summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/kvmap/kvmap.dtx
blob: efa6b2e481da250440a5e349ec3e91803be3eaf1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
% \iffalse meta-comment
% This is kvmap, (c) 2019 Ben Frank
%
% It may be distributed and/or modified under the conditions of the
% LaTeX Project Public License (LPPL), either version 1.3c of this
% license or (at your option) any later version.  The latest version
% of this license is in the file
%
%    http://www.latex-project.org/lppl.txt
%<*driver>
\def\nameofplainTeX{plain}
\ifx\fmtname\nameofplainTeX\else
  \expandafter\begingroup
\fi
\input l3docstrip.tex
\askforoverwritefalse
\preamble
Copyright (C) 2019 Ben Frank

It may be distributed and/or modified under the conditions of
the LaTeX Project Public License (LPPL), either version 1.3c of
this license or (at your option) any later version.  The latest
version of this license is in the file:

   http://www.latex-project.org/lppl.txt

\endpreamble
\postamble
End of file
\endpostamble
\generate{\file{kvmap.sty}{\from{kvmap.dtx}{pkg,cfg}}}
\ifx\fmtname\nameofplainTeX
  \expandafter\endbatchfile
\else
  \expandafter\endgroup
\fi
%</driver>
%
%<*driver>
\RequirePackage{scrlfile}
\ReplaceClass{article}{scrartcl}
\documentclass[DIV=calc,BCOR=18mm,12pt]{l3doc}

\EnableCrossrefs
^^A\PageIndex
^^A\CodelineNumbered
\RecordChanges

\usepackage[english]{babel}

\usepackage[svgnames]{xcolor}
\usepackage{graphicx}
\usepackage{tcolorbox}
\tcbuselibrary{minted,listings,documentation,breakable}
\tcbset{listing engine=minted,minted language=latex,
	documentation minted style=vs,documentation minted options={fontsize=\small},
	color command=blue,color definition=blue,doc marginnote={halign=center,
	colframe=DarkSlateGray!50!white,colback=Silver!20!white}, index colorize=true,
	index annotate=true,index format=doc,
	doclang/new={\textcolor{DarkGreen}{\textbf{\textsf{N}}}},
	doclang/updated={\textcolor{DarkGreen}{\textbf{\textsf{U}}}},
	minted options={linenos,xleftmargin=8.75pt,breaklines=true,
	breakanywhere,fontsize=\small,escapeinside=§§,autogobble=false}}
\tcbset{enhanced,sharp corners=all}
\usemintedstyle{vs}

\usepackage{fontspec}
\usepackage{unicode-math}
\setmainfont[Numbers={OldStyle}]{Libertinus Serif}
\setsansfont[Scale=MatchUppercase,Numbers={OldStyle}]{Libertinus Sans}
\setmonofont[Scale=MatchLowercase,Numbers={OldStyle}]{Fira Mono}
\setmathfont[Scale=MatchLowercase]{Libertinus Math}
\setmathfont[Scale=MatchLowercase,range=\setminus]{XITS Math}
\usepackage{hologo}
\recalctypearea

\usepackage{enumitem}
\setlist[description,itemize,enumerate]{noitemsep}

\usepackage{multicol}

% some fix from https://tex.stackexchange.com/questions/83204/how-can-i-make-source-code-included-with-minted-copyable
\usepackage{accsupp}
\newcommand\emptyaccsupp[1]{\BeginAccSupp{ActualText={}}#1\EndAccSupp{}}
% default definition is: \def\theFancyVerbLine{\rmfamily\tiny\arabic{FancyVerbLine}}
\let\theHFancyVerbLine\theFancyVerbLine% don't apply our patch to hyperref's version
\def\theFancyVerbLine{\rmfamily\tiny\emptyaccsupp{\arabic{FancyVerbLine}}}

\newcommand{\clsopt}[1]{\texttt{#1}}
\newmintinline{latex}{}
\hypersetup{pdfencoding=auto,linktoc=page}
% workaround from https://tex.stackexchange.com/questions/407873/using-minted-in-l3doc-documentation
\fvset{gobble=0}

\usepackage{kvmap}

\begin{document}
  \DocInput{kvmap.dtx}
\end{document}
%</driver>
%
%<*pkg>
%<@@=kvmap>
\RequirePackage{expl3}
\ProvidesExplPackage{kvmap}{2019/12/26}{0.3.2}{Drawing karnaugh maps with LaTeX}
%</pkg>
% \fi
%
% \changes{v0.1.0}{2018/03/10}{Stable release}
% \changes{v0.2.0}{2018/08/17}{Rework documentation and syntax recommendations}
% \changes{v0.3.0}{2018/09/20}{Improve documentation}
% \changes{v0.3.1}{2018/09/20}{Fix INS file}
% \GetFileInfo{kvmap.sty}
%
% \title{The \pkg{kvmap} package\thanks{This document corresponds to
%   \pkg{kvmap}~\fileversion, dated~\filedate.}}
% \author{Ben Frank\\\url{https://gitlab.com/benfrank/kvmap}}
% \date{\today}
% \maketitle
%	\begin{abstract}
%		\noindent This package provides a simple way to typeset Karnaugh maps
%		including automated generation of gray code and options to draw bundles of
%		adjacent cells (implicants).
%	\end{abstract}
%	\vfill
%	\section*{Contents}
%	\begin{multicols*}{2}
%		\listoftoc*{toc}
%	\end{multicols*}
%	\clearpage
%
% \begin{documentation}
%		\section{Introduction}
%			\pkg{kvmap} aims to provide a \emph{user-friendly} (i.e. less typing) way to
%			typeset Karnaugh maps including the surrounding gray code and bundles of
%			cells (implicants). This package relies on \pkg{xparse} (with \pkg{expl3}),
%			\pkg{tikz} and \pkg{environ}.\par
%			Drawing Karnaugh maps is not that uncommon and there are already packages
%			available on CTAN that provide means to typeset them:\begin{itemize}
%				\item \pkg{askmaps} -- This package lets you draw American style Karnaugh
%					maps but restricts you to five variables.
%				\item \pkg{karnaugh-map} -- This package allows you to typeset Karnaugh
%					maps with up to 6 variables. Unfortunately, the user has to provide many
%					arguments which makes changing the input error-prone.
%				\item \pkg{karnaugh} -- This package lets you typeset Karnaugh maps up
%					to ten variables but I wanted more of what \pkg{askmaps} calls ``American
%					style''.
%				\item \pkg{karnaughmap} -- This package aims to be a more customizable
%					version of \pkg{karnaugh}, so unfortunately, it does not meet my style
%					requirements either.
%				\item There is also a TikZ library called \pkg{karnaugh} which allows you
%					to use 12 variables (or 4096 cells) and has superior styling options, even
%					for maps with Gray code. But personally I do not like the input format.
%			\end{itemize}
%			So these are basically the reasons, why I need yet another Karnaugh map
%			package. And this package is based on my personal needs, so if you are
%			missing some exciting feature, feel free to open an issue at Gitlab.\par
%			\paragraph*{Acknowledgements} Special thanks to
%			\href{https://tex.stackexchange.com/users/124577/texnician}{TeXnician} who
%			provided a first version of the Karnaugh map code^^A
%			\footnote{see \url{https://tex.stackexchange.com/a/425135}} and
%			\href{https://tex.stackexchange.com/users/80496/marcel-kr%c3%bcger}{Marcel Krüger}
%			who developed the relevant code to generate sequences of gray code
%			\footnote{see \url{https://tex.stackexchange.com/a/418887}}.
%		\section{Drawing Karnaugh maps}
%			\subsection{Basic commands and environments}
%			\begin{function}{\kvmapsetup}
%				\begin{syntax}
%					|\kvmapsetup|\marg{options}
%				\end{syntax}
%				This function sets key-value pairs. Please note that you may need a prefix
%				like |bundle| in front of the key. Currently the range of supported keys is
%				very limited, but you will learn about them in the description of
%				\tn{bundle}.
%			\end{function}
%			\begin{docEnvironment}{kvmap}{\oarg{key-value pairs}}{}
%				\DescribeEnv{kvmap}This environment is a semantic interface to
%				\env{tikzpicutre} which should have a \env{kvmatrix} or \tn{kvlist} as
%				first child element. Basically this should surround every Karnaugh map
%				you typeset.
%			\end{docEnvironment}
%			\begin{docEnvironment}{kvmatrix}{\marg{a,b,c[,\dots]}}{}
%				\DescribeEnv{kvmatrix}This environment is one of the two input modes. It
%				provides a structured way of inputting rows and columns, similar to the
%				|tabular| environment. You should prefer this over \tn{kvlist}.\par
%				The environment itself takes one argument: a comma-separated list of
%				variable names. Please note that they are typeset in math-mode, so you
%				should not use |$| signs.
%			\end{docEnvironment}
%			\begin{function}{\kvlist}
%				\begin{syntax}
%					|\kvlist|\marg{width}\marg{height}\marg{1,0[,\dots]}\marg{a,b[,\dots]}
%				\end{syntax}
%				This function provides the alternative input mode. You specify width and
%				height of the matrix and then input your elements row-wise. The last
%				argument consists of a comma-separated list of variable names. They are
%				typeset in math-mode.
%			\end{function}
%			\subsection{Drawing Bundles (implicants)}
%			Another feature of this package is to draw bundles, at least that is how I
%			prefer to call rectangles visualizing adjacent ones or zeros (also called
%			implicants). Please note that currently this package does not compute the
%			bundles for you.
%			\begin{function}{\bundle}
%				\begin{syntax}
%					|\bundle|\oarg{key-value pairs}\marg{$x_1$}\marg{$y_1$}\marg{$x_2$}\marg{$y_2$}
%				\end{syntax}
%				This function draws a rectangle (bundle) around the area specified by the
%				two corners. The option |invert| opens the bundle outwards and
%				|overlapmargins| lets you specify a length which describes how far the 
%				edges will be drawn into the margin (both options are useful for corners).
%				With |color| you may change the color of the border and |reducespace|
%				allows you to specify whether you want the package to be narrower or wider.
%				\par
%				Warning: This package is unable to draw a bundle including all four corners
%				this way. If you need this specific edge case, please use TikZ to draw it
%				yourself (see the last example in \autoref{sec:examples}).
%			\end{function}
%			\subsection{Styling the nodes}
%			This package defines two TikZ styles to allow easy customizations: |kvnode|
%			and |kvbundle|. The former is applied to every node within the output matrix,
%			i.e. the zeros and ones. It styles a node, so all options applicable to a
%			|\node| are available to you.\par
%			The latter describes the styling of the bundles' paths. It is applied to a
%			|\draw| command, so you have to use options available to paths.\par
%			The whole Karnaugh map is a TikZ grid with many TikZ nodes. In the case you
%			need to address a single node you may refer to it by its position, i.e.
%			the node's name is |xy| (zero-based), e.g. |00| for the node in the upper
%			left corner.
%		\section{Examples}\label{sec:examples}
%\iffalse
%<*driver>
%\fi
\begin{tcblisting}{}
\kvlist{2}{4}{0,1,0,0,0,0,0,1}{a,b,c}
\hfill
\begin{kvmatrix}{a,b,c}
  0 & 1 & 1 & 0\\
  0 & 1 & 0 & 1
\end{kvmatrix}
\end{tcblisting}
\begin{tcblisting}{}
\kvlist{4}{4}{0,1,1,0,0,1,0,1,0,1,1,1,0,0,1,1}{a,b,c,d}
\end{tcblisting}
\begin{tcblisting}{}
\begin{kvmap}
  \kvlist{4}{4}{0,1,1,0,0,1,0,1,0,1,1,1,0,0,1,1}{a,b,c,d,e,f}
  \bundle[color=red]{1}{1}{1}{2}
  \bundle{3}{2}{2}{3}
  \bundle[color=blue,reducespace=3pt]{3}{2}{3}{1}
\end{kvmap}
\end{tcblisting}
\begin{tcblisting}{}
\begin{kvmap}
  \begin{kvmatrix}{a,b,c,d}
    0 & 1 & 1 & 0\\
    1 & 0 & 0 & 1\\
    0 & 0 & 0 & 1\\
    0 & 1 & 1 & 1\\
  \end{kvmatrix}
  \bundle{3}{3}{2}{3}
  \bundle[color=blue]{3}{2}{3}{1}
  \bundle[invert=true,reducespace=2pt,overlapmargins=6pt]{1}{0}{2}{3}
  \bundle[invert=true,reducespace=2pt]{0}{1}{3}{1}
\end{kvmap}
\end{tcblisting}
\begin{tcblisting}{}
\begin{kvmap}
  \begin{kvmatrix}{a,b,c,d,e,f}
    0 & 1 & 1 & 0 & 0 & 1 & 0 & 1\\
    1 & 1 & 1 & 0 & 0 & 1 & 1 & 0\\
    1 & 0 & 0 & 1 & 0 & 1 & 0 & 1\\
    1 & 0 & 0 & 1 & 1 & 0 & 1 & 1\\
    0 & 1 & 0 & 1 & 0 & 1 & 1 & 1\\
    0 & 1 & 1 & 0 & 1 & 1 & 0 & 0\\
    0 & 1 & 0 & 1 & 1 & 1 & 0 & 0\\
    1 & 1 & 0 & 1 & 0 & 1 & 0 & 1
  \end{kvmatrix}
  \draw[fill=white, opacity=.6] (00.center) rectangle (22.center);
  \draw[white, line width=.4cm] (07) -- (70);
  \draw[fill=white, opacity=.6] (77.center) rectangle (55.center);
\end{kvmap}
\end{tcblisting}
%\iffalse
%</driver>
%\fi
% \end{documentation}
% \begin{implementation}
%	\clearpage\section{Implementation}
%    \begin{macrocode}
\RequirePackage{xparse}
\RequirePackage{tikz}
\RequirePackage{environ}
%    \end{macrocode}
% \begin{macro}[aux]{\seq_set_split:Nno,\seq_set_split:Nnx,\int_mod:VV,\int_div_truncate:VV}
%		Define variants for better expansion.
%    \begin{macrocode}
\cs_generate_variant:Nn \seq_set_split:Nnn   { Nno, Nnx }
\cs_generate_variant:Nn \int_mod:nn          { VV       }
\cs_generate_variant:Nn \int_div_truncate:nn { VV       }

%    \end{macrocode}
% \end{macro}
%		\subsection{Generating the Gray code}
%			This part of the code is primarily based on Marcel Krüger's StackExchange
%			post (see
%			\url{https://tex.stackexchange.com/questions/418853/latex3-pad-something-unexpandable}).
% \begin{macro}[int]{\@@_graycode_xor_bits:nn}
%		This function will apply xor to two bits.
%		\begin{arguments}
%			\item bit (0 or 1)
%			\item bit (0 or 1)
%		\end{arguments}
%    \begin{macrocode}
\cs_new:Npn \@@_graycode_xor_bits:nn #1#2
  {
    \int_compare:nTF { #1 = #2 }
      { 0 } { 1 }
  }
%    \end{macrocode}
% \end{macro}
% \begin{macro}[int]{\@@_graycode_xor:w,\@@_graycode_xor:nn,\@@_graycode_xor:xx}
%		This macro executes a bitwise xor on two expanded bit sequences. It is
%		defined recursively, so that on every run the first two bits from the bit
%		sequence are split.
%   \begin{arguments}
%     \item first bit sequence
%     \item second bit sequence
%   \end{arguments}
%    \begin{macrocode}
\cs_new:Npn \@@_graycode_xor:w #1#2\q_stop#3#4\q_stop
  {
    \@@_graycode_xor_bits:nn { #1 } { #3 }
    \tl_if_empty:nF { #2 }
      {
        \@@_graycode_xor:w #2\q_stop#4\q_stop
      }
  }
\cs_new:Npn \@@_graycode_xor:nn #1#2
  {
    \@@_graycode_xor:w #1\q_stop#2\q_stop
  }
\cs_generate_variant:Nn \@@_graycode_xor:nn { xx }

%    \end{macrocode}
% \end{macro}
% \begin{macro}{\kvmap_graycode_at:nn}
%   Calculate the gray code at a specific digit, see the Wikipedia for details.
%   \begin{arguments}
%     \item digit
%     \item number of bits
%   \end{arguments}
%    \begin{macrocode}
\cs_new:Npn \kvmap_graycode_at:nn #1#2
	{
    \@@_graycode_xor:xx
      { \tl_tail:f { \int_to_bin:n { #1 - 1 + #2 } } }
      { \tl_tail:f { \int_to_bin:n { \fp_eval:n { floor((#1-1)/2) + #2 } } } }
	}
\cs_generate_variant:Nn \kvmap_graycode_at:nn { nV }

%    \end{macrocode}
% \end{macro}
%		\subsection{Internal code to automate output}
%	\begin{variable}[int]{\l_@@_matrix_isintikz_bool}
%		Are we in a tikzpicture?
%    \begin{macrocode}
\bool_new:N \l_@@_matrix_isintikz_bool
%    \end{macrocode}
%	\end{variable}
% \begin{variable}[int]{\l_@@_matrix_height_int,\l_@@_matrix_width_int}
%		Save the dimensions of the matrix (important for bundling).
%    \begin{macrocode}
\int_new:N \l_@@_matrix_height_int
\int_new:N \l_@@_matrix_width_int
%    \end{macrocode}
% \end{variable}
% \begin{macro}[int]{\@@_outputgraycode:}
%   Output gray code around the grid.
%    \begin{macrocode}
\cs_new:Nn \@@_outputgraycode:
  {
%    \end{macrocode}
%		Iterate through the horizontal part first and add each item as node. Add $-1$
%		to the coordinate calculation to convert one-based to zero-based numbers.
%    \begin{macrocode}
    \int_step_inline:nnnn { 1 } { 1 } { \l_@@_matrix_width_int }
      {
				\node ~ at ~ (\fp_eval:n { 0.5 + (##1-1) }, .3)
					{ \kvmap_graycode_at:nV { ##1 } \l_@@_matrix_width_int };
      }
%    \end{macrocode}
%		Afterwards tackle the vertical part.
%    \begin{macrocode}
    \int_step_inline:nnnn { 1 } { 1 } { \l_@@_matrix_height_int }
      {
				\node[anchor = east] ~ at ~ (0, \fp_eval:n { -0.5 - (##1-1) })
					{ \kvmap_graycode_at:nV { ##1 } \l_@@_matrix_height_int };
      }
  }

%    \end{macrocode}
% \end{macro}
% \begin{macro}[int]{\@@_outputmatrix:n}
%		\changes{v0.3.2}{2019/12/26}{Allow empty elements}
%		Define a TikZ style for easier customizability.
%    \begin{macrocode}
\tikzset{kvnode/.style = { inner ~ sep = 8pt }}
%    \end{macrocode}
%   This macro fill the grid with values.
%   \begin{arguments}
%     \item list
%   \end{arguments}
%    \begin{macrocode}
\cs_new:Npn \@@_outputmatrix:n #1
	{
%    \end{macrocode}
%		We iterate using a for each loop, hence there is no counter and we need to
%		define one.
%    \begin{macrocode}
		\int_zero:N \l_tmpa_int
%    \end{macrocode}
%		Use a temporary sequence to store the argument. This has to be a split because
%		setting from clist would eliminate empty elements.
%    \begin{macrocode}
		\seq_set_split:Nnn \l_tmpa_seq { , } { #1 }
%    \end{macrocode}
%		Loop over the elements of the list. Every element will be output as node
%		where $x = \text{counter}\mod\text{width}$ and
%		$y=\left\lfloor\frac{\text{counter}}{\text{height}}\right\rfloor$.
%    \begin{macrocode}
		\seq_map_inline:Nn \l_tmpa_seq
			{
				\node[kvnode] ~
					(\int_mod:VV \l_tmpa_int \l_@@_matrix_width_int
                    \int_div_truncate:VV \l_tmpa_int \l_@@_matrix_width_int ) ~
					at ~
					(.5+\int_mod:VV \l_tmpa_int \l_@@_matrix_width_int,
                -.5-\int_div_truncate:nn \l_tmpa_int \l_@@_matrix_width_int ) ~
					{$##1$};
				\int_incr:N \l_tmpa_int
			}
	}

%    \end{macrocode}
% \end{macro}
%		\subsection{Implicant-related code}
% \begin{macro}[updated=2018-03-17]{\bundle}
%		\changes{v0.1.1}{2018/03/17}{Correct dimensions}
% 		\changes{v0.2.1}{2018/09/20}{Fix inversion}
%   Draw a bundle with given corners.
%   \begin{arguments}
%     \item key-value pairs
%     \item x coordinate of point 1
%     \item y coordinate of point 1
%     \item x coordinate of point 2
%     \item y coordinate of point 2
%   \end{arguments}
%    \begin{macrocode}
\keys_define:nn { kvmap/bundle }
	{
%    \end{macrocode}
%		|reducespace|: reduce inner sep of the node; negative values mean expansion
%    \begin{macrocode}
		reducespace    .dim_set:N      = \l_@@_bundle_reducespace_dim,
		reducespace    .initial:n      = { 0pt },
%    \end{macrocode}
%		|color|: path color of the bundle
%    \begin{macrocode}
		color          .tl_set:N       = \l_@@_bundle_color_tl,
		color          .initial:n      = { black },
%    \end{macrocode}
%		|invert|: open bundle instead of closed path
%    \begin{macrocode}
		invert         .bool_set:N     = \l_@@_bundle_invert_bool,
		invert         .default:n      = true,
		invert         .initial:n      = false,
%    \end{macrocode}
%		|overlapmargins|: intrude into margin (when inverted)
%    \begin{macrocode}
		overlapmargins .dim_set:N      = \l_@@_bundle_overlapmargins_dim,
		overlapmargins .initial:n      = { 0pt },
	}
%    \end{macrocode}
%		TikZ-style to easily adapt the bundle design.
%    \begin{macrocode}
\tikzset{kvbundle/.style = { rounded ~ corners = 5pt }}
%    \end{macrocode}
% \begin{variable}[int]{\l_@@_bundle_minx_int,\l_@@_bundle_miny_int,\l_@@_bundle_maxx_int,\l_@@_bundle_maxy_int}
%		Auxiliary variables for drawing bundles.
%    \begin{macrocode}
\int_new:N \l_@@_bundle_minx_int
\int_new:N \l_@@_bundle_miny_int
\int_new:N \l_@@_bundle_maxx_int
\int_new:N \l_@@_bundle_maxy_int
%    \end{macrocode}
% \end{variable}
%    \begin{macrocode}
\NewDocumentCommand { \bundle } { O{} m m m m }
	{
		\group_begin:
%    \end{macrocode}
%		Set optional parameters and save the minima and maxima of x- and
%		y-coordinates.
%    \begin{macrocode}
		\keys_set:nn { kvmap/bundle } { #1 }
		\int_set:Nn \l_@@_bundle_minx_int { \int_min:nn { #2 } { #4 } }
		\int_set:Nn \l_@@_bundle_miny_int { \int_min:nn { #3 } { #5 } }
		\int_set:Nn \l_@@_bundle_maxx_int { \int_max:nn { #2 } { #4 } }
		\int_set:Nn \l_@@_bundle_maxy_int { \int_max:nn { #3 } { #5 } }
%    \end{macrocode}
%		Check whether the bundle will be inverted. The current conformance test which
%		is executed later on allows the edge case of inverting at every corner, which
%		is currently unsupported (code-wise).
%    \begin{macrocode}
		\bool_if:NTF \l_@@_bundle_invert_bool
			{
%    \end{macrocode}
%		If the bundle will be inverted, the first check is whether it will exceed the
%		height. In that case there will be an opened rectangle on both sides (top and
%		bottom) which is positioned according to the minima and maxima of the
%		coordinates. The |reducespace| option is realized as shift.
%    \begin{macrocode}
				\bool_if:nT
					{
						\int_compare_p:n { \l_@@_matrix_height_int - 1 = \l_@@_bundle_maxy_int }
						&& \int_compare_p:n { 0 = \l_@@_bundle_miny_int }
					}
					{
						\draw[draw=\l_@@_bundle_color_tl,kvbundle] ~
							([xshift=\l_@@_bundle_reducespace_dim,
								yshift=\l_@@_bundle_overlapmargins_dim]
								\int_use:N \l_@@_bundle_minx_int
								\int_use:N \l_@@_bundle_miny_int . north ~ west) --
							([xshift=\l_@@_bundle_reducespace_dim,
								yshift=\l_@@_bundle_reducespace_dim]
								\int_use:N \l_@@_bundle_minx_int
								\int_use:N \l_@@_bundle_miny_int . south ~ west) --
							([xshift=-\l_@@_bundle_reducespace_dim,
								yshift=\l_@@_bundle_reducespace_dim]
								\int_use:N \l_@@_bundle_maxx_int
								\int_use:N \l_@@_bundle_miny_int . south ~ east) --
							([xshift=-\l_@@_bundle_reducespace_dim,
								yshift=\l_@@_bundle_overlapmargins_dim]
								\int_use:N \l_@@_bundle_maxx_int
								\int_use:N \l_@@_bundle_miny_int . north ~ east);
						\draw[draw=\l_@@_bundle_color_tl,kvbundle] ~
							([xshift=\l_@@_bundle_reducespace_dim,
								yshift=-\l_@@_bundle_overlapmargins_dim]
								\int_use:N \l_@@_bundle_minx_int
								\int_use:N \l_@@_bundle_maxy_int . south ~ west) --
							([xshift=\l_@@_bundle_reducespace_dim,
								yshift=-\l_@@_bundle_reducespace_dim]
								\int_use:N \l_@@_bundle_minx_int
								\int_use:N \l_@@_bundle_maxy_int . north ~ west) --
							([xshift=-\l_@@_bundle_reducespace_dim,
								yshift=-\l_@@_bundle_reducespace_dim]
								\int_use:N \l_@@_bundle_maxx_int
								\int_use:N \l_@@_bundle_maxy_int . north ~ east) --
							([xshift=-\l_@@_bundle_reducespace_dim,
								yshift=-\l_@@_bundle_overlapmargins_dim]
								\int_use:N \l_@@_bundle_maxx_int
								\int_use:N \l_@@_bundle_maxy_int . south ~ east);
					}
%    \end{macrocode}
%		Is it larger than the width? Then turn 90° and work as above.
%    \begin{macrocode}
				\bool_if:nT
					{
						\int_compare_p:n { \l_@@_matrix_width_int - 1 = \l_@@_bundle_maxx_int }
						&& \int_compare_p:n { 0 = \l_@@_bundle_minx_int }
					}
					{
						\draw[draw=\l_@@_bundle_color_tl,kvbundle] ~
							([yshift=-\l_@@_bundle_reducespace_dim,
								xshift=-\l_@@_bundle_overlapmargins_dim]
								\int_use:N \l_@@_bundle_minx_int
								\int_use:N \l_@@_bundle_miny_int . north ~ west) --
							([yshift=-\l_@@_bundle_reducespace_dim,
								xshift=-\l_@@_bundle_reducespace_dim]
								\int_use:N \l_@@_bundle_minx_int
								\int_use:N \l_@@_bundle_miny_int . north ~ east) --
							([yshift=\l_@@_bundle_reducespace_dim,
								xshift=-\l_@@_bundle_reducespace_dim]
								\int_use:N \l_@@_bundle_minx_int
								\int_use:N \l_@@_bundle_maxy_int . south ~ east) --
							([yshift=\l_@@_bundle_reducespace_dim,
								xshift=-\l_@@_bundle_overlapmargins_dim]
								\int_use:N \l_@@_bundle_minx_int
								\int_use:N \l_@@_bundle_maxy_int . south ~ west);
						\draw[draw=\l_@@_bundle_color_tl,kvbundle] ~
							([yshift=-\l_@@_bundle_reducespace_dim,
								xshift=\l_@@_bundle_overlapmargins_dim]
								\int_use:N \l_@@_bundle_maxx_int
								\int_use:N \l_@@_bundle_miny_int . north ~ east) --
							([yshift=-\l_@@_bundle_reducespace_dim,
								xshift=\l_@@_bundle_reducespace_dim]
								\int_use:N \l_@@_bundle_maxx_int
								\int_use:N \l_@@_bundle_miny_int . north ~ west) --
							([yshift=\l_@@_bundle_reducespace_dim,
								xshift=\l_@@_bundle_reducespace_dim]
								\int_use:N \l_@@_bundle_maxx_int
								\int_use:N \l_@@_bundle_maxy_int . south ~ west) --
							([yshift=\l_@@_bundle_reducespace_dim,
								xshift=\l_@@_bundle_overlapmargins_dim]
								\int_use:N \l_@@_bundle_maxx_int
								\int_use:N \l_@@_bundle_maxy_int . south ~ east);
					}
			}
			{
%    \end{macrocode}
%		If the package will not be inverted, it will be output by using the
%		coordinates provided (min and max).
%    \begin{macrocode}
				\draw[draw=\l_@@_bundle_color_tl, kvbundle] ~
					([xshift=\l_@@_bundle_reducespace_dim,
							yshift=-\l_@@_bundle_reducespace_dim]
						\int_use:N \l_@@_bundle_minx_int
						\int_use:N \l_@@_bundle_miny_int . north ~ west) ~
					rectangle ~
					([xshift=-\l_@@_bundle_reducespace_dim,
							yshift=\l_@@_bundle_reducespace_dim]
						\int_use:N \l_@@_bundle_maxx_int
						\int_use:N \l_@@_bundle_maxy_int . south ~ east);
			}
		\group_end:
	}
%    \end{macrocode}
% \end{macro}
%		\subsection{User-interface code}
% \begin{macro}{\kvmap_map:nn,\kvmap_map:xn}
%		Output the matrix (interface level).
%		\begin{arguments}
%			\item values
%			\item variables (lables), first horizontal part, then vertical
%		\end{arguments}
%		Example: |\kvmap_map:nn{0,1,1,0,0,1,0,1,0,1,1,1,0,0,1,1}{a,b,c,d}|
%    \begin{macrocode}
\cs_new:Npn \kvmap_map:nn #1#2
	{
%    \end{macrocode}
%		Firstly, generate the map (lines).
%    \begin{macrocode}
		\draw ~ (0,0) ~ grid ~
			(\int_use:N \l_@@_matrix_width_int, -\int_use:N \l_@@_matrix_height_int);
%    \end{macrocode}
%		After having drawn the grid, construct the nodes from the csv and output the
%		gray code.
%    \begin{macrocode}
		\@@_outputmatrix:n  { #1 }
		\@@_outputgraycode:
		\draw ~ (0,0) ~ -- ~ (-.7,.7);
%    \end{macrocode}
%		Now the labels will be output. The first part of the csv will be positioned
%		at the top right, the second part bottom left. The point of separation will
%		be saved.
%    \begin{macrocode}
		\int_set:Nn \l_tmpa_int
			{ \fp_eval:n { floor(ln(\l_@@_matrix_width_int)/ln(2)) }  }
		\tl_clear:N \l_tmpa_tl
		\int_step_inline:nnnn { 1 } { 1 } { \l_tmpa_int }
			{
				 \tl_put_right:Nn \l_tmpa_tl { \clist_item:nn { #2 } { ##1 } }
			}
		\node[anchor = west] ~ at ~ (-.5, .7) ~ { $\tl_use:N \l_tmpa_tl$ };
%    \end{macrocode}
%		After working on the horizontal part, work on the left entries. This will
%		also become a node.
%    \begin{macrocode}
		\tl_clear:N \l_tmpa_tl
		\int_step_inline:nnnn { \l_tmpa_int + 1 } { 1 }
			{ \l_tmpa_int + \fp_eval:n { floor(ln(\l_@@_matrix_height_int)/ln(2)) } }
			{
				 \tl_put_right:Nn \l_tmpa_tl { \clist_item:nn { #2 } { ##1 } }
			}
		\node[anchor = east] ~ at ~ (-.4, .2) ~ { $\tl_use:N \l_tmpa_tl$ };
	}
\cs_generate_variant:Nn \kvmap_map:nn { xn }

%    \end{macrocode}
% \end{macro}
% \begin{environment}{kvmap}
%		This is a |tikzpicture|, but for semantic reasons introduced as new
%		environment. Furthermore this will clear the results of the last execution.
%		\begin{arguments}
%			\item optional: key-value pairs
%		\end{arguments}
%    \begin{macrocode}
\NewDocumentEnvironment { kvmap } { O{} }
	{
		\group_begin:
		\keys_set:nn { kvmap } { #1 }
		\int_gzero:N \l_@@_matrix_height_int
		\int_gzero:N \l_@@_matrix_width_int
		\begin{tikzpicture}
	}
	{
		\end{tikzpicture}
		\group_end:
	}
%    \end{macrocode}
% \end{environment}
% \begin{macro}{\kvlist}
%		User wrapper around \cs{kvmap_map:nn}. It will insert a |tikzpicture| if not
%		already present.
%    \begin{macrocode}
\NewDocumentCommand { \kvlist } { m m m m }
	{
		\tikzifinpicture
			{ \bool_set_true:N  \l_@@_matrix_isintikz_bool }
			{ \bool_set_false:N \l_@@_matrix_isintikz_bool }
		\bool_if:NF \l_@@_matrix_isintikz_bool
			{ \begin{tikzpicture} }
		\int_gset:Nn \l_@@_matrix_width_int  { #1 }
		\int_gset:Nn \l_@@_matrix_height_int { #2 }
		\kvmap_map:nn { #3 } { #4 }
		\bool_if:NF \l_@@_matrix_isintikz_bool
			{ \end{tikzpicture} }
	}

%    \end{macrocode}
% \end{macro}
% \begin{environment}{kvmatrix}
%		\changes{v0.3.2}{2019/12/26}{Count empty columns}
%		This environment enables a |tabular|-like input syntax.
%    \begin{arguments}
%			\item labels (variables)
%    \end{arguments}
% 		\begin{variable}[int]{\l_@@_tmp_seq}
%			Temporary variable to split the matrix.
%    \begin{macrocode}
\seq_new:N \l_@@_tmp_seq
%    \end{macrocode}
%		\end{variable}
%    \begin{macrocode}
\NewEnviron { kvmatrix } [ 1 ]
	{
%    \end{macrocode}
%		Split the environments body at |\\| and remove empty lines. Now the height
%		of the map is just the count of the sequence. Split the first element at |&|
%		and use the count of that as width.
%    \begin{macrocode}
		\seq_set_split:Nno \l_tmpa_seq { \\ } { \BODY }
		\seq_remove_all:Nn \l_tmpa_seq { }
		\seq_set_split:Nnx \l_tmpb_seq { & } { \seq_item:Nn \l_tmpa_seq { 1 } }
		\int_gset:Nn \l_@@_matrix_width_int  { \seq_count:N \l_tmpb_seq }
		\int_gset:Nn \l_@@_matrix_height_int { \seq_count:N \l_tmpa_seq }
%    \end{macrocode}
%		Clean up the lists and convert the input into something \cs{kvmap_map:nn} may
%		process. Maybe this could be optimised in terms of performance (TikZ matrix?).
%    \begin{macrocode}
		\seq_clear:N \l_@@_tmp_seq
		\seq_map_inline:Nn \l_tmpa_seq
			{
				\seq_clear:N \l_tmpb_seq
				\seq_set_split:Nnn \l_tmpb_seq { & } { ##1 }
				\seq_concat:NNN \l_@@_tmp_seq \l_@@_tmp_seq \l_tmpb_seq
			}
%    \end{macrocode}
%		Output the map by inserting commas between the elements of the 
%   temporary sequence.
%    \begin{macrocode}
		\tikzifinpicture
			{ \bool_set_true:N  \l_@@_matrix_isintikz_bool }
			{ \bool_set_false:N \l_@@_matrix_isintikz_bool }
		\bool_if:NF \l_@@_matrix_isintikz_bool
			{ \begin{tikzpicture} }
		\kvmap_map:xn
			{ \seq_use:Nnnn \l_@@_tmp_seq { , } { , } { , } }
			{ #1                  }
		\bool_if:NF \l_@@_matrix_isintikz_bool
			{ \end{tikzpicture}   }
	}

%    \end{macrocode}
% \end{environment}
% \begin{macro}{\kvmapsetup}
%		Set options (key-value pairs). 
%		Example: |\kvmapsetup{bundle/color=red}|
%		\begin{arguments}
%			\item key-value pairs
%		\end{arguments}
%    \begin{macrocode}
\NewDocumentCommand { \kvmapsetup } { m }
	{
		\keys_set:nn { kvmap } { #1 }
	}
%    \end{macrocode}
% \end{macro}
% \end{implementation}
% \clearpage\PrintChanges
% \clearpage\PrintIndex
% \Finale
% \endinput