1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
|
% \iffalse meta-comment
%
%% File: l3basics.dtx Copyright (C) 1990-2012 The LaTeX3 project
%%
%% It may be distributed and/or modified under the conditions of the
%% LaTeX Project Public License (LPPL), either version 1.3c of this
%% license or (at your option) any later version. The latest version
%% of this license is in the file
%%
%% http://www.latex-project.org/lppl.txt
%%
%% This file is part of the "l3kernel bundle" (The Work in LPPL)
%% and all files in that bundle must be distributed together.
%%
%% The released version of this bundle is available from CTAN.
%%
%% -----------------------------------------------------------------------
%%
%% The development version of the bundle can be found at
%%
%% http://www.latex-project.org/svnroot/experimental/trunk/
%%
%% for those people who are interested.
%%
%%%%%%%%%%%
%% NOTE: %%
%%%%%%%%%%%
%%
%% Snapshots taken from the repository represent work in progress and may
%% not work or may contain conflicting material! We therefore ask
%% people _not_ to put them into distributions, archives, etc. without
%% prior consultation with the LaTeX3 Project.
%%
%% -----------------------------------------------------------------------
%
%<*driver|package>
\RequirePackage{l3bootstrap}
\GetIdInfo$Id: l3basics.dtx 4339 2012-11-24 19:16:43Z joseph $
{L3 Basic definitions}
%</driver|package>
%<*driver>
\documentclass[full]{l3doc}
\begin{document}
\DocInput{\jobname.dtx}
\end{document}
%</driver>
% \fi
%
% \title{^^A
% The \pkg{l3basics} package\\ Basic definitions^^A
% \thanks{This file describes v\ExplFileVersion,
% last revised \ExplFileDate.}^^A
% }
%
% \author{^^A
% The \LaTeX3 Project\thanks
% {^^A
% E-mail:
% \href{mailto:latex-team@latex-project.org}
% {latex-team@latex-project.org}^^A
% }^^A
% }
%
% \date{Released \ExplFileDate}
%
% \maketitle
%
% \begin{documentation}
%
% As the name suggest this package holds some basic definitions which
% are needed by most or all other packages in this set.
%
% Here we describe those functions that are used all over the place. With
% that we mean functions dealing with the construction and testing of
% control sequences. Furthermore the basic parts of conditional
% processing are covered; conditional processing dealing with specific
% data types is described in the modules specific for the respective
% data types.
%
% \section{No operation functions}
%
% \begin{function}[EXP]{\prg_do_nothing:}
% \begin{syntax}
% \cs{prg_do_nothing:}
% \end{syntax}
% An expandable function which does nothing at all: leaves nothing
% in the input stream after a single expansion.
% \end{function}
%
% \begin{function}{\scan_stop:}
% \begin{syntax}
% \cs{scan_stop:}
% \end{syntax}
% A non-expandable function which does nothing. Does not vanish on
% expansion but produces no typeset output.
% \end{function}
%
% \section{Grouping material}
%
% \begin{function}{\group_begin:, \group_end:}
% \begin{syntax}
% \cs{group_begin:}
% \cs{group_end:}
% \end{syntax}
% These functions begin and end a group for definition purposes.
% Assignments are local to groups unless carried out in a global
% manner. (A small number of exceptions to this rule will be noted
% as necessary elsewhere in this document.) Each \cs{group_begin:}
% must be matched by a \cs{group_end:}, although this does not have
% to occur within the same function. Indeed, it is often necessary
% to start a group within one function and finish it within another,
% for example when seeking to use non-standard category codes.
% \end{function}
%
% \begin{function}{\group_insert_after:N}
% \begin{syntax}
% \cs{group_insert_after:N} \meta{token}
% \end{syntax}
% Adds \meta{token} to the list of \meta{tokens} to be inserted
% when the current group level ends. The list of \meta{tokens} to be
% inserted will be empty at the beginning of a group: multiple
% applications of \cs{group_insert_after:N} may be used to build
% the inserted list one \meta{token} at a time. The current group
% level may be closed by a \cs{group_end:} function or by a token
% with category code $2$ (close-group). The later will be a ^^A{
% |}| if standard category codes apply.
% \end{function}
%
% \section{Control sequences and functions}
%
% As \TeX{} is a macro language, creating new functions means
% creating macros. At point of use, a function is replaced by
% the replacement text (\enquote{code}) in which each parameter
% in the code (|#1|, |#2|, \emph{etc.}) is replaced the appropriate
% arguments absorbed by the function. In the following, \meta{code}
% is therefore used as a shorthand for \enquote{replacement text}.
%
% Functions which are not \enquote{protected} will be fully expanded
% inside an \texttt{x} expansion. In contrast, \enquote{protected}
% functions are not expanded within \texttt{x} expansions.
%
% \subsection{Defining functions}
%
% Functions can be created with no requirement that they are declared
% first (in contrast to variables, which must always be declared).
% Declaring a function before setting up the code means that the name
% chosen will be checked and an error raised if it is already in use.
% The name of a function can be checked at the point of definition using
% the \cs{cs_new\ldots} functions: this is recommended for all
% functions which are defined for the first time.
%
% There are three ways to define new functions.
% All classes define a function to expand to the substitution text.
% Within the substitution text the actual parameters are substituted
% for the formal parameters (|#1|, |#2|, \ldots).
% \begin{description}
% \item[\texttt{new}]
% Create a new function with the \texttt{new} scope,
% such as \cs{cs_new:Npn}. The definition is global and will result in
% an error if it is already defined.
% \item[\texttt{set}]
% Create a new function with the \texttt{set} scope,
% such as \cs{cs_set:Npn}. The definition is restricted to the current
% \TeX{} group and will not result in an error if the function is already
% defined.
% \item[\texttt{gset}]
% Create a new function with the \texttt{gset} scope,
% such as \cs{cs_gset:Npn}. The definition is global and
% will not result in an error if the function is already defined.
% \end{description}
%
% Within each set of scope there are different ways to define a function.
% The differences depend on restrictions on the actual parameters and
% the expandability of the resulting function.
% \begin{description}
% \item[\texttt{nopar}]
% Create a new function with the \texttt{nopar} restriction,
% such as \cs{cs_set_nopar:Npn}. The parameter may not contain
% \cs{par} tokens.
% \item[\texttt{protected}]
% Create a new function with the \texttt{protected} restriction,
% such as \cs{cs_set_protected:Npn}. The parameter may contain
% \cs{par} tokens but the function will not expand within an
% \texttt{x}-type expansion.
% \end{description}
%
% \subsection{Defining new functions using parameter text}
%
% \begin{function}{\cs_new:Npn, \cs_new:cpn, \cs_new:Npx, \cs_new:cpx}
% \begin{syntax}
% \cs{cs_new:Npn} \meta{function} \meta{parameters} \Arg{code}
% \end{syntax}
% Creates \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed by the function.
% The definition is global and an error will result if the
% \meta{function} is already defined.
% \end{function}
%
% \begin{function}
% {
% \cs_new_nopar:Npn, \cs_new_nopar:cpn,
% \cs_new_nopar:Npx, \cs_new_nopar:cpx
% }
% \begin{syntax}
% \cs{cs_new_nopar:Npn} \meta{function} \meta{parameters} \Arg{code}
% \end{syntax}
% Creates \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed by the function.
% When the \meta{function} is used the \meta{parameters} absorbed
% cannot contain \cs{par} tokens. The definition is global and
% an error will result if the \meta{function} is already defined.
% \end{function}
%
% \begin{function}
% {
% \cs_new_protected:Npn, \cs_new_protected:cpn,
% \cs_new_protected:Npx, \cs_new_protected:cpx
% }
% \begin{syntax}
% \cs{cs_new_protected:Npn} \meta{function} \meta{parameters} \Arg{code}
% \end{syntax}
% Creates \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed by the function.
% The \meta{function} will not expand within an \texttt{x}-type
% argument. The definition is global and an error will result if the
% \meta{function} is already defined.
% \end{function}
%
% \begin{function}
% {
% \cs_new_protected_nopar:Npn, \cs_new_protected_nopar:cpn ,
% \cs_new_protected_nopar:Npx, \cs_new_protected_nopar:cpx
% }
% \begin{syntax}
% \cs{cs_new_protected_nopar:Npn} \meta{function} \meta{parameters} \Arg{code}
% \end{syntax}
% Creates \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed by the function.
% When the \meta{function} is used the \meta{parameters} absorbed
% cannot contain \cs{par} tokens. The \meta{function} will not
% expand within an \texttt{x}-type argument. The definition is global
% and an error will result if the \meta{function} is already defined.
% \end{function}
%
% \begin{function}{\cs_set:Npn, \cs_set:cpn, \cs_set:Npx, \cs_set:cpx}
% \begin{syntax}
% \cs{cs_set:Npn} \meta{function} \meta{parameters} \Arg{code}
% \end{syntax}
% Sets \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed by the function.
% The assignment of a meaning to the \meta{function} is restricted to
% the current \TeX{} group level.
% \end{function}
%
% \begin{function}
% {
% \cs_set_nopar:Npn, \cs_set_nopar:cpn,
% \cs_set_nopar:Npx, \cs_set_nopar:cpx
% }
% \begin{syntax}
% \cs{cs_set_nopar:Npn} \meta{function} \meta{parameters} \Arg{code}
% \end{syntax}
% Sets \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed by the function.
% When the \meta{function} is used the \meta{parameters} absorbed
% cannot contain \cs{par} tokens. The assignment of a meaning
% to the \meta{function} is restricted to the current \TeX{} group
% level.
% \end{function}
%
% \begin{function}
% {
% \cs_set_protected:Npn, \cs_set_protected:cpn,
% \cs_set_protected:Npx, \cs_set_protected:cpx
% }
% \begin{syntax}
% \cs{cs_set_protected:Npn} \meta{function} \meta{parameters} \Arg{code}
% \end{syntax}
% Sets \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed by the function.
% The assignment of a meaning to the \meta{function} is restricted to
% the current \TeX{} group level. The \meta{function} will
% not expand within an \texttt{x}-type argument.
% \end{function}
%
% \begin{function}
% {
% \cs_set_protected_nopar:Npn, \cs_set_protected_nopar:cpn ,
% \cs_set_protected_nopar:Npx, \cs_set_protected_nopar:cpx ,
% }
% \begin{syntax}
% \cs{cs_set_protected_nopar:Npn} \meta{function} \meta{parameters} \Arg{code}
% \end{syntax}
% Sets \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed by the function.
% When the \meta{function} is used the \meta{parameters} absorbed
% cannot contain \cs{par} tokens. The assignment of a meaning
% to the \meta{function} is restricted to the current \TeX{} group
% level. The \meta{function} will not expand within an
% \texttt{x}-type argument.
% \end{function}
%
% \begin{function}{\cs_gset:Npn, \cs_gset:cpn, \cs_gset:Npx, \cs_gset:cpx}
% \begin{syntax}
% \cs{cs_gset:Npn} \meta{function} \meta{parameters} \Arg{code}
% \end{syntax}
% Globally sets \meta{function} to expand to \meta{code} as replacement
% text. Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed by the function.
% The assignment of a meaning to the \meta{function} is \emph{not}
% restricted to the current \TeX{} group level: the assignment is
% global.
% \end{function}
%
% \begin{function}
% {
% \cs_gset_nopar:Npn, \cs_gset_nopar:cpn,
% \cs_gset_nopar:Npx, \cs_gset_nopar:cpx
% }
% \begin{syntax}
% \cs{cs_gset_nopar:Npn} \meta{function} \meta{parameters} \Arg{code}
% \end{syntax}
% Globally sets \meta{function} to expand to \meta{code} as replacement
% text. Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed by the function.
% When the \meta{function} is used the \meta{parameters} absorbed
% cannot contain \cs{par} tokens. The assignment of a meaning to the
% \meta{function} is \emph{not} restricted to the current \TeX{}
% group level: the assignment is global.
% \end{function}
%
% \begin{function}
% {
% \cs_gset_protected:Npn, \cs_gset_protected:cpn,
% \cs_gset_protected:Npx, \cs_gset_protected:cpx
% }
% \begin{syntax}
% \cs{cs_gset_protected:Npn} \meta{function} \meta{parameters} \Arg{code}
% \end{syntax}
% Globally sets \meta{function} to expand to \meta{code} as replacement
% text. Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed by the function.
% The assignment of a meaning to the \meta{function} is \emph{not}
% restricted to the current \TeX{} group level: the assignment is
% global. The \meta{function} will not expand within an
% \texttt{x}-type argument.
% \end{function}
%
% \begin{function}
% {
% \cs_gset_protected_nopar:Npn, \cs_gset_protected_nopar:cpn,
% \cs_gset_protected_nopar:Npx, \cs_gset_protected_nopar:cpx
% }
% \begin{syntax}
% \cs{cs_gset_protected_nopar:Npn} \meta{function} \meta{parameters} \Arg{code}
% \end{syntax}
% Globally sets \meta{function} to expand to \meta{code} as replacement
% text. Within the \meta{code}, the \meta{parameters} (|#1|, |#2|,
% \emph{etc.}) will be replaced by those absorbed by the function.
% When the \meta{function} is used the \meta{parameters} absorbed
% cannot contain \cs{par} tokens. The assignment of a meaning to the
% \meta{function} is \emph{not} restricted to the current \TeX{}
% group level: the assignment is global. The \meta{function} will
% not expand within an \texttt{x}-type argument.
% \end{function}
%
% \subsection{Defining new functions using the signature}
%
% \begin{function}
% {
% \cs_new:Nn, \cs_new:cn,
% \cs_new:Nx, \cs_new:cx
% }
% \begin{syntax}
% \cs{cs_new:Nn} \meta{function} \Arg{code}
% \end{syntax}
% Creates \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the number of \meta{parameters} is detected
% automatically from the function signature. These \meta{parameters}
% (|#1|, |#2|, \emph{etc.}) will be replaced by those absorbed by the
% function. The definition is global and
% an error will result if the \meta{function} is already defined.
% \end{function}
%
% \begin{function}
% {
% \cs_new_nopar:Nn, \cs_new_nopar:cn,
% \cs_new_nopar:Nx, \cs_new_nopar:cx
% }
% \begin{syntax}
% \cs{cs_new_nopar:Nn} \meta{function} \Arg{code}
% \end{syntax}
% Creates \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the number of \meta{parameters} is detected
% automatically from the function signature. These \meta{parameters}
% (|#1|, |#2|, \emph{etc.}) will be replaced by those absorbed by the
% function. When the \meta{function} is used the \meta{parameters}
% absorbed cannot contain \cs{par} tokens. The definition is global and
% an error will result if the \meta{function} is already defined.
% \end{function}
%
% \begin{function}
% {
% \cs_new_protected:Nn, \cs_new_protected:cn,
% \cs_new_protected:Nx, \cs_new_protected:cx
% }
% \begin{syntax}
% \cs{cs_new_protected:Nn} \meta{function} \Arg{code}
% \end{syntax}
% Creates \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the number of \meta{parameters} is detected
% automatically from the function signature. These \meta{parameters}
% (|#1|, |#2|, \emph{etc.}) will be replaced by those absorbed by the
% function. The \meta{function} will not expand within an \texttt{x}-type
% argument. The definition is global and
% an error will result if the \meta{function} is already defined.
% \end{function}
%
% \begin{function}
% {
% \cs_new_protected_nopar:Nn, \cs_new_protected_nopar:cn,
% \cs_new_protected_nopar:Nx, \cs_new_protected_nopar:cx
% }
% \begin{syntax}
% \cs{cs_new_protected_nopar:Nn} \meta{function} \Arg{code}
% \end{syntax}
% Creates \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the number of \meta{parameters} is detected
% automatically from the function signature. These \meta{parameters}
% (|#1|, |#2|, \emph{etc.}) will be replaced by those absorbed by the
% function. When the \meta{function} is used the \meta{parameters}
% absorbed cannot contain \cs{par} tokens. The \meta{function} will not
% expand within an \texttt{x}-type argument. The definition is global and
% an error will result if the \meta{function} is already defined.
% \end{function}
%
% \begin{function}
% {
% \cs_set:Nn, \cs_set:cn,
% \cs_set:Nx, \cs_set:cx
% }
% \begin{syntax}
% \cs{cs_set:Nn} \meta{function} \Arg{code}
% \end{syntax}
% Sets \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the number of \meta{parameters} is detected
% automatically from the function signature. These \meta{parameters}
% (|#1|, |#2|, \emph{etc.}) will be replaced by those absorbed by the
% function.
% The assignment of a meaning to the \meta{function} is restricted to
% the current \TeX{} group level.
% \end{function}
%
% \begin{function}
% {
% \cs_set_nopar:Nn, \cs_set_nopar:cn,
% \cs_set_nopar:Nx, \cs_set_nopar:cx
% }
% \begin{syntax}
% \cs{cs_set_nopar:Nn} \meta{function} \Arg{code}
% \end{syntax}
% Sets \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the number of \meta{parameters} is detected
% automatically from the function signature. These \meta{parameters}
% (|#1|, |#2|, \emph{etc.}) will be replaced by those absorbed by the
% function. When the \meta{function} is used the \meta{parameters}
% absorbed cannot contain \cs{par} tokens.
% The assignment of a meaning to the \meta{function} is restricted to
% the current \TeX{} group level.
% \end{function}
%
% \begin{function}
% {
% \cs_set_protected:Nn, \cs_set_protected:cn,
% \cs_set_protected:Nx, \cs_set_protected:cx
% }
% \begin{syntax}
% \cs{cs_set_protected:Nn} \meta{function} \Arg{code}
% \end{syntax}
% Sets \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the number of \meta{parameters} is detected
% automatically from the function signature. These \meta{parameters}
% (|#1|, |#2|, \emph{etc.}) will be replaced by those absorbed by the
% function. The \meta{function} will not expand within an \texttt{x}-type
% argument.
% The assignment of a meaning to the \meta{function} is restricted to
% the current \TeX{} group level.
% \end{function}
%
% \begin{function}
% {
% \cs_set_protected_nopar:Nn, \cs_set_protected_nopar:cn,
% \cs_set_protected_nopar:Nx, \cs_set_protected_nopar:cx
% }
% \begin{syntax}
% \cs{cs_set_protected_nopar:Nn} \meta{function} \Arg{code}
% \end{syntax}
% Sets \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the number of \meta{parameters} is detected
% automatically from the function signature. These \meta{parameters}
% (|#1|, |#2|, \emph{etc.}) will be replaced by those absorbed by the
% function. When the \meta{function} is used the \meta{parameters}
% absorbed cannot contain \cs{par} tokens. The \meta{function} will not
% expand within an \texttt{x}-type argument.
% The assignment of a meaning to the \meta{function} is restricted to
% the current \TeX{} group level.
% \end{function}
%
% \begin{function}
% {
% \cs_gset:Nn, \cs_gset:cn,
% \cs_gset:Nx, \cs_gset:cx
% }
% \begin{syntax}
% \cs{cs_gset:Nn} \meta{function} \Arg{code}
% \end{syntax}
% Sets \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the number of \meta{parameters} is detected
% automatically from the function signature. These \meta{parameters}
% (|#1|, |#2|, \emph{etc.}) will be replaced by those absorbed by the
% function.
% The assignment of a meaning to the \meta{function} is global.
% \end{function}
%
% \begin{function}
% {
% \cs_gset_nopar:Nn, \cs_gset_nopar:cn,
% \cs_gset_nopar:Nx, \cs_gset_nopar:cx
% }
% \begin{syntax}
% \cs{cs_gset_nopar:Nn} \meta{function} \Arg{code}
% \end{syntax}
% Sets \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the number of \meta{parameters} is detected
% automatically from the function signature. These \meta{parameters}
% (|#1|, |#2|, \emph{etc.}) will be replaced by those absorbed by the
% function. When the \meta{function} is used the \meta{parameters}
% absorbed cannot contain \cs{par} tokens.
% The assignment of a meaning to the \meta{function} is global.
% \end{function}
%
% \begin{function}
% {
% \cs_gset_protected:Nn, \cs_gset_protected:cn,
% \cs_gset_protected:Nx, \cs_gset_protected:cx
% }
% \begin{syntax}
% \cs{cs_gset_protected:Nn} \meta{function} \Arg{code}
% \end{syntax}
% Sets \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the number of \meta{parameters} is detected
% automatically from the function signature. These \meta{parameters}
% (|#1|, |#2|, \emph{etc.}) will be replaced by those absorbed by the
% function. The \meta{function} will not expand within an \texttt{x}-type
% argument.
% The assignment of a meaning to the \meta{function} is global.
% \end{function}
%
% \begin{function}
% {
% \cs_gset_protected_nopar:Nn, \cs_gset_protected_nopar:cn,
% \cs_gset_protected_nopar:Nx, \cs_gset_protected_nopar:cx
% }
% \begin{syntax}
% \cs{cs_gset_protected_nopar:Nn} \meta{function} \Arg{code}
% \end{syntax}
% Sets \meta{function} to expand to \meta{code} as replacement text.
% Within the \meta{code}, the number of \meta{parameters} is detected
% automatically from the function signature. These \meta{parameters}
% (|#1|, |#2|, \emph{etc.}) will be replaced by those absorbed by the
% function. When the \meta{function} is used the \meta{parameters}
% absorbed cannot contain \cs{par} tokens. The \meta{function} will not
% expand within an \texttt{x}-type argument.
% The assignment of a meaning to the \meta{function} is global.
% \end{function}
%
% \begin{function}[updated = 2012-01-14]
% {
% \cs_generate_from_arg_count:NNnn,
% \cs_generate_from_arg_count:cNnn,
% \cs_generate_from_arg_count:Ncnn
% }
% \begin{syntax}
% \cs{cs_generate_from_arg_count:NNnn} \meta{function} \meta{creator} \meta{number} \meta{code}
% \end{syntax}
% Uses the \meta{creator} function (which should have signature
% |Npn|, for example \cs{cs_new:Npn}) to define a \meta{function}
% which takes \meta{number} arguments and has \meta{code} as
% replacement text. The \meta{number} of arguments is an integer expression,
% evaluated as detailed for \cs{int_eval:n}.
% \end{function}
%
% \subsection{Copying control sequences}
%
% Control sequences (not just functions as defined above) can
% be set to have the same meaning using the functions described
% here. Making two control sequences equivalent means that the
% second control sequence is a \emph{copy} of the first (rather than
% a pointer to it). Thus the old and new control sequence are not
% tied together: changes to one are not reflected in the other.
%
% In the following text \enquote{cs} is used as an abbreviation for
% \enquote{control sequence}.
%
% \begin{function}
% {\cs_new_eq:NN, \cs_new_eq:Nc, \cs_new_eq:cN, \cs_new_eq:cc}
% \begin{syntax}
% \cs{cs_new_eq:NN} \meta{cs_1} \meta{cs_2}
% \cs{cs_new_eq:NN} \meta{cs_1} \meta{token}
% \end{syntax}
% Globally creates \meta{control sequence_1} and sets it to have the same
% meaning as \meta{control sequence_2} or <token>.
% The second control sequence may
% subsequently be altered without affecting the copy.
% \end{function}
%
% \begin{function}
% {\cs_set_eq:NN, \cs_set_eq:Nc, \cs_set_eq:cN, \cs_set_eq:cc}
% \begin{syntax}
% \cs{cs_set_eq:NN} \meta{cs_1} \meta{cs_2}
% \cs{cs_set_eq:NN} \meta{cs_1} \meta{token}
% \end{syntax}
% Sets \meta{control sequence_1} to have the same meaning as
% \meta{control sequence_2} (or <token>).
% The second control sequence may subsequently be
% altered without affecting the copy. The assignment of a meaning
% to the \meta{control sequence_1} is restricted to the current
% \TeX{} group level.
% \end{function}
%
% \begin{function}
% {\cs_gset_eq:NN, \cs_gset_eq:Nc, \cs_gset_eq:cN, \cs_gset_eq:cc}
% \begin{syntax}
% \cs{cs_gset_eq:NN} \meta{cs_1} \meta{cs_2}
% \cs{cs_gset_eq:NN} \meta{cs_1} \meta{token}
% \end{syntax}
% Globally sets \meta{control sequence_1} to have the same meaning as
% \meta{control sequence_2} (or <token>).
% The second control sequence may subsequently be
% altered without affecting the copy. The assignment of a meaning to
% the \meta{control sequence_1} is \emph{not} restricted to the current
% \TeX{} group level: the assignment is global.
% \end{function}
%
% \subsection{Deleting control sequences}
%
% There are occasions where control sequences need to be deleted.
% This is handled in a very simple manner.
%
% \begin{function}[updated = 2011-09-15]{\cs_undefine:N, \cs_undefine:c}
% \begin{syntax}
% \cs{cs_undefine:N} \meta{control sequence}
% \end{syntax}
% Sets \meta{control sequence} to be globally undefined.
% \end{function}
%
% \subsection{Showing control sequences}
%
% \begin{function}[EXP, updated = 2011-12-22]{\cs_meaning:N, \cs_meaning:c}
% \begin{syntax}
% \cs{cs_meaning:N} \meta{control sequence}
% \end{syntax}
% This function expands to the \emph{meaning} of the \meta{control sequence}
% control sequence. This will show the \meta{replacement text} for a
% macro.
% \begin{texnote}
% This is \TeX{}'s \tn{meaning} primitive.
% The \texttt{c} variant correctly reports undefined arguments.
% \end{texnote}
% \end{function}
%
% \begin{function}[updated = 2012-09-09]{\cs_show:N, \cs_show:c}
% \begin{syntax}
% \cs{cs_show:N} \meta{control sequence}
% \end{syntax}
% Displays the definition of the \meta{control sequence} on the
% terminal.
% \begin{texnote}
% This is similar to the \TeX{} primitive \tn{show}, wrapped to a
% fixed number of characters per line.
% \end{texnote}
% \end{function}
%
% \subsection{Converting to and from control sequences}
%
% \begin{function}[EXP]{\use:c}
% \begin{syntax}
% \cs{use:c} \Arg{control sequence name}
% \end{syntax}
% Converts the given \meta{control sequence name} into a single
% control sequence token. This process requires two expansions.
% The content for \meta{control sequence name} may be literal
% material or from other expandable functions. The
% \meta{control sequence name} must, when fully expanded, consist
% of character tokens which are not active: typically, they will
% be of category code $10$ (space), $11$ (letter)
% or $12$ (other), or a mixture of these.
% \end{function}
%
% As an example of the \cs{use:c} function, both
% \begin{verbatim}
% \use:c { a b c }
% \end{verbatim}
% and
% \begin{verbatim}
% \tl_new:N \l_my_tl
% \tl_set:Nn \l_my_tl { a b c }
% \use:c { \tl_use:N \l_my_tl }
% \end{verbatim}
% would be equivalent to
% \begin{verbatim}
% \abc
% \end{verbatim}
% after two expansions of \cs{use:c}.
%
% \begin{function}[TF, added = 2012-11-10]
% {\cs_if_exist_use:N,\cs_if_exist_use:c}
% \begin{syntax}
% \cs{cs_if_exist_use:N} \meta{control sequence}
% \end{syntax}
% Tests whether the \meta{control sequence} is currently defined
% (whether as a function or another control sequence type), and if it
% does inserts the \meta{control sequence} into the input stream.
% \end{function}
%
% \begin{function}[TF,EXP, added = 2012-11-10]
% {\cs_if_exist_use:N,\cs_if_exist_use:c}
% \begin{syntax}
% \cs{cs_if_exist_use:NTF} \meta{control sequence} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests whether the \meta{control sequence} is currently defined
% (whether as a function or another control sequence type), and if it
% does inserts the \meta{control sequence} into the input stream followed
% by the \meta{true code}.
% \end{function}
%
% \begin{function}[EXP]{\cs:w, \cs_end:}
% \begin{syntax}
% \cs{cs:w} \meta{control sequence name} \cs{cs_end:}
% \end{syntax}
% Converts the given \meta{control sequence name} into a single
% control sequence token. This process requires one expansion.
% The content for \meta{control sequence name} may be literal
% material or from other expandable functions. The
% \meta{control sequence name} must, when fully expanded, consist
% of character tokens which are not active: typically, they will
% be of category code $10$ (space), $11$ (letter)
% or $12$ (other), or a mixture of these.
% \begin{texnote}
% These are the \TeX{} primitives \tn{csname} and \tn{endcsname}.
% \end{texnote}
% \end{function}
%
% As an example of the \cs{cs:w} and \cs{cs_end:} functions, both
% \begin{verbatim}
% \cs:w a b c \cs_end:
% \end{verbatim}
% and
% \begin{verbatim}
% \tl_new:N \l_my_tl
% \tl_set:Nn \l_my_tl { a b c }
% \cs:w \tl_use:N \l_my_tl \cs_end:
% \end{verbatim}
% would be equivalent to
% \begin{verbatim}
% \abc
% \end{verbatim}
% after one expansion of \cs{cs:w}.
%
% \begin{function}[EXP]{\cs_to_str:N}
% \begin{syntax}
% \cs{cs_to_str:N} \Arg{control sequence}
% \end{syntax}
% Converts the given \meta{control sequence} into a series of
% characters with category code $12$ (other), except spaces,
% of category code $10$. The sequence will \emph{not} include
% the current escape token, \emph{cf.}~\cs{token_to_str:N}.
% Full expansion of this function requires exactly $2$ expansion
% steps, and so an \texttt{x}-type expansion, or two
% \texttt{o}-type expansions will be required to
% convert the \meta{control sequence} to a sequence of characters
% in the input stream. In most cases, an \texttt{f}-expansion
% will be correct as well, but this loses a space at the start
% of the result.
% \end{function}
%
% \section{Using or removing tokens and arguments}
%
% Tokens in the input can be read and used or read and discarded.
% If one or more tokens are wrapped in braces then in absorbing them
% the outer set will be removed. At the same time, the category code
% of each token is set when the token is read by a function (if it
% is read more than once, the category code is determined by the
% the situation in force when first function absorbs the token).
%
% \begin{function}[EXP]{\use:n, \use:nn, \use:nnn, \use:nnnn}
% \begin{syntax}
% \cs{use:n} \Arg{group_1}
% \cs{use:nn} \Arg{group_1} \Arg{group_2}
% \cs{use:nnn} \Arg{group_1} \Arg{group_2} \Arg{group_3}
% \cs{use:nnnn} \Arg{group_1} \Arg{group_2} \Arg{group_3} \Arg{group_4}
% \end{syntax}
% As illustrated, these functions will absorb between one and four
% arguments, as indicated by the argument specifier. The braces
% surrounding each argument will be removed leaving the remaining
% tokens in the input stream. The category code of these tokens will
% also be fixed by this process (if it has not already been by some
% other absorption). All of these functions require only a single
% expansion to operate, so that one expansion of
% \begin{verbatim}
% \use:nn { abc } { { def } }
% \end{verbatim}
% will result in the input stream containing
% \begin{verbatim}
% abc { def }
% \end{verbatim}
% \emph{i.e.} only the outer braces will be removed.
% \end{function}
%
% \begin{function}[EXP]{\use_i:nn, \use_ii:nn}
% \begin{syntax}
% \cs{use_i:nn} \Arg{arg_1} \Arg{arg_2}
% \end{syntax}
% These functions absorb two arguments from the input stream. The function
% \cs{use_i:nn} discards the second argument, and leaves the content
% of the first argument in the input stream. \cs{use_ii:nn} discards
% the first argument and leaves the content of the second argument in
% the input stream.
% The category code
% of these tokens will also be fixed (if it has not already been by
% some other absorption). A single expansion is needed for the
% functions to take effect.
% \end{function}
%
% \begin{function}[EXP]{\use_i:nnn, \use_ii:nnn, \use_iii:nnn}
% \begin{syntax}
% \cs{use_i:nnn} \Arg{arg_1} \Arg{arg_2} \Arg{arg_3}
% \end{syntax}
% These functions absorb three arguments from the input stream. The
% function \cs{use_i:nnn} discards the second and third arguments, and
% leaves the content of the first argument in the input stream.
% \cs{use_ii:nnn} and \cs{use_iii:nnn} work similarly, leaving the
% content of second or third arguments in the input stream, respectively.
% The category code
% of these tokens will also be fixed (if it has not already been by
% some other absorption). A single expansion is needed for the
% functions to take effect.
% \end{function}
%
% \begin{function}[EXP]
% {\use_i:nnnn, \use_ii:nnnn, \use_iii:nnnn, \use_iv:nnnn}
% \begin{syntax}
% \cs{use_i:nnnn} \Arg{arg_1} \Arg{arg_2} \Arg{arg_3} \Arg{arg_4}
% \end{syntax}
% These functions absorb four arguments from the input stream. The
% function \cs{use_i:nnnn} discards the second, third and fourth
% arguments, and leaves the content of the first argument in the input
% stream.
% \cs{use_ii:nnnn}, \cs{use_iii:nnnn} and \cs{use_iv:nnnn} work similarly,
% leaving the content of second, third or fourth arguments in the input
% stream, respectively. The category code
% of these tokens will also be fixed (if it has not already been by
% some other absorption). A single expansion is needed for the
% functions to take effect.
% \end{function}
%
% \begin{function}[EXP]{\use_i_ii:nnn}
% \begin{syntax}
% \cs{use_i_ii:nnn} \Arg{arg_1} \Arg{arg_2} \Arg{arg_3}
% \end{syntax}
% This functions will absorb three arguments and leave the content of the
% first and second in the input stream. The category code of
% these tokens will also be fixed (if it has not already been by
% some other absorption). A single expansion is needed for the
% functions to take effect. An example:
% \begin{verbatim}
% \use_i_ii:nnn { abc } { { def } } { ghi }
% \end{verbatim}
% will result in the input stream containing
% \begin{verbatim}
% abc { def }
% \end{verbatim}
% \emph{i.e.} the outer braces will be removed and the third group
% will be removed.
% \end{function}
%
% \begin{function}[EXP]
% {
% \use_none:n ,
% \use_none:nn ,
% \use_none:nnn ,
% \use_none:nnnn ,
% \use_none:nnnnn ,
% \use_none:nnnnnn ,
% \use_none:nnnnnnn ,
% \use_none:nnnnnnnn ,
% \use_none:nnnnnnnnn
% }
% \begin{syntax}
% \cs{use_none:n} \Arg{group_1}
% \end{syntax}
% These functions absorb between one and nine groups from the
% input stream, leaving nothing on the resulting input stream.
% These functions work after a single expansion. One or more of the
% \texttt{n} arguments may be an unbraced single token
% (\emph{i.e.}~an \texttt{N} argument).
% \end{function}
%
% \begin{function}[updated = 2011-12-31]{\use:x}
% \begin{syntax}
% \cs{use:x} \Arg{expandable tokens}
% \end{syntax}
% Fully expands the \meta{expandable tokens} and inserts the
% result into the input stream at the current location.
% Any hash characters (|#|) in the argument must be doubled.
% \end{function}
%
% \subsection{Selecting tokens from delimited arguments}
%
% A different kind of function for selecting tokens from the token
% stream are those that use delimited arguments.
%
% \begin{function}[EXP]
% {
% \use_none_delimit_by_q_nil:w,
% \use_none_delimit_by_q_stop:w,
% \use_none_delimit_by_q_recursion_stop:w
% }
% \begin{syntax}
% \cs{use_none_delimit_by_q_nil:w} \meta{balanced text} \cs{q_nil}
% \cs{use_none_delimit_by_q_stop:w} \meta{balanced text} \cs{q_stop}
% \cs{use_none_delimit_by_q_recursion_stop:w} \meta{balanced text} \cs{q_recursion_stop}
% \end{syntax}
% Absorb the \meta{balanced text} form the input stream delimited by
% the marker given in the function name, leaving nothing in the
% input stream.
% \end{function}
%
% \begin{function}[EXP]
% {
% \use_i_delimit_by_q_nil:nw,
% \use_i_delimit_by_q_stop:nw,
% \use_i_delimit_by_q_recursion_stop:nw
% }
% \begin{syntax}
% \cs{use_i_delimit_by_q_nil:nw} \Arg{inserted tokens} \meta{balanced text} \cs{q_nil}
% \cs{use_i_delimit_by_q_stop:nw} \Arg{inserted tokens} \meta{balanced text} \cs{q_stop}
% \cs{use_i_delimit_by_q_recursion_stop:nw} \Arg{inserted tokens} \meta{balanced text} \cs{q_recursion_stop}
% \end{syntax}
% Absorb the \meta{balanced text} form the input stream delimited by
% the marker given in the function name, leaving \meta{inserted tokens}
% in the input stream for further processing.
% \end{function}
%
% \section{Predicates and conditionals}
% \label{sec:predicates}
%
% \LaTeX3 has three concepts for conditional flow processing:
% \begin{description}
% \item[Branching conditionals]
% Functions that carry out a test and then execute, depending on its
% result, either the code supplied as the \meta{true code} or the
% \meta{false code}.
% These arguments are denoted with |T| and |F|, respectively. An
% example would be
% \begin{quote}
% |\cs_if_free:cTF {abc}| \Arg{true code} \Arg{false code}
% \end{quote}
% a function that will turn the first argument into a control sequence
% (since it's marked as |c|) then checks whether this control sequence
% is still free and then depending on the result carry out the code in
% the second argument (true case) or in the third argument (false
% case).
%
% These type of functions are known as \enquote{conditionals};
% whenever a |TF| function is defined it will usually be accompanied by
% |T| and |F| functions as well. These are provided for convenience when
% the branch only needs to go a single way. Package writers are free to
% choose which types to define but the kernel definitions will always
% provide all three versions.
%
% Important to note is that these branching conditionals with \meta{true
% code} and/or \meta{false code} are always defined in a way that the
% code of the chosen alternative can operate on following tokens in
% the input stream.
%
% These conditional functions may or may not be fully expandable, but if
% they are expandable they will be accompanied by a \enquote{predicate}
% for the same test as described below.
%
% \item[Predicates]
% \enquote{Predicates} are functions that return a special type of
% boolean value which can be tested by the boolean expression parser.
% All functions of this type
% are expandable and have names that end with |_p| in the
% description part. For example,
% \begin{quote}
% \cs{cs_if_free_p:N}
% \end{quote}
% would be a predicate function for the same type of test as the
% conditional described above. It would return \enquote{true} if its
% argument (a single token denoted by |N|) is still free for definition.
% It would be used in constructions like
% \begin{quote}
% |\bool_if:nTF {| \\
% \verb" \cs_if_free_p:N \l_tmpz_tl || \cs_if_free_p:N \g_tmpz_tl " \\
% |}|
% \Arg{true code} \Arg{false code}
% \end{quote}
%
% For each predicate defined, a \enquote{branching conditional} will
% also exist that behaves like a conditional described above.
%
% \item[Primitive conditionals]
% There is a third variety of conditional, which is the original
% concept used in plain \TeX{} and \LaTeXe{}. Their use is discouraged
% in \pkg{expl3} (although still used in low-level definitions)
% because they are more fragile and in many cases require more
% expansion control (hence more code) than the two types of
% conditionals described above.
% \end{description}
%
% \begin{variable}{\c_true_bool, \c_false_bool}
% Constants that represent |true| and |false|, respectively. Used to
% implement predicates.
% \end{variable}
%
% \subsection{Tests on control sequences}
%
% \begin{function}[EXP,pTF]{\cs_if_eq:NN}
% \begin{syntax}
% \cs{cs_if_eq_p:NN} \Arg{cs_1} \Arg{cs_2}
% \cs{cs_if_eq:NNTF} \Arg{cs_1} \Arg{cs_2} \Arg{true code} \Arg{false code}
% \end{syntax}
% Compares the definition of two \meta{control sequences} and
% is logically \texttt{true} the same, \emph{i.e.}~if they have exactly
% the same definition when examined with \cs{cs_show:N}.
% \end{function}
%
% \begin{function}[EXP,pTF]{\cs_if_exist:N, \cs_if_exist:c}
% \begin{syntax}
% \cs{cs_if_exist_p:N} \meta{control sequence}
% \cs{cs_if_exist:NTF} \meta{control sequence} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests whether the \meta{control sequence} is currently defined
% (whether as a function or another control sequence type). Any
% valid definition of \meta{control sequence} will evaluate as
% \texttt{true}.
% \end{function}
%
% \begin{function}[EXP,pTF]{\cs_if_free:N, \cs_if_free:c}
% \begin{syntax}
% \cs{cs_if_free_p:N} \meta{control sequence}
% \cs{cs_if_free:NTF} \meta{control sequence} \Arg{true code} \Arg{false code}
% \end{syntax}
% Tests whether the \meta{control sequence} is currently free to
% be defined. This test will be \texttt{false} if the
% \meta{control sequence} currently exists (as defined by
% \cs{cs_if_exist:N}).
% \end{function}
%
% \subsection{Testing string equality}
%
% \begin{function}[EXP,pTF]
% {
% \str_if_eq:nn, \str_if_eq:Vn, \str_if_eq:on, \str_if_eq:no,
% \str_if_eq:nV, \str_if_eq:VV
% }
% \begin{syntax}
% \cs{str_if_eq_p:nn} \Arg{tl_1} \Arg{tl_2}
% \cs{str_if_eq:nnTF} \Arg{tl_1} \Arg{tl_2} \Arg{true code} \Arg{false code}
% \end{syntax}
% Compares the two \meta{token lists} on a character by character
% basis, and is \texttt{true} if the two lists contain the same
% characters in the same order. Thus for example
% \begin{verbatim}
% \str_if_eq_p:no { abc } { \tl_to_str:n { abc } }
% \end{verbatim}
% is logically \texttt{true}.
% \end{function}
%
% \begin{function}[EXP,pTF, added = 2012-06-05]{\str_if_eq_x:nn}
% \begin{syntax}
% \cs{str_if_eq_x_p:nn} \Arg{tl_1} \Arg{tl_2}
% \cs{str_if_eq_x:nnTF} \Arg{tl_1} \Arg{tl_2} \Arg{true code} \Arg{false code}
% \end{syntax}
% Compares the full expansion of two \meta{token lists} on a character by
% character basis, and is \texttt{true} if the two lists contain the same
% characters in the same order. Thus for example
% \begin{verbatim}
% \str_if_eq_x_p:nn { abc } { \tl_to_str:n { abc } }
% \end{verbatim}
% is logically \texttt{true}.
% \end{function}
%
% \begin{function}[added = 2012-06-03, EXP]{\str_case:nnn, \str_case:onn}
% \begin{syntax}
% \cs{str_case:nnn} \Arg{test string} \\
% ~~|{| \\
% ~~~~\Arg{string case_1} \Arg{code case_1} \\
% ~~~~\Arg{string case_2} \Arg{code case_2} \\
% ~~~~\ldots \\
% ~~~~\Arg{string case_n} \Arg{code case_n} \\
% ~~|}| \\
% ~~\Arg{else code}
% \end{syntax}
% This function compares the \meta{test string} in turn with each
% of the \meta{string cases}. If the two are equal (as described for
% \cs{str_if_eq:nnTF} then the
% associated \meta{code} is left in the input stream. If none of
% the tests are \texttt{true} then the \texttt{else code} will be
% left in the input stream.
% \end{function}
%
% \begin{function}[added = 2012-06-05, EXP]{\str_case_x:nnn}
% \begin{syntax}
% \cs{str_case_x:nnn} \Arg{test string} \\
% ~~|{| \\
% ~~~~\Arg{string case_1} \Arg{code case_1} \\
% ~~~~\Arg{string case_2} \Arg{code case_2} \\
% ~~~~\ldots \\
% ~~~~\Arg{string case_n} \Arg{code case_n} \\
% ~~|}| \\
% ~~\Arg{else code}
% \end{syntax}
% This function comapres the full expansion of the \meta{test string}
% in turn with the full expansion of the \meta{string cases}. If the two
% full expansions are equal (as described for \cs{str_if_eq:nnTF} then the
% associated \meta{code} is left in the input stream. If none of the tests
% are \texttt{true} then the \texttt{else code} will be left in the input
% stream. The \meta{test string} is expanded in each comparison, and must
% always yield the same result: for example, random numbers should
% not be used within this string.
% \end{function}
%
% \subsection{Engine-specific conditionals}
%
% \begin{function}[updated = 2011-09-06,EXP,pTF]{\luatex_if_engine:}
% \begin{syntax}
% \cs{luatex_if_luatex:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Detects is the document is being compiled using \LuaTeX{}.
% \end{function}
%
% \begin{function}[updated = 2011-09-06,EXP,pTF]{\pdftex_if_engine:}
% \begin{syntax}
% \cs{pdftex_if_engine:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Detects is the document is being compiled using \pdfTeX{}.
% \end{function}
%
% \begin{function}[updated = 2011-09-06,EXP,pTF]{\xetex_if_engine:}
% \begin{syntax}
% \cs{xetex_if_engine:TF} \Arg{true code} \Arg{false code}
% \end{syntax}
% Detects is the document is being compiled using \XeTeX{}.
% \end{function}
%
% \subsection{Primitive conditionals}
%
% The \eTeX{} engine itself provides many different conditionals. Some
% expand whatever comes after them and others don't. Hence the names
% for these underlying functions will often contain a |:w| part but
% higher level functions are often available. See for instance
% \cs{int_compare_p:nNn} which is a wrapper for \cs{if_int_compare:w}.
%
% Certain conditionals deal with specific data types like boxes and
% fonts and are described there. The ones described below are either
% the universal conditionals or deal with control sequences. We will
% prefix primitive conditionals with |\if_|.
%
% \begin{function}[EXP]
% {\if_true:, \if_false:, \or:, \else:, \fi:, \reverse_if:N}
% \begin{syntax}
% "\if_true:" <true code> "\else:" <false code> "\fi:" \\
% "\if_false:" <true code> "\else:" <false code> "\fi:" \\
% "\reverse_if:N" <primitive conditional>
% \end{syntax}
% "\if_true:" always executes <true code>, while "\if_false:" always
% executes <false code>. "\reverse_if:N" reverses any two-way primitive
% conditional. "\else:" and "\fi:" delimit the branches of the
% conditional. "\or:" is used in case switches, see \pkg{l3int}
% for more.
% \begin{texnote}
% These are equivalent to their corresponding \TeX\ primitive
% conditionals; \cs{reverse_if:N} is \eTeX's \tn{unless}.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP]{\if_meaning:w}
% \begin{syntax}
% "\if_meaning:w" <arg_1> <arg_2> <true code> "\else:" <false code> "\fi:"
% \end{syntax}
% "\if_meaning:w" executes <true code> when <arg_1> and <arg_2> are the same,
% otherwise it executes <false code>.
% <arg_1> and <arg_2> could be functions, variables, tokens; in all cases the
% \emph{unexpanded} definitions are compared.
% \begin{texnote}
% This is \TeX{}'s \tn{ifx}.
% \end{texnote}
% \end{function}
%
% \begin{function}[EXP]{\if:w, \if_charcode:w,\if_catcode:w}
% \begin{syntax}
% "\if:w" <token_1> <token_2> <true code> "\else:" <false code> "\fi:" \\
% "\if_catcode:w" <token_1> <token_2> <true code> "\else:" <false code> "\fi:"
% \end{syntax}
% These conditionals will expand any following tokens until two
% unexpandable tokens are left. If you wish to prevent this expansion,
% prefix the token in question with "\exp_not:N". "\if_catcode:w"
% tests if the category codes of the two tokens are the same whereas
% "\if:w" tests if the character codes are
% identical. "\if_charcode:w" is an alternative name for "\if:w".
% \end{function}
%
% \begin{function}[EXP]{\if_cs_exist:N, \if_cs_exist:w}
% \begin{syntax}
% "\if_cs_exist:N" <cs> <true code> "\else:" <false code> "\fi:" \\
% "\if_cs_exist:w" <tokens> "\cs_end:" <true code> "\else:" <false code> "\fi:"
% \end{syntax}
% Check if <cs> appears in the hash table or if the control sequence
% that can be formed from <tokens> appears in the hash table. The
% latter function does not turn the control sequence in question into
% "\scan_stop:"! This can be useful when dealing with control
% sequences which cannot be entered as a single token.
% \end{function}
%
% \begin{function}[EXP]
% {
% \if_mode_horizontal:, \if_mode_vertical:,
% \if_mode_math:, \if_mode_inner:
% }
% \begin{syntax}
% "\if_mode_horizontal:" <true code> "\else:" <false code> "\fi:"
% \end{syntax}
% Execute <true code> if currently in horizontal mode, otherwise
% execute <false code>. Similar for the other functions.
% \end{function}
%
% \section{Internal kernel functions}
%
% \begin{function}{\__chk_if_exist_cs:N, \__chk_if_exist_cs:c}
% \begin{syntax}
% \cs{__chk_if_exist_cs:N} \meta{cs}
% \end{syntax}
% This function checks that \meta{cs} exists according to the
% criteria for \cs{cs_if_exist_p:N}, and if not raises a kernel-level
% error.
% \end{function}
%
% \begin{function}{\__chk_if_free_cs:N, \__chk_if_free_cs:c}
% \begin{syntax}
% \cs{__chk_if_free_cs:N} \meta{cs}
% \end{syntax}
% This function checks that \meta{cs} is free according to the
% criteria for \cs{cs_if_free_p:N}, and if not raises a kernel-level
% error.
% \end{function}
%
% \begin{function}[EXP]{\__cs_count_signature:N, \__cs_count_signature:c}
% \begin{syntax}
% \cs{__cs_count_signature:N} \meta{function}
% \end{syntax}
% Splits the \meta{function} into the \meta{name} (\emph{i.e.}~the part
% before the colon) and the \meta{signature} (\emph{i.e.}~after the colon).
% The \meta{number} of tokens in the \meta{signature} is then left in
% the input stream. If there was no \meta{signature} then the result is
% the marker value $-1$.
% \end{function}
%
% \begin{function}[EXP]{\__cs_split_function:NN}
% \begin{syntax}
% \cs{__cs_split_function:NN} \meta{function} \meta{processor}
% \end{syntax}
% Splits the \meta{function} into the \meta{name} (\emph{i.e.}~the part
% before the colon) and the \meta{signature} (\emph{i.e.}~after the colon).
% This information is then placed in the input stream after the
% \meta{processor} function in three parts: the \meta{name}, the
% \meta{signature} and a logic token indicating if a colon was found
% (to differentiate variables from function names). The \meta{name}
% will not include the escape character, and both the \meta{name} and
% \meta{signature} are made up of tokens with category code $12$
% (other). The \meta{processor} should be a function with argument
% specification \texttt{:nnN} (plus any trailing arguments needed).
% \end{function}
%
% \begin{function}[EXP]{\__cs_get_function_name:N}
% \begin{syntax}
% \cs{__cs_get_function_name:N} \meta{function}
% \end{syntax}
% Splits the \meta{function} into the \meta{name} (\emph{i.e.}~the part
% before the colon) and the \meta{signature} (\emph{i.e.}~after the colon).
% The \meta{name} is then left in the input stream without the escape
% character present made up of tokens with category code $12$
% (other).
% \end{function}
%
% \begin{function}[EXP]{\__cs_get_function_signature:N}
% \begin{syntax}
% \cs{__cs_get_function_signature:N} \meta{function}
% \end{syntax}
% Splits the \meta{function} into the \meta{name} (\emph{i.e.}~the part
% before the colon) and the \meta{signature} (\emph{i.e.}~after the colon).
% The \meta{signature} is then left in the input stream made up of
% tokens with category code $12$ (other).
% \end{function}
%
% \begin{function}{\__cs_tmp:w}
% Function used for various short-term usages, for instance defining
% functions whose definition involves tokens which are hard to insert
% normally (spaces, charactes with category other).
% \end{function}
%
% \begin{function}{\__kernel_register_show:N, \__kernel_register_show:c}
% \begin{syntax}
% \cs{__kernel_register_show:N} \meta{register}
% \end{syntax}
% Used to show the contents of a \TeX{} register at the terminal, formatted
% such that internal parts of the mechanism are not visible.
% \end{function}
%
% \begin{function}{\__prg_case_end:nw}
% \begin{syntax}
% \cs{__prg_case_end:nw} \Arg{code} \meta{tokens} \cs{q_recursion_stop}
% \end{syntax}
% Used to terminate case statements (\cs{int_case:nnn}, \emph{etc.})
% by removing trailing \meta{tokens} and the end marker
% \cs{q_recursion_stop}, and inserting the \meta{code} for the successful
% case.
% \end{function}
%
% \begin{function}{\__str_if_eq_x_return:nn}
% \begin{syntax}
% \cs{__str_if_eq_x_return:nn} \Arg{tl_1} \Arg{tl_2}
% \end{syntax}
% Compares the full expansion of two \meta{token lists} on a character by
% character basis, and is \texttt{true} if the two lists contain the same
% characters in the same order. Either \cs{prg_return_true:} or
% \cs{prg_return_false:} is then left in the input stream. This is a version
% of \cs{str_if_eq_x:nn(TF)} coded for speed.
% \end{function}
%
% \end{documentation}
%
% \begin{implementation}
%
% \section{\pkg{l3basics} implementation}
%
% \begin{macrocode}
%<*initex|package>
% \end{macrocode}
%
% \begin{macrocode}
%<*package>
\ProvidesExplPackage
{\ExplFileName}{\ExplFileDate}{\ExplFileVersion}{\ExplFileDescription}
\__expl_package_check:
%</package>
% \end{macrocode}
%
% \subsection{Renaming some \TeX{} primitives (again)}
%
% Having given all the \TeX{} primitives a consistent name, we need to
% give sensible names to the ones we actually want to use.
% These will be defined as needed in the appropriate modules, but
% do a few now, just to get started.\footnote{This renaming gets expensive
% in terms of csname usage, an alternative scheme would be to just use
% the \cs{tex\ldots:D} name in the cases where no good alternative exists.}
%
% \begin{macro}[EXP]
% {
% \if_true:, \if_false:, \or:, \else:, \fi:, \reverse_if:N,
% \if:w, \if_charcode:w, \if_catcode:w, \if_meaning:w
% }
% Then some conditionals.
% \begin{macrocode}
\tex_let:D \if_true: \tex_iftrue:D
\tex_let:D \if_false: \tex_iffalse:D
\tex_let:D \or: \tex_or:D
\tex_let:D \else: \tex_else:D
\tex_let:D \fi: \tex_fi:D
\tex_let:D \reverse_if:N \etex_unless:D
\tex_let:D \if:w \tex_if:D
\tex_let:D \if_charcode:w \tex_if:D
\tex_let:D \if_catcode:w \tex_ifcat:D
\tex_let:D \if_meaning:w \tex_ifx:D
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]
% {
% \if_mode_math:,
% \if_mode_horizontal:,
% \if_mode_vertical:,
% \if_mode_inner:
% }
% \TeX{} lets us detect some if its modes.
% \begin{macrocode}
\tex_let:D \if_mode_math: \tex_ifmmode:D
\tex_let:D \if_mode_horizontal: \tex_ifhmode:D
\tex_let:D \if_mode_vertical: \tex_ifvmode:D
\tex_let:D \if_mode_inner: \tex_ifinner:D
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\if_cs_exist:N, \if_cs_exist:w, \cs:w, \cs_end:}
% Building csnames and testing if control sequences exist.
% \begin{macrocode}
\tex_let:D \if_cs_exist:N \etex_ifdefined:D
\tex_let:D \if_cs_exist:w \etex_ifcsname:D
\tex_let:D \cs:w \tex_csname:D
\tex_let:D \cs_end: \tex_endcsname:D
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\exp_after:wN, \exp_not:N, \exp_not:n}
% The three |\exp_| functions are used in the \textsf{l3expan} module
% where they are described.
% \begin{macrocode}
\tex_let:D \exp_after:wN \tex_expandafter:D
\tex_let:D \exp_not:N \tex_noexpand:D
\tex_let:D \exp_not:n \etex_unexpanded:D
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\token_to_meaning:N, \token_to_str:N, \cs_meaning:N}
% Examining a control sequence or token.
% \begin{macrocode}
\tex_let:D \token_to_meaning:N \tex_meaning:D
\tex_let:D \token_to_str:N \tex_string:D
\tex_let:D \cs_meaning:N \tex_meaning:D
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\scan_stop:, \group_begin:, \group_end:}
% The next three are basic functions for which there also exist
% versions that are safe inside alignments. These safe versions are
% defined in the \textsf{l3prg} module.
% \begin{macrocode}
\tex_let:D \scan_stop: \tex_relax:D
\tex_let:D \group_begin: \tex_begingroup:D
\tex_let:D \group_end: \tex_endgroup:D
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\if_int_compare:w, \__int_to_roman:w}
% For integers.
% \begin{macrocode}
\tex_let:D \if_int_compare:w \tex_ifnum:D
\tex_let:D \__int_to_roman:w \tex_romannumeral:D
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\group_insert_after:N}
% Adding material after the end of a group.
% \begin{macrocode}
\tex_let:D \group_insert_after:N \tex_aftergroup:D
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\exp_args:Nc, \exp_args:cc}
% Discussed in \pkg{l3expan}, but needed much earlier.
% \begin{macrocode}
\tex_long:D \tex_def:D \exp_args:Nc #1#2
{ \exp_after:wN #1 \cs:w #2 \cs_end: }
\tex_long:D \tex_def:D \exp_args:cc #1#2
{ \cs:w #1 \exp_after:wN \cs_end: \cs:w #2 \cs_end: }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\token_to_meaning:c, \token_to_str:c, \cs_meaning:c}
% A small number of variants defined by hand.
% Some of the necessary functions
% (\cs{use_i:nn}, \cs{use_ii:nn}, and \cs{exp_args:NNc}) are not
% defined at that point yet, but will be defined before those variants
% are used. The \cs{cs_meaning:c} command must check for an undefined
% control sequence to avoid defining it mistakenly.
% \begin{macrocode}
\tex_def:D \token_to_str:c { \exp_args:Nc \token_to_str:N }
\tex_long:D \tex_def:D \cs_meaning:c #1
{
\if_cs_exist:w #1 \cs_end:
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_ii:nn
\fi:
{ \exp_args:Nc \cs_meaning:N {#1} }
{ \tl_to_str:n {undefined} }
}
\tex_let:D \token_to_meaning:c = \cs_meaning:c
% \end{macrocode}
% \end{macro}
%
% \subsection{Defining some constants}
%
% \begin{variable}{\c_minus_one, \c_zero, \c_sixteen}
% \begin{variable}{\c_six, \c_seven, \c_twelve}
% We need the constants \cs{c_minus_one} and \cs{c_sixteen} now for
% writing information to the log and the terminal and \cs{c_zero}
% which is used by some functions in the \textsf{l3alloc} module. The
% rest are defined in the \textsf{l3int} module -- at least for the
% ones that can be defined with \cs{tex_chardef:D} or
% \cs{tex_mathchardef:D}. For other constants the \textsf{l3int} module is
% required but it can't be used until the allocation has been set
% up properly! The actual allocation mechanism is in
% \textsf{l3alloc} and as \TeX{} wants to reserve count registers
% 0--9, the first available one is~10 so we use that for
% \cs{c_minus_one}.
% \begin{macrocode}
%<*package>
\tex_let:D \c_minus_one \m@ne
%</package>
%<*initex>
\tex_countdef:D \c_minus_one = 10 ~
\c_minus_one = -1 ~
%</initex>
\tex_chardef:D \c_sixteen = 16 ~
\tex_chardef:D \c_zero = 0 ~
\tex_chardef:D \c_six = 6 ~
\tex_chardef:D \c_seven = 7 ~
\tex_chardef:D \c_twelve = 12 ~
% \end{macrocode}
% \end{variable}
% \end{variable}
%
% \begin{variable}{\c_max_register_int}
% This is here as this particular integer is needed both in package
% mode and to bootstrap \pkg{l3alloc}, and is documented in \pkg{l3int}.
% \begin{macrocode}
\etex_ifdefined:D \luatex_luatexversion:D
\tex_chardef:D \c_max_register_int = 65 535 ~
\tex_else:D
\tex_mathchardef:D \c_max_register_int = 32 767 ~
\tex_fi:D
% \end{macrocode}
% \end{variable}
%
% \subsection{Defining functions}
%
% We start by providing functions for the typical definition
% functions. First the local ones.
%
% \begin{macro}
% {
% \cs_set_nopar:Npn , \cs_set_nopar:Npx ,
% \cs_set:Npn , \cs_set:Npx ,
% \cs_set_protected_nopar:Npn , \cs_set_protected_nopar:Npx ,
% \cs_set_protected:Npn , \cs_set_protected:Npx
% }
% All assignment functions in \LaTeX3 should be naturally protected;
% after all, the \TeX{} primitives for assignments are and it can be
% a cause of problems if others aren't.
% \begin{macrocode}
\tex_let:D \cs_set_nopar:Npn \tex_def:D
\tex_let:D \cs_set_nopar:Npx \tex_edef:D
\etex_protected:D \cs_set_nopar:Npn \cs_set:Npn
{ \tex_long:D \cs_set_nopar:Npn }
\etex_protected:D \cs_set_nopar:Npn \cs_set:Npx
{ \tex_long:D \cs_set_nopar:Npx }
\etex_protected:D \cs_set_nopar:Npn \cs_set_protected_nopar:Npn
{ \etex_protected:D \cs_set_nopar:Npn }
\etex_protected:D \cs_set_nopar:Npn \cs_set_protected_nopar:Npx
{ \etex_protected:D \cs_set_nopar:Npx }
\cs_set_protected_nopar:Npn \cs_set_protected:Npn
{ \etex_protected:D \tex_long:D \cs_set_nopar:Npn }
\cs_set_protected_nopar:Npn \cs_set_protected:Npx
{ \etex_protected:D \tex_long:D \cs_set_nopar:Npx }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \cs_gset_nopar:Npn , \cs_gset_nopar:Npx ,
% \cs_gset:Npn , \cs_gset:Npx ,
% \cs_gset_protected_nopar:Npn , \cs_gset_protected_nopar:Npx ,
% \cs_gset_protected:Npn , \cs_gset_protected:Npx
% }
% Global versions of the above functions.
% \begin{macrocode}
\tex_let:D \cs_gset_nopar:Npn \tex_gdef:D
\tex_let:D \cs_gset_nopar:Npx \tex_xdef:D
\cs_set_protected_nopar:Npn \cs_gset:Npn
{ \tex_long:D \cs_gset_nopar:Npn }
\cs_set_protected_nopar:Npn \cs_gset:Npx
{ \tex_long:D \cs_gset_nopar:Npx }
\cs_set_protected_nopar:Npn \cs_gset_protected_nopar:Npn
{ \etex_protected:D \cs_gset_nopar:Npn }
\cs_set_protected_nopar:Npn \cs_gset_protected_nopar:Npx
{ \etex_protected:D \cs_gset_nopar:Npx }
\cs_set_protected_nopar:Npn \cs_gset_protected:Npn
{ \etex_protected:D \tex_long:D \cs_gset_nopar:Npn }
\cs_set_protected_nopar:Npn \cs_gset_protected:Npx
{ \etex_protected:D \tex_long:D \cs_gset_nopar:Npx }
% \end{macrocode}
% \end{macro}
%
% \subsection{Selecting tokens}
%
% \begin{variable}{\l__exp_internal_tl}
% Scratch token list variable for \pkg{l3expan}, used by \cs{use:x},
% used in defining conditionals. We don't use |tl| methods because
% \pkg{l3basics} is loaded earlier.
% \begin{macrocode}
\cs_set_nopar:Npn \l__exp_internal_tl { }
% \end{macrocode}
% \end{variable}
%
% \begin{macro}[EXP]{\use:c}
% This macro grabs its argument and returns a csname from it.
% \begin{macrocode}
\cs_set:Npn \use:c #1 { \cs:w #1 \cs_end: }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\use:x}
% Fully expands its argument and passes it to the input stream. Uses
% the reserved \cs{l__exp_internal_tl} which will be set up in \pkg{l3expan}.
% \begin{macrocode}
\cs_set_protected:Npn \use:x #1
{
\cs_set_nopar:Npx \l__exp_internal_tl {#1}
\l__exp_internal_tl
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\use:n, \use:nn, \use:nnn, \use:nnnn}
% These macros grab their arguments and returns them back to the input
% (with outer braces removed).
% \begin{macrocode}
\cs_set:Npn \use:n #1 {#1}
\cs_set:Npn \use:nn #1#2 {#1#2}
\cs_set:Npn \use:nnn #1#2#3 {#1#2#3}
\cs_set:Npn \use:nnnn #1#2#3#4 {#1#2#3#4}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\use_i:nn, \use_ii:nn}
% The equivalent to \LaTeXe{}'s \tn{@firstoftwo} and \tn{@secondoftwo}.
% \begin{macrocode}
\cs_set:Npn \use_i:nn #1#2 {#1}
\cs_set:Npn \use_ii:nn #1#2 {#2}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]
% {
% \use_i:nnn , \use_ii:nnn , \use_iii:nnn , \use_i_ii:nnn ,
% \use_i:nnnn, \use_ii:nnnn, \use_iii:nnnn, \use_iv:nnnn
% }
% We also need something for picking up arguments from a longer list.
% \begin{macrocode}
\cs_set:Npn \use_i:nnn #1#2#3 {#1}
\cs_set:Npn \use_ii:nnn #1#2#3 {#2}
\cs_set:Npn \use_iii:nnn #1#2#3 {#3}
\cs_set:Npn \use_i_ii:nnn #1#2#3 {#1#2}
\cs_set:Npn \use_i:nnnn #1#2#3#4 {#1}
\cs_set:Npn \use_ii:nnnn #1#2#3#4 {#2}
\cs_set:Npn \use_iii:nnnn #1#2#3#4 {#3}
\cs_set:Npn \use_iv:nnnn #1#2#3#4 {#4}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]
% {
% \use_none_delimit_by_q_nil:w ,
% \use_none_delimit_by_q_stop:w ,
% \use_none_delimit_by_q_recursion_stop:w
% }
% Functions that gobble everything until they see either \cs{q_nil},
% \cs{q_stop}, or \cs{q_recursion_stop}, respectively.
% \begin{macrocode}
\cs_set:Npn \use_none_delimit_by_q_nil:w #1 \q_nil { }
\cs_set:Npn \use_none_delimit_by_q_stop:w #1 \q_stop { }
\cs_set:Npn \use_none_delimit_by_q_recursion_stop:w #1 \q_recursion_stop { }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \use_i_delimit_by_q_nil:nw ,
% \use_i_delimit_by_q_stop:nw ,
% \use_i_delimit_by_q_recursion_stop:nw
% }
% Same as above but execute first argument after gobbling. Very useful
% when you need to skip the rest of a mapping sequence but want an
% easy way to control what should be expanded next.
% \begin{macrocode}
\cs_set:Npn \use_i_delimit_by_q_nil:nw #1#2 \q_nil {#1}
\cs_set:Npn \use_i_delimit_by_q_stop:nw #1#2 \q_stop {#1}
\cs_set:Npn \use_i_delimit_by_q_recursion_stop:nw #1#2 \q_recursion_stop {#1}
% \end{macrocode}
% \end{macro}
%
% \subsection{Gobbling tokens from input}
%
% \begin{macro}[EXP]
% {
% \use_none:n,
% \use_none:nn,
% \use_none:nnn,
% \use_none:nnnn,
% \use_none:nnnnn,
% \use_none:nnnnnn,
% \use_none:nnnnnnn,
% \use_none:nnnnnnnn,
% \use_none:nnnnnnnnn
% }
% To gobble tokens from the input we use a standard naming convention:
% the number of tokens gobbled is given by the number of |n|'s
% following the |:| in the name. Although we could define functions to
% remove ten arguments or more using separate calls of
% \cs{use_none:nnnnn}, this is very non-intuitive to the programmer
% who will assume that expanding such a function once will take care
% of gobbling all the tokens in one go.
% \begin{macrocode}
\cs_set:Npn \use_none:n #1 { }
\cs_set:Npn \use_none:nn #1#2 { }
\cs_set:Npn \use_none:nnn #1#2#3 { }
\cs_set:Npn \use_none:nnnn #1#2#3#4 { }
\cs_set:Npn \use_none:nnnnn #1#2#3#4#5 { }
\cs_set:Npn \use_none:nnnnnn #1#2#3#4#5#6 { }
\cs_set:Npn \use_none:nnnnnnn #1#2#3#4#5#6#7 { }
\cs_set:Npn \use_none:nnnnnnnn #1#2#3#4#5#6#7#8 { }
\cs_set:Npn \use_none:nnnnnnnnn #1#2#3#4#5#6#7#8#9 { }
% \end{macrocode}
% \end{macro}
%
% \subsection{Conditional processing and definitions}
%
% Underneath any predicate function (|_p|) or other conditional forms
% (|TF|, etc.) is a built-in logic saying that it after all of the
% testing and processing must return the \meta{state} this leaves
% \TeX{} in. Therefore, a simple user interface could be something like
% \begin{verbatim}
% \if_meaning:w #1#2
% \prg_return_true:
% \else:
% \if_meaning:w #1#3
% \prg_return_true:
% \else:
% \prg_return_false:
% \fi:
% \fi:
% \end{verbatim}
% Usually, a \TeX{} programmer would have to insert a number of
% \cs{exp_after:wN}s to ensure the state value is returned at exactly
% the point where the last conditional is finished. However, that
% obscures the code and forces the \TeX{} programmer to prove that
% he/she knows the $2^{n}-1$ table. We therefore provide the simpler
% interface.
%
% \begin{macro}[EXP]{\prg_return_true:, \prg_return_false:}
% The idea here is that \cs{__int_to_roman:w} will expand fully any
% \cs{else:} and the \cs{fi:} that are waiting to be discarded,
% before reaching the \cs{c_zero} which will leave the expansion null.
% The code can then leave either the first or second argument in the
% input stream. This means that all of the branching code has to contain
% at least two tokens: see how the logical tests are actually implemented
% to see this.
% \begin{macrocode}
\cs_set_nopar:Npn \prg_return_true:
{ \exp_after:wN \use_i:nn \__int_to_roman:w }
\cs_set_nopar:Npn \prg_return_false:
{ \exp_after:wN \use_ii:nn \__int_to_roman:w}
% \end{macrocode}
% An extended state space could be implemented by including a more
% elaborate function in place of \cs{use_i:nn}/\cs{use_ii:nn}. Provided
% two arguments are absorbed then the code will work.
% \end{macro}
%
% \begin{macro}
% {
% \prg_set_conditional:Npnn ,
% \prg_new_conditional:Npnn ,
% \prg_set_protected_conditional:Npnn ,
% \prg_new_protected_conditional:Npnn ,
% }
% \begin{macro}[aux]{\__prg_generate_conditional_parm:nnNpnn}
% The user functions for the types using parameter text from the
% programmer. The various functions only differ by which function is
% used for the assignment. For those |Npnn| type functions, we must
% grab the parameter text, reading everything up to a left brace
% before continuing. Then split the base function into name and
% signature, and feed \Arg{name} \Arg{signature} \meta{boolean}
% \Arg{set~or~new} \Arg{maybe~protected} \Arg{parameters} |{TF,...}|
% \Arg{code} to the auxiliary function responsible for defining all
% conditionals.
% \begin{macrocode}
\cs_set_protected_nopar:Npn \prg_set_conditional:Npnn
{ \__prg_generate_conditional_parm:nnNpnn { set } { } }
\cs_set_protected_nopar:Npn \prg_new_conditional:Npnn
{ \__prg_generate_conditional_parm:nnNpnn { new } { } }
\cs_set_protected_nopar:Npn \prg_set_protected_conditional:Npnn
{ \__prg_generate_conditional_parm:nnNpnn { set } { _protected } }
\cs_set_protected_nopar:Npn \prg_new_protected_conditional:Npnn
{ \__prg_generate_conditional_parm:nnNpnn { new } { _protected } }
\cs_set_protected:Npn \__prg_generate_conditional_parm:nnNpnn #1#2#3#4#
{
\__cs_split_function:NN #3 \__prg_generate_conditional:nnNnnnnn
{#1} {#2} {#4}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \prg_set_conditional:Nnn ,
% \prg_new_conditional:Nnn ,
% \prg_set_protected_conditional:Nnn ,
% \prg_new_protected_conditional:Nnn ,
% }
% \begin{macro}[aux]
% {
% \__prg_generate_conditional_count:nnNnn ,
% \__prg_generate_conditional_count:nnNnnnn
% }
% The user functions for the types automatically inserting the correct
% parameter text based on the signature. The various functions only
% differ by which function is used for the assignment. Split the base
% function into name and signature. The second auxiliary generates
% the parameter text from the number of letters in the signature.
% Then feed \Arg{name} \Arg{signature} \meta{boolean} \Arg{set~or~new}
% \Arg{maybe~protected} \Arg{parameters} |{TF,...}| \Arg{code} to the
% auxiliary function responsible for defining all conditionals. If
% the \meta{signature} has more than $9$ letters, the definition is
% aborted since \TeX{} macros have at most $9$ arguments. The
% erroneous case where the function name contains no colon is captured
% later.
% \begin{macrocode}
\cs_set_protected_nopar:Npn \prg_set_conditional:Nnn
{ \__prg_generate_conditional_count:nnNnn { set } { } }
\cs_set_protected_nopar:Npn \prg_new_conditional:Nnn
{ \__prg_generate_conditional_count:nnNnn { new } { } }
\cs_set_protected_nopar:Npn \prg_set_protected_conditional:Nnn
{ \__prg_generate_conditional_count:nnNnn { set } { _protected } }
\cs_set_protected_nopar:Npn \prg_new_protected_conditional:Nnn
{ \__prg_generate_conditional_count:nnNnn { new } { _protected } }
\cs_set_protected:Npn \__prg_generate_conditional_count:nnNnn #1#2#3
{
\__cs_split_function:NN #3 \__prg_generate_conditional_count:nnNnnnn
{#1} {#2}
}
\cs_set_protected:Npn \__prg_generate_conditional_count:nnNnnnn #1#2#3#4#5
{
\__cs_parm_from_arg_count:nnF
{ \__prg_generate_conditional:nnNnnnnn {#1} {#2} #3 {#4} {#5} }
{ \tl_count:n {#2} }
{
\__msg_kernel_error:nnxx { kernel } { bad-number-of-arguments }
{ \token_to_str:c { #1 : #2 } }
{ \tl_count:n {#2} }
\use_none:nn
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[aux]
% {
% \__prg_generate_conditional:nnNnnnnn,
% \__prg_generate_conditional:nnnnnnw
% }
% The workhorse here is going through a list of desired forms, \emph{i.e.},
% |p|, |TF|, |T| and |F|. The first three arguments come from splitting up
% the base form of the conditional, which gives the name, signature
% and a boolean to signal whether or not there was a colon in the
% name. In the absence of a colon, we throw an error and don't define
% any conditional. The fourth and fifth arguments build up the
% defining function. The sixth is the parameters to use (possibly
% empty), the seventh is the list of forms to define, the eigth is the
% replacement text which we will augment when defining the forms.
% The use of \cs{etex_detokenize:D} makes the later loop more robust.
% \begin{macrocode}
\cs_set_protected:Npn \__prg_generate_conditional:nnNnnnnn #1#2#3#4#5#6#7#8
{
\if_meaning:w \c_false_bool #3
\__msg_kernel_error:nnx { kernel } { missing-colon }
{ \token_to_str:c {#1} }
\exp_after:wN \use_none:nn
\fi:
\use:x
{
\exp_not:N \__prg_generate_conditional:nnnnnnw
\exp_not:n { {#4} {#5} {#1} {#2} {#6} {#8} }
\etex_detokenize:D {#7}
\exp_not:n { , \q_recursion_tail , \q_recursion_stop }
}
}
% \end{macrocode}
% Looping through the list of desired forms. First are six arguments
% and seventh is the form. Use the form to call the
% correct type. If the form does not exist, the \cs{use:c}
% construction results in \tn{relax}, and the error message is
% displayed (unless the form is empty, to allow for |{T, , F}|),
% then \cs{use_none:nnnnnnn} cleans up. Otherwise, the
% error message is removed by the variant form.
% \begin{macrocode}
\cs_set_protected:Npn \__prg_generate_conditional:nnnnnnw #1#2#3#4#5#6#7 ,
{
\if_meaning:w \q_recursion_tail #7
\exp_after:wN \use_none_delimit_by_q_recursion_stop:w
\fi:
\use:c { __prg_generate_ #7 _form:wnnnnnn }
\tl_if_empty:nF {#7}
{
\__msg_kernel_error:nnxx
{ kernel } { conditional-form-unknown }
{#7} { \token_to_str:c { #3 : #4 } }
}
\use_none:nnnnnnn
\q_stop
{#1} {#2} {#3} {#4} {#5} {#6}
\__prg_generate_conditional:nnnnnnw {#1} {#2} {#3} {#4} {#5} {#6}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[aux]
% {
% \__prg_generate_p_form:wnnnnnn,
% \__prg_generate_TF_form:wnnnnnn,
% \__prg_generate_T_form:wnnnnnn,
% \__prg_generate_F_form:wnnnnnn
% }
% How to generate the various forms. Those functions take the
% following arguments: 1: \texttt{set} or \texttt{new}, 2: empty or
% \texttt{\_protected}, 3: function name 4: signature, 5: parameter
% text (or empty), 6: replacement. Remember that the logic-returning
% functions expect two arguments to be present after \cs{c_zero}:
% notice the construction of the different variants relies on this,
% and that the |TF| variant will be slightly faster than the |T|
% version. The |p| form is only valid for expandable tests, we check
% for that by making sure that the second argument is empty.
% \begin{macrocode}
\cs_set_protected:Npn \__prg_generate_p_form:wnnnnnn #1 \q_stop #2#3#4#5#6#7
{
\if_meaning:w \scan_stop: #3 \scan_stop:
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_ii:nn
\fi:
{
\exp_args:cc { cs_ #2 #3 :Npn } { #4 _p: #5 } #6
{ #7 \c_zero \c_true_bool \c_false_bool }
}
{
\__msg_kernel_error:nnx { kernel } { protected-predicate }
{ \token_to_str:c { #4 _p: #5 } }
}
}
\cs_set_protected:Npn \__prg_generate_T_form:wnnnnnn #1 \q_stop #2#3#4#5#6#7
{
\exp_args:cc { cs_ #2 #3 :Npn } { #4 : #5 T } #6
{ #7 \c_zero \use:n \use_none:n }
}
\cs_set_protected:Npn \__prg_generate_F_form:wnnnnnn #1 \q_stop #2#3#4#5#6#7
{
\exp_args:cc { cs_ #2 #3 :Npn } { #4 : #5 F } #6
{ #7 \c_zero { } }
}
\cs_set_protected:Npn \__prg_generate_TF_form:wnnnnnn #1 \q_stop #2#3#4#5#6#7
{
\exp_args:cc { cs_ #2 #3 :Npn } { #4 : #5 TF } #6
{ #7 \c_zero }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\prg_set_eq_conditional:NNn,\prg_new_eq_conditional:NNn}
% \begin{macro}[aux]{\__prg_set_eq_conditional:NNNn}
% The setting-equal functions. Split the two functions and feed a
% first auxiliary \Arg{name_1} \Arg{signature_1} \meta{boolean_1}
% \Arg{name_2} \Arg{signature_2} \meta{boolean_2}
% \meta{copying~function} \meta{conditions} |,| \cs{q_recursion_tail}
% |,| \cs{q_recursion_stop}
% \begin{macrocode}
\cs_set_protected_nopar:Npn \prg_set_eq_conditional:NNn
{ \__prg_set_eq_conditional:NNNn \cs_set_eq:cc }
\cs_set_protected_nopar:Npn \prg_new_eq_conditional:NNn
{ \__prg_set_eq_conditional:NNNn \cs_new_eq:cc }
\cs_set_protected:Npn \__prg_set_eq_conditional:NNNn #1#2#3#4
{
\use:x
{
\exp_not:N \__prg_set_eq_conditional:nnNnnNNw
\__cs_split_function:NN #2 \prg_do_nothing:
\__cs_split_function:NN #3 \prg_do_nothing:
\exp_not:N #1
\etex_detokenize:D {#4}
\exp_not:n { , \q_recursion_tail , \q_recursion_stop }
}
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[aux]
% {
% \__prg_set_eq_conditional:nnNnnNNw ,
% \__prg_set_eq_conditional_loop:nnnnNw
% }
% \begin{macro}[aux, EXP]
% {
% \__prg_set_eq_conditional_p_form:nnn ,
% \__prg_set_eq_conditional_TF_form:nnn ,
% \__prg_set_eq_conditional_T_form:nnn ,
% \__prg_set_eq_conditional_F_form:nnn ,
% }
% Split the function to be defined, and setup a manual clist loop over
% argument |#6| of the first auxiliary. The second auxiliary receives
% twice three arguments coming from splitting the function to be
% defined and the function to copy. Make sure that both functions
% contained a colon, otherwise we don't know how to build
% conditionals, hence abort. Call the looping macro, with arguments
% \Arg{name_1} \Arg{signature_1} \Arg{name_2} \Arg{signature_2}
% \meta{copying~function} and followed by the comma list. At each
% step in the loop, make sure that the conditional form we copy is
% defined, and copy it, otherwise abort.
% \begin{macrocode}
\cs_set_protected:Npn \__prg_set_eq_conditional:nnNnnNNw #1#2#3#4#5#6
{
\if_meaning:w \c_false_bool #3
\__msg_kernel_error:nnx { kernel } { missing-colon }
{ \token_to_str:c {#1} }
\exp_after:wN \use_none_delimit_by_q_recursion_stop:w
\fi:
\if_meaning:w \c_false_bool #6
\__msg_kernel_error:nnx { kernel } { missing-colon }
{ \token_to_str:c {#4} }
\exp_after:wN \use_none_delimit_by_q_recursion_stop:w
\fi:
\__prg_set_eq_conditional_loop:nnnnNw {#1} {#2} {#4} {#5}
}
\cs_set_protected:Npn \__prg_set_eq_conditional_loop:nnnnNw #1#2#3#4#5#6 ,
{
\if_meaning:w \q_recursion_tail #6
\exp_after:wN \use_none_delimit_by_q_recursion_stop:w
\fi:
\use:c { __prg_set_eq_conditional_ #6 _form:wNnnnn }
\tl_if_empty:nF {#6}
{
\__msg_kernel_error:nnxx
{ kernel } { conditional-form-unknown }
{#6} { \token_to_str:c { #1 : #2 } }
}
\use_none:nnnnnn
\q_stop
#5 {#1} {#2} {#3} {#4}
\__prg_set_eq_conditional_loop:nnnnNw {#1} {#2} {#3} {#4} #5
}
\cs_set:Npn \__prg_set_eq_conditional_p_form:wNnnnn #1 \q_stop #2#3#4#5#6
{
\__chk_if_exist_cs:c { #5 _p : #6 }
#2 { #3 _p : #4 } { #5 _p : #6 }
}
\cs_set:Npn \__prg_set_eq_conditional_TF_form:wNnnnn #1 \q_stop #2#3#4#5#6
{
\__chk_if_exist_cs:c { #5 : #6 TF }
#2 { #3 : #4 TF } { #5 : #6 TF }
}
\cs_set:Npn \__prg_set_eq_conditional_T_form:wNnnnn #1 \q_stop #2#3#4#5#6
{
\__chk_if_exist_cs:c { #5 : #6 T }
#2 { #3 : #4 T } { #5 : #6 T }
}
\cs_set:Npn \__prg_set_eq_conditional_F_form:wNnnnn #1 \q_stop #2#3#4#5#6
{
\__chk_if_exist_cs:c { #5 : #6 F }
#2 { #3 : #4 F } { #5 : #6 F }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% All that is left is to define the canonical boolean true and false.
% I think Michael originated the idea of expandable boolean tests. At
% first these were supposed to expand into either \texttt{TT} or
% \texttt{TF} to be tested using \cs{if:w} but this was later changed to
% |00| and |01|, so they could be used in logical
% operations. Later again they were changed to being numerical
% constants with values of $1$ for true and $0$ for false. We need
% this from the get-go.
%
% \begin{variable}{\c_true_bool, \c_false_bool}
% Here are the canonical boolean values.
% \begin{macrocode}
\tex_chardef:D \c_true_bool = 1 ~
\tex_chardef:D \c_false_bool = 0 ~
% \end{macrocode}
% \end{variable}
%
% \subsection{Dissecting a control sequence}
%
% \begin{macro}[EXP]{\cs_to_str:N}
% \begin{macro}[aux, EXP]{\__cs_to_str:N, \__cs_to_str:w}
% This converts a control sequence into the character string of its
% name, removing the leading escape character. This turns out to be
% a non-trivial matter as there a different cases:
% \begin{itemize}
% \item The usual case of a printable escape character;
% \item the case of a non-printable escape characters, e.g., when
% the value of the \tn{escapechar} is negative;
% \item when the escape character is a space.
% \end{itemize}
% One approach to solve this is to test how many tokens result from
% |\token_to_str:N \a|. If there are two tokens, then the escape
% character is printable, while if it is non-printable then only
% one is present.
%
% However, there is an additional complication: the control
% sequence itself may start with a space. Clearly that should \emph{not} be
% lost in the process of converting to a string. So the approach adopted is
% a little more intricate still. When the escape character is printable,
% \verb*|\token_to_str:N \ | yields the escape character itself and a space.
% The character codes are different, thus the \cs{if:w} test is false,
% and \TeX{} reads \cs{__cs_to_str:N} after turning the following
% control sequence into a string; this auxiliary removes the escape
% character, and stops the expansion of the initial \cs{__int_to_roman:w}.
% The second case is that the escape character is not printable. Then
% the \cs{if:w} test is unfinished after reading a the space from
% \verb*|\token_to_str:N \ |, and the auxiliary \cs{__cs_to_str:w}
% is expanded, feeding |-| as a second character for the test;
% the test is false, and \TeX{} skips to \cs{fi:}, then performs
% \cs{token_to_str:N}, and stops the \cs{__int_to_roman:w} with \cs{c_zero}.
% The last case is that the escape character is itself a space. In this
% case, the \cs{if:w} test is true, and the auxiliary \cs{__cs_to_str:w}
% comes into play, inserting |-\__int_value:w|, which expands \cs{c_zero}
% to the character |0|. The initial \cs{__int_to_roman:w} then sees
% |0|, which is not a terminated number, followed by the escape character,
% a space, which is removed, terminating the argument of
% \cs{__int_to_roman:w}.
% In all three cases, \cs{cs_to_str:N} takes two expansion steps
% to be fully expanded.
% \begin{macrocode}
\cs_set_nopar:Npn \cs_to_str:N
{
\__int_to_roman:w
\if:w \token_to_str:N \ \__cs_to_str:w \fi:
\exp_after:wN \__cs_to_str:N \token_to_str:N
}
\cs_set:Npn \__cs_to_str:N #1 { \c_zero }
\cs_set:Npn \__cs_to_str:w #1 \__cs_to_str:N
{ - \__int_value:w \fi: \exp_after:wN \c_zero }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP, int]{\__cs_split_function:NN}
% \begin{macro}[aux, EXP]
% {\__cs_split_function_auxi:w, \__cs_split_function_auxii:w}
% This function takes a function name and splits it into name with
% the escape char removed and argument specification. In addition to
% this, a third argument, a boolean \meta{true} or \meta{false} is
% returned with \meta{true} for when there is a colon in the function
% and \meta{false} if there is not. Lastly, the second argument of
% \cs{__cs_split_function:NN} is supposed to be a function
% taking three variables, one for name, one for signature, and one
% for the boolean. For example,
% |\__cs_split_function:NN \foo_bar:cnx \use_i:nnn| as input
% becomes |\use_i:nnn {foo_bar} {cnx} \c_true_bool|.
%
% We can't use a literal |:| because it has the wrong catcode here, so
% it's transformed from |@| with \cs{tex_lowercase:D}.
%
% First ensure that we actually get a properly evaluated string by
% expanding \cs{cs_to_str:N} twice. If the function contained a
% colon, the auxiliary takes as |#1| the function name, delimited by
% the first colon, then the signature |#2|, delimited by \cs{q_mark},
% then \cs{c_true_bool} as |#3|, and |#4| cleans up until \cs{q_stop}.
% Otherwise, the |#1| contains the function name and \cs{q_mark}
% \cs{c_true_bool}, |#2| is empty, |#3| is \cs{c_false_bool}, and |#4|
% cleans up. In both cases, |#5| is the \meta{processor}. The second
% auxiliary trims the trailing \cs{q_mark} from the function name if
% present (that is, if the original function had no colon).
% \begin{macrocode}
\group_begin:
\tex_lccode:D `\@ = `\: \scan_stop:
\tex_catcode:D `\@ = 12 ~
\tex_lowercase:D
{
\group_end:
\cs_set:Npn \__cs_split_function:NN #1
{
\exp_after:wN \exp_after:wN
\exp_after:wN \__cs_split_function_auxi:w
\cs_to_str:N #1 \q_mark \c_true_bool
@ \q_mark \c_false_bool
\q_stop
}
\cs_set:Npn \__cs_split_function_auxi:w #1 @ #2 \q_mark #3#4 \q_stop #5
{ \__cs_split_function_auxii:w #5 #1 \q_mark \q_stop {#2} #3 }
\cs_set:Npn \__cs_split_function_auxii:w #1#2 \q_mark #3 \q_stop
{ #1 {#2} }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}[EXP, int]
% {\__cs_get_function_name:N, \__cs_get_function_signature:N}
% Simple wrappers.
% \begin{macrocode}
\cs_set:Npn \__cs_get_function_name:N #1
{ \__cs_split_function:NN #1 \use_i:nnn }
\cs_set:Npn \__cs_get_function_signature:N #1
{ \__cs_split_function:NN #1 \use_ii:nnn }
% \end{macrocode}
% \end{macro}
%
% \subsection{Exist or free}
%
% A control sequence is said to \emph{exist} (to be used) if has an entry in
% the hash table and its meaning is different from the primitive
% \tn{relax} token. A control sequence is said to be \emph{free}
% (to be defined) if it does not already exist.
%
% \begin{macro}[pTF, EXP]{\cs_if_exist:N,\cs_if_exist:c}
% Two versions for checking existence. For the |N| form we firstly
% check for \cs{scan_stop:} and then if it is in the hash
% table. There is no problem when inputting something like \cs{else:}
% or \cs{fi:} as \TeX{} will only ever skip input in case the token
% tested against is \cs{scan_stop:}.
% \begin{macrocode}
\prg_set_conditional:Npnn \cs_if_exist:N #1 { p , T , F , TF }
{
\if_meaning:w #1 \scan_stop:
\prg_return_false:
\else:
\if_cs_exist:N #1
\prg_return_true:
\else:
\prg_return_false:
\fi:
\fi:
}
% \end{macrocode}
% For the |c| form we firstly check if it is in the hash table and
% then for \cs{scan_stop:} so that we do not add it to the hash table
% unless it was already there. Here we have to be careful as the text
% to be skipped if the first test is false may contain tokens that
% disturb the scanner. Therefore, we ensure that the second test is
% performed after the first one has concluded completely.
% \begin{macrocode}
\prg_set_conditional:Npnn \cs_if_exist:c #1 { p , T , F , TF }
{
\if_cs_exist:w #1 \cs_end:
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_ii:nn
\fi:
{
\exp_after:wN \if_meaning:w \cs:w #1 \cs_end: \scan_stop:
\prg_return_false:
\else:
\prg_return_true:
\fi:
}
\prg_return_false:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[pTF, EXP]{\cs_if_free:N,\cs_if_free:c}
% The logical reversal of the above.
% \begin{macrocode}
\prg_set_conditional:Npnn \cs_if_free:N #1 { p , T , F , TF }
{
\if_meaning:w #1 \scan_stop:
\prg_return_true:
\else:
\if_cs_exist:N #1
\prg_return_false:
\else:
\prg_return_true:
\fi:
\fi:
}
\prg_set_conditional:Npnn \cs_if_free:c #1 { p , T , F , TF }
{
\if_cs_exist:w #1 \cs_end:
\exp_after:wN \use_i:nn
\else:
\exp_after:wN \use_ii:nn
\fi:
{
\exp_after:wN \if_meaning:w \cs:w #1 \cs_end: \scan_stop:
\prg_return_true:
\else:
\prg_return_false:
\fi:
}
{ \prg_return_true: }
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP,TF,added=2011-10-10]
% {\cs_if_exist_use:N, \cs_if_exist_use:c}
% \begin{macro}[EXP,added=2011-10-10]
% {\cs_if_exist_use:N, \cs_if_exist_use:c}
% The \cs{cs_if_exist_use:\ldots{}} functions cannot be implemented
% as conditionals because the true branch must leave both the control
% sequence itself and the true code in the input stream.
% For the \texttt{c} variants, we are careful not to put the control
% sequence in the hash table if it does not exist.
% \begin{macrocode}
\cs_set:Npn \cs_if_exist_use:NTF #1#2
{ \cs_if_exist:NTF #1 { #1 #2 } }
\cs_set:Npn \cs_if_exist_use:NF #1
{ \cs_if_exist:NTF #1 { #1 } }
\cs_set:Npn \cs_if_exist_use:NT #1 #2
{ \cs_if_exist:NTF #1 { #1 #2 } { } }
\cs_set:Npn \cs_if_exist_use:N #1
{ \cs_if_exist:NTF #1 { #1 } { } }
\cs_set:Npn \cs_if_exist_use:cTF #1#2
{ \cs_if_exist:cTF {#1} { \use:c {#1} #2 } }
\cs_set:Npn \cs_if_exist_use:cF #1
{ \cs_if_exist:cTF {#1} { \use:c {#1} } }
\cs_set:Npn \cs_if_exist_use:cT #1#2
{ \cs_if_exist:cTF {#1} { \use:c {#1} #2 } { } }
\cs_set:Npn \cs_if_exist_use:c #1
{ \cs_if_exist:cTF {#1} { \use:c {#1} } { } }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Defining and checking (new) functions}
%
% We provide two kinds of functions that can be used to define
% control sequences. On the one hand we have functions that check
% if their argument doesn't already exist, they are called
% |\..._new|. The second type of defining functions doesn't check
% if the argument is already defined.
%
% Before we can define them, we need some auxiliary macros that
% allow us to generate error messages. The definitions here are
% only temporary, they will be redefined later on.
%
% \begin{macro}{\iow_log:x, \iow_term:x}
% We define a routine to write only to the log file. And a
% similar one for writing to both the log file and the terminal.
% These will be redefined later by \pkg{l3io}.
% \begin{macrocode}
\cs_set_protected_nopar:Npn \iow_log:x
{ \tex_immediate:D \tex_write:D \c_minus_one }
\cs_set_protected_nopar:Npn \iow_term:x
{ \tex_immediate:D \tex_write:D \c_sixteen }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int]
% {\__msg_kernel_error:nnxx, \__msg_kernel_error:nnx, \__msg_kernel_error:nn}
% If an internal error occurs before \LaTeX3 has loaded \pkg{l3msg} then
% the code should issue a usable if terse error message and halt. This
% can only happen if a coding error is made by the team, so this is
% a reasonable response.
% \begin{macrocode}
\cs_set_protected:Npn \__msg_kernel_error:nnxx #1#2#3#4
{
\tex_errmessage:D
{
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~! ^^J
Argh,~internal~LaTeX3~error! ^^J ^^J
Module ~ #1 , ~ message~name~"#2": ^^J
Arguments~'#3'~and~'#4' ^^J ^^J
This~is~one~for~The~LaTeX3~Project:~bailing~out
}
\tex_end:D
}
\cs_set_protected:Npn \__msg_kernel_error:nnx #1#2#3
{ \__msg_kernel_error:nnxx {#1} {#2} {#3} { } }
\cs_set_protected:Npn \__msg_kernel_error:nn #1#2
{ \__msg_kernel_error:nnxx {#1} {#2} { } { } }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[rEXP]{\msg_line_context:}
% Another one from \pkg{l3msg} which will be altered later.
% \begin{macrocode}
\cs_set_nopar:Npn \msg_line_context:
{ on~line~ \tex_the:D \tex_inputlineno:D }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int]{\__chk_if_free_cs:N, \__chk_if_free_cs:c}
% This command is called by \cs{cs_new_nopar:Npn} and \cs{cs_new_eq:NN}
% \emph{etc.}\
% to make sure that the argument sequence is not already in use. If
% it is, an error is signalled. It checks if \meta{csname} is
% undefined or \cs{scan_stop:}. Otherwise an error message is
% issued. We have to make sure we don't put the argument into the
% conditional processing since it may be an |\if...| type function!
% \begin{macrocode}
\cs_set_protected:Npn \__chk_if_free_cs:N #1
{
\cs_if_free:NF #1
{
\__msg_kernel_error:nnxx { kernel } { command-already-defined }
{ \token_to_str:N #1 } { \token_to_meaning:N #1 }
}
}
%<*package>
\tex_ifodd:D \l@expl@log@functions@bool
\cs_set_protected:Npn \__chk_if_free_cs:N #1
{
\cs_if_free:NF #1
{
\__msg_kernel_error:nnxx { kernel } { command-already-defined }
{ \token_to_str:N #1 } { \token_to_meaning:N #1 }
}
\iow_log:x { Defining~\token_to_str:N #1~ \msg_line_context: }
}
\fi:
%</package>
\cs_set_protected_nopar:Npn \__chk_if_free_cs:c
{ \exp_args:Nc \__chk_if_free_cs:N }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int]{\__chk_if_exist_cs:N, \__chk_if_exist_cs:c}
% This function issues an error message when the control sequence
% in its argument does not exist.
% \begin{macrocode}
\cs_set_protected:Npn \__chk_if_exist_cs:N #1
{
\cs_if_exist:NF #1
{
\__msg_kernel_error:nnx { kernel } { command-not-defined }
{ \token_to_str:N #1 }
}
}
\cs_set_protected_nopar:Npn \__chk_if_exist_cs:c
{ \exp_args:Nc \__chk_if_exist_cs:N }
% \end{macrocode}
% \end{macro}
%
% \subsection{More new definitions}
%
% \begin{macro}
% {
% \cs_new_nopar:Npn , \cs_new_nopar:Npx ,
% \cs_new:Npn , \cs_new:Npx ,
% \cs_new_protected_nopar:Npn , \cs_new_protected_nopar:Npx ,
% \cs_new_protected:Npn , \cs_new_protected:Npx
% }
% Function which check that the control sequence is free before
% defining it.
% \begin{macrocode}
\cs_set:Npn \__cs_tmp:w #1#2
{
\cs_set_protected:Npn #1 ##1
{
\__chk_if_free_cs:N ##1
#2 ##1
}
}
\__cs_tmp:w \cs_new_nopar:Npn \cs_gset_nopar:Npn
\__cs_tmp:w \cs_new_nopar:Npx \cs_gset_nopar:Npx
\__cs_tmp:w \cs_new:Npn \cs_gset:Npn
\__cs_tmp:w \cs_new:Npx \cs_gset:Npx
\__cs_tmp:w \cs_new_protected_nopar:Npn \cs_gset_protected_nopar:Npn
\__cs_tmp:w \cs_new_protected_nopar:Npx \cs_gset_protected_nopar:Npx
\__cs_tmp:w \cs_new_protected:Npn \cs_gset_protected:Npn
\__cs_tmp:w \cs_new_protected:Npx \cs_gset_protected:Npx
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \cs_set_nopar:cpn , \cs_set_nopar:cpx ,
% \cs_gset_nopar:cpn , \cs_gset_nopar:cpx ,
% \cs_new_nopar:cpn , \cs_new_nopar:cpx
% }
% Like \cs{cs_set_nopar:Npn} and \cs{cs_new_nopar:Npn}, except that the
% first argument consists of the sequence of characters that should
% be used to form the name of the desired control sequence (the |c|
% stands for csname argument, see the expansion module). Global
% versions are also provided.
%
% \cs{cs_set_nopar:cpn}\meta{string}\meta{rep-text} will turn \meta{string}
% into a csname and then assign \meta{rep-text} to it by using
% \cs{cs_set_nopar:Npn}. This means that there might be a parameter
% string between the two arguments.
% \begin{macrocode}
\cs_set:Npn \__cs_tmp:w #1#2
{ \cs_new_protected_nopar:Npn #1 { \exp_args:Nc #2 } }
\__cs_tmp:w \cs_set_nopar:cpn \cs_set_nopar:Npn
\__cs_tmp:w \cs_set_nopar:cpx \cs_set_nopar:Npx
\__cs_tmp:w \cs_gset_nopar:cpn \cs_gset_nopar:Npn
\__cs_tmp:w \cs_gset_nopar:cpx \cs_gset_nopar:Npx
\__cs_tmp:w \cs_new_nopar:cpn \cs_new_nopar:Npn
\__cs_tmp:w \cs_new_nopar:cpx \cs_new_nopar:Npx
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \cs_set:cpn , \cs_set:cpx ,
% \cs_gset:cpn , \cs_gset:cpx ,
% \cs_new:cpn , \cs_new:cpx
% }
% Variants of the \cs{cs_set:Npn} versions which make a csname out
% of the first arguments. We may also do this globally.
% \begin{macrocode}
\__cs_tmp:w \cs_set:cpn \cs_set:Npn
\__cs_tmp:w \cs_set:cpx \cs_set:Npx
\__cs_tmp:w \cs_gset:cpn \cs_gset:Npn
\__cs_tmp:w \cs_gset:cpx \cs_gset:Npx
\__cs_tmp:w \cs_new:cpn \cs_new:Npn
\__cs_tmp:w \cs_new:cpx \cs_new:Npx
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \cs_set_protected_nopar:cpn , \cs_set_protected_nopar:cpx ,
% \cs_gset_protected_nopar:cpn , \cs_gset_protected_nopar:cpx ,
% \cs_new_protected_nopar:cpn , \cs_new_protected_nopar:cpx
% }
% Variants of the \cs{cs_set_protected_nopar:Npn} versions which make
% a csname out of the first arguments. We may also do this globally.
% \begin{macrocode}
\__cs_tmp:w \cs_set_protected_nopar:cpn \cs_set_protected_nopar:Npn
\__cs_tmp:w \cs_set_protected_nopar:cpx \cs_set_protected_nopar:Npx
\__cs_tmp:w \cs_gset_protected_nopar:cpn \cs_gset_protected_nopar:Npn
\__cs_tmp:w \cs_gset_protected_nopar:cpx \cs_gset_protected_nopar:Npx
\__cs_tmp:w \cs_new_protected_nopar:cpn \cs_new_protected_nopar:Npn
\__cs_tmp:w \cs_new_protected_nopar:cpx \cs_new_protected_nopar:Npx
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \cs_set_protected:cpn , \cs_set_protected:cpx ,
% \cs_gset_protected:cpn , \cs_gset_protected:cpx ,
% \cs_new_protected:cpn , \cs_new_protected:cpx
% }
% Variants of the \cs{cs_set_protected:Npn} versions which make a csname
% out of the first arguments. We may also do this globally.
% \begin{macrocode}
\__cs_tmp:w \cs_set_protected:cpn \cs_set_protected:Npn
\__cs_tmp:w \cs_set_protected:cpx \cs_set_protected:Npx
\__cs_tmp:w \cs_gset_protected:cpn \cs_gset_protected:Npn
\__cs_tmp:w \cs_gset_protected:cpx \cs_gset_protected:Npx
\__cs_tmp:w \cs_new_protected:cpn \cs_new_protected:Npn
\__cs_tmp:w \cs_new_protected:cpx \cs_new_protected:Npx
% \end{macrocode}
% \end{macro}
%
% \subsection{Copying definitions}
%
% \begin{macro}
% {
% \cs_set_eq:NN , \cs_set_eq:cN , \cs_set_eq:Nc , \cs_set_eq:cc ,
% \cs_gset_eq:NN , \cs_gset_eq:cN , \cs_gset_eq:Nc , \cs_gset_eq:cc ,
% \cs_new_eq:NN , \cs_new_eq:cN , \cs_new_eq:Nc , \cs_new_eq:cc
% }
% These macros allow us to copy the definition of a control sequence
% to another control sequence.
%
% The |=| sign allows us to define funny char tokens like |=| itself
% or \verb*| | with this function. For the definition of
% |\c_space_char{~}| to work we need the |~| after the |=|.
%
% \cs{cs_set_eq:NN} is long to avoid problems with a literal argument
% of \cs{par}. While \cs{cs_new_eq:NN} will probably never be correct
% with a first argument of \cs{par}, define it long in order to throw
% an \enquote{already defined} error rather than
% \enquote{runaway argument}.
% \begin{macrocode}
\cs_new_protected:Npn \cs_set_eq:NN #1 { \tex_let:D #1 =~ }
\cs_new_protected_nopar:Npn \cs_set_eq:cN { \exp_args:Nc \cs_set_eq:NN }
\cs_new_protected_nopar:Npn \cs_set_eq:Nc { \exp_args:NNc \cs_set_eq:NN }
\cs_new_protected_nopar:Npn \cs_set_eq:cc { \exp_args:Ncc \cs_set_eq:NN }
\cs_new_protected_nopar:Npn \cs_gset_eq:NN { \tex_global:D \cs_set_eq:NN }
\cs_new_protected_nopar:Npn \cs_gset_eq:Nc { \exp_args:NNc \cs_gset_eq:NN }
\cs_new_protected_nopar:Npn \cs_gset_eq:cN { \exp_args:Nc \cs_gset_eq:NN }
\cs_new_protected_nopar:Npn \cs_gset_eq:cc { \exp_args:Ncc \cs_gset_eq:NN }
\cs_new_protected:Npn \cs_new_eq:NN #1
{
\__chk_if_free_cs:N #1
\tex_global:D \cs_set_eq:NN #1
}
\cs_new_protected_nopar:Npn \cs_new_eq:cN { \exp_args:Nc \cs_new_eq:NN }
\cs_new_protected_nopar:Npn \cs_new_eq:Nc { \exp_args:NNc \cs_new_eq:NN }
\cs_new_protected_nopar:Npn \cs_new_eq:cc { \exp_args:Ncc \cs_new_eq:NN }
% \end{macrocode}
% \end{macro}
%
% \subsection{Undefining functions}
%
% \begin{macro}{\cs_undefine:N, \cs_undefine:c}
% The following function is used to free the main memory from the
% definition of some function that isn't in use any longer.
% The \texttt{c} variant is careful not to add the control sequence
% to the hash table if it isn't there yet, and it also avoids nesting
% \TeX{} conditionals in case |#1| is unbalanced in this matter.
% \begin{macrocode}
\cs_new_protected:Npn \cs_undefine:N #1
{ \cs_gset_eq:NN #1 \c_undefined:D }
\cs_new_protected:Npn \cs_undefine:c #1
{
\if_cs_exist:w #1 \cs_end:
\exp_after:wN \use:n
\else:
\exp_after:wN \use_none:n
\fi:
{ \cs_gset_eq:cN {#1} \c_undefined:D }
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Generating parameter text from argument count}
%
% \begin{macro}[int]{\__cs_parm_from_arg_count:nnF}
% \begin{macro}[aux]{\__cs_parm_from_arg_count_test:nnF}
% \LaTeX3 provides shorthands to define control sequences and
% conditionals with a simple parameter text, derived directly from the
% signature, or more generally from knowing the number of arguments,
% between~$0$ and~$9$. This function expands to its first argument,
% untouched, followed by a brace group containing the parameter text
% |{#|$1$\ldots{}|#|$n$|}|, where $n$ is the result of evaluating the
% second argument (as described in \cs{int_eval:n}). If the second
% argument gives a result outside the range $[0,9]$, the third
% argument is returned instead, normally an error message. Some of
% the functions use here are not defined yet, but will be defined
% before this function is called.
% \begin{macrocode}
\cs_set_protected:Npn \__cs_parm_from_arg_count:nnF #1#2
{
\exp_args:Nx \__cs_parm_from_arg_count_test:nnF
{
\exp_after:wN \exp_not:n
\if_case:w \__int_eval:w #2 \__int_eval_end:
{ }
\or: { ##1 }
\or: { ##1##2 }
\or: { ##1##2##3 }
\or: { ##1##2##3##4 }
\or: { ##1##2##3##4##5 }
\or: { ##1##2##3##4##5##6 }
\or: { ##1##2##3##4##5##6##7 }
\or: { ##1##2##3##4##5##6##7##8 }
\or: { ##1##2##3##4##5##6##7##8##9 }
\else: { \c_false_bool }
\fi:
}
{#1}
}
\cs_set_protected:Npn \__cs_parm_from_arg_count_test:nnF #1#2
{
\if_meaning:w \c_false_bool #1
\exp_after:wN \use_ii:nn
\else:
\exp_after:wN \use_i:nn
\fi:
{ #2 {#1} }
}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Defining functions from a given number of arguments}
%
% \begin{macro}[EXP, int]{\__cs_count_signature:N, \__cs_count_signature:c}
% \begin{macro}[aux, EXP]{\__cs_count_signature:nnN}
% Counting the number of tokens in the signature, \emph{i.e.}, the
% number of arguments the function should take. Since this is not
% used in any time-critical function, we simply use \cs{tl_count:n} if
% there is a signature, otherwise $-1$ arguments to signal an error.
% We need a variant form right away.
% \begin{macrocode}
\cs_new:Npn \__cs_count_signature:N #1
{ \int_eval:n { \__cs_split_function:NN #1 \__cs_count_signature:nnN } }
\cs_new:Npn \__cs_count_signature:nnN #1#2#3
{
\if_meaning:w \c_true_bool #3
\tl_count:n {#2}
\else:
\c_minus_one
\fi:
}
\cs_new_nopar:Npn \__cs_count_signature:c
{ \exp_args:Nc \__cs_count_signature:N }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \begin{macro}
% {
% \cs_generate_from_arg_count:NNnn,
% \cs_generate_from_arg_count:cNnn,
% \cs_generate_from_arg_count:Ncnn
% }
% We provide a constructor function for defining functions with a
% given number of arguments. For this we need to choose the correct
% parameter text and then use that when defining. Since \TeX{}
% supports from zero to nine arguments, we use a simple switch to
% choose the correct parameter text, ensuring the result is returned
% after finishing the conditional. If it is not between zero and
% nine, we throw an error.
%
% 1: function to define, 2: with what to define it, 3: the number of
% args it requires and 4: the replacement text
% \begin{macrocode}
\cs_new_protected:Npn \cs_generate_from_arg_count:NNnn #1#2#3#4
{
\__cs_parm_from_arg_count:nnF { \use:nnn #2 #1 } {#3}
{
\__msg_kernel_error:nnxx { kernel } { bad-number-of-arguments }
{ \token_to_str:N #1 } { \int_eval:n {#3} }
}
{#4}
}
% \end{macrocode}
% A variant form we need right away, plus one which is used elsewhere but
% which is most logically created here.
% \begin{macrocode}
\cs_new_protected_nopar:Npn \cs_generate_from_arg_count:cNnn
{ \exp_args:Nc \cs_generate_from_arg_count:NNnn }
\cs_new_protected_nopar:Npn \cs_generate_from_arg_count:Ncnn
{ \exp_args:NNc \cs_generate_from_arg_count:NNnn }
% \end{macrocode}
% \end{macro}
%
% \subsection{Using the signature to define functions}
%
% We can now combine some of the tools we have to provide a simple
% interface for defining functions. We define some simpler functions
% with user interface |\cs_set:Nn \foo_bar:nn {#1,#2}|, \emph{i.e.}, the
% number of arguments is read from the signature.
%
% \begin{macro}
% {
% \cs_set:Nn , \cs_set:Nx ,
% \cs_set_nopar:Nn , \cs_set_nopar:Nx ,
% \cs_set_protected:Nn , \cs_set_protected:Nx ,
% \cs_set_protected_nopar:Nn , \cs_set_protected_nopar:Nx ,
% \cs_gset:Nn , \cs_gset:Nx ,
% \cs_gset_nopar:Nn , \cs_gset_nopar:Nx ,
% \cs_gset_protected:Nn , \cs_gset_protected:Nx ,
% \cs_gset_protected_nopar:Nn , \cs_gset_protected_nopar:Nx ,
% \cs_new:Nn , \cs_new:Nx ,
% \cs_new_nopar:Nn , \cs_new_nopar:Nx ,
% \cs_new_protected:Nn , \cs_new_protected:Nx ,
% \cs_new_protected_nopar:Nn , \cs_new_protected_nopar:Nx ,
% }
% We want to define \cs{cs_set:Nn} as
% \begin{verbatim}
% \cs_set_protected:Npn \cs_set:Nn #1#2
% {
% \cs_generate_from_arg_count:NNnn #1 \cs_set:Npn
% { \__cs_count_signature:N #1 } {#2}
% }
% \end{verbatim}
% In short, to define \cs{cs_set:Nn} we need just use \cs{cs_set:Npn},
% everything else is the same for each variant. Therefore, we can
% make it simpler by temporarily defining a function to do this for
% us.
% \begin{macrocode}
\cs_set:Npn \__cs_tmp:w #1#2#3
{
\cs_new_protected_nopar:cpx { cs_ #1 : #2 }
{
\exp_not:N \__cs_generate_from_signature:NNn
\exp_after:wN \exp_not:N \cs:w cs_ #1 : #3 \cs_end:
}
}
\cs_new_protected:Npn \__cs_generate_from_signature:NNn #1#2
{
\__cs_split_function:NN #2 \__cs_generate_from_signature:nnNNNn
#1 #2
}
\cs_new_protected:Npn \__cs_generate_from_signature:nnNNNn #1#2#3#4#5#6
{
\bool_if:NTF #3
{
\cs_generate_from_arg_count:NNnn
#5 #4 { \tl_count:n {#2} } {#6}
}
{
\__msg_kernel_error:nnx { kernel } { missing-colon }
{ \token_to_str:N #5 }
}
}
% \end{macrocode}
% Then we define the 24 variants beginning with |N|.
% \begin{macrocode}
\__cs_tmp:w { set } { Nn } { Npn }
\__cs_tmp:w { set } { Nx } { Npx }
\__cs_tmp:w { set_nopar } { Nn } { Npn }
\__cs_tmp:w { set_nopar } { Nx } { Npx }
\__cs_tmp:w { set_protected } { Nn } { Npn }
\__cs_tmp:w { set_protected } { Nx } { Npx }
\__cs_tmp:w { set_protected_nopar } { Nn } { Npn }
\__cs_tmp:w { set_protected_nopar } { Nx } { Npx }
\__cs_tmp:w { gset } { Nn } { Npn }
\__cs_tmp:w { gset } { Nx } { Npx }
\__cs_tmp:w { gset_nopar } { Nn } { Npn }
\__cs_tmp:w { gset_nopar } { Nx } { Npx }
\__cs_tmp:w { gset_protected } { Nn } { Npn }
\__cs_tmp:w { gset_protected } { Nx } { Npx }
\__cs_tmp:w { gset_protected_nopar } { Nn } { Npn }
\__cs_tmp:w { gset_protected_nopar } { Nx } { Npx }
\__cs_tmp:w { new } { Nn } { Npn }
\__cs_tmp:w { new } { Nx } { Npx }
\__cs_tmp:w { new_nopar } { Nn } { Npn }
\__cs_tmp:w { new_nopar } { Nx } { Npx }
\__cs_tmp:w { new_protected } { Nn } { Npn }
\__cs_tmp:w { new_protected } { Nx } { Npx }
\__cs_tmp:w { new_protected_nopar } { Nn } { Npn }
\__cs_tmp:w { new_protected_nopar } { Nx } { Npx }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}
% {
% \cs_set:cn , \cs_set:cx ,
% \cs_set_nopar:cn , \cs_set_nopar:cx ,
% \cs_set_protected:cn , \cs_set_protected:cx ,
% \cs_set_protected_nopar:cn , \cs_set_protected_nopar:cx ,
% \cs_gset:cn , \cs_gset:cx ,
% \cs_gset_nopar:cn , \cs_gset_nopar:cx ,
% \cs_gset_protected:cn , \cs_gset_protected:cx ,
% \cs_gset_protected_nopar:cn , \cs_gset_protected_nopar:cx ,
% \cs_new:cn , \cs_new:cx ,
% \cs_new_nopar:cn , \cs_new_nopar:cx ,
% \cs_new_protected:cn , \cs_new_protected:cx ,
% \cs_new_protected_nopar:cn , \cs_new_protected_nopar:cx ,
% }
% The 24 |c| variants simply use \cs{exp_args:Nc}.
% \begin{macrocode}
\cs_set:Npn \__cs_tmp:w #1#2
{
\cs_new_protected_nopar:cpx { cs_ #1 : c #2 }
{
\exp_not:N \exp_args:Nc
\exp_after:wN \exp_not:N \cs:w cs_ #1 : N #2 \cs_end:
}
}
\__cs_tmp:w { set } { n }
\__cs_tmp:w { set } { x }
\__cs_tmp:w { set_nopar } { n }
\__cs_tmp:w { set_nopar } { x }
\__cs_tmp:w { set_protected } { n }
\__cs_tmp:w { set_protected } { x }
\__cs_tmp:w { set_protected_nopar } { n }
\__cs_tmp:w { set_protected_nopar } { x }
\__cs_tmp:w { gset } { n }
\__cs_tmp:w { gset } { x }
\__cs_tmp:w { gset_nopar } { n }
\__cs_tmp:w { gset_nopar } { x }
\__cs_tmp:w { gset_protected } { n }
\__cs_tmp:w { gset_protected } { x }
\__cs_tmp:w { gset_protected_nopar } { n }
\__cs_tmp:w { gset_protected_nopar } { x }
\__cs_tmp:w { new } { n }
\__cs_tmp:w { new } { x }
\__cs_tmp:w { new_nopar } { n }
\__cs_tmp:w { new_nopar } { x }
\__cs_tmp:w { new_protected } { n }
\__cs_tmp:w { new_protected } { x }
\__cs_tmp:w { new_protected_nopar } { n }
\__cs_tmp:w { new_protected_nopar } { x }
% \end{macrocode}
% \end{macro}
%
% \subsection{Checking control sequence equality}
%
% \begin{macro}[pTF, EXP]
% {\cs_if_eq:NN, \cs_if_eq:cN, \cs_if_eq:Nc, \cs_if_eq:cc}
% Check if two control sequences are identical.
% \begin{macrocode}
\prg_new_conditional:Npnn \cs_if_eq:NN #1#2 { p , T , F , TF }
{
\if_meaning:w #1#2
\prg_return_true: \else: \prg_return_false: \fi:
}
\cs_new_nopar:Npn \cs_if_eq_p:cN { \exp_args:Nc \cs_if_eq_p:NN }
\cs_new_nopar:Npn \cs_if_eq:cNTF { \exp_args:Nc \cs_if_eq:NNTF }
\cs_new_nopar:Npn \cs_if_eq:cNT { \exp_args:Nc \cs_if_eq:NNT }
\cs_new_nopar:Npn \cs_if_eq:cNF { \exp_args:Nc \cs_if_eq:NNF }
\cs_new_nopar:Npn \cs_if_eq_p:Nc { \exp_args:NNc \cs_if_eq_p:NN }
\cs_new_nopar:Npn \cs_if_eq:NcTF { \exp_args:NNc \cs_if_eq:NNTF }
\cs_new_nopar:Npn \cs_if_eq:NcT { \exp_args:NNc \cs_if_eq:NNT }
\cs_new_nopar:Npn \cs_if_eq:NcF { \exp_args:NNc \cs_if_eq:NNF }
\cs_new_nopar:Npn \cs_if_eq_p:cc { \exp_args:Ncc \cs_if_eq_p:NN }
\cs_new_nopar:Npn \cs_if_eq:ccTF { \exp_args:Ncc \cs_if_eq:NNTF }
\cs_new_nopar:Npn \cs_if_eq:ccT { \exp_args:Ncc \cs_if_eq:NNT }
\cs_new_nopar:Npn \cs_if_eq:ccF { \exp_args:Ncc \cs_if_eq:NNF }
% \end{macrocode}
% \end{macro}
%
% \subsection{Diagnostic functions}
%
% \begin{macro}[int]{\__kernel_register_show:N, \__kernel_register_show:c}
% Check that the variable exists, then apply the \tn{showthe} primitive to
% the variable. The odd-looking \cs{use:n} gives a nicer output.
% \begin{macrocode}
\cs_new_protected:Npn \__kernel_register_show:N #1
{
\cs_if_exist:NTF #1
{ \tex_showthe:D \use:n {#1} }
{
\__msg_kernel_error:nnx { kernel } { variable-not-defined }
{ \token_to_str:N #1 }
}
}
\cs_new_protected_nopar:Npn \__kernel_register_show:c
{ \exp_args:Nc \__kernel_register_show:N }
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\cs_show:N, \cs_show:c}
% \begin{macro}[aux, EXP]{\__cs_show:www}
% Some control sequences have a very long name or meaning. Thus,
% simply using \TeX{}'s primitive \tn{show} could lead to overlong
% lines. The output of this primitive is mimicked to some extent: a
% line-break is added after the first colon in the meaning (this is
% what \TeX{} does for macros and five |\...mark| primitives). Then
% the re-built string is given to \cs{iow_wrap:nnnN} for
% line-wrapping. The \cs{cs_show:c} command converts its argument to
% a control sequence within a group to avoid showing \tn{relax} for
% undefined control sequences.
% \begin{macrocode}
\group_begin:
\tex_lccode:D `? = `: \scan_stop:
\tex_catcode:D `? = 12 \scan_stop:
\tex_lowercase:D
{
\group_end:
\cs_new_protected:Npn \cs_show:N #1
{
\__msg_show_variable:n
{
> ~ \token_to_str:N #1 =
\exp_after:wN \__cs_show:www \cs_meaning:N #1
\use_none:nn ? \prg_do_nothing:
}
}
\cs_new:Npn \__cs_show:www #1 ? { #1 ? \\ }
}
\cs_new_protected_nopar:Npn \cs_show:c
{ \group_begin: \exp_args:NNc \group_end: \cs_show:N }
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Engine specific definitions}
%
% \begin{macro}[pTF, EXP]
% {\xetex_if_engine:, \luatex_if_engine:, \pdftex_if_engine:}
% In some cases it will be useful to know which engine we're running.
% This can all be hard-coded for speed.
% \begin{macrocode}
\cs_new_eq:NN \luatex_if_engine:T \use_none:n
\cs_new_eq:NN \luatex_if_engine:F \use:n
\cs_new_eq:NN \luatex_if_engine:TF \use_ii:nn
\cs_new_eq:NN \pdftex_if_engine:T \use:n
\cs_new_eq:NN \pdftex_if_engine:F \use_none:n
\cs_new_eq:NN \pdftex_if_engine:TF \use_i:nn
\cs_new_eq:NN \xetex_if_engine:T \use_none:n
\cs_new_eq:NN \xetex_if_engine:F \use:n
\cs_new_eq:NN \xetex_if_engine:TF \use_ii:nn
\cs_new_eq:NN \luatex_if_engine_p: \c_false_bool
\cs_new_eq:NN \pdftex_if_engine_p: \c_true_bool
\cs_new_eq:NN \xetex_if_engine_p: \c_false_bool
\cs_if_exist:NT \xetex_XeTeXversion:D
{
\cs_gset_eq:NN \pdftex_if_engine:T \use_none:n
\cs_gset_eq:NN \pdftex_if_engine:F \use:n
\cs_gset_eq:NN \pdftex_if_engine:TF \use_ii:nn
\cs_gset_eq:NN \xetex_if_engine:T \use:n
\cs_gset_eq:NN \xetex_if_engine:F \use_none:n
\cs_gset_eq:NN \xetex_if_engine:TF \use_i:nn
\cs_gset_eq:NN \pdftex_if_engine_p: \c_false_bool
\cs_gset_eq:NN \xetex_if_engine_p: \c_true_bool
}
\cs_if_exist:NT \luatex_directlua:D
{
\cs_gset_eq:NN \luatex_if_engine:T \use:n
\cs_gset_eq:NN \luatex_if_engine:F \use_none:n
\cs_gset_eq:NN \luatex_if_engine:TF \use_i:nn
\cs_gset_eq:NN \pdftex_if_engine:T \use_none:n
\cs_gset_eq:NN \pdftex_if_engine:F \use:n
\cs_gset_eq:NN \pdftex_if_engine:TF \use_ii:nn
\cs_gset_eq:NN \luatex_if_engine_p: \c_true_bool
\cs_gset_eq:NN \pdftex_if_engine_p: \c_false_bool
}
% \end{macrocode}
% \end{macro}
%
% \subsection{Doing nothing functions}
%
% \begin{macro}[EXP]{\prg_do_nothing:}
% This does not fit anywhere else!
% \begin{macrocode}
\cs_new_nopar:Npn \prg_do_nothing: { }
% \end{macrocode}
% \end{macro}
%
% \subsection{String comparisons}
%
% \begin{macro}[pTF, EXP]{\str_if_eq:nn, \str_if_eq_x:nn}
% Modern engines provide a direct way of comparing two token lists,
% but returning a number. This set of conditionals therefore make life
% a bit clearer. The \texttt{nn} and \texttt{xx} versions are created
% directly as this is most efficient. These should eventually
% move somewhere else.
% \begin{macrocode}
\prg_new_conditional:Npnn \str_if_eq:nn #1#2 { p , T , F , TF }
{
\if_int_compare:w \pdftex_strcmp:D { \exp_not:n {#1} } { \exp_not:n {#2} }
= \c_zero
\prg_return_true: \else: \prg_return_false: \fi:
}
\prg_new_conditional:Npnn \str_if_eq_x:nn #1#2 { p , T , F , TF }
{
\if_int_compare:w \pdftex_strcmp:D {#1} {#2} = \c_zero
\prg_return_true: \else: \prg_return_false: \fi:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[int, EXP]{\__str_if_eq_x_return:nn}
% It turns out that we often need to compare a token list
% with the result of applying some function to it, and
% return with \cs{prg_return_true/false:}. This test is
% similar to \cs{str_if_eq:nnTF}, but hard-coded for speed.
% \begin{macrocode}
\cs_new:Npn \__str_if_eq_x_return:nn #1 #2
{
\if_int_compare:w \pdftex_strcmp:D {#1} {#2} = \c_zero
\prg_return_true:
\else:
\prg_return_false:
\fi:
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}[EXP]{\str_case:nnn, \str_case_x:nnn}
% \begin{macro}[int, EXP]{\__prg_case_end:nw}
% \begin{macro}[aux, EXP]
% {\__str_case:nw, \__str_case_x:nw, \__str_case_end:nw}
% No calculations for strings, otherwise no surprises.
% \begin{macrocode}
\cs_new:Npn \str_case:nnn #1#2#3
{
\tex_romannumeral:D
\__str_case:nw {#1} #2 {#1} {#3} \q_recursion_stop
}
\cs_new:Npn \__str_case:nw #1#2#3
{
\str_if_eq:nnTF {#1} {#2}
{ \__str_case_end:nw {#3} }
{ \__str_case:nw {#1} }
}
\cs_new:Npn \str_case_x:nnn #1#2#3
{
\tex_romannumeral:D
\__str_case_x:nw {#1} #2 {#1} {#3} \q_recursion_stop
}
\cs_new:Npn \__str_case_x:nw #1#2#3
{
\str_if_eq_x:nnTF {#1} {#2}
{ \__str_case_end:nw {#3} }
{ \__str_case_x:nw {#1} }
}
% \end{macrocode}
% Here, |#1| will be the code needed, |#2| will be any remaining case
% or cases, and the \cs{c_zero} stops the \tn{romannumeral}.
% \begin{macrocode}
\cs_new:Npn \__prg_case_end:nw #1#2 \q_recursion_stop { \c_zero #1 }
\cs_new_eq:NN \__str_case_end:nw \__prg_case_end:nw
% \end{macrocode}
% \end{macro}
% \end{macro}
% \end{macro}
%
% \subsection{Breaking out of mapping functions}
%
% \begin{macro}[EXP]{\__prg_break_point:Nn, \__prg_map_break:Nn}
% In inline mappings, the nesting level must be reset
% at the end of the mapping, even when the user decides
% to break out. This is done by putting the code that
% must be performed as an argument of \cs{__prg_break_point:Nn}.
% The breaking functions are then defined to jump to
% that point and perform the argument of \cs{__prg_break_point:Nn},
% before the user's code (if any). There is a check that we close the
% correct loop, otherwise we continue breaking.
% \begin{macrocode}
\cs_new_eq:NN \__prg_break_point:Nn \use_ii:nn
\cs_new:Npn \__prg_map_break:Nn #1#2#3 \__prg_break_point:Nn #4#5
{
#5
\if_meaning:w #1 #4
\exp_after:wN \use_iii:nnn
\fi:
\__prg_map_break:Nn #1 {#2}
}
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\__prg_break_point:}
% \begin{macro}{\__prg_break:, \__prg_break:n}
% Very simple analogues of \cs{__prg_break_point:Nn} and
% \cs{__prg_map_break:Nn}, for use in fast short-term recursions which
% are not mappings, do not need to support nesting, and in which
% nothing has to be done at the end of the loop.
% \begin{macrocode}
\cs_new_eq:NN \__prg_break_point: \prg_do_nothing:
\cs_new:Npn \__prg_break: #1 \__prg_break_point: { }
\cs_new:Npn \__prg_break:n #1#2 \__prg_break_point: {#1}
% \end{macrocode}
% \end{macro}
% \end{macro}
%
% \subsection{Deprecated functions}
%
% Deprecated on 2011-05-27, for removal by 2011-08-31.
%
% \begin{macrocode}
%<*deprecated>
\cs_new_eq:NN \cs_gnew_nopar:Npn \cs_new_nopar:Npn
\cs_new_eq:NN \cs_gnew:Npn \cs_new:Npn
\cs_new_eq:NN \cs_gnew_protected_nopar:Npn \cs_new_protected_nopar:Npn
\cs_new_eq:NN \cs_gnew_protected:Npn \cs_new_protected:Npn
\cs_new_eq:NN \cs_gnew_nopar:Npx \cs_new_nopar:Npx
\cs_new_eq:NN \cs_gnew:Npx \cs_new:Npx
\cs_new_eq:NN \cs_gnew_protected_nopar:Npx \cs_new_protected_nopar:Npx
\cs_new_eq:NN \cs_gnew_protected:Npx \cs_new_protected:Npx
\cs_new_eq:NN \cs_gnew_nopar:cpn \cs_new_nopar:cpn
\cs_new_eq:NN \cs_gnew:cpn \cs_new:cpn
\cs_new_eq:NN \cs_gnew_protected_nopar:cpn \cs_new_protected_nopar:cpn
\cs_new_eq:NN \cs_gnew_protected:cpn \cs_new_protected:cpn
\cs_new_eq:NN \cs_gnew_nopar:cpx \cs_new_nopar:cpx
\cs_new_eq:NN \cs_gnew:cpx \cs_new:cpx
\cs_new_eq:NN \cs_gnew_protected_nopar:cpx \cs_new_protected_nopar:cpx
\cs_new_eq:NN \cs_gnew_protected:cpx \cs_new_protected:cpx
%</deprecated>
% \end{macrocode}
%
% \begin{macrocode}
%<*deprecated>
\cs_new_eq:NN \cs_gnew_eq:NN \cs_new_eq:NN
\cs_new_eq:NN \cs_gnew_eq:cN \cs_new_eq:cN
\cs_new_eq:NN \cs_gnew_eq:Nc \cs_new_eq:Nc
\cs_new_eq:NN \cs_gnew_eq:cc \cs_new_eq:cc
%</deprecated>
% \end{macrocode}
%
% \begin{macrocode}
%<*deprecated>
\cs_new_eq:NN \cs_gundefine:N \cs_undefine:N
\cs_new_eq:NN \cs_gundefine:c \cs_undefine:c
%</deprecated>
% \end{macrocode}
%
% \begin{macrocode}
%<*deprecated>
\cs_new_eq:NN \group_execute_after:N \group_insert_after:N
%</deprecated>
% \end{macrocode}
%
% Deprecated 2011-09-06, for removal by 2011-12-31.
%
% \begin{variable}
% {
% \c_pdftex_is_engine_bool, \c_luatex_is_engine_bool,
% \c_xetex_is_engine_bool
% }
% Predicates are better
% \begin{macrocode}
%<*deprecated>
\cs_new_eq:NN \c_luatex_is_engine_bool \luatex_if_engine_p:
\cs_new_eq:NN \c_pdftex_is_engine_bool \pdftex_if_engine_p:
\cs_new_eq:NN \c_xetex_is_engine_bool \xetex_if_engine_p:
%</deprecated>
% \end{macrocode}
% \end{variable}
%
% \begin{macro}[EXP]
% {
% \use_i_after_fi:nw,
% \use_i_after_else:nw,
% \use_i_after_or:nw,
% \use_i_after_orelse:nw
% }
% These functions return the first argument after ending the conditional.
% This is rather specialized, and we want to de-emphasize the use of
% primitive \TeX{} conditionals.
% \begin{macrocode}
%<*deprecated>
\cs_set:Npn \use_i_after_fi:nw #1 \fi: { \fi: #1 }
\cs_set:Npn \use_i_after_else:nw #1 \else: #2 \fi: { \fi: #1 }
\cs_set:Npn \use_i_after_or:nw #1 \or: #2 \fi: { \fi: #1 }
\cs_set:Npn \use_i_after_orelse:nw #1#2#3 \fi: { \fi: #1 }
%</deprecated>
% \end{macrocode}
% \end{macro}
%
% Deprecated 2011-09-07, for removal by 2011-12-31.
%
% \begin{macro}{\cs_set_eq:NwN}
% \begin{macrocode}
%<*deprecated>
\tex_let:D \cs_set_eq:NwN \tex_let:D
%</deprecated>
% \end{macrocode}
% \end{macro}
%
% Deprecated 2012-06-05 for removal after 2012-12-31.
%
% \begin{macro}[pTF, EXP]{\str_if_eq:xx}
% Not really true \texttt{x}-type expansion
% \begin{macrocode}
\cs_new_eq:NN \str_if_eq_p:xx \str_if_eq_x_p:nn
\cs_new_eq:NN \str_if_eq:xxT \str_if_eq_x:nnT
\cs_new_eq:NN \str_if_eq:xxF \str_if_eq_x:nnF
\cs_new_eq:NN \str_if_eq:xxTF \str_if_eq_x:nnTF
% \end{macrocode}
% \end{macro}
%
% \begin{macro}{\chk_if_free_cs:N}
% \begin{macrocode}
\cs_new_eq:NN \chk_if_free_cs:N \__chk_if_free_cs:N
% \end{macrocode}
% \end{macro}
%
% \begin{macrocode}
%</initex|package>
% \end{macrocode}
%
% \end{implementation}
%
% \PrintIndex
|