any
% shell escape is enabled use \cs{sys_if_shell:}.
% \end{function}
%
% \begin{function}[added = 2017-05-27]{\sys_shell_now:n, \sys_shell_now:x}
% \begin{syntax}
% \cs{sys_shell_now:n} \Arg{tokens}
% \end{syntax}
% Execute \meta{tokens} through shell escape immediately.
% \end{function}
%
% \begin{function}[added = 2017-05-27]{\sys_shell_shipout:n, \sys_shell_shipout:x}
% \begin{syntax}
% \cs{sys_shell_shipout:n} \Arg{tokens}
% \end{syntax}
% Execute \meta{tokens} through shell escape at shipout.
% \end{function}
%
% \section{Additions to \pkg{l3tl}}
%
% \begin{function}[EXP,pTF]{\tl_if_single_token:n}
% \begin{syntax}
% \cs{tl_if_single_token_p:n} \Arg{token list}
% \cs{tl_if_single_token:nTF} \Arg{token list} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests if the token list consists of exactly one token, \emph{i.e.}~is
% either a single space character or a single \enquote{normal} token.
% Token groups (|{|\ldots|}|) are not single tokens.
% \end{function}
%
% \begin{function}[EXP]{\tl_reverse_tokens:n}
% \begin{syntax}
% \cs{tl_reverse_tokens:n} \Arg{tokens}
% \end{syntax}
% This function, which works directly on \TeX{} tokens, reverses
% the order of the \meta{tokens}: the first becomes the last and
% the last becomes first. Spaces are preserved. The reversal
% also operates within brace groups, but the braces themselves
% are not exchanged, as this would lead to an unbalanced token
% list. For instance, \cs{tl_reverse_tokens:n} |{a~{b()}}|
% leaves |{)(b}~a| in the input stream. This function requires
% two steps of expansion.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the token
% list does not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP]{\tl_count_tokens:n}
% \begin{syntax}
% \cs{tl_count_tokens:n} \Arg{tokens}
% \end{syntax}
% Counts the number of \TeX{} tokens in the \meta{tokens} and leaves
% this information in the input stream. Every token, including spaces and
% braces, contributes one to the total; thus for instance, the token count of
% |a~{bc}| is $6$.
% This function requires three expansions,
% giving an \meta{integer denotation}.
% \end{function}
%
% \begin{function}[EXP, added = 2014-06-30, updated = 2016-01-12]
% {
% \tl_lower_case:n, \tl_upper_case:n, \tl_mixed_case:n,
% \tl_lower_case:nn, \tl_upper_case:nn, \tl_mixed_case:nn
% }
% \begin{syntax}
% \cs{tl_upper_case:n} \Arg{tokens}
% \cs{tl_upper_case:nn} \Arg{language} \Arg{tokens}
% \end{syntax}
% These functions are intended to be applied to input which may be
% regarded broadly as \enquote{text}. They traverse the \meta{tokens} and
% change the case of characters as discussed below. The character code of
% the characters replaced may be arbitrary: the replacement characters
% have standard document-level category codes ($11$ for letters, $12$ for
% letter-like characters which can also be case-changed). Begin-group and
% end-group characters in the \meta{tokens} are normalized and become |{|
% and |}|, respectively.
%
% Importantly, notice that these functions are intended for working with
% user text for typesetting. For case changing programmatic data see the
% \pkg{l3str} module and discussion there of \cs{str_lower_case:n},
% \cs{str_upper_case:n} and \cs{str_fold_case:n}.
% \end{function}
%
% The functions perform expansion on the input in most cases. In particular,
% input in the form of token lists or expandable functions is expanded
% \emph{unless} it falls within one of the special handling classes described
% below. This expansion approach means that in general the result of case
% changing matches the \enquote{natural} outcome expected from a
% \enquote{functional} approach to case modification. For example
% \begin{verbatim}
% \tl_set:Nn \l_tmpa_tl { hello }
% \tl_upper_case:n { \l_tmpa_tl \c_space_tl world }
% \end{verbatim}
% produces
% \begin{verbatim}
% HELLO WORLD
% \end{verbatim}
% The expansion approach taken means that in package mode any \LaTeXe{}
% \enquote{robust} commands which may appear in the input should be converted
% to engine-protected versions using for example the \tn{robustify} command
% from the \pkg{etoolbox} package.
%
% \begin{variable}{\l_tl_case_change_math_tl}
% Case changing does not take place within math mode material so for example
% \begin{verbatim}
% \tl_upper_case:n { Some~text~$y = mx + c$~with~{Braces} }
% \end{verbatim}
% becomes
% \begin{verbatim}
% SOME TEXT $y = mx + c$ WITH {BRACES}
% \end{verbatim}
% Material inside math mode is left entirely unchanged: in particular, no
% expansion is undertaken.
%
% Detection of math mode is controlled by the list of tokens in
% \cs{l_tl_case_change_math_tl}, which should be in open--close pairs. In
% package mode the standard settings is
% \begin{verbatim}
% $ $ \( \)
% \end{verbatim}
%
% Note that while expansion occurs when searching the text it does not
% apply to math mode material (which should be unaffected by case changing).
% As such, whilst the opening token for math mode may be \enquote{hidden}
% inside a command/macro, the closing one cannot be as this is being
% searched for in math mode. Typically, in the types of \enquote{text}
% the case changing functions are intended to apply to this should not be
% an issue.
% \end{variable}
%
% \begin{variable}{\l_tl_case_change_exclude_tl}
% Case changing can be prevented by using any command on the list
% \cs{l_tl_case_change_exclude_tl}. Each entry should be a function
% to be followed by one argument: the latter will be preserved as-is
% with no expansion. Thus for example following
% \begin{verbatim}
% \tl_put_right:Nn \l_tl_case_change_exclude_tl { \NoChangeCase }
% \end{verbatim}
% the input
% \begin{verbatim}
% \tl_upper_case:n
% { Some~text~$y = mx + c$~with~\NoChangeCase {Protection} }
% \end{verbatim}
% will result in
% \begin{verbatim}
% SOME TEXT $y = mx + c$ WITH \NoChangeCase {Protection}
% \end{verbatim}
% Notice that the case changing mapping preserves the inclusion of
% the escape functions: it is left to other code to provide suitable
% definitions (typically equivalent to \cs{use:n}). In particular, the
% result of case changing is returned protected by \cs{exp_not:n}.
%
% When used with \LaTeXe{} the commands |\cite|, |\ensuremath|, |\label|
% and |\ref| are automatically included in the list for exclusion from
% case changing.
% \end{variable}
%
% \begin{variable}{\l_tl_case_change_accents_tl}
% This list specifies accent commands which should be left unexpanded
% in the output. This allows for example
% \begin{verbatim}
% \tl_upper_case:n { \" { a } }
% \end{verbatim}
% to yield
% \begin{verbatim}
% \" { A }
% \end{verbatim}
% irrespective of the expandability of |\"|.
%
% The standard contents of this variable is |\"|, |\'|, |\.|, |\^|, |\`|,
% |\~|, |\c|, |\H|, |\k|, |\r|, |\t|, |\u| and |\v|.
% \end{variable}
%
% \enquote{Mixed} case conversion may be regarded informally as converting the
% first character of the \meta{tokens} to upper case and the rest to lower
% case. However, the process is more complex than this as there are some
% situations where a single lower case character maps to a special form, for
% example \texttt{ij} in Dutch which becomes \texttt{IJ}. As such,
% \cs[index=tl_mixed_case:n]{tl_mixed_case:n(n)}
% implement a more sophisticated mapping which accounts
% for this and for modifying accents on the first letter. Spaces at the start
% of the \meta{tokens} are ignored when finding the first \enquote{letter} for
% conversion.
% \begin{verbatim}
% \tl_mixed_case:n { hello~WORLD } % => "Hello world"
% \tl_mixed_case:n { ~hello~WORLD } % => " Hello world"
% \tl_mixed_case:n { {hello}~WORLD } % => "{Hello} world"
% \end{verbatim}
% When finding the first \enquote{letter} for this process, any content in
% math mode or covered by \cs{l_tl_case_change_exclude_tl} is ignored.
%
% (Note that the Unicode Consortium describe this as \enquote{title case}, but
% that in English title case applies on a word-by-word basis. The
% \enquote{mixed} case implemented here is a lower level concept needed for
% both \enquote{title} and \enquote{sentence} casing of text.)
%
% \begin{variable}{\l_tl_mixed_case_ignore_tl}
% The list of characters to ignore when searching for the first
% \enquote{letter} in mixed-casing is determined by
% \cs{l_tl_mixed_change_ignore_tl}. This has the standard setting
% \begin{verbatim}
% ( [ { ` -
% \end{verbatim}
% where comparisons are made on a character basis.
% \end{variable}
%
% As is generally true for \pkg{expl3}, these functions are designed to
% work with Unicode input only. As such, UTF-8 input is assumed for
% \emph{all} engines. When used with \XeTeX{} or \LuaTeX{} a full range of
% Unicode transformations are enabled. Specifically, the standard mappings
% here follow those defined by the \href{http://www.unicode.org}^^A
% {Unicode Consortium} in \texttt{UnicodeData.txt} and
% \texttt{SpecialCasing.txt}. In the case of $8$-bit engines, mappings
% are provided for characters which can be represented in output typeset
% using the |T1| font encoding. Thus for example |ä| can be case-changed
% using \pdfTeX{}. For \pTeX{} only the ASCII range is covered as the
% engine treats input outside of this range as east Asian.
%
% Context-sensitive mappings are enabled: language-dependent cases are
% discussed below. Context detection expands input but treats any
% unexpandable control sequences as \enquote{failures} to match a context.
%
% Language-sensitive conversions are enabled using the \meta{language}
% argument, and follow Unicode Consortium guidelines. Currently, the
% languages recognised for special handling are as follows.
% \begin{itemize}
% \item Azeri and Turkish (\texttt{az} and \texttt{tr}).
% The case pairs I/i-dotless and I-dot/i are activated for these
% languages. The combining dot mark is removed when lower
% casing I-dot and introduced when upper casing i-dotless.
% \item German (\texttt{de-alt}).
% An alternative mapping for German in which the lower case
% \emph{Eszett} maps to a \emph{gro\ss{}es Eszett}.
% \item Lithuanian (\texttt{lt}).
% The lower case letters i and j should retain a dot above when the
% accents grave, acute or tilde are present. This is implemented for
% lower casing of the relevant upper case letters both when input as
% single Unicode codepoints and when using combining accents. The
% combining dot is removed when upper casing in these cases. Note that
% \emph{only} the accents used in Lithuanian are covered: the behaviour
% of other accents are not modified.
% \item Dutch (\texttt{nl}).
% Capitalisation of \texttt{ij} at the beginning of mixed cased
% input produces \texttt{IJ} rather than \texttt{Ij}. The output
% retains two separate letters, thus this transformation \emph{is}
% available using \pdfTeX{}.
% \end{itemize}
%
% Creating additional context-sensitive mappings requires knowledge
% of the underlying mapping implementation used here. The team are happy
% to add these to the kernel where they are well-documented
% (\emph{e.g.}~in Unicode Consortium or relevant government publications).
%
% \begin{function}[added = 2014-06-25]
% {
% \tl_set_from_file:Nnn, \tl_set_from_file:cnn,
% \tl_gset_from_file:Nnn, \tl_gset_from_file:cnn
% }
% \begin{syntax}
% \cs{tl_set_from_file:Nnn} \meta{tl} \Arg{setup} \Arg{filename}
% \end{syntax}
% Defines \meta{tl} to the contents of \meta{filename}.
% Category codes may need to be set appropriately via the \meta{setup}
% argument.
% \end{function}
%
% \begin{function}[added = 2014-06-25]
% {
% \tl_set_from_file_x:Nnn, \tl_set_from_file_x:cnn,
% \tl_gset_from_file_x:Nnn, \tl_gset_from_file_x:cnn
% }
% \begin{syntax}
% \cs{tl_set_from_file_x:Nnn} \meta{tl} \Arg{setup} \Arg{filename}
% \end{syntax}
% Defines \meta{tl} to the contents of \meta{filename}, expanding
% the contents of the file as it is read. Category codes and other
% definitions may need to be set appropriately via the \meta{setup}
% argument.
% \end{function}
%
% \begin{function}[added = 2018-07-23]
% {
% \tl_set_from_shell:Nnn, \tl_set_from_shell:cnn,
% \tl_gset_from_shell:Nnn, \tl_gset_from_shell:cnn
% }
% \begin{syntax}
% \cs{tl_set_from_shell:Nnn} \meta{tl~var} \Arg{setup} \Arg{shell~command}
% \end{syntax}
% Defines \meta{tl} to the text returned by the \meta{shell command}.
% Category codes may need to be set appropriately via the \meta{setup}
% argument. If shell escape is disabled, the \meta{tl~var} will be empty.
% Note that quote characters (|"|) \emph{cannot} be used inside the
% \meta{shell command}.
% \end{function}
%
% \begin{function}[EXP, added = 2016-12-06]
% {\tl_rand_item:N, \tl_rand_item:c, \tl_rand_item:n}
% \begin{syntax}
% \cs{tl_rand_item:N} \meta{tl~var}
% \cs{tl_rand_item:n} \Arg{token list}
% \end{syntax}
% Selects a pseudo-random item of the \meta{token list}. If the
% \meta{token list} is blank, the result is empty. This is not yet
% available in \XeTeX{}.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{item}
% does not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP, added = 2017-02-17, updated = 2017-07-15]
% {\tl_range:Nnn, \tl_range:nnn}
% \begin{syntax}
% \cs{tl_range:Nnn} \meta{tl~var} \Arg{start index} \Arg{end index}
% \cs{tl_range:nnn} \Arg{token list} \Arg{start index} \Arg{end index}
% \end{syntax}
% Leaves in the input stream the items from the \meta{start index} to the
% \meta{end index} inclusive. Spaces and braces are preserved between
% the items returned (but never at either end of the list). Positive
% \meta{indices} are counted
% from the start of the \meta{token list}, $1$~being the first item, and
% negative \meta{indices} are counted from the end of the token list,
% $-1$~being the last item. If either of \meta{start index} or
% \meta{end index} is~$0$, the result is empty. For instance,
% \begin{verbatim}
% \iow_term:x { \tl_range:nnn { abcd~{e{}}f } { 2 } { 5 } }
% \iow_term:x { \tl_range:nnn { abcd~{e{}}f } { -4 } { -1 } }
% \iow_term:x { \tl_range:nnn { abcd~{e{}}f } { -2 } { -1 } }
% \iow_term:x { \tl_range:nnn { abcd~{e{}}f } { 0 } { -1 } }
% \end{verbatim}
% prints \verb*|bcd {e{}}|, \verb*|cd {e{}}f|, \verb*|{e{}}f| and an empty
% line to the terminal. The \meta{start index} must always be smaller than
% or equal to the \meta{end index}: if this is not the case then no output
% is generated. Thus
% \begin{verbatim}
% \iow_term:x { \tl_range:nnn { abcd~{e{}}f } { 5 } { 2 } }
% \iow_term:x { \tl_range:nnn { abcd~{e{}}f } { -1 } { -4 } }
% \end{verbatim}
% both yield empty token lists. For improved performance, see
% \cs{tl_range_braced:nnn} and \cs{tl_range_unbraced:nnn}.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{item}
% does not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP, added = 2017-07-15]
% {
% \tl_range_braced:Nnn, \tl_range_braced:cnn, \tl_range_braced:nnn,
% \tl_range_unbraced:Nnn, \tl_range_unbraced:cnn, \tl_range_unbraced:nnn
% }
% \begin{syntax}
% \cs{tl_range_braced:Nnn} \meta{tl~var} \Arg{start index} \Arg{end index}
% \cs{tl_range_braced:nnn} \Arg{token list} \Arg{start index} \Arg{end index}
% \cs{tl_range_unbraced:Nnn} \meta{tl~var} \Arg{start index} \Arg{end index}
% \cs{tl_range_unbraced:nnn} \Arg{token list} \Arg{start index} \Arg{end index}
% \end{syntax}
% Leaves in the input stream the items from the \meta{start index} to
% the \meta{end index} inclusive, using the same indexing as
% \cs{tl_range:nnn}. Spaces are ignored. Regardless of whether items
% appear with or without braces in the \meta{token list}, the
% \cs{tl_range_braced:nnn} function wraps each item in braces, while
% \cs{tl_range_unbraced:nnn} does not (overall it removes an outer set
% of braces). For instance,
% \begin{verbatim}
% \iow_term:x { \tl_range_braced:nnn { abcd~{e{}}f } { 2 } { 5 } }
% \iow_term:x { \tl_range_braced:nnn { abcd~{e{}}f } { -4 } { -1 } }
% \iow_term:x { \tl_range_braced:nnn { abcd~{e{}}f } { -2 } { -1 } }
% \iow_term:x { \tl_range_braced:nnn { abcd~{e{}}f } { 0 } { -1 } }
% \end{verbatim}
% prints \verb*|{b}{c}{d}{e{}}|, \verb*|{c}{d}{e{}}{f}|, \verb*|{e{}}{f}|, and an empty
% line to the terminal, while
% \begin{verbatim}
% \iow_term:x { \tl_range_unbraced:nnn { abcd~{e{}}f } { 2 } { 5 } }
% \iow_term:x { \tl_range_unbraced:nnn { abcd~{e{}}f } { -4 } { -1 } }
% \iow_term:x { \tl_range_unbraced:nnn { abcd~{e{}}f } { -2 } { -1 } }
% \iow_term:x { \tl_range_unbraced:nnn { abcd~{e{}}f } { 0 } { -1 } }
% \end{verbatim}
% prints \verb*|bcde{}|, \verb*|cde{}f|, \verb*|e{}f|, and an empty
% line to the terminal. Because braces are removed, the result of
% \cs{tl_range_unbraced:nnn} may have a different number of items as
% for \cs{tl_range:nnn} or \cs{tl_range_braced:nnn}. In cases where
% preserving spaces is important, consider the slower function
% \cs{tl_range:nnn}.
% \begin{texnote}
% The result is returned within the \tn{unexpanded}
% primitive (\cs{exp_not:n}), which means that the \meta{item}
% does not expand further when appearing in an \texttt{x}-type
% argument expansion.
% \end{texnote}
% \end{function}
%
% \begin{function}[added = 2018-04-01]{\tl_build_begin:N, \tl_build_gbegin:N}
% \begin{syntax}
% \cs{tl_build_begin:N} \meta{tl~var}
% \end{syntax}
% Clears the \meta{tl~var} and sets it up to support other
% \cs[no-index]{tl_build_\ldots{}} functions, which allow accumulating
% large numbers of tokens piece by piece much more efficiently than
% standard \pkg{l3tl} functions. Until \cs{tl_build_end:N}
% \meta{tl~var} is called, applying any function from \pkg{l3tl} other
% than \cs[no-index]{tl_build_\ldots{}} will lead to incorrect
% results. The |begin| and |gbegin| functions must be used for local
% and global \meta{tl~var} respectively.
% \end{function}
%
% \begin{function}[added = 2018-04-01]{\tl_build_clear:N, \tl_build_gclear:N}
% \begin{syntax}
% \cs{tl_build_clear:N} \meta{tl~var}
% \end{syntax}
% Clears the \meta{tl~var} and sets it up to support other
% \cs[no-index]{tl_build_\ldots{}} functions. The |clear| and
% |gclear| functions must be used for local and global \meta{tl~var}
% respectively.
% \end{function}
%
% \begin{function}[added = 2018-04-01]
% {
% \tl_build_put_left:Nn, \tl_build_put_left:Nx,
% \tl_build_gput_left:Nn, \tl_build_gput_left:Nx,
% \tl_build_put_right:Nn, \tl_build_put_right:Nx,
% \tl_build_gput_right:Nn, \tl_build_gput_right:Nx,
% }
% \begin{syntax}
% \cs{tl_build_put_left:Nn} \meta{tl~var} \Arg{tokens}
% \cs{tl_build_put_right:Nn} \meta{tl~var} \Arg{tokens}
% \end{syntax}
% Adds \meta{tokens} to the left or right side of the current contents
% of \meta{tl~var}. The \meta{tl~var} must have been set up with
% \cs{tl_build_begin:N} or \cs{tl_build_gbegin:N}. The |put| and
% |gput| functions must be used for local and global \meta{tl~var}
% respectively. The |right| functions are about twice faster than the
% |left| functions.
% \end{function}
%
% \begin{function}[added = 2018-04-01]{\tl_build_get:NN}
% \begin{syntax}
% \cs{tl_build_get:N} \meta{tl~var_1} \meta{tl~var_2}
% \end{syntax}
% Stores the contents of the \meta{tl~var_1} in the \meta{tl~var_2}.
% The \meta{tl~var_1} must have been set up with \cs{tl_build_begin:N}
% or \cs{tl_build_gbegin:N}. The \meta{tl~var_2} is a
% \enquote{normal} token list variable, assigned locally using
% \cs{tl_set:Nn}.
% \end{function}
%
% \begin{function}[added = 2018-04-01]{\tl_build_end:N, \tl_build_gend:N}
% \begin{syntax}
% \cs{tl_build_end:N} \meta{tl~var}
% \end{syntax}
% Gets the contents of \meta{tl~var} and stores that into the
% \meta{tl~var} using \cs{tl_set:Nn}. The \meta{tl~var} must have
% been set up with \cs{tl_build_begin:N} or \cs{tl_build_gbegin:N}.
% The |end| and |gend| functions must be used for local and global
% \meta{tl~var} respectively. These functions completely remove the
% setup code that enabled \meta{tl~var} to be used for other
% \cs[no-index]{tl_build_\ldots{}} functions.
% \end{function}
%
% \section{Additions to \pkg{l3token}}
%
% \begin{variable}[added = 2017-08-07]{\c_catcode_active_space_tl}
% Token list containing one character with category code $13$,
% (\enquote{active}), and character code $32$ (space).
% \end{variable}
%
% \begin{function}[added = 2018-04-06, EXP]
% {
% \char_lower_case:N, \char_upper_case:N,
% \char_mixed_case:N, \char_fold_case:N
% }
% \begin{syntax}
% \cs{char_lower_case:N} \meta{char}
% \end{syntax}
% Converts the \meta{char} to the equivalent case-changed character
% as detailed by the function name (see \cs{str_fold_case:n}
% and \cs{tl_mixed_case:n} for details of these terms). The case mapping
% is carried out with no context-dependence (\emph{cf.}~\cs{tl_upper_case:n},
% \emph{etc.})
% \end{function}
%
% \begin{function}[added = 2018-06-01, EXP]{\char_codepoint_to_bytes:n}
% \begin{syntax}
% \cs{char_codepoint_to_bytes:n} \Arg{codepoint}
% \end{syntax}
% Converts the (Unicode) \meta{codepoint} to UTF-8 bytes. The expansion
% of this function comprises four brace groups, each of which will contain
% a hexadecimal value: the appropriate byte. As UTF-8 is a variable-length,
% one or more of the grouos may be empty: the bytes read in the logical order,
% such that a two-byte codepoint will have groups |#1| and |#2| filled
% and |#3| and |#4| empty.
% \end{function}
%
% \begin{function}[TF, updated = 2012-12-20]{\peek_N_type:}
% \begin{syntax}
% \cs{peek_N_type:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests if the next \meta{token} in the input stream can be safely
% grabbed as an \texttt{N}-type argument. The test is \meta{false}
% if the next \meta{token} is either an explicit or implicit
% begin-group or end-group token (with any character code), or
% an explicit or implicit space character (with character code $32$
% and category code $10$), or an outer token (never used in \LaTeX3)
% and \meta{true} in all other cases.
% Note that a \meta{true} result ensures that the next \meta{token} is
% a valid \texttt{N}-type argument. However, if the next \meta{token}
% is for instance \cs{c_space_token}, the test takes the
% \meta{false} branch, even though the next \meta{token} is in fact
% a valid \texttt{N}-type argument. The \meta{token} is left
% in the input stream after the \meta{true code} or \meta{false code}
% (as appropriate to the result of the test).
% \end{function}
%
% \begin{function}[added = 2018-09-23]
% {
% \peek_catcode_collect_inline:Nn,
% \peek_charcode_collect_inline:Nn,
% \peek_meaning_collect_inline:Nn
% }
% \begin{syntax}
% \cs{peek_catcode_collect_inline:Nn} \meta{test token} \Arg{inline code}
% \cs{peek_charcode_collect_inline:Nn} \meta{test token} \Arg{inline code}
% \cs{peek_meaning_collect_inline:Nn} \meta{test token} \Arg{inline code}
% \end{syntax}
% Collects and removes tokens from the input stream until finding a
% token that does not match the \meta{test token} (as defined by the
% test \cs{token_if_eq_catcode:NNTF} or \cs{token_if_eq_charcode:NNTF}
% or \cs{token_if_eq_meaning:NNTF}). The collected tokens are passed
% to the \meta{inline code} as~|#1|. When begin-group or end-group
% tokens (usually |{| or~|}|) are collected they are replaced by
% implicit \cs{c_group_begin_token} and \cs{c_group_end_token}, and
% when spaces (including \cs{c_space_token}) are collected they are
% replaced by explicit spaces.
%
% For example the following code prints ``Hello'' to the terminal and
% leave ``, world!'' in the input stream.
% \begin{verbatim}
% \peek_catcode_collect_inline:Nn A { \iow_term:n {#1} } Hello,~world!
% \end{verbatim}
% Another example is that the following code tests if the next token is |*|, ignoring intervening spaces, but putting them back using |#1| if there is no~|*|.
% \begin{verbatim}
% \peek_meaning_collect_inline:Nn \c_space_token
% { \peek_charcode:NTF * { star } { no~star #1 } }
% \end{verbatim}
% \end{function}
%
% \begin{function}[added = 2018-10-01]{\peek_remove_spaces:n}
% \begin{syntax}
% \cs{peek_remove_spaces:n} \Arg{code}
% \end{syntax}
% Removes explicit and implicit space tokens (category code~$10$ and
% character code~$32$) from the input stream, then inserts \meta{code}.
% \end{function}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3candidates} Implementation}
%
% \begin{macrocode}
%<*initex|package>
% \end{macrocode}
%
% \subsection{Additions to \pkg{l3basics}}
%
% \begin{macro}{\mode_leave_vertical:}
% The approach here is different to that used by \LaTeXe{} or plain \TeX{},
% which unbox a void box to force horizontal mode. That inserts the
% \tn{everypar} tokens \emph{before} the re-inserted unboxing tokens. The
% approach here uses either the \tn{quitvmode} primitive or the equivalent
% protected macro. In vertical mode, the \tn{indent} primitive is inserted:
% this will switch to horizontal mode and insert \tn{everypar} tokens and
% nothing else. Unlike the \LaTeXe{} version, the availability of \eTeX{}
% means using a mode test can be done at for example the start of an
% \tn{halign}.
% \begin{macrocode}
\cs_new_protected:Npn \mode_leave_vertical:
{
\if_mode_vertical:
\exp_after:wN \tex_indent:D
\fi:
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Additions to \pkg{l3box}}
%
% \begin{macrocode}
%<@@=box>
% \end{macrocode}
%
% \subsubsection{Viewing part of a box}
%
% \begin{macro}{\box_clip:N, \box_clip:c}
% A wrapper around the driver-dependent code.
% \begin{macrocode}
\cs_new_protected:Npn \box_clip:N #1
{ \hbox_set:Nn #1 { \driver_box_use_clip:N #1 } }
\cs_generate_variant:Nn \box_clip:N { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\box_trim:Nnnnn, \box_trim:cnnnn}
% Trimming from the left- and right-hand edges of the box is easy: kern the
% appropriate parts off each side.
% \begin{macrocode}
\cs_new_protected:Npn \box_trim:Nnnnn #1#2#3#4#5
{
\hbox_set:Nn \l_@@_internal_box
{
\tex_kern:D - \@@_dim_eval:n {#2}
\box_use:N #1
\tex_kern:D - \@@_dim_eval:n {#4}
}
% \end{macrocode}
% For the height and depth, there is a need to watch the baseline is
% respected. Material always has to stay on the correct side, so trimming
% has to check that there is enough material to trim. First, the bottom
% edge. If there is enough depth, simply set the depth, or if not move
% down so the result is zero depth. \cs{box_move_down:nn} is used in both
% cases so the resulting box always contains a \tn{lower} primitive.
% The internal box is used here as it allows safe use of \cs{box_set_dp:Nn}.
% \begin{macrocode}
\dim_compare:nNnTF { \box_dp:N #1 } > {#3}
{
\hbox_set:Nn \l_@@_internal_box
{
\box_move_down:nn \c_zero_dim
{ \box_use:N \l_@@_internal_box }
}
\box_set_dp:Nn \l_@@_internal_box { \box_dp:N #1 - (#3) }
}
{
\hbox_set:Nn \l_@@_internal_box
{
\box_move_down:nn { (#3) - \box_dp:N #1 }
{ \box_use:N \l_@@_internal_box }
}
\box_set_dp:Nn \l_@@_internal_box \c_zero_dim
}
% \end{macrocode}
% Same thing, this time from the top of the box.
% \begin{macrocode}
\dim_compare:nNnTF { \box_ht:N \l_@@_internal_box } > {#5}
{
\hbox_set:Nn \l_@@_internal_box
{
\box_move_up:nn \c_zero_dim
{ \box_use:N \l_@@_internal_box }
}
\box_set_ht:Nn \l_@@_internal_box
{ \box_ht:N \l_@@_internal_box - (#5) }
}
{
\hbox_set:Nn \l_@@_internal_box
{
\box_move_up:nn { (#5) - \box_ht:N \l_@@_internal_box }
{ \box_use:N \l_@@_internal_box }
}
\box_set_ht:Nn \l_@@_internal_box \c_zero_dim
}
\box_set_eq:NN #1 \l_@@_internal_box
}
\cs_generate_variant:Nn \box_trim:Nnnnn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\box_viewport:Nnnnn, \box_viewport:cnnnn}
% The same general logic as for the trim operation, but with absolute
% dimensions. As a result, there are some things to watch out for in the
% vertical direction.
% \begin{macrocode}
\cs_new_protected:Npn \box_viewport:Nnnnn #1#2#3#4#5
{
\hbox_set:Nn \l_@@_internal_box
{
\tex_kern:D - \@@_dim_eval:n {#2}
\box_use:N #1
\tex_kern:D \@@_dim_eval:n { #4 - \box_wd:N #1 }
}
\dim_compare:nNnTF {#3} < \c_zero_dim
{
\hbox_set:Nn \l_@@_internal_box
{
\box_move_down:nn \c_zero_dim
{ \box_use:N \l_@@_internal_box }
}
\box_set_dp:Nn \l_@@_internal_box { - \@@_dim_eval:n {#3} }
}
{
\hbox_set:Nn \l_@@_internal_box
{ \box_move_down:nn {#3} { \box_use:N \l_@@_internal_box } }
\box_set_dp:Nn \l_@@_internal_box \c_zero_dim
}
\dim_compare:nNnTF {#5} > \c_zero_dim
{
\hbox_set:Nn \l_@@_internal_box
{
\box_move_up:nn \c_zero_dim
{ \box_use:N \l_@@_internal_box }
}
\box_set_ht:Nn \l_@@_internal_box
{
(#5)
\dim_compare:nNnT {#3} > \c_zero_dim
{ - (#3) }
}
}
{
\hbox_set:Nn \l_@@_internal_box
{
\box_move_up:nn { - \@@_dim_eval:n {#5} }
{ \box_use:N \l_@@_internal_box }
}
\box_set_ht:Nn \l_@@_internal_box \c_zero_dim
}
\box_set_eq:NN #1 \l_@@_internal_box
}
\cs_generate_variant:Nn \box_viewport:Nnnnn { c }
% \end{macrocode}
% \end{macro}
%
% \subsection{Additions to \pkg{l3clist}}
%
% \begin{macrocode}
%<@@=clist>
% \end{macrocode}
%
% \begin{macro}{\clist_rand_item:n, \clist_rand_item:N, \clist_rand_item:c}
% \begin{macro}{\@@_rand_item:nn}
% The |N|-type function is not implemented through the |n|-type
% function for efficiency: for instance comma-list variables do not
% require space-trimming of their items. Even testing for emptyness
% of an |n|-type comma-list is slow, so we count items first and use
% that both for the emptyness test and the pseudo-random integer.
% Importantly, \cs{clist_item:Nn} and \cs{clist_item:nn} only evaluate
% their argument once.
% \begin{macrocode}
\cs_new:Npn \clist_rand_item:n #1
{ \exp_args:Nf \@@_rand_item:nn { \clist_count:n {#1} } {#1} }
\cs_new:Npn \@@_rand_item:nn #1#2
{
\int_compare:nNnF {#1} = 0
{ \clist_item:nn {#2} { \int_rand:nn { 1 } {#1} } }
}
\cs_new:Npn \clist_rand_item:N #1
{
\clist_if_empty:NF #1
{ \clist_item:Nn #1 { \int_rand:nn { 1 } { \clist_count:N #1 } } }
}
\cs_generate_variant:Nn \clist_rand_item:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Additions to \pkg{l3coffins}}
%
% \begin{macrocode}
%<@@=coffin>
% \end{macrocode}
%
% \subsubsection{Rotating coffins}
%
% \begin{variable}{\l_@@_sin_fp}
% \begin{variable}{\l_@@_cos_fp}
% Used for rotations to get the sine and cosine values.
% \begin{macrocode}
\fp_new:N \l_@@_sin_fp
\fp_new:N \l_@@_cos_fp
% \end{macrocode}
% \end{variable}
% \end{variable}
%
% \begin{variable}{\l_@@_bounding_prop}
% A property list for the bounding box of a coffin. This is only needed
% during the rotation, so there is just the one.
% \begin{macrocode}
\prop_new:N \l_@@_bounding_prop
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\l_@@_bounding_shift_dim}
% The shift of the bounding box of a coffin from the real content.
% \begin{macrocode}
\dim_new:N \l_@@_bounding_shift_dim
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\l_@@_left_corner_dim}
% \begin{variable}{\l_@@_right_corner_dim}
% \begin{variable}{\l_@@_bottom_corner_dim}
% \begin{variable}{\l_@@_top_corner_dim}
% These are used to hold maxima for the various corner values: these
% thus define the minimum size of the bounding box after rotation.
% \begin{macrocode}
\dim_new:N \l_@@_left_corner_dim
\dim_new:N \l_@@_right_corner_dim
\dim_new:N \l_@@_bottom_corner_dim
\dim_new:N \l_@@_top_corner_dim
% \end{macrocode}
% \end{variable}
% \end{variable}
% \end{variable}
% \end{variable}
%
% \begin{macro}{\coffin_rotate:Nn, \coffin_rotate:cn}
% Rotating a coffin requires several steps which can be conveniently
% run together. The sine and cosine of the angle in degrees are
% computed. This is then used to set \cs{l_@@_sin_fp} and
% \cs{l_@@_cos_fp}, which are carried through unchanged for the rest
% of the procedure.
% \begin{macrocode}
\cs_new_protected:Npn \coffin_rotate:Nn #1#2
{
\fp_set:Nn \l_@@_sin_fp { sind ( #2 ) }
\fp_set:Nn \l_@@_cos_fp { cosd ( #2 ) }
% \end{macrocode}
% The corners and poles of the coffin can now be rotated around the
% origin. This is best achieved using mapping functions.
% \begin{macrocode}
\prop_map_inline:cn { l_@@_corners_ \@@_to_value:N #1 _prop }
{ \@@_rotate_corner:Nnnn #1 {##1} ##2 }
\prop_map_inline:cn { l_@@_poles_ \@@_to_value:N #1 _prop }
{ \@@_rotate_pole:Nnnnnn #1 {##1} ##2 }
% \end{macrocode}
% The bounding box of the coffin needs to be rotated, and to do this
% the corners have to be found first. They are then rotated in the same
% way as the corners of the coffin material itself.
% \begin{macrocode}
\@@_set_bounding:N #1
\prop_map_inline:Nn \l_@@_bounding_prop
{ \@@_rotate_bounding:nnn {##1} ##2 }
% \end{macrocode}
% At this stage, there needs to be a calculation to find where the
% corners of the content and the box itself will end up.
% \begin{macrocode}
\@@_find_corner_maxima:N #1
\@@_find_bounding_shift:
\box_rotate:Nn #1 {#2}
% \end{macrocode}
% The correction of the box position itself takes place here. The idea
% is that the bounding box for a coffin is tight up to the content, and
% has the reference point at the bottom-left. The $x$-direction is
% handled by moving the content by the difference in the positions of
% the bounding box and the content left edge. The $y$-direction is
% dealt with by moving the box down by any depth it has acquired. The
% internal box is used here to allow for the next step.
% \begin{macrocode}
\hbox_set:Nn \l_@@_internal_box
{
\tex_kern:D
\dim_eval:n
{ \l_@@_bounding_shift_dim - \l_@@_left_corner_dim }
\exp_stop_f:
\box_move_down:nn { \l_@@_bottom_corner_dim }
{ \box_use:N #1 }
}
% \end{macrocode}
% If there have been any previous rotations then the size of the
% bounding box will be bigger than the contents. This can be corrected
% easily by setting the size of the box to the height and width of the
% content. As this operation requires setting box dimensions and these
% transcend grouping, the safe way to do this is to use the internal box
% and to reset the result into the target box.
% \begin{macrocode}
\box_set_ht:Nn \l_@@_internal_box
{ \l_@@_top_corner_dim - \l_@@_bottom_corner_dim }
\box_set_dp:Nn \l_@@_internal_box { 0 pt }
\box_set_wd:Nn \l_@@_internal_box
{ \l_@@_right_corner_dim - \l_@@_left_corner_dim }
\hbox_set:Nn #1 { \box_use:N \l_@@_internal_box }
% \end{macrocode}
% The final task is to move the poles and corners such that they are
% back in alignment with the box reference point.
% \begin{macrocode}
\prop_map_inline:cn { l_@@_corners_ \@@_to_value:N #1 _prop }
{ \@@_shift_corner:Nnnn #1 {##1} ##2 }
\prop_map_inline:cn { l_@@_poles_ \@@_to_value:N #1 _prop }
{ \@@_shift_pole:Nnnnnn #1 {##1} ##2 }
}
\cs_generate_variant:Nn \coffin_rotate:Nn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_set_bounding:N}
% The bounding box corners for a coffin are easy enough to find: this
% is the same code as for the corners of the material itself, but
% using a dedicated property list.
% \begin{macrocode}
\cs_new_protected:Npn \@@_set_bounding:N #1
{
\prop_put:Nnx \l_@@_bounding_prop { tl }
{ { 0 pt } { \dim_eval:n { \box_ht:N #1 } } }
\prop_put:Nnx \l_@@_bounding_prop { tr }
{
{ \dim_eval:n { \box_wd:N #1 } }
{ \dim_eval:n { \box_ht:N #1 } }
}
\dim_set:Nn \l_@@_internal_dim { -\box_dp:N #1 }
\prop_put:Nnx \l_@@_bounding_prop { bl }
{ { 0 pt } { \dim_use:N \l_@@_internal_dim } }
\prop_put:Nnx \l_@@_bounding_prop { br }
{
{ \dim_eval:n { \box_wd:N #1 } }
{ \dim_use:N \l_@@_internal_dim }
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_rotate_bounding:nnn}
% \begin{macro}{\@@_rotate_corner:Nnnn}
% Rotating the position of the corner of the coffin is just a case
% of treating this as a vector from the reference point. The same
% treatment is used for the corners of the material itself and the
% bounding box.
% \begin{macrocode}
\cs_new_protected:Npn \@@_rotate_bounding:nnn #1#2#3
{
\@@_rotate_vector:nnNN {#2} {#3} \l_@@_x_dim \l_@@_y_dim
\prop_put:Nnx \l_@@_bounding_prop {#1}
{ { \dim_use:N \l_@@_x_dim } { \dim_use:N \l_@@_y_dim } }
}
\cs_new_protected:Npn \@@_rotate_corner:Nnnn #1#2#3#4
{
\@@_rotate_vector:nnNN {#3} {#4} \l_@@_x_dim \l_@@_y_dim
\prop_put:cnx { l_@@_corners_ \@@_to_value:N #1 _prop } {#2}
{ { \dim_use:N \l_@@_x_dim } { \dim_use:N \l_@@_y_dim } }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_rotate_pole:Nnnnnn}
% Rotating a single pole simply means shifting the co-ordinate of
% the pole and its direction. The rotation here is about the bottom-left
% corner of the coffin.
% \begin{macrocode}
\cs_new_protected:Npn \@@_rotate_pole:Nnnnnn #1#2#3#4#5#6
{
\@@_rotate_vector:nnNN {#3} {#4} \l_@@_x_dim \l_@@_y_dim
\@@_rotate_vector:nnNN {#5} {#6}
\l_@@_x_prime_dim \l_@@_y_prime_dim
\@@_set_pole:Nnx #1 {#2}
{
{ \dim_use:N \l_@@_x_dim } { \dim_use:N \l_@@_y_dim }
{ \dim_use:N \l_@@_x_prime_dim }
{ \dim_use:N \l_@@_y_prime_dim }
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_rotate_vector:nnNN}
% A rotation function, which needs only an input vector (as dimensions)
% and an output space. The values \cs{l_@@_cos_fp} and
% \cs{l_@@_sin_fp} should previously have been set up correctly.
% Working this way means that the floating point work is kept to a
% minimum: for any given rotation the sin and cosine values do no
% change, after all.
% \begin{macrocode}
\cs_new_protected:Npn \@@_rotate_vector:nnNN #1#2#3#4
{
\dim_set:Nn #3
{
\fp_to_dim:n
{
\dim_to_fp:n {#1} * \l_@@_cos_fp
- \dim_to_fp:n {#2} * \l_@@_sin_fp
}
}
\dim_set:Nn #4
{
\fp_to_dim:n
{
\dim_to_fp:n {#1} * \l_@@_sin_fp
+ \dim_to_fp:n {#2} * \l_@@_cos_fp
}
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_find_corner_maxima:N}
% \begin{macro}{\@@_find_corner_maxima_aux:nn}
% The idea here is to find the extremities of the content of the
% coffin. This is done by looking for the smallest values for the bottom
% and left corners, and the largest values for the top and right
% corners. The values start at the maximum dimensions so that the
% case where all are positive or all are negative works out correctly.
% \begin{macrocode}
\cs_new_protected:Npn \@@_find_corner_maxima:N #1
{
\dim_set:Nn \l_@@_top_corner_dim { -\c_max_dim }
\dim_set:Nn \l_@@_right_corner_dim { -\c_max_dim }
\dim_set:Nn \l_@@_bottom_corner_dim { \c_max_dim }
\dim_set:Nn \l_@@_left_corner_dim { \c_max_dim }
\prop_map_inline:cn { l_@@_corners_ \@@_to_value:N #1 _prop }
{ \@@_find_corner_maxima_aux:nn ##2 }
}
\cs_new_protected:Npn \@@_find_corner_maxima_aux:nn #1#2
{
\dim_set:Nn \l_@@_left_corner_dim
{ \dim_min:nn { \l_@@_left_corner_dim } {#1} }
\dim_set:Nn \l_@@_right_corner_dim
{ \dim_max:nn { \l_@@_right_corner_dim } {#1} }
\dim_set:Nn \l_@@_bottom_corner_dim
{ \dim_min:nn { \l_@@_bottom_corner_dim } {#2} }
\dim_set:Nn \l_@@_top_corner_dim
{ \dim_max:nn { \l_@@_top_corner_dim } {#2} }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_find_bounding_shift:}
% \begin{macro}{\@@_find_bounding_shift_aux:nn}
% The approach to finding the shift for the bounding box is similar to
% that for the corners. However, there is only one value needed here and
% a fixed input property list, so things are a bit clearer.
% \begin{macrocode}
\cs_new_protected:Npn \@@_find_bounding_shift:
{
\dim_set:Nn \l_@@_bounding_shift_dim { \c_max_dim }
\prop_map_inline:Nn \l_@@_bounding_prop
{ \@@_find_bounding_shift_aux:nn ##2 }
}
\cs_new_protected:Npn \@@_find_bounding_shift_aux:nn #1#2
{
\dim_set:Nn \l_@@_bounding_shift_dim
{ \dim_min:nn { \l_@@_bounding_shift_dim } {#1} }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_shift_corner:Nnnn}
% \begin{macro}{\@@_shift_pole:Nnnnnn}
% Shifting the corners and poles of a coffin means subtracting the
% appropriate values from the $x$- and $y$-components. For
% the poles, this means that the direction vector is unchanged.
% \begin{macrocode}
\cs_new_protected:Npn \@@_shift_corner:Nnnn #1#2#3#4
{
\prop_put:cnx { l_@@_corners_ \@@_to_value:N #1 _ prop } {#2}
{
{ \dim_eval:n { #3 - \l_@@_left_corner_dim } }
{ \dim_eval:n { #4 - \l_@@_bottom_corner_dim } }
}
}
\cs_new_protected:Npn \@@_shift_pole:Nnnnnn #1#2#3#4#5#6
{
\prop_put:cnx { l_@@_poles_ \@@_to_value:N #1 _ prop } {#2}
{
{ \dim_eval:n { #3 - \l_@@_left_corner_dim } }
{ \dim_eval:n { #4 - \l_@@_bottom_corner_dim } }
{#5} {#6}
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsubsection{Resizing coffins}
%
% \begin{variable}{\l_@@_scale_x_fp}
% \begin{variable}{\l_@@_scale_y_fp}
% Storage for the scaling factors in $x$ and $y$, respectively.
% \begin{macrocode}
\fp_new:N \l_@@_scale_x_fp
\fp_new:N \l_@@_scale_y_fp
% \end{macrocode}
% \end{variable}
% \end{variable}
%
% \begin{variable}{\l_@@_scaled_total_height_dim}
% \begin{variable}{\l_@@_scaled_width_dim}
% When scaling, the values given have to be turned into absolute values.
% \begin{macrocode}
\dim_new:N \l_@@_scaled_total_height_dim
\dim_new:N \l_@@_scaled_width_dim
% \end{macrocode}
% \end{variable}
% \end{variable}
%
% \begin{macro}{\coffin_resize:Nnn, \coffin_resize:cnn}
% Resizing a coffin begins by setting up the user-friendly names for
% the dimensions of the coffin box. The new sizes are then turned into
% scale factor. This is the same operation as takes place for the
% underlying box, but that operation is grouped and so the same
% calculation is done here.
% \begin{macrocode}
\cs_new_protected:Npn \coffin_resize:Nnn #1#2#3
{
\fp_set:Nn \l_@@_scale_x_fp
{ \dim_to_fp:n {#2} / \dim_to_fp:n { \coffin_wd:N #1 } }
\fp_set:Nn \l_@@_scale_y_fp
{
\dim_to_fp:n {#3}
/ \dim_to_fp:n { \coffin_ht:N #1 + \coffin_dp:N #1 }
}
\box_resize_to_wd_and_ht_plus_dp:Nnn #1 {#2} {#3}
\@@_resize_common:Nnn #1 {#2} {#3}
}
\cs_generate_variant:Nn \coffin_resize:Nnn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_resize_common:Nnn}
% The poles and corners of the coffin are scaled to the appropriate
% places before actually resizing the underlying box.
% \begin{macrocode}
\cs_new_protected:Npn \@@_resize_common:Nnn #1#2#3
{
\prop_map_inline:cn { l_@@_corners_ \@@_to_value:N #1 _prop }
{ \@@_scale_corner:Nnnn #1 {##1} ##2 }
\prop_map_inline:cn { l_@@_poles_ \@@_to_value:N #1 _prop }
{ \@@_scale_pole:Nnnnnn #1 {##1} ##2 }
% \end{macrocode}
% Negative $x$-scaling values place the poles in the wrong
% location: this is corrected here.
% \begin{macrocode}
\fp_compare:nNnT \l_@@_scale_x_fp < \c_zero_fp
{
\prop_map_inline:cn
{ l_@@_corners_ \@@_to_value:N #1 _prop }
{ \@@_x_shift_corner:Nnnn #1 {##1} ##2 }
\prop_map_inline:cn
{ l_@@_poles_ \@@_to_value:N #1 _prop }
{ \@@_x_shift_pole:Nnnnnn #1 {##1} ##2 }
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\coffin_scale:Nnn, \coffin_scale:cnn}
% For scaling, the opposite calculation is done to find the new
% dimensions for the coffin. Only the total height is needed, as this
% is the shift required for corners and poles. The scaling is done
% the \TeX{} way as this works properly with floating point values
% without needing to use the \texttt{fp} module.
% \begin{macrocode}
\cs_new_protected:Npn \coffin_scale:Nnn #1#2#3
{
\fp_set:Nn \l_@@_scale_x_fp {#2}
\fp_set:Nn \l_@@_scale_y_fp {#3}
\box_scale:Nnn #1 { \l_@@_scale_x_fp } { \l_@@_scale_y_fp }
\dim_set:Nn \l_@@_internal_dim
{ \coffin_ht:N #1 + \coffin_dp:N #1 }
\dim_set:Nn \l_@@_scaled_total_height_dim
{ \fp_abs:n { \l_@@_scale_y_fp } \l_@@_internal_dim }
\dim_set:Nn \l_@@_scaled_width_dim
{ -\fp_abs:n { \l_@@_scale_x_fp } \coffin_wd:N #1 }
\@@_resize_common:Nnn #1
{ \l_@@_scaled_width_dim } { \l_@@_scaled_total_height_dim }
}
\cs_generate_variant:Nn \coffin_scale:Nnn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_scale_vector:nnNN}
% This functions scales a vector from the origin using the pre-set scale
% factors in $x$ and $y$. This is a much less complex operation
% than rotation, and as a result the code is a lot clearer.
% \begin{macrocode}
\cs_new_protected:Npn \@@_scale_vector:nnNN #1#2#3#4
{
\dim_set:Nn #3
{ \fp_to_dim:n { \dim_to_fp:n {#1} * \l_@@_scale_x_fp } }
\dim_set:Nn #4
{ \fp_to_dim:n { \dim_to_fp:n {#2} * \l_@@_scale_y_fp } }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\@@_scale_corner:Nnnn}
% \begin{macro}{\@@_scale_pole:Nnnnnn}
% Scaling both corners and poles is a simple calculation using the
% preceding vector scaling.
% \begin{macrocode}
\cs_new_protected:Npn \@@_scale_corner:Nnnn #1#2#3#4
{
\@@_scale_vector:nnNN {#3} {#4} \l_@@_x_dim \l_@@_y_dim
\prop_put:cnx { l_@@_corners_ \@@_to_value:N #1 _prop } {#2}
{ { \dim_use:N \l_@@_x_dim } { \dim_use:N \l_@@_y_dim } }
}
\cs_new_protected:Npn \@@_scale_pole:Nnnnnn #1#2#3#4#5#6
{
\@@_scale_vector:nnNN {#3} {#4} \l_@@_x_dim \l_@@_y_dim
\@@_set_pole:Nnx #1 {#2}
{
{ \dim_use:N \l_@@_x_dim } { \dim_use:N \l_@@_y_dim }
{#5} {#6}
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_x_shift_corner:Nnnn}
% \begin{macro}{\@@_x_shift_pole:Nnnnnn}
% These functions correct for the $x$ displacement that takes
% place with a negative horizontal scaling.
% \begin{macrocode}
\cs_new_protected:Npn \@@_x_shift_corner:Nnnn #1#2#3#4
{
\prop_put:cnx { l_@@_corners_ \@@_to_value:N #1 _prop } {#2}
{
{ \dim_eval:n { #3 + \box_wd:N #1 } } {#4}
}
}
\cs_new_protected:Npn \@@_x_shift_pole:Nnnnnn #1#2#3#4#5#6
{
\prop_put:cnx { l_@@_poles_ \@@_to_value:N #1 _prop } {#2}
{
{ \dim_eval:n { #3 + \box_wd:N #1 } } {#4}
{#5} {#6}
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Additions to \pkg{l3file}}
%
% \begin{macrocode}
%<@@=file>
% \end{macrocode}
%
% \begin{macro}
% {\file_get_mdfive_hash:nN, \file_get_size:nN, \file_get_timestamp:nN}
% \begin{macro}{\@@_get_details:nnN}
% These are all wrappers around the \pdfTeX{} primitives doing the same
% jobs: as we want consistent file paths to be found, they are all set up
% using \cs{file_get_full_name:nN} and so are non-expandable \texttt{get}
% functions. Much of the code is repetitive but we need to branch for
% \LuaTeX{} (emulation in Lua), for the slightly different syntax
% needed for \tn{tex_mdfivesum:D} and for the fact that primitive
% coverage varies in other engines.
% \begin{macrocode}
\cs_new_protected:Npn \file_get_mdfive_hash:nN #1#2
{ \@@_get_details:nnN {#1} { mdfivesum } {#2} }
\cs_new_protected:Npn \file_get_size:nN #1#2
{ \@@_get_details:nnN {#1} { size } {#2} }
\cs_new_protected:Npn \file_get_timestamp:nN #1#2
{ \@@_get_details:nnN {#1} { moddate } {#2} }
\cs_new_protected:Npn \@@_get_details:nnN #1#2#3
{
\file_get_full_name:nN {#1} \l_@@_full_name_str
\str_set:Nx #3
{
\use:c { tex_file #2 :D } \exp_after:wN
{ \l_@@_full_name_str }
}
}
\sys_if_engine_luatex:TF
{
\cs_set_protected:Npn \@@_get_details:nnN #1#2#3
{
\file_get_full_name:nN {#1} \l_@@_full_name_str
\str_set:Nx #3
{
\lua_now:e
{
l3kernel.file#2
( " \lua_escape:e { \l_@@_full_name_str } " )
}
}
}
}
{
\cs_set_protected:Npn \file_get_mdfive_hash:nN #1#2
{
\file_get_full_name:nN {#1} \l_@@_full_name_str
\tl_set:Nx #2
{
\tex_mdfivesum:D file \exp_after:wN
{ \l_@@_full_name_str }
}
}
\cs_if_exist:NF \tex_filesize:D
{
\cs_set_protected:Npn \@@_get_details:nnN #1#2#3
{
\tl_clear:N #3
\__kernel_msg_error:nnx
{ kernel } { primitive-not-available }
{ \exp_not:c { (pdf)file #2 } }
}
}
}
\__kernel_msg_new:nnnn { kernel } { primitive-not-available }
{ Primitive~\token_to_str:N #1 not~available }
{
The~version~of~XeTeX~in~use~does~not~provide~functionality~equivalent~to~
the~\token_to_str:N #1 primitive.
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\file_if_exist_input:n, \file_if_exist_input:nF}
% Input of a file with a test for existence. We do not define the |T|
% or |TF| variants because the most useful place to place the
% \meta{true code} would be inconsistent with other conditionals.
% \begin{macrocode}
\cs_new_protected:Npn \file_if_exist_input:n #1
{
\file_get_full_name:nN {#1} \l_@@_full_name_str
\str_if_empty:NF \l_@@_full_name_str
{ \@@_input:V \l_@@_full_name_str }
}
\cs_new_protected:Npn \file_if_exist_input:nF #1#2
{
\file_get_full_name:nN {#1} \l_@@_full_name_str
\str_if_empty:NTF \l_@@_full_name_str
{#2}
{ \@@_input:V \l_@@_full_name_str }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\file_input_stop:}
% A simple rename.
% \begin{macrocode}
\cs_new_protected:Npn \file_input_stop: { \tex_endinput:D }
% \end{macrocode}
% \end{macro}
%
% \subsection{Additions to \pkg{l3flag}}
%
% \begin{macrocode}
%<@@=flag>
% \end{macrocode}
%
% \begin{macro}[EXP]{\flag_raise_if_clear:n}
% It might be faster to just call the \enquote{trap} function in all
% cases but conceptually the function name suggests we should only run
% it if the flag is zero in case the \enquote{trap} made customizable
% in the future.
% \begin{macrocode}
\__kernel_patch:nnNNpn { \@@_chk_exist:n {#1} } { }
\cs_new:Npn \flag_raise_if_clear:n #1
{
\if_cs_exist:w flag~#1~0 \cs_end:
\else:
\cs:w flag~#1 \cs_end: 0 ;
\fi:
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Additions to \pkg{l3msg}}
%
% \begin{macrocode}
%<@@=msg>
% \end{macrocode}
%
% \begin{macro}[EXP]
% {
% \msg_expandable_error:nnnnnn ,
% \msg_expandable_error:nnnnn ,
% \msg_expandable_error:nnnn ,
% \msg_expandable_error:nnn ,
% \msg_expandable_error:nn ,
% \msg_expandable_error:nnffff ,
% \msg_expandable_error:nnfff ,
% \msg_expandable_error:nnff ,
% \msg_expandable_error:nnf
% }
% \begin{macro}{\@@_expandable_error_module:nn}
% Pass to an auxiliary the message to display and the module name
% \begin{macrocode}
\cs_new:Npn \msg_expandable_error:nnnnnn #1#2#3#4#5#6
{
\exp_args:Nf \@@_expandable_error_module:nn
{
\exp_args:Nf \tl_to_str:n
{ \use:c { \c_@@_text_prefix_tl #1 / #2 } {#3} {#4} {#5} {#6} }
}
{#1}
}
\cs_new:Npn \msg_expandable_error:nnnnn #1#2#3#4#5
{ \msg_expandable_error:nnnnnn {#1} {#2} {#3} {#4} {#5} { } }
\cs_new:Npn \msg_expandable_error:nnnn #1#2#3#4
{ \msg_expandable_error:nnnnnn {#1} {#2} {#3} {#4} { } { } }
\cs_new:Npn \msg_expandable_error:nnn #1#2#3
{ \msg_expandable_error:nnnnnn {#1} {#2} {#3} { } { } { } }
\cs_new:Npn \msg_expandable_error:nn #1#2
{ \msg_expandable_error:nnnnnn {#1} {#2} { } { } { } { } }
\cs_generate_variant:Nn \msg_expandable_error:nnnnnn { nnffff }
\cs_generate_variant:Nn \msg_expandable_error:nnnnn { nnfff }
\cs_generate_variant:Nn \msg_expandable_error:nnnn { nnff }
\cs_generate_variant:Nn \msg_expandable_error:nnn { nnf }
\cs_new:Npn \@@_expandable_error_module:nn #1#2
{
\exp_after:wN \exp_after:wN
\exp_after:wN \use_none_delimit_by_q_stop:w
\use:n { \::error ! ~ #2 : ~ #1 } \q_stop
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\msg_show_eval:Nn, \msg_log_eval:Nn, \@@_show_eval:nnN}
% A short-hand used for \cs{int_show:n} and similar functions that
% passes to \cs{tl_show:n} the result of applying |#1| (a
% function such as \cs{int_eval:n}) to the expression |#2|. The use of
% \texttt{f}-expansion ensures that |#1| is expanded in the scope in which the
% show command is called, rather than in the group created by
% \cs{iow_wrap:nnnN}. This is only important for expressions
% involving the \tn{currentgrouplevel} or \tn{currentgrouptype}.
% On the other hand we want the expression to be converted to a string
% with the usual escape character, hence within the wrapping code.
% \begin{macrocode}
\cs_new_protected:Npn \msg_show_eval:Nn #1#2
{ \exp_args:Nf \@@_show_eval:nnN { #1 {#2} } {#2} \tl_show:n }
\cs_new_protected:Npn \msg_log_eval:Nn #1#2
{ \exp_args:Nf \@@_show_eval:nnN { #1 {#2} } {#2} \tl_log:n }
\cs_new_protected:Npn \@@_show_eval:nnN #1#2#3 { #3 { #2 = #1 } }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\msg_show_item:n}
% \begin{macro}[EXP]{\msg_show_item_unbraced:n}
% \begin{macro}[EXP]{\msg_show_item:nn}
% \begin{macro}[EXP]{\msg_show_item_unbraced:nn}
% Each item in the variable is formatted using one of the following
% functions. We cannot use |\\| and so on because these short-hands
% cannot be used inside the arguments of messages, only when defining
% the messages.
% \begin{macrocode}
\cs_new:Npx \msg_show_item:n #1
{ \iow_newline: > ~ \c_space_tl \exp_not:N \tl_to_str:n { {#1} } }
\cs_new:Npx \msg_show_item_unbraced:n #1
{ \iow_newline: > ~ \c_space_tl \exp_not:N \tl_to_str:n {#1} }
\cs_new:Npx \msg_show_item:nn #1#2
{
\iow_newline: > \use:nn { ~ } { ~ }
\exp_not:N \tl_to_str:n { {#1} }
\use:nn { ~ } { ~ } => \use:nn { ~ } { ~ }
\exp_not:N \tl_to_str:n { {#2} }
}
\cs_new:Npx \msg_show_item_unbraced:nn #1#2
{
\iow_newline: > \use:nn { ~ } { ~ }
\exp_not:N \tl_to_str:n {#1}
\use:nn { ~ } { ~ } => \use:nn { ~ } { ~ }
\exp_not:N \tl_to_str:n {#2}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Additions to \pkg{l3prg}}
%
% \begin{macro}[added = 2017-11-28]{\bool_const:Nn, \bool_const:cn}
% A merger between \cs{tl_const:Nn} and \cs{bool_set:Nn}.
% \begin{macrocode}
\__kernel_patch:nnNNpn { \__kernel_chk_var_scope:NN c #1 } { }
\cs_new_protected:Npn \bool_const:Nn #1#2
{
\__kernel_chk_if_free_cs:N #1
\tex_global:D \tex_chardef:D #1 = \bool_if_p:n {#2}
}
\cs_generate_variant:Nn \bool_const:Nn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[added = 2018-05-10]
% {\bool_set_inverse:N, \bool_set_inverse:c, \bool_gset_inverse:N, \bool_gset_inverse:c}
% Set to \texttt{false} or \texttt{true} locally or globally.
% \begin{macrocode}
\cs_new_protected:Npn \bool_set_inverse:N #1
{ \bool_if:NTF #1 { \bool_set_false:N } { \bool_set_true:N } #1 }
\cs_generate_variant:Nn \bool_set_inverse:N { c }
\cs_new_protected:Npn \bool_gset_inverse:N #1
{ \bool_if:NTF #1 { \bool_gset_false:N } { \bool_gset_true:N } #1 }
\cs_generate_variant:Nn \bool_gset_inverse:N { c }
% \end{macrocode}
% \end{macro}
%
% \subsection{Additions to \pkg{l3prop}}
%
% \begin{macrocode}
%<@@=prop>
% \end{macrocode}
%
% \begin{macro}[EXP]{\prop_count:N, \prop_count:c}
% \begin{macro}[EXP]{\@@_count:nn}
% Counting the key--value pairs in a property list is done using the
% same approach as for other count functions: turn each entry into a
% \texttt{+1} then use integer evaluation to actually do the
% mathematics.
% \begin{macrocode}
\cs_new:Npn \prop_count:N #1
{
\int_eval:n
{
0
\prop_map_function:NN #1 \@@_count:nn
}
}
\cs_new:Npn \@@_count:nn #1#2 { + 1 }
\cs_generate_variant:Nn \prop_count:N { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[rEXP]{\prop_map_tokens:Nn, \prop_map_tokens:cn}
% \begin{macro}{\@@_map_tokens:nwwn}
% The mapping is very similar to \cs{prop_map_function:NN}. The
% \cs{use_i:nn} removes the leading \cs{s_@@}. The odd construction
% |\use:n {#1}| allows |#1| to contain any token without interfering
% with \cs{prop_map_break:}. The loop stops when the argument
% delimited by \cs{@@_pair:wn} is \cs{prg_break:} instead of being
% empty.
% \begin{macrocode}
\cs_new:Npn \prop_map_tokens:Nn #1#2
{
\exp_last_unbraced:Nno
\use_i:nn { \@@_map_tokens:nwwn {#2} } #1
\prg_break: \@@_pair:wn \s_@@ { } \prg_break_point:
\prg_break_point:Nn \prop_map_break: { }
}
\cs_new:Npn \@@_map_tokens:nwwn #1#2 \@@_pair:wn #3 \s_@@ #4
{
#2
\use:n {#1} {#3} {#4}
\@@_map_tokens:nwwn {#1}
}
\cs_generate_variant:Nn \prop_map_tokens:Nn { c }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]
% {\prop_rand_key_value:N, \prop_rand_key_value:c}
% \begin{macro}[EXP]{\@@_rand_item:w}
% Contrarily to |clist|, |seq| and |tl|, there is no function to get
% an item of a |prop| given an integer between $1$ and the number of
% items, so we write the appropriate code. There is no bounds
% checking because \cs{int_rand:nn} is always within bounds. The
% initial \cs{int_value:w} is stopped by the first \cs{s_@@} in~|#1|.
% \begin{macrocode}
\cs_new:Npn \prop_rand_key_value:N #1
{
\prop_if_empty:NF #1
{
\exp_after:wN \@@_rand_item:w
\int_value:w \int_rand:nn { 1 } { \prop_count:N #1 }
#1 \q_stop
}
}
\cs_generate_variant:Nn \prop_rand_key_value:N { c }
\cs_new:Npn \@@_rand_item:w #1 \s_@@ \@@_pair:wn #2 \s_@@ #3
{
\int_compare:nNnF {#1} > 1
{ \use_i_delimit_by_q_stop:nw { \exp_not:n { {#2} {#3} } } }
\exp_after:wN \@@_rand_item:w
\int_value:w \int_eval:n { #1 - 1 } \s_@@
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Additions to \pkg{l3seq}}
%
% \begin{macrocode}
%<@@=seq>
% \end{macrocode}
%
% \begin{macro}
% {
% \seq_mapthread_function:NNN, \seq_mapthread_function:NcN,
% \seq_mapthread_function:cNN, \seq_mapthread_function:ccN
% }
% \begin{macro}
% {
% \@@_mapthread_function:wNN, \@@_mapthread_function:wNw,
% \@@_mapthread_function:Nnnwnn
% }
% The idea is to first expand both sequences, adding the
% usual |{ ? \prg_break: } { }| to the end of each one. This is
% most conveniently done in two steps using an auxiliary function.
% The mapping then throws away the first tokens of |#2| and |#5|,
% which for items in both sequences are \cs{s_@@}
% \cs{@@_item:n}. The function to be mapped are then be applied to
% the two entries. When the code hits the end of one of the
% sequences, the break material stops the entire loop and tidy up.
% This avoids needing to find the count of the two sequences, or
% worrying about which is longer.
% \begin{macrocode}
\cs_new:Npn \seq_mapthread_function:NNN #1#2#3
{ \exp_after:wN \@@_mapthread_function:wNN #2 \q_stop #1 #3 }
\cs_new:Npn \@@_mapthread_function:wNN \s_@@ #1 \q_stop #2#3
{
\exp_after:wN \@@_mapthread_function:wNw #2 \q_stop #3
#1 { ? \prg_break: } { }
\prg_break_point:
}
\cs_new:Npn \@@_mapthread_function:wNw \s_@@ #1 \q_stop #2
{
\@@_mapthread_function:Nnnwnn #2
#1 { ? \prg_break: } { }
\q_stop
}
\cs_new:Npn \@@_mapthread_function:Nnnwnn #1#2#3#4 \q_stop #5#6
{
\use_none:n #2
\use_none:n #5
#1 {#3} {#6}
\@@_mapthread_function:Nnnwnn #1 #4 \q_stop
}
\cs_generate_variant:Nn \seq_mapthread_function:NNN { Nc , c , cc }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_set_filter:NNn, \seq_gset_filter:NNn}
% \begin{macro}{\@@_set_filter:NNNn}
% Similar to \cs{seq_map_inline:Nn}, without a
% \cs{prg_break_point:} because the user's code
% is performed within the evaluation of a boolean expression,
% and skipping out of that would break horribly.
% The \cs{@@_wrap_item:n} function inserts the relevant
% \cs{@@_item:n} without expansion in the input stream,
% hence in the \texttt{x}-expanding assignment.
% \begin{macrocode}
\cs_new_protected:Npn \seq_set_filter:NNn
{ \@@_set_filter:NNNn \tl_set:Nx }
\cs_new_protected:Npn \seq_gset_filter:NNn
{ \@@_set_filter:NNNn \tl_gset:Nx }
\cs_new_protected:Npn \@@_set_filter:NNNn #1#2#3#4
{
\@@_push_item_def:n { \bool_if:nT {#4} { \@@_wrap_item:n {##1} } }
#1 #2 { #3 }
\@@_pop_item_def:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_set_map:NNn, \seq_gset_map:NNn}
% \begin{macro}{\@@_set_map:NNNn}
% Very similar to \cs{seq_set_filter:NNn}. We could actually
% merge the two within a single function, but it would have weird
% semantics.
% \begin{macrocode}
\cs_new_protected:Npn \seq_set_map:NNn
{ \@@_set_map:NNNn \tl_set:Nx }
\cs_new_protected:Npn \seq_gset_map:NNn
{ \@@_set_map:NNNn \tl_gset:Nx }
\cs_new_protected:Npn \@@_set_map:NNNn #1#2#3#4
{
\@@_push_item_def:n { \exp_not:N \@@_item:n {#4} }
#1 #2 { #3 }
\@@_pop_item_def:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_set_from_inline_x:Nnn, \seq_gset_from_inline_x:Nnn}
% \begin{macro}{\@@_set_from_inline_x:NNnn}
% Set \cs{@@_item:n} then map it using the loop code.
% \begin{macrocode}
\cs_new_protected:Npn \seq_set_from_inline_x:Nnn
{ \@@_set_from_inline_x:NNnn \tl_set:Nx }
\cs_new_protected:Npn \seq_gset_from_inline_x:Nnn
{ \@@_set_from_inline_x:NNnn \tl_gset:Nx }
\cs_new_protected:Npn \@@_set_from_inline_x:NNnn #1#2#3#4
{
\@@_push_item_def:n { \exp_not:N \@@_item:n {#4} }
#1 #2 { \s_@@ #3 \@@_item:n }
\@@_pop_item_def:
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\seq_set_from_function:NnN, \seq_gset_from_function:NnN}
% Reuse \cs{seq_set_from_inline_x:Nnn}.
% \begin{macrocode}
\cs_new_protected:Npn \seq_set_from_function:NnN #1#2#3
{ \seq_set_from_inline_x:Nnn #1 {#2} { #3 {##1} } }
\cs_new_protected:Npn \seq_gset_from_function:NnN #1#2#3
{ \seq_gset_from_inline_x:Nnn #1 {#2} { #3 {##1} } }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\seq_rand_item:N, \seq_rand_item:c}
% Importantly, \cs{seq_item:Nn} only evaluates its argument once.
% \begin{macrocode}
\cs_new:Npn \seq_rand_item:N #1
{
\seq_if_empty:NF #1
{ \seq_item:Nn #1 { \int_rand:nn { 1 } { \seq_count:N #1 } } }
}
\cs_generate_variant:Nn \seq_rand_item:N { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\seq_const_from_clist:Nn, \seq_const_from_clist:cn}
% Almost identical to \cs{seq_set_from_clist:Nn}.
% \begin{macrocode}
\cs_new_protected:Npn \seq_const_from_clist:Nn #1#2
{
\tl_const:Nx #1
{ \s_@@ \clist_map_function:nN {#2} \@@_wrap_item:n }
}
\cs_generate_variant:Nn \seq_const_from_clist:Nn { c }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\seq_shuffle:N, \seq_gshuffle:N, \@@_shuffle:NN, \@@_shuffle_item:n}
% \begin{variable}{\g_@@_internal_seq, \l_@@_internal_a_int, \l_@@_internal_b_int}
% We apply the Fisher–Yates shuffle, storing items in \tn{toks}
% registers. We use the primitive \cs{tex_uniformdeviate:D} for
% speed reasons. Its non-uniformity is of order its argument divided
% by $2^{28}$, not too bad for small lists. For sequences with more
% than $13$ elements there are more possible permutations than
% possible seeds ($13!>2^{28}$) so the question of uniformity is
% somewhat moot.
% \begin{macrocode}
\cs_if_exist:NTF \tex_uniformdeviate:D
{
\int_new:N \l_@@_internal_a_int
\int_new:N \l_@@_internal_b_int
\seq_new:N \g_@@_internal_seq
\cs_new_protected:Npn \seq_shuffle:N { \@@_shuffle:NN \seq_set_eq:NN }
\cs_new_protected:Npn \seq_gshuffle:N { \@@_shuffle:NN \seq_gset_eq:NN }
\cs_new_protected:Npn \@@_shuffle:NN #1#2
{
\int_compare:nNnTF { \seq_count:N #2 } > \c_max_register_int
{
\__kernel_msg_error:nnx { kernel } { shuffle-too-large }
{ \token_to_str:N #2 }
}
{
\group_begin:
\cs_set_eq:NN \@@_item:n \@@_shuffle_item:n
\int_zero:N \l_@@_internal_a_int
#2
\seq_gset_from_inline_x:Nnn \g_@@_internal_seq
{ \int_step_function:nN { \l_@@_internal_a_int } }
{ \tex_the:D \tex_toks:D ##1 }
\group_end:
#1 #2 \g_@@_internal_seq
\seq_gclear:N \g_@@_internal_seq
}
}
\cs_new_protected:Npn \@@_shuffle_item:n
{
\int_incr:N \l_@@_internal_a_int
\int_set:Nn \l_@@_internal_b_int
{ 1 + \tex_uniformdeviate:D \l_@@_internal_a_int }
\tex_toks:D \l_@@_internal_a_int
= \tex_toks:D \l_@@_internal_b_int
\tex_toks:D \l_@@_internal_b_int
}
\__kernel_msg_new:nnnn { kernel } { shuffle-too-large }
{ The~sequence~#1~is~too~long~to~be~shuffled~by~TeX. }
{
TeX~has~ \int_eval:n { \c_max_register_int + 1 } ~
toks~registers:~this~only~allows~to~shuffle~up~to~
\int_use:N \c_max_register_int \ items.~
The~list~will~not~be~shuffled.
}
}
{
\cs_new_protected:Npn \seq_shuffle:N #1
{
\__kernel_msg_error:nnn { kernel } { fp-no-random }
{ \seq_shuffle:N #1 }
}
\cs_new_eq:NN \seq_gshuffle:N \seq_shuffle:N
}
% \end{macrocode}
% \end{variable}
% \end{macro}
%
% \begin{macro}
% {
% \seq_indexed_map_function:NN, \seq_indexed_map_inline:Nn,
% \@@_indexed_map:nNN, \@@_indexed_map:Nw
% }
% Similar to \cs{seq_map_function:NN} but we keep track of the item
% index as a |;|-delimited argument of \cs{@@_indexed_map:Nw}.
% \begin{macrocode}
\cs_new:Npn \seq_indexed_map_function:NN #1#2
{
\@@_indexed_map:NN #1#2
\prg_break_point:Nn \seq_map_break: { }
}
\cs_new_protected:Npn \seq_indexed_map_inline:Nn #1#2
{
\int_gincr:N \g__kernel_prg_map_int
\cs_gset_protected:cpn
{ @@_map_ \int_use:N \g__kernel_prg_map_int :w } ##1##2 {#2}
\exp_args:NNc \@@_indexed_map:NN #1
{ @@_map_ \int_use:N \g__kernel_prg_map_int :w }
\prg_break_point:Nn \seq_map_break:
{ \int_gdecr:N \g__kernel_prg_map_int }
}
\cs_new:Npn \@@_indexed_map:NN #1#2
{
\exp_after:wN \@@_indexed_map:Nw
\exp_after:wN #2
\int_value:w 1
\exp_after:wN \use_i:nn
\exp_after:wN ;
#1
\prg_break: \@@_item:n { } \prg_break_point:
}
\cs_new:Npn \@@_indexed_map:Nw #1#2 ; #3 \@@_item:n #4
{
#3
#1 {#2} {#4}
\exp_after:wN \@@_indexed_map:Nw
\exp_after:wN #1
\int_value:w \int_eval:w 1 + #2 ;
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Additions to \pkg{l3skip}}
%
% \begin{macrocode}
%<@@=skip>
% \end{macrocode}
%
% \begin{macro}{\skip_split_finite_else_action:nnNN}
% This macro is useful when performing error checking in certain
% circumstances. If the \meta{skip} register holds finite glue it sets
% |#3| and |#4| to the stretch and shrink component, resp. If it holds
% infinite glue set |#3| and |#4| to zero and issue the special action
% |#2| which is probably an error message.
% Assignments are local.
% \begin{macrocode}
\cs_new:Npn \skip_split_finite_else_action:nnNN #1#2#3#4
{
\skip_if_finite:nTF {#1}
{
#3 = \tex_gluestretch:D #1 \scan_stop:
#4 = \tex_glueshrink:D #1 \scan_stop:
}
{
#3 = \c_zero_skip
#4 = \c_zero_skip
#2
}
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Additions to \pkg{l3sys}}
%
% \begin{macrocode}
%<@@=sys>
% \end{macrocode}
%
% \begin{variable}{\c_sys_engine_version_str}
% Various different engines, various different ways to extract the
% data!
% \begin{macrocode}
\str_const:Nx \c_sys_engine_version_str
{
\str_case:on \c_sys_engine_str
{
{ pdftex }
{
\fp_eval:n { round(\int_use:N \tex_pdftexversion:D / 100 , 2) }
.
\tex_pdftexrevision:D
}
{ ptex }
{
\cs_if_exist:NT \tex_ptexversion:D
{
p
\int_use:N \tex_ptexversion:D
\int_use:N \tex_ptexminorversion:D
\tex_ptexrevision:D
-
\int_use:N \tex_epTeXversion:D
}
}
{ luatex }
{
\fp_eval:n { round(\int_use:N \tex_luatexversion:D / 100, 2) }
.
\tex_luatexrevision:D
}
{ uptex }
{
\cs_if_exist:NT \tex_ptexversion:D
{
p
\int_use:N \tex_ptexversion:D
\int_use:N \tex_ptexminorversion:D
\tex_ptexrevision:D
-
u
\int_use:N \tex_uptexversion:D
\tex_uptexrevision:D
-
\int_use:N \tex_epTeXversion:D
}
}
{ xetex }
{
\int_use:N \tex_XeTeXversion:D
\tex_XeTeXrevision:D
}
}
}
% \end{macrocode}
% \end{variable}
%
% \begin{macro}[EXP]{\sys_rand_seed:}
% Unpack the primitive. When random numbers are not available, we
% return zero after an error (and incidentally make sure the number of
% expansions needed is the same as with random numbers available).
% \begin{macrocode}
\sys_if_rand_exist:TF
{ \cs_new:Npn \sys_rand_seed: { \tex_the:D \tex_randomseed:D } }
{
\cs_new:Npn \sys_rand_seed:
{
\int_value:w
\__kernel_msg_expandable_error:nnn { kernel } { fp-no-random }
{ \sys_rand_seed: }
\c_zero_int
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\sys_gset_rand_seed:n}
% The primitive always assigns the seed globally.
% \begin{macrocode}
\sys_if_rand_exist:TF
{
\cs_new_protected:Npn \sys_gset_rand_seed:n #1
{ \tex_setrandomseed:D \int_eval:n {#1} \exp_stop_f: }
}
{
\cs_new_protected:Npn \sys_gset_rand_seed:n #1
{
\__kernel_msg_error:nnn { kernel } { fp-no-random }
{ \sys_gset_rand_seed:n {#1} }
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{variable}{\c_sys_shell_escape_int}
% Expose the engine's shell escape status to the user.
% \begin{macrocode}
\int_const:Nn \c_sys_shell_escape_int
{
\sys_if_engine_luatex:TF
{
\tex_directlua:D
{ tex.sprint(status.shell_escape~or~os.execute()) }
}
{
\tex_shellescape:D
}
}
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\c_sys_platform_str}
% Detecting the platform on \LuaTeX{} is easy: for other engines, we use
% the fact that the two common cases have special null files. It is possible
% to probe further (see package \pkg{platform}), but that requires shell
% escape and seems unlikely to be useful.
% \begin{macrocode}
\sys_if_engine_luatex:TF
{
\str_const:Nx \c_sys_platform_str
{ \lua_now:n { tex.print(os.type) } }
}
{
\file_if_exist:nTF { nul: }
{
\file_if_exist:nF { /dev/null }
{ \str_const:Nn \c_sys_platform_str { windows } }
}
{
\file_if_exist:nT { /dev/null }
{ \str_const:Nn \c_sys_platform_str { unix } }
}
}
\cs_if_exist:NF \c_sys_platform_str
{ \str_const:Nn \c_sys_platform_str { unknown } }
% \end{macrocode}
% \end{variable}
% \begin{macro}[pTF]{\sys_if_platform_unix:}
% \begin{macro}[pTF]{\sys_if_platform_windows:}
% We can now set up the tests.
% \begin{macrocode}
\clist_map_inline:nn { unix , windows }
{
\@@_const:nn { sys_if_platform_ #1 }
{ \str_if_eq_p:Vn \c_sys_platform_str { #1 } }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP, pTF]{\sys_if_shell:, \sys_if_shell_unrestricted:, \sys_if_shell_restricted:}
% Performs a check for whether shell escape is enabled. The first set
% of functions returns true if either of restricted or unrestricted
% shell escape is enabled, while the other two sets of functions
% return true in only one of these two cases.
% \begin{macrocode}
\@@_const:nn { sys_if_shell }
{ \int_compare_p:nNn \c_sys_shell_escape_int > 0 }
\@@_const:nn { sys_if_shell_unrestricted }
{ \int_compare_p:nNn \c_sys_shell_escape_int = 1 }
\@@_const:nn { sys_if_shell_restricted }
{ \int_compare_p:nNn \c_sys_shell_escape_int = 2 }
% \end{macrocode}
% \end{macro}
%
% \begin{variable}{\c_@@_shell_stream_int}
% This is not needed for \LuaTeX{}: shell escape there isn't done using
% a \TeX{} interface.
% \begin{macrocode}
\sys_if_engine_luatex:F
{ \int_const:Nn \c_@@_shell_stream_int { 18 } }
% \end{macrocode}
% \end{variable}
%
% \begin{macro}{\sys_shell_now:n}
% Execute commands through shell escape immediately.
% \begin{macrocode}
\sys_if_engine_luatex:TF
{
\cs_new_protected:Npn \sys_shell_now:n #1
{
\lua_now:e
{ os.execute(" \lua_escape:e { \tl_to_str:n {#1} } ") }
}
}
{
\cs_new_protected:Npn \sys_shell_now:n #1
{ \iow_now:Nn \c_@@_shell_stream_int {#1} }
}
\cs_generate_variant:Nn \sys_shell_now:n { x }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\sys_shell_shipout:n}
% Execute commands through shell escape at shipout.
% \begin{macrocode}
\sys_if_engine_luatex:TF
{
\cs_new_protected:Npn \sys_shell_shipout:n #1
{
\lua_shipout_e:n
{ os.execute(" \lua_escape:e { \tl_to_str:n {#1} } ") }
}
}
{
\cs_new_protected:Npn \sys_shell_shipout:n #1
{ \iow_shipout:Nn \c_@@_shell_stream_int {#1} }
}
\cs_generate_variant:Nn \sys_shell_shipout:n { x }
% \end{macrocode}
% \end{macro}
%
% \subsection{Additions to \pkg{l3tl}}
%
% \begin{macrocode}
%<@@=tl>
% \end{macrocode}
%
% \begin{macro}[EXP,pTF]{\tl_if_single_token:n}
% There are four cases: empty token list, token list starting with a
% normal token, with a brace group, or with a space token. If the
% token list starts with a normal token, remove it and check for
% emptiness. For the next case, an empty token list is not a single
% token. Finally, we have a non-empty token list starting with a
% space or a brace group. Applying \texttt{f}-expansion yields an
% empty result if and only if the token list is a single space.
% \begin{macrocode}
\prg_new_conditional:Npnn \tl_if_single_token:n #1 { p , T , F , TF }
{
\tl_if_head_is_N_type:nTF {#1}
{ \@@_if_empty_if:o { \use_none:n #1 } }
{
\tl_if_empty:nTF {#1}
{ \if_false: }
{ \@@_if_empty_if:o { \exp:w \exp_end_continue_f:w #1 } }
}
\prg_return_true:
\else:
\prg_return_false:
\fi:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\tl_reverse_tokens:n}
% \begin{macro}[EXP]{\@@_reverse_group:nn}
% The same as \cs{tl_reverse:n} but with recursion within brace groups.
% \begin{macrocode}
\cs_new:Npn \tl_reverse_tokens:n #1
{
\__kernel_exp_not:w \exp_after:wN
{
\exp:w
\@@_act:NNNnn
\@@_reverse_normal:nN
\@@_reverse_group:nn
\@@_reverse_space:n
{ }
{#1}
}
}
\cs_new:Npn \@@_reverse_group:nn #1
{
\@@_act_group_recurse:Nnn
\@@_act_reverse_output:n
{ \tl_reverse_tokens:n }
}
% \end{macrocode}
% \end{macro}
% \begin{macro}[EXP]{\@@_act_group_recurse:Nnn}
% In many applications of \cs{@@_act:NNNnn}, we need to recursively
% apply some transformation within brace groups, then output. In this
% code, |#1| is the output function, |#2| is the transformation,
% which should expand in two steps, and |#3| is the group.
% \begin{macrocode}
\cs_new:Npn \@@_act_group_recurse:Nnn #1#2#3
{
\exp_args:Nf #1
{ \exp_after:wN \exp_after:wN \exp_after:wN { #2 {#3} } }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\tl_count_tokens:n}
% \begin{macro}[EXP]{\@@_act_count_normal:nN,
% \@@_act_count_group:nn, \@@_act_count_space:n}
% The token count is computed through an \cs{int_eval:n} construction.
% Each \texttt{1+} is output to the \emph{left}, into the integer
% expression, and the sum is ended by the \cs{exp_end:} inserted by
% \cs{@@_act_end:wn} (which is technically implemented as \cs{c_zero_int}).
% Somewhat a hack!
% \begin{macrocode}
\cs_new:Npn \tl_count_tokens:n #1
{
\int_eval:n
{
\@@_act:NNNnn
\@@_act_count_normal:nN
\@@_act_count_group:nn
\@@_act_count_space:n
{ }
{#1}
}
}
\cs_new:Npn \@@_act_count_normal:nN #1 #2 { 1 + }
\cs_new:Npn \@@_act_count_space:n #1 { 1 + }
\cs_new:Npn \@@_act_count_group:nn #1 #2
{ 2 + \tl_count_tokens:n {#2} + }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \tl_set_from_file:Nnn, \tl_set_from_file:cnn,
% \tl_gset_from_file:Nnn, \tl_gset_from_file:cnn
% }
% \begin{macro}{\@@_set_from_file:NNnn}
% \begin{macro}{\@@_from_file_do:w}
% \begin{macro}{\@@_set_from:nNNn}
% The approach here is similar to that for doing a rescan, and so the same
% internals can be reused. Thus the plan is to insert a pair of tokens of
% the same charcode but different catcodes after the file has been read.
% This plus \cs{exp_not:N} allows the primitive to be used to carry out
% a set operation.
% \begin{macrocode}
\cs_new_protected:Npn \tl_set_from_file:Nnn
{ \@@_set_from_file:NNnn \tl_set:Nn }
\cs_new_protected:Npn \tl_gset_from_file:Nnn
{ \@@_set_from_file:NNnn \tl_gset:Nn }
\cs_generate_variant:Nn \tl_set_from_file:Nnn { c }
\cs_generate_variant:Nn \tl_gset_from_file:Nnn { c }
\cs_new_protected:Npn \@@_set_from_file:NNnn #1#2#3#4
{
\file_get_full_name:nN {#4} \l_@@_file_name_str
\str_if_empty:NTF \l_@@_file_name_str
{ \__kernel_file_missing:n {#4} }
{
\exp_args:NV \@@_set_from:nNNn
\l_@@_file_name_str
#1 #2 {#3}
}
}
\exp_args:Nno \use:nn
{ \cs_new_protected:Npn \@@_from_file_do:w #1 }
{ \c_@@_rescan_marker_tl }
{ \tl_set:No \l_@@_internal_a_tl {#1} }
\cs_new_protected:Npn \@@_set_from:nNNn #1#2#3#4
{
\group_begin:
\exp_args:No \tex_everyeof:D
{ \c_@@_rescan_marker_tl \exp_not:N }
#4 \scan_stop:
\exp_after:wN \@@_from_file_do:w
\exp_after:wN \prg_do_nothing:
\tex_input:D #1 \scan_stop:
\exp_args:NNNo \group_end:
#2 #3 \l_@@_internal_a_tl
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \tl_set_from_file_x:Nnn, \tl_set_from_file_x:cnn,
% \tl_gset_from_file_x:Nnn, \tl_gset_from_file_x:cnn
% }
% \begin{macro}{\@@_set_from_file_x:NNnn}
% When reading a file and allowing expansion of the content, the set up
% only needs to prevent \TeX{} complaining about the end of the file. That
% is done simply, with a group then used to trap the definition needed.
% Once the business is done using some scratch space, the tokens can be
% transferred to the real target.
% \begin{macrocode}
\cs_new_protected:Npn \tl_set_from_file_x:Nnn
{ \@@_set_from_file_x:NNnn \tl_set:Nn }
\cs_new_protected:Npn \tl_gset_from_file_x:Nnn
{ \@@_set_from_file_x:NNnn \tl_gset:Nn }
\cs_generate_variant:Nn \tl_set_from_file_x:Nnn { c }
\cs_generate_variant:Nn \tl_gset_from_file_x:Nnn { c }
\cs_new_protected:Npn \@@_set_from_file_x:NNnn #1#2#3#4
{
\file_get_full_name:nN {#4} \l_@@_file_name_str
\str_if_empty:NTF \l_@@_file_name_str
{ \__kernel_file_missing:n {#4} }
{
\group_begin:
\tex_everyeof:D { \exp_not:N }
#3 \scan_stop:
\tl_set:Nx \l_@@_internal_a_tl
{ \tex_input:D \l_@@_file_name_str \c_space_token }
\exp_args:NNNo \group_end:
#1 #2 \l_@@_internal_a_tl
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \begin{variable}{\l_@@_file_name_str}
% \begin{macrocode}
\str_new:N \l_@@_file_name_str
% \end{macrocode}
% \end{variable}
%
% \begin{macro}
% {
% \tl_set_from_shell:Nnn, \tl_set_from_shell:cnn,
% \tl_gset_from_shell:Nnn, \tl_gset_from_shell:cnn
% }
% \begin{macro}{\@@_set_from_shell:NNnn}
% Setting using a shell is at this level just a slightly specialised file
% operation.
% \begin{macrocode}
\cs_new_protected:Npn \tl_set_from_shell:Nnn
{ \@@_set_from_shell:NNnn \tl_set:Nn }
\cs_generate_variant:Nn \tl_set_from_shell:Nnn { c }
\cs_new_protected:Npn \tl_gset_from_shell:Nnn
{ \@@_set_from_shell:NNnn \tl_gset:Nn }
\cs_generate_variant:Nn \tl_gset_from_shell:Nnn { c }
\cs_new_protected:Npn \@@_set_from_shell:NNnn #1#2#3#4
{
\sys_if_shell:TF
{
\tl_set:Nn \l_@@_internal_a_tl {#4}
\tl_if_in:NnTF \l_@@_internal_a_tl { " }
{
\__kernel_msg_error:nnx
{ kernel } { quote-in-shell } {#4}
}
{ \@@_set_from:nNNn { | " #4 " } #1 #2 {#3} }
}
{ #1 #2 { } }
}
\__kernel_msg_new:nnnn { kernel } { quote-in-shell }
{ Quotes~in~shell~command~'#1'. }
{ Shell~commands~cannot~contain~quotes~("). }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsubsection{Unicode case changing}
%
% The mechanisms needed for case changing are somewhat involved, particularly
% to allow for all of the special cases. These functions also require the
% appropriate data extracted from the Unicode documentation (either manually
% or automatically).
%
% First, some code which \enquote{belongs} in \pkg{l3tokens} but has to come
% here.
% \begin{macrocode}
%<@@=char>
% \end{macrocode}
%
% \begin{macro}
% {
% \char_lower_case:N, \char_upper_case:N,
% \char_mixed_case:N, \char_fold_case:N
% }
% \begin{macro}{\@@_change_case:nNN}
% \begin{macro}{\@@_change_case:nN}
% Expandable character generation is done using a two-part approach.
% First, see if the current character has a special mapping for the current
% transformation. If it does, insert that. Otherwise, use the \TeX{} data
% to look up the one-to-one mapping, and generate the appropriate character
% with the appropriate category code. Mixed case needs an extra step as it
% may be special-cased or might be a special upper case outcome. The internal
% when using non-Unicode engines has to be set up to only do anything
% with ASCII characters.
% \begin{macrocode}
\cs_new:Npn \char_lower_case:N #1
{ \@@_change_case:nNN { lower } \char_value_lccode:n #1 }
\cs_new:Npn \char_upper_case:N #1
{ \@@_change_case:nNN { upper } \char_value_uccode:n #1 }
\cs_new:Npn \char_mixed_case:N #1
{
\tl_if_exist:cTF { c_@@_mixed_case_ \token_to_str:N #1 _tl }
{ \tl_use:c { c_@@_mixed_case_ \token_to_str:N #1 _tl } }
{ \char_upper_case:N #1 }
}
\cs_new:Npn \char_fold_case:N #1
{ \@@_change_case:nNN { fold } \char_value_lccode:n #1 }
\cs_new:Npn \@@_change_case:nNN #1#2#3
{
\tl_if_exist:cTF { c_@@_ #1 _case_ \token_to_str:N #3 _tl }
{ \tl_use:c { c_@@_ #1 _case_ \token_to_str:N #3 _tl } }
{ \exp_args:Nf \@@_change_case:nN { #2 { `#3 } } #3 }
}
\cs_new:Npn \@@_change_case:nN #1#2
{
\int_compare:nNnTF {#1} = 0
{#2}
{ \char_generate:nn {#1} { \char_value_catcode:n {#1} } }
}
\bool_lazy_or:nnF { \sys_if_engine_luatex_p: } { \sys_if_engine_xetex_p: }
{
\cs_set_eq:NN \@@_change_case:nN \use_ii:nn
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\char_codepoint_to_bytes:n}
% \begin{macro}[EXP]{\@@_codepoint_to_bytes_auxi:n}
% \begin{macro}[EXP]{\@@_codepoint_to_bytes_auxii:Nnn}
% \begin{macro}[EXP]{\@@_codepoint_to_bytes_auxiii:n}
% \begin{macro}[EXP]
% {
% \@@_codepoint_to_bytes_outputi:nw ,
% \@@_codepoint_to_bytes_outputii:nw ,
% \@@_codepoint_to_bytes_outputiii:nw ,
% \@@_codepoint_to_bytes_outputiv:nw
% }
% \begin{macro}[EXP]
% {\@@_codepoint_to_bytes_output:nnn, \@@_codepoint_to_bytes_output:fnn}
% \begin{macro}[EXP]{\@@_codepoint_to_bytes_end:}
% This code converts a codepoint into the correct UTF-8 representation.
% In terms of the algorithm itself, see
% \url{https://en.wikipedia.org/wiki/UTF-8} for the octet pattern.
% \begin{macrocode}
\cs_new:Npn \char_codepoint_to_bytes:n #1
{
\exp_args:Nf \@@_codepoint_to_bytes_auxi:n
{ \int_eval:n {#1} }
}
\cs_new:Npn \@@_codepoint_to_bytes_auxi:n #1
{
\if_int_compare:w #1 > "80 \exp_stop_f:
\if_int_compare:w #1 < "800 \exp_stop_f:
\@@_codepoint_to_bytes_outputi:nw
{ \@@_codepoint_to_bytes_auxii:Nnn C {#1} { 64 } }
\@@_codepoint_to_bytes_outputii:nw
{ \@@_codepoint_to_bytes_auxiii:n {#1} }
\else:
\if_int_compare:w #1 < "10000 \exp_stop_f:
\@@_codepoint_to_bytes_outputi:nw
{ \@@_codepoint_to_bytes_auxii:Nnn E {#1} { 64 * 64 } }
\@@_codepoint_to_bytes_outputii:nw
{
\@@_codepoint_to_bytes_auxiii:n
{ \int_div_truncate:nn {#1} { 64 } }
}
\@@_codepoint_to_bytes_outputiii:nw
{ \@@_codepoint_to_bytes_auxiii:n {#1} }
\else:
\@@_codepoint_to_bytes_outputi:nw
{
\@@_codepoint_to_bytes_auxii:Nnn F
{#1} { 64 * 64 * 64 }
}
\@@_codepoint_to_bytes_outputii:nw
{
\@@_codepoint_to_bytes_auxiii:n
{ \int_div_truncate:nn {#1} { 64 * 64 } }
}
\@@_codepoint_to_bytes_outputiii:nw
{
\@@_codepoint_to_bytes_auxiii:n
{ \int_div_truncate:nn {#1} { 64 } }
}
\@@_codepoint_to_bytes_outputiv:nw
{ \@@_codepoint_to_bytes_auxiii:n {#1} }
\fi:
\fi:
\else:
\@@_codepoint_to_bytes_outputi:nw {#1}
\fi:
\@@_codepoint_to_bytes_end: { } { } { } { }
}
\cs_new:Npn \@@_codepoint_to_bytes_auxii:Nnn #1#2#3
{ "#10 + \int_div_truncate:nn {#2} {#3} }
\cs_new:Npn \@@_codepoint_to_bytes_auxiii:n #1
{ \int_mod:nn {#1} { 64 } + 128 }
\cs_new:Npn \@@_codepoint_to_bytes_outputi:nw
#1 #2 \@@_codepoint_to_bytes_end: #3
{ \@@_codepoint_to_bytes_output:fnn { \int_eval:n {#1} } { } {#2} }
\cs_new:Npn \@@_codepoint_to_bytes_outputii:nw
#1 #2 \@@_codepoint_to_bytes_end: #3#4
{ \@@_codepoint_to_bytes_output:fnn { \int_eval:n {#1} } { {#3} } {#2} }
\cs_new:Npn \@@_codepoint_to_bytes_outputiii:nw
#1 #2 \@@_codepoint_to_bytes_end: #3#4#5
{
\@@_codepoint_to_bytes_output:fnn
{ \int_eval:n {#1} } { {#3} {#4} } {#2}
}
\cs_new:Npn \@@_codepoint_to_bytes_outputiv:nw
#1 #2 \@@_codepoint_to_bytes_end: #3#4#5#6
{
\@@_codepoint_to_bytes_output:fnn
{ \int_eval:n {#1} } { {#3} {#4} {#5} } {#2}
}
\cs_new:Npn \@@_codepoint_to_bytes_output:nnn #1#2#3
{
#3
\@@_codepoint_to_bytes_end: #2 {#1}
}
\cs_generate_variant:Nn \@@_codepoint_to_bytes_output:nnn { f }
\cs_new:Npn \@@_codepoint_to_bytes_end: { }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macrocode}
%<@@=tl>
% \end{macrocode}
%
% \begin{macro}[EXP, documented-as=\tl_if_head_eq_catcode:nNTF]
% {\tl_if_head_eq_catcode:oNTF}
% Extra variants.
% \begin{macrocode}
\cs_generate_variant:Nn \tl_if_head_eq_catcode:nNTF { o }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\tl_lower_case:n, \tl_upper_case:n, \tl_mixed_case:n}
% \begin{macro}[EXP]{\tl_lower_case:nn, \tl_upper_case:nn, \tl_mixed_case:nn}
% The user level functions here are all wrappers around the internal
% functions for case changing.
% \begin{macrocode}
\cs_new:Npn \tl_lower_case:n { \@@_change_case:nnn { lower } { } }
\cs_new:Npn \tl_upper_case:n { \@@_change_case:nnn { upper } { } }
\cs_new:Npn \tl_mixed_case:n { \@@_change_case:nnn { mixed } { } }
\cs_new:Npn \tl_lower_case:nn { \@@_change_case:nnn { lower } }
\cs_new:Npn \tl_upper_case:nn { \@@_change_case:nnn { upper } }
\cs_new:Npn \tl_mixed_case:nn { \@@_change_case:nnn { mixed } }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_change_case:nnn}
% \begin{macro}[EXP]{\@@_change_case_aux:nnn}
% \begin{macro}[EXP]{\@@_change_case_loop:wnn}
% \begin{macro}[EXP]
% {
% \@@_change_case_output:nwn ,
% \@@_change_case_output:Vwn ,
% \@@_change_case_output:own ,
% \@@_change_case_output:vwn ,
% \@@_change_case_output:fwn ,
% }
% \begin{macro}[EXP]{\@@_change_case_end:wn}
% \begin{macro}[EXP]{\@@_change_case_group:nwnn}
% \begin{macro}[EXP]
% {
% \@@_change_case_group_lower:nnnn ,
% \@@_change_case_group_upper:nnnn ,
% \@@_change_case_group_mixed:nnnn
% }
% \begin{macro}[EXP]{\@@_change_case_space:wnn}
% \begin{macro}[EXP]{\@@_change_case_N_type:Nwnn}
% \begin{macro}[EXP]{\@@_change_case_N_type:NNNnnn}
% \begin{macro}[EXP]{\@@_change_case_math:NNNnnn}
% \begin{macro}[EXP]{\@@_change_case_math_loop:wNNnn}
% \begin{macro}[EXP]{\@@_change_case_math:NwNNnn}
% \begin{macro}[EXP]{\@@_change_case_math_group:nwNNnn}
% \begin{macro}[EXP]{\@@_change_case_math_space:wNNnn}
% \begin{macro}[EXP]{\@@_change_case_N_type:Nnnn}
% \begin{macro}[EXP]
% {
% \@@_change_case_char_lower:Nnn ,
% \@@_change_case_char_upper:Nnn ,
% \@@_change_case_char_mixed:Nnn
% }
% \begin{macro}[EXP]{\@@_change_case_char:nN}
% \begin{macro}[EXP]{\@@_change_case_char_UTFviii:nNN}
% \begin{macro}[EXP]{\@@_change_case_char_UTFviii:nNNN}
% \begin{macro}[EXP]{\@@_change_case_char_UTFviii:nNNNN}
% \begin{macro}[EXP]{\@@_change_case_char_UTFviii:nn}
% \begin{macro}[EXP]{\@@_change_case_cs_letterlike:Nn}
% \begin{macro}[EXP]{\@@_change_case_cs_letterlike:NnN}
% \begin{macro}[EXP]{\@@_change_case_cs_accents:NN}
% \begin{macro}[EXP]{\@@_change_case_cs:N}
% \begin{macro}[EXP]{\@@_change_case_cs:NN}
% \begin{macro}[EXP]{\@@_change_case_cs:NNn}
% \begin{macro}[EXP]{\@@_change_case_protect:wNN}
% \begin{macro}[EXP]{\@@_change_case_if_expandable:NTF}
% \begin{macro}[EXP]{\@@_change_case_cs_expand:Nnw}
% \begin{macro}[EXP]{\@@_change_case_cs_expand:NN}
% \begin{macro}[EXP]{\@@_change_case_mixed_skip:N}
% \begin{macro}[EXP]{\@@_change_case_mixed_skip:NN}
% \begin{macro}[EXP]{\@@_change_case_mixed_skip_tidy:Nwn}
% \begin{macro}[EXP]{\@@_change_case_mixed_switch:w}
% The mechanism for the core conversion of case is based on the idea that
% we can use a loop to grab the entire token list plus a quark: the latter is
% used as an end marker and to avoid any brace stripping. Depending on the
% nature of the first item in the grabbed argument, it can either processed
% as a single token, treated as a group or treated as a space. These
% different cases all work by re-reading |#1| in the appropriate way, hence
% the repetition of |#1 \q_recursion_stop|.
% \begin{macrocode}
\cs_new:Npn \@@_change_case:nnn #1#2#3
{
\__kernel_exp_not:w \exp_after:wN
{
\exp:w
\@@_change_case_aux:nnn {#1} {#2} {#3}
}
}
\cs_new:Npn \@@_change_case_aux:nnn #1#2#3
{
\group_align_safe_begin:
\@@_change_case_loop:wnn
#3 \q_recursion_tail \q_recursion_stop {#1} {#2}
\@@_change_case_result:n { }
}
\cs_new:Npn \@@_change_case_loop:wnn #1 \q_recursion_stop
{
\tl_if_head_is_N_type:nTF {#1}
{ \@@_change_case_N_type:Nwnn }
{
\tl_if_head_is_group:nTF {#1}
{ \@@_change_case_group:nwnn }
{ \@@_change_case_space:wnn }
}
#1 \q_recursion_stop
}
% \end{macrocode}
% Earlier versions of the code where only \texttt{x}-type expandable rather
% than \texttt{f}-type: this causes issues with nesting and so the slight
% performance hit is taken for a better outcome in usability terms. Setting
% up for \texttt{f}-type expandability has two requirements: a marker
% token after the main loop (see above) and a mechanism to \enquote{load}
% and finalise the result. That is handled in the code below, which includes
% the necessary material to end the \cs{exp:w} expansion.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_output:nwn #1#2 \@@_change_case_result:n #3
{ #2 \@@_change_case_result:n { #3 #1 } }
\cs_generate_variant:Nn \@@_change_case_output:nwn { V , o , v , f }
\cs_new:Npn \@@_change_case_end:wn #1 \@@_change_case_result:n #2
{
\group_align_safe_end:
\exp_end:
#2
}
% \end{macrocode}
% Handling for the cases where the current argument is a brace group or
% a space is relatively easy. For the brace case, the routine works
% recursively, using the expandability of the mechanism to ensure that the
% result is finalised before storage. For the space case it is simply a
% question of removing the space in the input and storing it in the output.
% In both cases, and indeed for the \texttt{N}-type grabber, after removing
% the current item from the input \cs{@@_change_case_loop:wnn} is inserted
% in front of the remaining tokens.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_group:nwnn #1#2 \q_recursion_stop #3#4
{
\use:c { @@_change_case_group_ #3 : nnnn } {#1} {#2} {#3} {#4}
}
\cs_new:Npn \@@_change_case_group_lower:nnnn #1#2#3#4
{
\@@_change_case_output:own
{
\exp_after:wN
{
\exp:w
\@@_change_case_aux:nnn {#3} {#4} {#1}
}
}
\@@_change_case_loop:wnn #2 \q_recursion_stop {#3} {#4}
}
\cs_new_eq:NN \@@_change_case_group_upper:nnnn
\@@_change_case_group_lower:nnnn
% \end{macrocode}
% For the \enquote{mixed} case, a group is taken as forcing a switch to lower
% casing. That means we need a separate auxiliary. (Tracking whether we have
% found a first character inside a group and transferring the information out
% looks pretty horrible.)
% \begin{macrocode}
\cs_new:Npn \@@_change_case_group_mixed:nnnn #1#2#3#4
{
\@@_change_case_output:own
{
\exp_after:wN
{
\exp:w
\@@_change_case_aux:nnn {#3} {#4} {#1}
}
}
\@@_change_case_loop:wnn #2 \q_recursion_stop { lower } {#4}
}
\exp_last_unbraced:NNo \cs_new:Npn \@@_change_case_space:wnn \c_space_tl
{
\@@_change_case_output:nwn { ~ }
\@@_change_case_loop:wnn
}
% \end{macrocode}
% For \texttt{N}-type arguments there are several stages to the approach.
% First, a simply check for the end-of-input marker, which if found triggers
% the final clean up and output step. Assuming that is not the case, the
% first check is for math-mode escaping: this test can encompass control
% sequences or other \texttt{N}-type tokens so is handled up front.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_N_type:Nwnn #1#2 \q_recursion_stop
{
\quark_if_recursion_tail_stop_do:Nn #1
{ \@@_change_case_end:wn }
\exp_after:wN \@@_change_case_N_type:NNNnnn
\exp_after:wN #1 \l_tl_case_change_math_tl
\q_recursion_tail ? \q_recursion_stop {#2}
}
% \end{macrocode}
% Looking for math mode escape first requires a loop over the possible
% token pairs to see if the current input (|#1|) matches an open-math case
% (|#2|). If if does then this test loop is ended and a new input-gathering
% one is begun. The latter simply transfers material from the input to the
% output without any expansion, testing each \texttt{N}-type token to see
% if it matches the close-math case required. If that is the situation then
% the \enquote{math loop} stops and resumes the main loop: as that might
% be either the standard case-changing one or the mixed-case alternative,
% it is not hard-coded into the math loop but is rather passed as argument
% |#3| to \cs{@@_change_case_math:NNNnnn}. If no close-math token is found
% then the final clean-up is forced (\emph{i.e.}~there is no assumption
% of \enquote{well-behaved} input in terms of math mode).
% \begin{macrocode}
\cs_new:Npn \@@_change_case_N_type:NNNnnn #1#2#3
{
\quark_if_recursion_tail_stop_do:Nn #2
{ \@@_change_case_N_type:Nnnn #1 }
\token_if_eq_meaning:NNTF #1 #2
{
\use_i_delimit_by_q_recursion_stop:nw
{
\@@_change_case_math:NNNnnn
#1 #3 \@@_change_case_loop:wnn
}
}
{ \@@_change_case_N_type:NNNnnn #1 }
}
\cs_new:Npn \@@_change_case_math:NNNnnn #1#2#3#4
{
\@@_change_case_output:nwn {#1}
\@@_change_case_math_loop:wNNnn #4 \q_recursion_stop #2 #3
}
\cs_new:Npn \@@_change_case_math_loop:wNNnn #1 \q_recursion_stop
{
\tl_if_head_is_N_type:nTF {#1}
{ \@@_change_case_math:NwNNnn }
{
\tl_if_head_is_group:nTF {#1}
{ \@@_change_case_math_group:nwNNnn }
{ \@@_change_case_math_space:wNNnn }
}
#1 \q_recursion_stop
}
\cs_new:Npn \@@_change_case_math:NwNNnn #1#2 \q_recursion_stop #3#4
{
\token_if_eq_meaning:NNTF \q_recursion_tail #1
{ \@@_change_case_end:wn }
{
\@@_change_case_output:nwn {#1}
\token_if_eq_meaning:NNTF #1 #3
{ #4 #2 \q_recursion_stop }
{ \@@_change_case_math_loop:wNNnn #2 \q_recursion_stop #3#4 }
}
}
\cs_new:Npn \@@_change_case_math_group:nwNNnn #1#2 \q_recursion_stop
{
\@@_change_case_output:nwn { {#1} }
\@@_change_case_math_loop:wNNnn #2 \q_recursion_stop
}
\exp_last_unbraced:NNo
\cs_new:Npn \@@_change_case_math_space:wNNnn \c_space_tl
{
\@@_change_case_output:nwn { ~ }
\@@_change_case_math_loop:wNNnn
}
% \end{macrocode}
% Once potential math-mode cases are filtered out the next stage is to
% test if the token grabbed is a control sequence: they cannot be used in
% the lookup table and also may require expansion. At this stage the loop
% code starting \cs{@@_change_case_loop:wnn} is inserted: all subsequent
% steps in the code which need a look-ahead are coded to rely on this and
% thus have \texttt{w}-type arguments if they may do a look-ahead.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_N_type:Nnnn #1#2#3#4
{
\token_if_cs:NTF #1
{ \@@_change_case_cs_letterlike:Nn #1 {#3} }
{ \use:c { @@_change_case_char_ #3 :Nnn } #1 {#3} {#4} }
\@@_change_case_loop:wnn #2 \q_recursion_stop {#3} {#4}
}
% \end{macrocode}
% For character tokens there are some special cases to deal with then
% the majority of changes are covered by using the \TeX{} data as a lookup
% along with expandable character generation. This avoids needing a very
% large number of macros or (as seen in earlier versions) a somewhat tricky
% split of the characters into various blocks. Notice that the special case
% code may do a look-ahead so requires a final \texttt{w}-type argument
% whereas the core lookup table does not and also guarantees an output so
% \texttt{f}-type expansion may be used to obtain the case-changed result.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_char_lower:Nnn #1#2#3
{
\cs_if_exist_use:cF { @@_change_case_ #2 _ #3 :Nnw }
{ \use_ii:nn }
#1
{
\use:c { @@_change_case_ #2 _ sigma:Nnw } #1
{ \@@_change_case_char:nN {#2} #1 }
}
}
\cs_new_eq:NN \@@_change_case_char_upper:Nnn
\@@_change_case_char_lower:Nnn
% \end{macrocode}
% For mixed case, the code is somewhat different: there is a need to
% look up both mixed and upper case chars and we have to cover the
% situation where there is a character to skip over.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_char_mixed:Nnn #1#2#3
{
\@@_change_case_mixed_switch:w
\cs_if_exist_use:cF { @@_change_case_mixed_ #3 :Nnw }
{
\cs_if_exist_use:cF { @@_change_case_upper_ #3 :Nnw }
{ \use_ii:nn }
}
#1
{ \@@_change_case_mixed_skip:N #1 }
}
% \end{macrocode}
% For Unicode engines we can handle all characters directly. However, for
% the $8$-bit engines the aim is to deal with (a subset of) Unicode (UTF-8)
% input. They deal with that by making the upper half of the range active,
% so we look for that and if found work out how many UTF-8 octets there
% are to deal with. Those can then be grabbed to reconstruct the full
% Unicode character, which is then used in a lookup. (As will become
% obvious below, there is no intention here of covering all of Unicode.)
% \begin{macrocode}
\bool_lazy_or:nnTF
{ \sys_if_engine_luatex_p: }
{ \sys_if_engine_xetex_p: }
{
\cs_new:Npn \@@_change_case_char:nN #1#2
{
\@@_change_case_output:fwn
{ \use:c { char_ #1 _case:N } #2 }
}
}
{
\cs_new:Npn \@@_change_case_char:nN #1#2
{
\int_compare:nNnTF { `#2 } > { "80 }
{
\int_compare:nNnTF { `#2 } < { "E0 }
{ \@@_change_case_char_UTFviii:nNNN {#1} #2 }
{
\int_compare:nNnTF { `#2 } < { "F0 }
{ \@@_change_case_char_UTFviii:nNNNN {#1} #2 }
{ \@@_change_case_char_UTFviii:nNNNNN {#1} #2 }
}
}
{
\@@_change_case_output:fwn
{ \use:c { char_ #1 _case:N } #2 }
}
}
}
% \end{macrocode}
% To allow for the special case of mixed case, we insert here a
% action-dependent auxiliary.
% \begin{macrocode}
\bool_lazy_or:nnF
{ \sys_if_engine_luatex_p: }
{ \sys_if_engine_xetex_p: }
{
\cs_new:Npn \@@_change_case_char_UTFviii:nNNN #1#2#3#4
{ \@@_change_case_char_UTFviii:nnN {#1} {#2#4} #3 }
\cs_new:Npn \@@_change_case_char_UTFviii:nNNNN #1#2#3#4#5
{ \@@_change_case_char_UTFviii:nnN {#1} {#2#4#5} #3 }
\cs_new:Npn \@@_change_case_char_UTFviii:nNNNNN #1#2#3#4#5#6
{ \@@_change_case_char_UTFviii:nnN {#1} {#2#4#5#6} #3 }
\cs_new:Npn \@@_change_case_char_UTFviii:nnN #1#2#3
{
\cs_if_exist:cTF { c_@@_ #1 _case_ \tl_to_str:n {#2} _tl }
{
\@@_change_case_output:vwn
{ c_@@_ #1 _case_ \tl_to_str:n {#2} _tl }
}
{ \@@_change_case_output:nwn {#2} }
#3
}
}
% \end{macrocode}
% Before dealing with general control sequences there are the special
% ones to deal with. Letter-like control sequences are a simple look-up,
% while for accents the loop is much as done elsewhere. Notice that
% we have a no-op test to make sure there is no unexpected expansion of
% letter-like input. The split into two parts here allows us to insert
% the \enquote{switch} code for mixed casing.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_cs_letterlike:Nn #1#2
{
\str_if_eq:nnTF {#2} { mixed }
{
\@@_change_case_cs_letterlike:NnN #1 { upper }
\@@_change_case_mixed_switch:w
}
{ \@@_change_case_cs_letterlike:NnN #1 {#2} \prg_do_nothing: }
}
\cs_new:Npn \@@_change_case_cs_letterlike:NnN #1#2#3
{
\cs_if_exist:cTF { c_@@_change_case_ #2 _ \token_to_str:N #1 _tl }
{
\@@_change_case_output:vwn
{ c_@@_change_case_ #2 _ \token_to_str:N #1 _tl }
#3
}
{
\cs_if_exist:cTF
{
c_@@_change_case_
\str_if_eq:nnTF {#2} { lower } { upper } { lower }
_ \token_to_str:N #1 _tl
}
{
\@@_change_case_output:nwn {#1}
#3
}
{
\exp_after:wN \@@_change_case_cs_accents:NN
\exp_after:wN #1 \l_tl_case_change_accents_tl
\q_recursion_tail \q_recursion_stop
}
}
}
\cs_new:Npn \@@_change_case_cs_accents:NN #1#2
{
\quark_if_recursion_tail_stop_do:Nn #2
{ \@@_change_case_cs:N #1 }
\str_if_eq:nnTF {#1} {#2}
{
\use_i_delimit_by_q_recursion_stop:nw
{ \@@_change_case_output:nwn {#1} }
}
{ \@@_change_case_cs_accents:NN #1 }
}
% \end{macrocode}
% To deal with a control sequence there is first a need to test if it is
% on the list which indicate that case changing should be skipped. That's
% done using a loop as for the other special cases. If a hit is found then
% the argument is grabbed: that comes \emph{after} the loop function which
% is therefore rearranged. In a \LaTeXe{} context, \tn{protect} needs
% to be treated specially, to prevent expansion of the next token but
% output it without braces.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_cs:N #1
{
%<*package>
\str_if_eq:nnTF {#1} { \protect } { \@@_change_case_protect:wNN }
%</package>
\exp_after:wN \@@_change_case_cs:NN
\exp_after:wN #1 \l_tl_case_change_exclude_tl
\q_recursion_tail \q_recursion_stop
}
\cs_new:Npn \@@_change_case_cs:NN #1#2
{
\quark_if_recursion_tail_stop_do:Nn #2
{
\@@_change_case_cs_expand:Nnw #1
{ \@@_change_case_output:nwn {#1} }
}
\str_if_eq:nnTF {#1} {#2}
{
\use_i_delimit_by_q_recursion_stop:nw
{ \@@_change_case_cs:NNn #1 }
}
{ \@@_change_case_cs:NN #1 }
}
\cs_new:Npn \@@_change_case_cs:NNn #1#2#3
{
\@@_change_case_output:nwn { #1 {#3} }
#2
}
%<*package>
\cs_new:Npn \@@_change_case_protect:wNN #1 \q_recursion_stop #2 #3
{ \@@_change_case_output:nwn { \protect #3 } #2 }
%</package>
% \end{macrocode}
% When a control sequence is not on the exclude list the other test if
% to see if it is expandable. Once again, if there is a hit then the loop
% function is grabbed as part of the clean-up and reinserted before the
% now expanded material. The test for expandability has to check for
% end-of-recursion as it is needed by the look-ahead code which might hit
% the end of the input. The test is done in two parts as \cs{bool_if:nTF}
% would choke if |#1| was |(|!
% \begin{macrocode}
\cs_new:Npn \@@_change_case_if_expandable:NTF #1
{
\token_if_expandable:NTF #1
{
\bool_lazy_any:nTF
{
{ \token_if_eq_meaning_p:NN \q_recursion_tail #1 }
{ \token_if_protected_macro_p:N #1 }
{ \token_if_protected_long_macro_p:N #1 }
}
{ \use_ii:nn }
{ \use_i:nn }
}
{ \use_ii:nn }
}
\cs_new:Npn \@@_change_case_cs_expand:Nnw #1#2
{
\@@_change_case_if_expandable:NTF #1
{ \@@_change_case_cs_expand:NN #1 }
{ #2 }
}
\cs_new:Npn \@@_change_case_cs_expand:NN #1#2
{ \exp_after:wN #2 #1 }
% \end{macrocode}
% For mixed case, there is an additional list of exceptions to deal with:
% once that is sorted, we can move on back to the main loop.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_mixed_skip:N #1
{
\exp_after:wN \@@_change_case_mixed_skip:NN
\exp_after:wN #1 \l_tl_mixed_case_ignore_tl
\q_recursion_tail \q_recursion_stop
}
\cs_new:Npn \@@_change_case_mixed_skip:NN #1#2
{
\quark_if_recursion_tail_stop_do:nn {#2}
{ \@@_change_case_char:nN { mixed } #1 }
\int_compare:nNnT { `#1 } = { `#2 }
{
\use_i_delimit_by_q_recursion_stop:nw
{
\@@_change_case_output:nwn {#1}
\@@_change_case_mixed_skip_tidy:Nwn
}
}
\@@_change_case_mixed_skip:NN #1
}
\cs_new:Npn \@@_change_case_mixed_skip_tidy:Nwn #1#2 \q_recursion_stop #3
{
\@@_change_case_loop:wnn #2 \q_recursion_stop { mixed }
}
% \end{macrocode}
% Needed to switch from mixed to lower casing when we have found a
% first character in the former mode.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_mixed_switch:w
#1 \@@_change_case_loop:wnn #2 \q_recursion_stop #3
{
#1
\@@_change_case_loop:wnn #2 \q_recursion_stop { lower }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_change_case_lower_sigma:Nnw}
% \begin{macro}[EXP]{\@@_change_case_lower_sigma:w}
% \begin{macro}[EXP]{\@@_change_case_lower_sigma:Nw}
% \begin{macro}[EXP]{\@@_change_case_upper_sigma:Nnw}
% If the current char is an upper case sigma, the a check is made on the next
% item in the input. If it is \texttt{N}-type and not a control sequence
% then there is a look-ahead phase.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_lower_sigma:Nnw #1#2#3#4 \q_recursion_stop
{
\int_compare:nNnTF { `#1 } = { "03A3 }
{
\@@_change_case_output:fwn
{ \@@_change_case_lower_sigma:w #4 \q_recursion_stop }
}
{#2}
#3 #4 \q_recursion_stop
}
\cs_new:Npn \@@_change_case_lower_sigma:w #1 \q_recursion_stop
{
\tl_if_head_is_N_type:nTF {#1}
{ \@@_change_case_lower_sigma:Nw #1 \q_recursion_stop }
{ \c_@@_final_sigma_tl }
}
\cs_new:Npn \@@_change_case_lower_sigma:Nw #1#2 \q_recursion_stop
{
\@@_change_case_if_expandable:NTF #1
{
\exp_after:wN \@@_change_case_lower_sigma:w #1
#2 \q_recursion_stop
}
{
\token_if_letter:NTF #1
{ \c_@@_std_sigma_tl }
{ \c_@@_final_sigma_tl }
}
}
% \end{macrocode}
% Simply skip to the final step for upper casing.
% \begin{macrocode}
\cs_new_eq:NN \@@_change_case_upper_sigma:Nnw \use_ii:nn
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_change_case_lower_tr:Nnw}
% \begin{macro}[EXP]{\@@_change_case_lower_tr_auxi:Nw}
% \begin{macro}[EXP]{\@@_change_case_lower_tr_auxii:Nw}
% \begin{macro}[EXP]{\@@_change_case_upper_tr:Nnw}
% \begin{macro}[EXP]{\@@_change_case_lower_az:Nnw}
% \begin{macro}[EXP]{\@@_change_case_upper_az:Nnw}
% The Turkic languages need special treatment for dotted-i and dotless-i.
% The lower casing rule can be expressed in terms of searching first for
% either a dotless-I or a dotted-I. In the latter case the mapping is
% easy, but in the former there is a second stage search.
% \begin{macrocode}
\bool_lazy_or:nnTF
{ \sys_if_engine_luatex_p: }
{ \sys_if_engine_xetex_p: }
{
\cs_new:Npn \@@_change_case_lower_tr:Nnw #1#2
{
\int_compare:nNnTF { `#1 } = { "0049 }
{ \@@_change_case_lower_tr_auxi:Nw }
{
\int_compare:nNnTF { `#1 } = { "0130 }
{ \@@_change_case_output:nwn { i } }
{#2}
}
}
% \end{macrocode}
% After a dotless-I there may be a dot-above character. If there is then
% a dotted-i should be produced, otherwise output a dotless-i. When the
% combination is found both the dotless-I and the dot-above char have to
% be removed from the input, which is done by the \cs{use_i:nn}
% (it grabs \cs{@@_change_case_loop:wn} and the dot-above char and
% discards the latter).
% \begin{macrocode}
\cs_new:Npn \@@_change_case_lower_tr_auxi:Nw #1#2 \q_recursion_stop
{
\tl_if_head_is_N_type:nTF {#2}
{ \@@_change_case_lower_tr_auxii:Nw #2 \q_recursion_stop }
{ \@@_change_case_output:Vwn \c_@@_dotless_i_tl }
#1 #2 \q_recursion_stop
}
\cs_new:Npn \@@_change_case_lower_tr_auxii:Nw #1#2 \q_recursion_stop
{
\@@_change_case_if_expandable:NTF #1
{
\exp_after:wN \@@_change_case_lower_tr_auxi:Nw #1
#2 \q_recursion_stop
}
{
\bool_lazy_or:nnTF
{ \token_if_cs_p:N #1 }
{ ! \int_compare_p:nNn { `#1 } = { "0307 } }
{ \@@_change_case_output:Vwn \c_@@_dotless_i_tl }
{
\@@_change_case_output:nwn { i }
\use_i:nn
}
}
}
}
% \end{macrocode}
% For $8$-bit engines, dot-above is not available so there is a simple
% test for an upper-case I. Then we can look for the UTF-8 representation of
% an upper case dotted-I without the combining char. If it's not there,
% preserve the UTF-8 sequence as-is.
% \begin{macrocode}
{
\cs_new:Npn \@@_change_case_lower_tr:Nnw #1#2
{
\int_compare:nNnTF { `#1 } = { "0049 }
{ \@@_change_case_output:Vwn \c_@@_dotless_i_tl }
{
\int_compare:nNnTF { `#1 } = { 196 }
{ \@@_change_case_lower_tr_auxi:Nw #1 {#2} }
{#2}
}
}
\cs_new:Npn \@@_change_case_lower_tr_auxi:Nw #1#2#3#4
{
\int_compare:nNnTF { `#4 } = { 176 }
{
\@@_change_case_output:nwn { i }
#3
}
{
#2
#3 #4
}
}
}
% \end{macrocode}
% Upper casing is easier: just one exception with no context.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_upper_tr:Nnw #1#2
{
\int_compare:nNnTF { `#1 } = { "0069 }
{ \@@_change_case_output:Vwn \c_@@_dotted_I_tl }
{#2}
}
% \end{macrocode}
% Straight copies.
% \begin{macrocode}
\cs_new_eq:NN \@@_change_case_lower_az:Nnw \@@_change_case_lower_tr:Nnw
\cs_new_eq:NN \@@_change_case_upper_az:Nnw \@@_change_case_upper_tr:Nnw
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_change_case_lower_lt:Nnw}
% \begin{macro}[EXP]{\@@_change_case_lower_lt:nNnw}
% \begin{macro}[EXP]{\@@_change_case_lower_lt:nnw}
% \begin{macro}[EXP]{\@@_change_case_lower_lt:Nw}
% \begin{macro}[EXP]{\@@_change_case_lower_lt:NNw}
% \begin{macro}[EXP]{\@@_change_case_upper_lt:Nnw}
% \begin{macro}[EXP]{\@@_change_case_upper_lt:nnw}
% \begin{macro}[EXP]{\@@_change_case_upper_lt:Nw}
% \begin{macro}[EXP]{\@@_change_case_upper_lt:NNw}
% For Lithuanian, the issue to be dealt with is dots over lower case
% letters: these should be present if there is another accent. That means
% that there is some work to do when lower casing I and J. The first step
% is a simple match attempt: \cs{c_@@_accents_lt_tl} contains
% accented upper case letters which should gain a dot-above char in their
% lower case form. This is done using \texttt{f}-type expansion so only one
% pass is needed to find if it works or not. If there was no hit, the second
% stage is to check for I, J and I-ogonek, and if the current char is a
% match to look for a following accent.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_lower_lt:Nnw #1
{
\exp_args:Nf \@@_change_case_lower_lt:nNnw
{ \str_case:nVF #1 \c_@@_accents_lt_tl \exp_stop_f: }
#1
}
\cs_new:Npn \@@_change_case_lower_lt:nNnw #1#2
{
\tl_if_blank:nTF {#1}
{
\exp_args:Nf \@@_change_case_lower_lt:nnw
{
\int_case:nnF {`#2}
{
{ "0049 } i
{ "004A } j
{ "012E } \c_@@_i_ogonek_tl
}
\exp_stop_f:
}
}
{
\@@_change_case_output:nwn {#1}
\use_none:n
}
}
\cs_new:Npn \@@_change_case_lower_lt:nnw #1#2
{
\tl_if_blank:nTF {#1}
{#2}
{
\@@_change_case_output:nwn {#1}
\@@_change_case_lower_lt:Nw
}
}
% \end{macrocode}
% Grab the next char and see if it is one of the accents used in Lithuanian:
% if it is, add the dot-above char into the output.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_lower_lt:Nw #1#2 \q_recursion_stop
{
\tl_if_head_is_N_type:nT {#2}
{ \@@_change_case_lower_lt:NNw }
#1 #2 \q_recursion_stop
}
\cs_new:Npn \@@_change_case_lower_lt:NNw #1#2#3 \q_recursion_stop
{
\@@_change_case_if_expandable:NTF #2
{
\exp_after:wN \@@_change_case_lower_lt:Nw \exp_after:wN #1 #2
#3 \q_recursion_stop
}
{
\bool_lazy_and:nnT
{ ! \token_if_cs_p:N #2 }
{
\bool_lazy_any_p:n
{
{ \int_compare_p:nNn { `#2 } = { "0300 } }
{ \int_compare_p:nNn { `#2 } = { "0301 } }
{ \int_compare_p:nNn { `#2 } = { "0303 } }
}
}
{ \@@_change_case_output:Vwn \c_@@_dot_above_tl }
#1 #2#3 \q_recursion_stop
}
}
% \end{macrocode}
% For upper casing, the test required is for a dot-above char after an I,
% J or I-ogonek. First a test for the appropriate letter, and if found a
% look-ahead and potentially one token dropped.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_upper_lt:Nnw #1
{
\exp_args:Nf \@@_change_case_upper_lt:nnw
{
\int_case:nnF {`#1}
{
{ "0069 } I
{ "006A } J
{ "012F } \c_@@_I_ogonek_tl
}
\exp_stop_f:
}
}
\cs_new:Npn \@@_change_case_upper_lt:nnw #1#2
{
\tl_if_blank:nTF {#1}
{#2}
{
\@@_change_case_output:nwn {#1}
\@@_change_case_upper_lt:Nw
}
}
\cs_new:Npn \@@_change_case_upper_lt:Nw #1#2 \q_recursion_stop
{
\tl_if_head_is_N_type:nT {#2}
{ \@@_change_case_upper_lt:NNw }
#1 #2 \q_recursion_stop
}
\cs_new:Npn \@@_change_case_upper_lt:NNw #1#2#3 \q_recursion_stop
{
\@@_change_case_if_expandable:NTF #2
{
\exp_after:wN \@@_change_case_upper_lt:Nw \exp_after:wN #1 #2
#3 \q_recursion_stop
}
{
\bool_lazy_and:nnTF
{ ! \token_if_cs_p:N #2 }
{ \int_compare_p:nNn { `#2 } = { "0307 } }
{ #1 }
{ #1 #2 }
#3 \q_recursion_stop
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\@@_change_case_upper_de-alt:Nnw}
% A simple alternative version for German.
% \begin{macrocode}
\cs_new:cpn { @@_change_case_upper_de-alt:Nnw } #1#2
{
\int_compare:nNnTF { `#1 } = { 223 }
{ \@@_change_case_output:Vwn \c_@@_upper_Eszett_tl }
{#2}
}
% \end{macrocode}
% \end{macro}
%
% \begin{variable}
% {
% \c_@@_std_sigma_tl ,
% \c_@@_final_sigma_tl ,
% \c_@@_accents_lt_tl ,
% \c_@@_dot_above_tl ,
% \c_@@_upper_Eszett_tl
% }
% The above needs various special token lists containing pre-formed characters.
% This set are only available in Unicode engines, with no-op definitions
% for $8$-bit use.
% \begin{macrocode}
\bool_lazy_or:nnTF
{ \sys_if_engine_luatex_p: }
{ \sys_if_engine_xetex_p: }
{
\group_begin:
\cs_set:Npn \@@_tmp:n #1
{ \char_generate:nn {#1} { \char_value_catcode:n {#1} } }
\tl_const:Nx \c_@@_std_sigma_tl { \@@_tmp:n { "03C3 } }
\tl_const:Nx \c_@@_final_sigma_tl { \@@_tmp:n { "03C2 } }
\tl_const:Nx \c_@@_accents_lt_tl
{
\@@_tmp:n { "00CC }
{
\@@_tmp:n { "0069 }
\@@_tmp:n { "0307 }
\@@_tmp:n { "0300 }
}
\@@_tmp:n { "00CD }
{
\@@_tmp:n { "0069 }
\@@_tmp:n { "0307 }
\@@_tmp:n { "0301 }
}
\@@_tmp:n { "0128 }
{
\@@_tmp:n { "0069 }
\@@_tmp:n { "0307 }
\@@_tmp:n { "0303 }
}
}
\tl_const:Nx \c_@@_dot_above_tl { \@@_tmp:n { "0307 } }
\tl_const:Nx \c_@@_upper_Eszett_tl { \@@_tmp:n { "1E9E } }
\group_end:
}
{
\tl_const:Nn \c_@@_std_sigma_tl { }
\tl_const:Nn \c_@@_final_sigma_tl { }
\tl_const:Nn \c_@@_accents_lt_tl { }
\tl_const:Nn \c_@@_dot_above_tl { }
\tl_const:Nn \c_@@_upper_Eszett_tl { }
}
% \end{macrocode}
% \end{variable}
% \begin{variable}
% {
% \c_@@_dotless_i_tl ,
% \c_@@_dotted_I_tl ,
% \c_@@_i_ogonek_tl ,
% \c_@@_I_ogonek_tl ,
% }
% For cases where there is an $8$-bit option in the |T1| font set up,
% a variant is provided in both cases.
% \begin{macrocode}
\group_begin:
\bool_lazy_or:nnTF
{ \sys_if_engine_luatex_p: }
{ \sys_if_engine_xetex_p: }
{
\cs_set_protected:Npn \@@_tmp:w #1#2
{
\tl_const:Nx #1
{
\exp_after:wN \exp_after:wN \exp_after:wN
\exp_not:N \char_generate:nn
{"#2} { \char_value_catcode:n {"#2} }
}
}
}
{
\cs_set_protected:Npn \@@_tmp:w #1#2
{
\group_begin:
\cs_set_protected:Npn \@@_tmp:w ##1##2##3##4
{
\tl_const:Nx #1
{
\exp_after:wN \exp_after:wN \exp_after:wN
\exp_not:N \char_generate:nn {##1} { 13 }
\exp_after:wN \exp_after:wN \exp_after:wN
\exp_not:N \char_generate:nn {##2} { 13 }
}
}
\tl_set:Nx \l_@@_internal_a_tl
{ \char_codepoint_to_bytes:n {"#2} }
\exp_after:wN \@@_tmp:w \l_@@_internal_a_tl
\group_end:
}
}
\@@_tmp:w \c_@@_dotless_i_tl { 0131 }
\@@_tmp:w \c_@@_dotted_I_tl { 0130 }
\@@_tmp:w \c_@@_i_ogonek_tl { 012F }
\@@_tmp:w \c_@@_I_ogonek_tl { 012E }
\group_end:
% \end{macrocode}
% \end{variable}
%
% For $8$-bit engines we now need to define the case-change data for
% the multi-octet mappings. These need a list of what code points are
% doable in |T1| so the list is hard coded (there's no saving in loading
% the mappings dynamically). All of the straight-forward ones have two
% octets, so that is taken as read.
% \begin{macrocode}
\group_begin:
\bool_lazy_or:nnT
{ \sys_if_engine_pdftex_p: }
{ \sys_if_engine_uptex_p: }
{
\cs_set_protected:Npn \@@_loop:nn #1#2
{
\quark_if_recursion_tail_stop:n {#1}
\tl_set:Nx \l_@@_internal_a_tl
{
\char_codepoint_to_bytes:n {"#1}
\char_codepoint_to_bytes:n {"#2}
}
\exp_after:wN \@@_tmp:w \l_@@_internal_a_tl
\@@_loop:nn
}
\cs_set_protected:Npn \@@_tmp:w #1#2#3#4#5#6#7#8
{
\tl_const:cx
{
c_@@_lower_case_
\char_generate:nn {#1} { 12 }
\char_generate:nn {#2} { 12 }
_tl
}
{
\exp_after:wN \exp_after:wN \exp_after:wN
\exp_not:N \char_generate:nn {#5} { 13 }
\exp_after:wN \exp_after:wN \exp_after:wN
\exp_not:N \char_generate:nn {#6} { 13 }
}
\tl_const:cx
{
c_@@_upper_case_
\char_generate:nn {#5} { 12 }
\char_generate:nn {#6} { 12 }
_tl
}
{
\exp_after:wN \exp_after:wN \exp_after:wN
\exp_not:N \char_generate:nn {#1} { 13 }
\exp_after:wN \exp_after:wN \exp_after:wN
\exp_not:N \char_generate:nn {#2} { 13 }
}
}
\@@_loop:nn
{ 00C0 } { 00E0 }
{ 00C2 } { 00E2 }
{ 00C3 } { 00E3 }
{ 00C4 } { 00E4 }
{ 00C5 } { 00E5 }
{ 00C6 } { 00E6 }
{ 00C7 } { 00E7 }
{ 00C8 } { 00E8 }
{ 00C9 } { 00E9 }
{ 00CA } { 00EA }
{ 00CB } { 00EB }
{ 00CC } { 00EC }
{ 00CD } { 00ED }
{ 00CE } { 00EE }
{ 00CF } { 00EF }
{ 00D0 } { 00F0 }
{ 00D1 } { 00F1 }
{ 00D2 } { 00F2 }
{ 00D3 } { 00F3 }
{ 00D4 } { 00F4 }
{ 00D5 } { 00F5 }
{ 00D6 } { 00F6 }
{ 00D8 } { 00F8 }
{ 00D9 } { 00F9 }
{ 00DA } { 00FA }
{ 00DB } { 00FB }
{ 00DC } { 00FC }
{ 00DD } { 00FD }
{ 00DE } { 00FE }
{ 0100 } { 0101 }
{ 0102 } { 0103 }
{ 0104 } { 0105 }
{ 0106 } { 0107 }
{ 0108 } { 0109 }
{ 010A } { 010B }
{ 010C } { 010D }
{ 010E } { 010F }
{ 0110 } { 0111 }
{ 0112 } { 0113 }
{ 0114 } { 0115 }
{ 0116 } { 0117 }
{ 0118 } { 0119 }
{ 011A } { 011B }
{ 011C } { 011D }
{ 011E } { 011F }
{ 0120 } { 0121 }
{ 0122 } { 0123 }
{ 0124 } { 0125 }
{ 0128 } { 0129 }
{ 012A } { 012B }
{ 012C } { 012D }
{ 012E } { 012F }
{ 0132 } { 0133 }
{ 0134 } { 0135 }
{ 0136 } { 0137 }
{ 0139 } { 013A }
{ 013B } { 013C }
{ 013E } { 013F }
{ 0141 } { 0142 }
{ 0143 } { 0144 }
{ 0145 } { 0146 }
{ 0147 } { 0148 }
{ 014A } { 014B }
{ 014C } { 014D }
{ 014E } { 014F }
{ 0150 } { 0151 }
{ 0152 } { 0153 }
{ 0154 } { 0155 }
{ 0156 } { 0157 }
{ 0158 } { 0159 }
{ 015A } { 015B }
{ 015C } { 015D }
{ 015E } { 015F }
{ 0160 } { 0161 }
{ 0162 } { 0163 }
{ 0164 } { 0165 }
{ 0168 } { 0169 }
{ 016A } { 016B }
{ 016C } { 016D }
{ 016E } { 016F }
{ 0170 } { 0171 }
{ 0172 } { 0173 }
{ 0174 } { 0175 }
{ 0176 } { 0177 }
{ 0178 } { 00FF }
{ 0179 } { 017A }
{ 017B } { 017C }
{ 017D } { 017E }
{ 01CD } { 01CE }
{ 01CF } { 01D0 }
{ 01D1 } { 01D2 }
{ 01D3 } { 01D4 }
{ 01E2 } { 01E3 }
{ 01E6 } { 01E7 }
{ 01E8 } { 01E9 }
{ 01EA } { 01EB }
{ 01F4 } { 01F5 }
{ 0218 } { 0219 }
{ 021A } { 021B }
\q_recursion_tail ?
\q_recursion_stop
\cs_set_protected:Npn \@@_tmp:w #1#2#3
{
\group_begin:
\cs_set_protected:Npn \@@_tmp:w ##1##2##3##4
{
\tl_const:cx
{
c_@@_ #3 _case_
\char_generate:nn {##1} { 12 }
\char_generate:nn {##2} { 12 }
_tl
}
{#2}
}
\tl_set:Nx \l_@@_internal_a_tl
{ \char_codepoint_to_bytes:n { "#1 } }
\exp_after:wN \@@_tmp:w \l_@@_internal_a_tl
\group_end:
}
\@@_tmp:w { 00DF } { SS } { upper }
\@@_tmp:w { 00DF } { Ss } { mixed }
\@@_tmp:w { 0131 } { I } { upper }
}
\group_end:
% \end{macrocode}
%
% The (fixed) look-up mappings for letter-like control sequences.
% \begin{macrocode}
\group_begin:
\cs_set_protected:Npn \@@_change_case_setup:NN #1#2
{
\quark_if_recursion_tail_stop:N #1
\tl_const:cn { c_@@_change_case_lower_ \token_to_str:N #1 _tl }
{ #2 }
\tl_const:cn { c_@@_change_case_upper_ \token_to_str:N #2 _tl }
{ #1 }
\@@_change_case_setup:NN
}
\@@_change_case_setup:NN
\AA \aa
\AE \ae
\DH \dh
\DJ \dj
\IJ \ij
\L \l
\NG \ng
\O \o
\OE \oe
\SS \ss
\TH \th
\q_recursion_tail ?
\q_recursion_stop
\tl_const:cn { c_@@_change_case_upper_ \token_to_str:N \i _tl } { I }
\tl_const:cn { c_@@_change_case_upper_ \token_to_str:N \j _tl } { J }
\group_end:
% \end{macrocode}
%
% \begin{variable}{\l_tl_case_change_accents_tl}
% A list of accents to leave alone.
% \begin{macrocode}
\tl_new:N \l_tl_case_change_accents_tl
\tl_set:Nn \l_tl_case_change_accents_tl
{ \" \' \. \^ \` \~ \c \H \k \r \t \u \v }
% \end{macrocode}
% \end{variable}
%
% \begin{macro}[EXP]{\@@_change_case_mixed_nl:Nnw}
% \begin{macro}[EXP]{\@@_change_case_mixed_nl:Nw}
% \begin{macro}[EXP]{\@@_change_case_mixed_nl:NNw}
% For Dutch, there is a single look-ahead test for \texttt{ij} when
% title casing. If the appropriate letters are found, produce \texttt{IJ}
% and gobble the \texttt{j}/\texttt{J}.
% \begin{macrocode}
\cs_new:Npn \@@_change_case_mixed_nl:Nnw #1
{
\bool_lazy_or:nnTF
{ \int_compare_p:nNn { `#1 } = { `i } }
{ \int_compare_p:nNn { `#1 } = { `I } }
{
\@@_change_case_output:nwn { I }
\@@_change_case_mixed_nl:Nw
}
}
\cs_new:Npn \@@_change_case_mixed_nl:Nw #1#2 \q_recursion_stop
{
\tl_if_head_is_N_type:nT {#2}
{ \@@_change_case_mixed_nl:NNw }
#1 #2 \q_recursion_stop
}
\cs_new:Npn \@@_change_case_mixed_nl:NNw #1#2#3 \q_recursion_stop
{
\@@_change_case_if_expandable:NTF #2
{
\exp_after:wN \@@_change_case_mixed_nl:Nw \exp_after:wN #1 #2
#3 \q_recursion_stop
}
{
\bool_lazy_and:nnTF
{ ! ( \token_if_cs_p:N #2 ) }
{
\bool_lazy_or_p:nn
{ \int_compare_p:nNn { `#2 } = { `j } }
{ \int_compare_p:nNn { `#2 } = { `J } }
}
{
\@@_change_case_output:nwn { J }
#1
}
{ #1 #2 }
#3 \q_recursion_stop
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{variable}{\l_tl_case_change_math_tl}
% The list of token pairs which are treated as math mode and so
% not case changed.
% \begin{macrocode}
\tl_new:N \l_tl_case_change_math_tl
%<*package>
\tl_set:Nn \l_tl_case_change_math_tl
{ $ $ \( \) }
%</package>
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\l_tl_case_change_exclude_tl}
% The list of commands for which an argument is not case changed.
% \begin{macrocode}
\tl_new:N \l_tl_case_change_exclude_tl
%<*package>
\tl_set:Nn \l_tl_case_change_exclude_tl
{ \cite \ensuremath \label \ref }
%</package>
% \end{macrocode}
% \end{variable}
%
% \begin{variable}{\l_tl_mixed_case_ignore_tl}
% Characters to skip over when finding the first letter in a word to be
% mixed cased.
% \begin{macrocode}
\tl_new:N \l_tl_mixed_case_ignore_tl
\tl_set:Nx \l_tl_mixed_case_ignore_tl
{
( % )
[ % ]
\cs_to_str:N \{ % \}
`
-
}
% \end{macrocode}
% \end{variable}
%
% \subsubsection{Building a token list}
%
% Between \cs{tl_build_begin:N} \meta{tl~var} and \cs{tl_build_end:N}
% \meta{tl~var}, the \meta{tl~var} has the structure
% \begin{quote}
% \cs{exp_end:} \ldots{} \cs{exp_end:} \cs{@@_build_last:NNn}
% \meta{assignment} \meta{next~tl} \Arg{left} \meta{right}
% \end{quote}
% where \meta{right} is not braced. The \enquote{data} it represents is
% \meta{left} followed by the \enquote{data} of \meta{next~tl} followed
% by \meta{right}. The \meta{next~tl} is a token list variable whose
% name is that of \meta{tl~var} followed by~|'|. There are between $0$
% and $4$ \cs{exp_end:} to keep track of when \meta{left} and
% \meta{right} should be put into the \meta{next~tl}. The
% \meta{assignment} is \cs{cs_set_nopar:Npx} if the variable is local,
% and \cs{cs_gset_nopar:Npx} if it is global.
%
% \begin{macro}{\tl_build_begin:N, \tl_build_gbegin:N}
% \begin{macro}{\@@_build_begin:NN, \@@_build_begin:NNN}
% First construct the \meta{next~tl}: using a prime here conflicts
% with the usual \pkg{expl3} convention but we need a name that can be
% derived from |#1| without any external data such as a counter.
% Empty that \meta{next~tl} and setup the structure. The local and
% global versions only differ by a single function
% \cs[no-index]{cs_(g)set_nopar:Npx} used for all assignments: this is
% important because only that function is stored in the \meta{tl~var}
% and \meta{next~tl} for subsequent assignments. In principle
% \cs{@@_build_begin:NNN} could use \cs[no-index]{tl_(g)clear_new:N}
% to empty |#1| and make sure it is defined, but logging the
% definition does not seem useful so we just do |#3| |#1| |{}| to
% clear it locally or globally as appropriate.
% \begin{macrocode}
\__kernel_patch:nnNNpn { \__kernel_chk_var_local:N #1 } { }
\cs_new_protected:Npn \tl_build_begin:N #1
{ \@@_build_begin:NN \cs_set_nopar:Npx #1 }
\__kernel_patch:nnNNpn { \__kernel_chk_var_global:N #1 } { }
\cs_new_protected:Npn \tl_build_gbegin:N #1
{ \@@_build_begin:NN \cs_gset_nopar:Npx #1 }
\cs_new_protected:Npn \@@_build_begin:NN #1#2
{ \exp_args:Nc \@@_build_begin:NNN { \cs_to_str:N #2 ' } #2 #1 }
\cs_new_protected:Npn \@@_build_begin:NNN #1#2#3
{
#3 #1 { }
#3 #2
{
\exp_not:n { \exp_end: \exp_end: \exp_end: \exp_end: }
\exp_not:n { \@@_build_last:NNn #3 #1 { } }
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\tl_build_clear:N, \tl_build_gclear:N}
% The |begin| and |gbegin| functions already clear enough to make the
% token list variable effectively empty. Eventually the |begin| and
% |gbegin| functions should check that |#1'| is empty or undefined,
% while the |clear| and |gclear| functions ought to empty |#1'|,
% |#1''| and so on, similar to \cs{tl_build_end:N}. This only affects
% memory usage.
% \begin{macrocode}
\cs_new_eq:NN \tl_build_clear:N \tl_build_begin:N
\cs_new_eq:NN \tl_build_gclear:N \tl_build_gbegin:N
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \tl_build_put_right:Nn, \tl_build_put_right:Nx,
% \tl_build_gput_right:Nn, \tl_build_gput_right:Nx,
% \@@_build_last:NNn, \@@_build_put:nn, \@@_build_put:nw
% }
% Similar to \cs{tl_put_right:Nn}, but apply \cs{exp:w} to |#1|. Most
% of the time this just removes one \cs{exp_end:}. When there are
% none left, \cs{@@_build_last:NNn} is expanded instead. It resets
% the definition of the \meta{tl~var} by ending the \cs{exp_not:n} and
% the definition early. Then it makes sure the \meta{next~tl} (its
% argument |#1|) is set-up and starts a new definition. Then
% \cs{@@_build_put:nn} and \cs{@@_build_put:nw} place the \meta{left}
% part of the original \meta{tl~var} as appropriate for the definition
% of the \meta{next~tl} (the \meta{right} part is left in the right
% place without ever becoming a macro argument). We use
% \cs{exp_after:wN} rather than some \cs{exp_args:No} to avoid reading
% arguments that are likely very long token lists. We use
% \cs[no-index]{cs_(g)set_nopar:Npx} rather than
% \cs[no-index]{tl_(g)set:Nx} partly for the same reason and partly
% because the assignments are interrupted by brace tricks, which
% implies that the assignment does not simply set the token list to an
% |x|-expansion of the second argument.
% \begin{macrocode}
\__kernel_patch:nnNNpn { \__kernel_chk_var_local:N #1 } { }
\cs_new_protected:Npn \tl_build_put_right:Nn #1#2
{
\cs_set_nopar:Npx #1
{ \exp_after:wN \exp_not:n \exp_after:wN { \exp:w #1 #2 } }
}
\__kernel_patch:nnNNpn { \__kernel_chk_var_local:N #1 } { }
\cs_new_protected:Npn \tl_build_put_right:Nx #1#2
{
\cs_set_nopar:Npx #1
{ \exp_after:wN \exp_not:n \exp_after:wN { \exp:w #1 } #2 }
}
\__kernel_patch:nnNNpn { \__kernel_chk_var_global:N #1 } { }
\cs_new_protected:Npn \tl_build_gput_right:Nn #1#2
{
\cs_gset_nopar:Npx #1
{ \exp_after:wN \exp_not:n \exp_after:wN { \exp:w #1 #2 } }
}
\__kernel_patch:nnNNpn { \__kernel_chk_var_global:N #1 } { }
\cs_new_protected:Npn \tl_build_gput_right:Nx #1#2
{
\cs_gset_nopar:Npx #1
{ \exp_after:wN \exp_not:n \exp_after:wN { \exp:w #1 } #2 }
}
\cs_new_protected:Npn \@@_build_last:NNn #1#2
{
\if_false: { { \fi:
\exp_end: \exp_end: \exp_end: \exp_end: \exp_end:
\@@_build_last:NNn #1 #2 { }
}
}
\if_meaning:w \c_empty_tl #2
\@@_build_begin:NN #1 #2
\fi:
#1 #2
{
\exp_after:wN \exp_not:n \exp_after:wN
{
\exp:w \if_false: } } \fi:
\exp_after:wN \@@_build_put:nn \exp_after:wN {#2}
}
\cs_new_protected:Npn \@@_build_put:nn #1#2 { \@@_build_put:nw {#2} #1 }
\cs_new_protected:Npn \@@_build_put:nw #1#2 \@@_build_last:NNn #3#4#5
{ #2 \@@_build_last:NNn #3 #4 { #1 #5 } }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \tl_build_put_left:Nn, \tl_build_put_left:Nx,
% \tl_build_gput_left:Nn, \tl_build_gput_left:Nx, \@@_build_put_left:NNn
% }
% See \cs{tl_build_put_right:Nn} for all the machinery. We could
% easily provide \cs[no-index]{tl_build_put_left_right:Nnn}, by just
% add the \meta{right} material after the \Arg{left} in the
% |x|-expanding assignment.
% \begin{macrocode}
\__kernel_patch:nnNNpn { \__kernel_chk_var_local:N #1 } { }
\cs_new_protected:Npn \tl_build_put_left:Nn #1
{ \@@_build_put_left:NNn \cs_set_nopar:Npx #1 }
\cs_generate_variant:Nn \tl_build_put_left:Nn { Nx }
\__kernel_patch:nnNNpn { \__kernel_chk_var_global:N #1 } { }
\cs_new_protected:Npn \tl_build_gput_left:Nn #1
{ \@@_build_put_left:NNn \cs_gset_nopar:Npx #1 }
\cs_generate_variant:Nn \tl_build_gput_left:Nn { Nx }
\cs_new_protected:Npn \@@_build_put_left:NNn #1#2#3
{
#1 #2
{
\exp_after:wN \exp_not:n \exp_after:wN
{
\exp:w \exp_after:wN \@@_build_put:nn
\exp_after:wN {#2} {#3}
}
}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\tl_build_get:NN}
% \begin{macro}{\@@_build_get:NNN, \@@_build_get:w, \@@_build_get_end:w}
% The idea is to expand the \meta{tl~var} then the \meta{next~tl} and
% so on, all within an |x|-expanding assignment, and wrap as
% appropriate in \cs{exp_not:n}. The various \meta{left} parts are
% left in the assignment as we go, which enables us to expand the
% \meta{next~tl} at the right place. The various \meta{right} parts
% are eventually picked up in one last \cs{exp_not:n}, with a brace
% trick to wrap all the \meta{right} parts together.
% \begin{macrocode}
\cs_new_protected:Npn \tl_build_get:NN
{ \@@_build_get:NNN \tl_set:Nx }
\cs_new_protected:Npn \@@_build_get:NNN #1#2#3
{ #1 #3 { \if_false: { \fi: \exp_after:wN \@@_build_get:w #2 } } }
\cs_new:Npn \@@_build_get:w #1 \@@_build_last:NNn #2#3#4
{
\exp_not:n {#4}
\if_meaning:w \c_empty_tl #3
\exp_after:wN \@@_build_get_end:w
\fi:
\exp_after:wN \@@_build_get:w #3
}
\cs_new:Npn \@@_build_get_end:w #1#2#3
{ \exp_after:wN \exp_not:n \exp_after:wN { \if_false: } \fi: }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}{\tl_build_end:N, \tl_build_gend:N, \@@_build_end_loop:NN}
% Get the data then clear the \meta{next~tl} recursively until finding
% an empty one. It is perhaps wasteful to repeatedly use
% \cs{cs_to_sr:N}. The local/global scope is checked by
% \cs{tl_set:Nx} or \cs{tl_gset:Nx}.
% \begin{macrocode}
\cs_new_protected:Npn \tl_build_end:N #1
{
\@@_build_get:NNN \tl_set:Nx #1 #1
\exp_args:Nc \@@_build_end_loop:NN { \cs_to_str:N #1 ' } \tl_clear:N
}
\cs_new_protected:Npn \tl_build_gend:N #1
{
\@@_build_get:NNN \tl_gset:Nx #1 #1
\exp_args:Nc \@@_build_end_loop:NN { \cs_to_str:N #1 ' } \tl_gclear:N
}
\cs_new_protected:Npn \@@_build_end_loop:NN #1#2
{
\if_meaning:w \c_empty_tl #1
\exp_after:wN \use_none:nnnnnn
\fi:
#2 #1
\exp_args:Nc \@@_build_end_loop:NN { \cs_to_str:N #1 ' } #2
}
% \end{macrocode}
% \end{macro}
%
% \subsubsection{Other additions to \pkg{l3tl}}
%
% \begin{macro}{\tl_rand_item:n, \tl_rand_item:N, \tl_rand_item:c}
% Importantly \cs{tl_item:nn} only evaluates its argument once.
% \begin{macrocode}
\cs_new:Npn \tl_rand_item:n #1
{
\tl_if_blank:nF {#1}
{ \tl_item:nn {#1} { \int_rand:nn { 1 } { \tl_count:n {#1} } } }
}
\cs_new:Npn \tl_rand_item:N { \exp_args:No \tl_rand_item:n }
\cs_generate_variant:Nn \tl_rand_item:N { c }
% \end{macrocode}
% \end{macro}
%
% Some preliminary code is needed for the \cs{tl_range:nnn} family of functions.
%
% \begin{macro}{\tl_range:Nnn, \tl_range:cnn, \tl_range:nnn}
% \begin{macro}{\tl_range_braced:Nnn, \tl_range_braced:cnn, \tl_range_braced:nnn}
% \begin{macro}
% {\tl_range_unbraced:Nnn, \tl_range_unbraced:cnn, \tl_range_unbraced:nnn}
% \begin{macro}
% {
% \@@_range:Nnnn, \@@_range:nnnNn, \@@_range:nnNn, \@@_range_skip:w,
% \@@_range_braced:w, \@@_range_collect_braced:w,
% \@@_range_unbraced:w, \@@_range_collect_unbraced:w,
% \@@_range:w, \@@_range_skip_spaces:n, \@@_range_collect:nn,
% \@@_range_collect:ff, \@@_range_collect_space:nw,
% \@@_range_collect_N:nN, \@@_range_collect_group:nN,
% }
% To avoid checking for the end of the token list at every step, start
% by counting the number $l$ of items and \enquote{normalizing} the
% bounds, namely clamping them to the interval $[0,l]$ and dealing
% with negative indices. More precisely, \cs{@@_range_items:nnNn}
% receives the number of items to skip at the beginning of the token
% list, the index of the last item to keep, a function among
% \cs{@@_range:w}, \cs{@@_range_braced:w}, \cs{@@_range_unbraced:w},
% and the token list itself. If nothing should be kept, leave |{}|:
% this stops the \texttt{f}-expansion of \cs{tl_head:f} and that
% function produces an empty result. Otherwise, repeatedly call
% \cs{@@_range_skip:w} to delete |#1| items from the input stream (the
% extra brace group avoids an off-by-one shift). For the braced
% version \cs{@@_range_braced:w} sets up
% \cs{@@_range_collect_braced:w} which stores items one by one in an
% argument after the semicolon. The unbraced version is almost
% identical. The version preserving braces and spaces starts by
% deleting spaces before the argument to avoid collecting them, and
% sets up \cs{@@_range_collect:nn} with a first argument of the form
% |{| \Arg{collected} \meta{tokens} |}|, whose head is the collected
% tokens and whose tail is what remains of the original token list.
% This form makes it easier to move tokens to the \meta{collected}
% tokens. Depending on the first token of the tail, either just move
% it (if it is a space) or also decrement the number of items left to
% find. Eventually, the result is a brace group followed by the rest
% of the token list, and \cs{tl_head:f} cleans up and gives the result
% in \cs{exp_not:n}.
% \begin{macrocode}
\cs_new:Npn \tl_range:Nnn { \exp_args:No \tl_range:nnn }
\cs_generate_variant:Nn \tl_range:Nnn { c }
\cs_new:Npn \tl_range:nnn { \@@_range:Nnnn \@@_range:w }
\cs_new:Npn \tl_range_braced:Nnn { \exp_args:No \tl_range_braced:nnn }
\cs_generate_variant:Nn \tl_range_braced:Nnn { c }
\cs_new:Npn \tl_range_braced:nnn { \@@_range:Nnnn \@@_range_braced:w }
\cs_new:Npn \tl_range_unbraced:Nnn
{ \exp_args:No \tl_range_unbraced:nnn }
\cs_generate_variant:Nn \tl_range_unbraced:Nnn { c }
\cs_new:Npn \tl_range_unbraced:nnn
{ \@@_range:Nnnn \@@_range_unbraced:w }
\cs_new:Npn \@@_range:Nnnn #1#2#3#4
{
\tl_head:f
{
\exp_args:Nf \@@_range:nnnNn
{ \tl_count:n {#2} } {#3} {#4} #1 {#2}
}
}
\cs_new:Npn \@@_range:nnnNn #1#2#3
{
\exp_args:Nff \@@_range:nnNn
{
\exp_args:Nf \@@_range_normalize:nn
{ \int_eval:n { #2 - 1 } } {#1}
}
{
\exp_args:Nf \@@_range_normalize:nn
{ \int_eval:n {#3} } {#1}
}
}
\cs_new:Npn \@@_range:nnNn #1#2#3#4
{
\if_int_compare:w #2 > #1 \exp_stop_f: \else:
\exp_after:wN { \exp_after:wN }
\fi:
\exp_after:wN #3
\int_value:w \int_eval:n { #2 - #1 } \exp_after:wN ;
\exp_after:wN { \exp:w \@@_range_skip:w #1 ; { } #4 }
}
\cs_new:Npn \@@_range_skip:w #1 ; #2
{
\if_int_compare:w #1 > 0 \exp_stop_f:
\exp_after:wN \@@_range_skip:w
\int_value:w \int_eval:n { #1 - 1 } \exp_after:wN ;
\else:
\exp_after:wN \exp_end:
\fi:
}
\cs_new:Npn \@@_range_braced:w #1 ; #2
{ \@@_range_collect_braced:w #1 ; { } #2 }
\cs_new:Npn \@@_range_unbraced:w #1 ; #2
{ \@@_range_collect_unbraced:w #1 ; { } #2 }
\cs_new:Npn \@@_range_collect_braced:w #1 ; #2#3
{
\if_int_compare:w #1 > 1 \exp_stop_f:
\exp_after:wN \@@_range_collect_braced:w
\int_value:w \int_eval:n { #1 - 1 } \exp_after:wN ;
\fi:
{ #2 {#3} }
}
\cs_new:Npn \@@_range_collect_unbraced:w #1 ; #2#3
{
\if_int_compare:w #1 > 1 \exp_stop_f:
\exp_after:wN \@@_range_collect_unbraced:w
\int_value:w \int_eval:n { #1 - 1 } \exp_after:wN ;
\fi:
{ #2 #3 }
}
\cs_new:Npn \@@_range:w #1 ; #2
{
\exp_args:Nf \@@_range_collect:nn
{ \@@_range_skip_spaces:n {#2} } {#1}
}
\cs_new:Npn \@@_range_skip_spaces:n #1
{
\tl_if_head_is_space:nTF {#1}
{ \exp_args:Nf \@@_range_skip_spaces:n {#1} }
{ { } #1 }
}
\cs_new:Npn \@@_range_collect:nn #1#2
{
\int_compare:nNnTF {#2} = 0
{#1}
{
\exp_args:No \tl_if_head_is_space:nTF { \use_none:n #1 }
{
\exp_args:Nf \@@_range_collect:nn
{ \@@_range_collect_space:nw #1 }
{#2}
}
{
\@@_range_collect:ff
{
\exp_args:No \tl_if_head_is_N_type:nTF { \use_none:n #1 }
{ \@@_range_collect_N:nN }
{ \@@_range_collect_group:nn }
#1
}
{ \int_eval:n { #2 - 1 } }
}
}
}
\cs_new:Npn \@@_range_collect_space:nw #1 ~ { { #1 ~ } }
\cs_new:Npn \@@_range_collect_N:nN #1#2 { { #1 #2 } }
\cs_new:Npn \@@_range_collect_group:nn #1#2 { { #1 {#2} } }
\cs_generate_variant:Nn \@@_range_collect:nn { ff }
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP]{\@@_range_normalize:nn}
% This function converts an \meta{index} argument into an explicit
% position in the token list (a result of $0$ denoting \enquote{out of
% bounds}). Expects two explicit integer arguments: the \meta{index}
% |#1| and the string count~|#2|. If |#1| is negative, replace it by
% $|#1| + |#2| + 1$, then limit to the range $[0, |#2|]$.
% \begin{macrocode}
\cs_new:Npn \@@_range_normalize:nn #1#2
{
\int_eval:n
{
\if_int_compare:w #1 < 0 \exp_stop_f:
\if_int_compare:w #1 < -#2 \exp_stop_f:
0
\else:
#1 + #2 + 1
\fi:
\else:
\if_int_compare:w #1 < #2 \exp_stop_f:
#1
\else:
#2
\fi:
\fi:
}
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Additions to \pkg{l3token}}
%
% \begin{variable}{\c_catcode_active_space_tl}
% While \cs{char_generate:nn} can produce active characters in some
% engines it cannot in general. It would be possible to simply change
% the catcode of space but then the code would need to avoid all
% spaces, making it quite unreadable. Instead we use the primitive
% \cs{tex_lowercase:D} trick.
% \begin{macrocode}
\group_begin:
\char_set_catcode_active:N *
\char_set_lccode:nn { `* } { `\ }
\tex_lowercase:D { \tl_const:Nn \c_catcode_active_space_tl { * } }
\group_end:
% \end{macrocode}
% \end{variable}
%
% \begin{macrocode}
%<@@=peek>
% \end{macrocode}
%
% \begin{macro}[TF]{\peek_N_type:}
% \begin{macro}
% {\@@_execute_branches_N_type:, \@@_N_type:w, \@@_N_type_aux:nnw}
% All tokens are \texttt{N}-type tokens, except in four cases:
% begin-group tokens, end-group tokens, space tokens with character
% code~$32$, and outer tokens. Since \cs{l_peek_token} might be
% outer, we cannot use the convenient \cs{bool_if:nTF} function, and
% must resort to the old trick of using \tn{ifodd} to expand a set of
% tests. The \texttt{false} branch of this test is taken if the token
% is one of the first three kinds of non-\texttt{N}-type tokens
% (explicit or implicit), thus we call \cs{@@_false:w}. In the
% \texttt{true} branch, we must detect outer tokens, without impacting
% performance too much for non-outer tokens. The first filter is to
% search for \texttt{outer} in the \tn{meaning} of \cs{l_peek_token}.
% If that is absent, \cs{use_none_delimit_by_q_stop:w} cleans up, and
% we call \cs{@@_true:w}. Otherwise, the token can be a non-outer
% macro or a primitive mark whose parameter or replacement text
% contains \texttt{outer}, it can be the primitive \tn{outer}, or it
% can be an outer token. Macros and marks would have \texttt{ma} in
% the part before the first occurrence of \texttt{outer}; the meaning
% of \tn{outer} has nothing after \texttt{outer}, contrarily to outer
% macros; and that covers all cases, calling \cs{@@_true:w} or
% \cs{@@_false:w} as appropriate. Here, there is no \meta{search
% token}, so we feed a dummy \cs{scan_stop:} to the
% \cs{@@_token_generic:NNTF} function.
% \begin{macrocode}
\group_begin:
\cs_set_protected:Npn \@@_tmp:w #1 \q_stop
{
\cs_new_protected:Npn \@@_execute_branches_N_type:
{
\if_int_odd:w
\if_catcode:w \exp_not:N \l_peek_token { 0 \exp_stop_f: \fi:
\if_catcode:w \exp_not:N \l_peek_token } 0 \exp_stop_f: \fi:
\if_meaning:w \l_peek_token \c_space_token 0 \exp_stop_f: \fi:
1 \exp_stop_f:
\exp_after:wN \@@_N_type:w
\token_to_meaning:N \l_peek_token
\q_mark \@@_N_type_aux:nnw
#1 \q_mark \use_none_delimit_by_q_stop:w
\q_stop
\exp_after:wN \@@_true:w
\else:
\exp_after:wN \@@_false:w
\fi:
}
\cs_new_protected:Npn \@@_N_type:w ##1 #1 ##2 \q_mark ##3
{ ##3 {##1} {##2} }
}
\exp_after:wN \@@_tmp:w \tl_to_str:n { outer } \q_stop
\group_end:
\cs_new_protected:Npn \@@_N_type_aux:nnw #1 #2 #3 \fi:
{
\fi:
\tl_if_in:noTF {#1} { \tl_to_str:n {ma} }
{ \@@_true:w }
{ \tl_if_empty:nTF {#2} { \@@_true:w } { \@@_false:w } }
}
\cs_new_protected:Npn \peek_N_type:TF
{
\@@_token_generic:NNTF
\@@_execute_branches_N_type: \scan_stop:
}
\cs_new_protected:Npn \peek_N_type:T
{ \@@_token_generic:NNT \@@_execute_branches_N_type: \scan_stop: }
\cs_new_protected:Npn \peek_N_type:F
{ \@@_token_generic:NNF \@@_execute_branches_N_type: \scan_stop: }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{variable}{\l_@@_collect_tl}
% \begin{macrocode}
\tl_new:N \l_@@_collect_tl
% \end{macrocode}
% \end{variable}
%
% \begin{macro}
% {
% \peek_catcode_collect_inline:Nn,
% \peek_charcode_collect_inline:Nn,
% \peek_meaning_collect_inline:Nn
% }
% \begin{macro}
% {
% \@@_collect:NNn, \@@_collect_true:w,
% \@@_collect_remove:nw, \@@_collect:N
% }
% Most of the work is done by \cs{@@_execute_branches_\ldots{}:},
% which calls either \cs{@@_true:w} or \cs{@@_false:w} according to
% whether the next token \cs{l_peek_token} matches the search token
% (stored in \cs{l_@@_search_token} and \cs{l_@@_search_tl}).
% Here, in the \texttt{true} case we run \cs{@@_collect_true:w},
% which generally calls \cs{@@_collect:N} to store the peeked token
% into \cs{l_@@_collect_tl}, except in special non-\texttt{N}-type
% cases (begin-group, end-group, or space), where a frozen token is
% stored. The \texttt{true} branch calls
% \cs{@@_execute_branches_\ldots{}:} to fetch more matching tokens.
% Once there are no more, \cs{@@_false_aux:n} closes the safe-align
% group and runs the user's inline code.
% \begin{macrocode}
\cs_new_protected:Npn \peek_catcode_collect_inline:Nn
{ \@@_collect:NNn \@@_execute_branches_catcode: }
\cs_new_protected:Npn \peek_charcode_collect_inline:Nn
{ \@@_collect:NNn \@@_execute_branches_charcode: }
\cs_new_protected:Npn \peek_meaning_collect_inline:Nn
{ \@@_collect:NNn \@@_execute_branches_meaning: }
\cs_new_protected:Npn \@@_collect:NNn #1#2#3
{
\group_align_safe_begin:
\cs_set_eq:NN \l_@@_search_token #2
\tl_set:Nn \l_@@_search_tl {#2}
\tl_clear:N \l_@@_collect_tl
\cs_set:Npn \@@_false:w
{ \exp_args:No \@@_false_aux:n \l_@@_collect_tl }
\cs_set:Npn \@@_false_aux:n ##1
{
\group_align_safe_end:
#3
}
\cs_set_eq:NN \@@_true:w \@@_collect_true:w
\cs_set:Npn \@@_true_aux:w { \peek_after:Nw #1 }
\@@_true_aux:w
}
\cs_new_protected:Npn \@@_collect_true:w
{
\if_case:w
\if_catcode:w \exp_not:N \l_peek_token { 1 \exp_stop_f: \fi:
\if_catcode:w \exp_not:N \l_peek_token } 2 \exp_stop_f: \fi:
\if_meaning:w \l_peek_token \c_space_token 3 \exp_stop_f: \fi:
0 \exp_stop_f:
\exp_after:wN \@@_collect:N
\or: \@@_collect_remove:nw { \c_group_begin_token }
\or: \@@_collect_remove:nw { \c_group_end_token }
\or: \@@_collect_remove:nw { ~ }
\fi:
}
\cs_new_protected:Npn \@@_collect:N #1
{
\tl_put_right:Nn \l_@@_collect_tl {#1}
\@@_true_aux:w
}
\cs_new_protected:Npn \@@_collect_remove:nw #1
{
\tl_put_right:Nn \l_@@_collect_tl {#1}
\exp_after:wN \@@_true_remove:w
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex
|