summaryrefslogtreecommitdiff
path: root/Master/texmf-dist/source/latex/kuvio/doc-src/tdwk-s.tex
blob: 3cc26ec793aa2c6f0e92d8e2ea5ca89d14c6af4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
%  tdwk-s.tex
%  Anders G S Svensson

%  Time-stamp: <1996/06/09 03:30:06 PDT agss@klagshamn>

%  $Revision: 1.21 $
%  $Date: 1996/06/09 11:31:01 $

\autocompileto{tdwk/tdwk-s}

\Graphpad=5pt

\def\entry{\leavevmode\vtop\bgroup
   \openup3pt
   \FontSize{13}\currentfont
   \catcode`\^^M=\active\Entry}
{\catcode`\^^M=\active
 \gdef\Entry#1{\anotherline #1%
    \let\relax\entrystrut\aftergroup\lastline^^M\egroup}
 \gdef\anotherline#1^^M{\hbox to \hsize{#1\relax\hfil}\anotherline}
}

\ifAAAA
\def\endentry{\vskip20pt\goodbreak}
\else
\def\endentry{\vskip15pt\goodbreak}
\fi
\def\entrystrut{\vphantom{\vrule width 0pt depth 8pt}}
\def\lastline#1{}
\def\mod{\par\leavevmode\modmarker}
\def\modmarker{{\llap{$\bullet$\hskip.4in}}}

\def\d{\hfill\tt}
\def\hs{\hskip15mm}

\def\harebra{\epsfxsize=3cm \rot1\epsffile{harebra.eps}\endrot}

\def\int{\emph{integer}}
\def\dim{\emph{dimen}}
\def\text{\emph{text}}
\def\math{\emph{math}}
\def\{{{\escapechar=-1 \tt\string\{}}
\def\}{{\escapechar=-1 \tt\string\}}}
\def\:{{\escapechar=-1 \tt\string\:}}
\def\*{{\escapechar=-1 \tt\string\*}}
\def\|{{\escapechar=-1 \tt\string\|}}
\def\({{\escapechar=-1 \tt\string\(}}
\def\){{\escapechar=-1 \tt\string\)}}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Summary}
\label{Summary}

Brief descriptions (plus some examples) of the available control
sequences and modifiers, including several not mentioned thus far.
Modifiers are indicated by a $\bullet$ in the left margin.  Default or
predefined values, where appropriate, are listed in the right margin.
{\let\egroup\relax\endentry}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\sindex mc\^\sindex mc\_%
           \sindex mc\<\sindex mc\>%
   \ch\^\{\math\}\qquad \ch\_\{\math\}
   \ch\<\{\math\}\qquad \ch\>\{\math\}}
Place labels on an arrow in \csq\labelstyle.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\sindex mc\(\tt\(\int,\int\)}
Specify coordinates to an \csq\a\type\ or \csq\b\type\ cell macro.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\sindex mc\(\tt\(\num,\num\)}
Specify coordinates to a modification.
Both \index mm{Box} and \index mm{Frame} modifications require two sets of
coordinates while others can accept either one or two sets.

\side
\Graph{2cm,2}{1cm}
\Txt{bitterness} (2,.5) *{1.1}
\Txt{bereavement} (3,.5) (4,.5) :{1.1} *0
\Box (2,0) (3,1)  \Frame (3,1) (4,0)
\endGraph
\endside

For modifications on a Figure or Graph,
a coordinate may be given as a dimension.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\sindex mc\*\ch\*\{\num\}\d .5}
Set the tag point of a modification.
Has no effect on type 2 modification cells,
\index tm{Box} modifications or \index tm{Frame} modifications.

\side
\Graph{1cm}{1cm}
\To (1,.5) *0   \Line (1,.5) *{1.5}
\Text{chaos} (1,.5) *{-2}
\endGraph
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\sindex mc\/\ch\/\{\int\}\d 0}
Rotate a modification by \int\ degrees counterclockwise.
Has no effect on type 2 modification cells,
\index tm{Box} modifications or \index tm{Frame} modifications.

\side
\Graph{3cm}{1cm}
\Line (0,.5) /{90}  \Line (1,.5) /{90}
\Txt{losfer words} (.5,.5) /{180}
\endGraph
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\sindex mw{"|@\BAR}\ch\|\{\dim\}}
Set the length of a type 1 modification cell.
See \csq\celllength.

\side
\Graph{2cm}{5mm}
\To  (.5,1)  \Two (.5,0) |{2cm}
\endGraph
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\sindex mc\:%
   \:\{\num\}\d .5
   \:\{\dim\}\d 0pt
   \:\{\num\ch\,\dim\} or \:\{\dim\ch\,\num\}}
Adjust the positioning of a label tied to an arrow, \num\ determining
a point along the line joining the endpoints of the arrow and \dim\ a
point on a line perpendicular to the arrow.

\eg
\Diagram A & \rTo ^f :{.75} & B & \rTo ^g :{.75,5pt} & C & \rTo ^h :{5pt} & D \\
\endDiagram
\endeg

A semicolon can also be used as the argument separator.
In fact, in this case we can replace the label pad \dim\ by a
comma-separated pair of
dimensions, the first moving a label parallel to the
direction of an arrow and a second being a label pad. That is,
the forms \:\{\dim\ch\,\dim\}, \:\{\num\ch\;\dim\ch\,\dim\}
and \:\{\dim\ch\,\dim\ch\;\num\} are also legal.

\eg
\Diagram A & \rTo ^f :{-10pt,0pt} & B & \rTo ^g :{0;10pt,0pt} & C \\
\endDiagram
\endeg

Label positioning with \ch\: applies to all labels placed on an arrow.
For any individual label, this can be overridden by supplying a
positioning specification to \index tc\^, \index tc\_,
\index tc\<\ or \index tc\>,
delimited by square braces.
This may be useful for cell types whose arrows are composed of many pieces,
although the same results can be obtained using null arrows (see \csq\nl).

\side
\newcell{Adj}
\def\Adjbox#1{\vcenter{\offinterlineskip\dimen0=#1
   \hbox to #1{\leftarrowfill\hskip.2\dimen0} \hbox to #1{\hskip.2\dimen0\rightarrowfill}}}
\labelpad{Adj}=2.5pt

\Diagram A & \rAdj ^[.6]{f_1} _[.4]{f_2} & B \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\sindex mc\:\ch\:\{\num\}\d .5}
For \index tm{Label}, \index tm{Math}, \index tm{Text}, \index tm{Txt}
and \index tm{Vertex} modifications, specify a coordinate as a fractional
distance from one point to another.

{\edge{.75}
\side
\Graph{15mm}{15mm}
\Line (0,1) (1,0)
\Text{X} (0,1) (1,0) :{.25} *0
\Math\bullet (0,1) (1,0) :{.75}
\endGraph
\endside
}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{al}}
Move the column in which this control sequence occurs.
Like \csq\dl\ except that, instead of also moving columns to
the right of the given column, recursively moves those which are
\sindex mw{binding}\emph{bound} to it.

A column is bound to another in the following situations.

{\parindent=30pt
\item{(1)}If an arrow goes between two entries in columns $C_\ell <
C_r$ and both columns are on or to the left of the
gravitating column then $C_\ell$ is bound to $C_r$.
\item{(2)}If two entries in the same row of columns $C_\ell < C_r$
are adjacent (in the sense that these entries typeset material with
non-zero dimensions and there are no other such entries in columns
strictly between $C_\ell$ and $C_r$) and both columns are on or to the
left of the \index tm{gravitating column} then $C_\ell$ is bound to
$C_r$.
\item{(3)}If an arrow goes between two entries in columns $C_\ell <
C_r$ and both columns are on or to the right of the gravitating column
then $C_r$ is bound to $C_\ell$.
\item{(4)}If two entries in the same row of columns $C_\ell < C_r$
are adjacent and both columns are on or to the right of the
gravitating column then $C_r$ is bound to $C_\ell$.
\par}

The control sequence \index tm{displaybindings} causes a message of
the form {\tt (B:$C$-$C'$)} to be displayed whenever column $C'$ is
bound to column $C$.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{ar}}
Move the column in which this control sequence occurs.
Like \csq\dr\ except that, instead of also moving columns to
the left of the given column, recursively moves those which are
bound to it. See \csq\al.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{arrsy}}
Load the font {\tt \index tw{arrsy10}} and define several control sequences
and cell types using this font. Of course, the font has to have been installed
on your system for this to work.

\verbatim
\input kuvio \arrsy  % plain TeX           \usepackage[arrsy]{kuvio}  % LaTeX
\endverbatim
\hskip\egindent{\verbatimit blah, blah, blah...}
\endentry
\sindex tw{LaTeX@\LaTeX}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{atpush}%
   \csq{\atpush=}\dim\d 3pt
   \csq{\atpush+=}\dim
   \csq{\atpush\{\type\}=}\dim\hs\csq{\atpush\{\type\}+=}\dim}
Global and type-specific amounts by which the end of an arrow attached
to another arrow (using \csq\pt) is shortened whenever a vertex has not been
attached using \csq\hd\ or \csq\tl.
The type-specific quantity applies to ends attached to an arrow of
cell type \type. Spaces in \type\ are ignored.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{autocompile}}
Abbreviation for \@\autocompileto{.\jobname}@\.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{autocompilecounter}}
Count register used with \index tm{autocompileto}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{autocompileto}\{\name\}}
Cause all diagrams to be compiled unless otherwise specified using
\index tm{nocompile}. The files \name\@-\the\@\{\tt auto\-compilecounter.kdg}
and \name\@-\the\@\{\tt autocompilecounter.kuv} are either written or read,
the count register \index tm{autocompilecounter} being incremented with each
diagram being compiled. Spaced in \name\ are ignored.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{ax}\{\dim\}}
Move the column in which this control sequence occurs rightward by \dim.
Like \csq\dx\ except that, instead of also moving columns to
the right of the given column, recursively moves those which are
bound to it. See \csq\al.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{base}}
Make the baseline of a Diagram coincide with that of a row in its alignment.
Takes precedence over any baseline specification given outside the alignment
(using \index tm{tall}, \index tm{deep}, etc).

{\edge{.7}
\side
\newDiagram{Ydiag}
\def\everyYdiag{\flexible \xgrid=0pt \ygrid=4pt \joined \columndist=9pt}

\def\Y#1#2#3{%
   \Ydiag
    &         & #2                        \\
                     \\                   \\
    & \rdLine &               & \ldLine & \\
    & \base   & \stop\my{2pt}             \\
    & #1      & \qquad\dLine  & #3        \\
                                          \\
   \endYdiag}

Thus, $\Y\alpha\beta\gamma = \Y\delta\epsilon\zeta$.
\endside
}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{black}}
Typeset an arrow or modification with graylevel 0.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{black}\endblack}
Typeset the enclosed material with graylevel 0.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{Box}}
Typeset a box as a modification. The coordinates of two
diagonally opposite corners must be specified.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{Boxcell}\{\emph{box} \emph{macro}\}}
Typeset an arrow as a modification without naming a cell type.
Possibly the most useless control sequence of the lot!
Has ten equally useless siblings for use in the alignment part
of a Diagram: \csq\aBoxcell, \csq\bBoxcell, \csq\rBoxcell,
\csq\rdBoxcell, \csq\dBoxcell, \csq\ldBoxcell, \csq\lBoxcell,
\csq\luBoxcell, \csq\uBoxcell\ and \csq\ruBoxcell.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{bpad}%
  \csq{\bpad=}\dim\d 0pt
  \csq{\bpad+=}\dim}
Padding added to the bottom of a diagram or framed material.
Does not alter the baseline.

\side
\framed \bpad=10pt
\Diagram
A & \rTo & B \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{br}%
   \csq\br\{\dim\}}
Typeset an arrow on top of a white rule.

\side
\Graph{3cm,3}{12mm,2}
\To (1,2) (1,0)
\Line (0,2) (3,0) \br  \Two (2,0) (2,2) \br
\endGraph
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{braced}}
With flexible grids, make all diagonal arrows fully braced by default and
invert the action of \index tm{db}: An arrow will be unbraced when \csq\db\ is
specified.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{bracewidth}%
   \csq{\bracewidth=}\dim\d 1cm
   \csq{\bracewidth+=}\dim}
With flexible grids, width of the
\emph{brace} used with braced diagonal arrows.

\side
\braced
\Dg
A \\ & \rdTo \\ B & & X \\
\endDg
\qquad\bracewidth+=1cm
\Dg
A \\ & \rdTo \\ B & & X \\
\endDg
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{breakpad}%
   \csq{\breakpad=}\dim\d 2.5pt
   \csq{\breakpad+=}\dim
   \csq{\breakpad\{\type\}=}\dim\hs\csq{\breakpad\{\type\}+=}\dim}
Global and type-specific pads to determine the rule width used
with \index tm{br} and \index tm{rl}. Spaces in \type\ are ignored.

\side
\breakpad{One}=5pt \yscale=.75
\Diagram
\\ & \dTo \br & \rTo \pp \dOne \br & \\ \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{celllength}%
   \csq{\celllength=}\dim\d 1cm
   \csq{\celllength+=}\dim}
Default length of a type 1.
\sindex tw{modification cell!type 1}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{cellpush}%
   \csq{\cellpush=}\dim\d 2pt
   \csq{\cellpush+=}\dim
   \csq{\cellpush\{\type\}=}\dim\hs\csq{\cellpush\{\type\}+=}\dim}
Global and type-specific cell pushes. Spaces in \type\ are ignored.

\side
\cellpush=-10pt
\Graph{2cm}{5mm,2}
\Line (0,2) (1,2) \tl{\bullet} \hd{}
\Line (0,0) (1,0)              \hd{\bullet}
\endGraph
\endside

Note the use of \index tm{tl} and \index tm{hd} in this example.
Cell pushes are applied to a modification cell only when a vertex is attached
using one of these two.\sindex tw{modification cell!applying cell pushes}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{cellwidth}%
   \csq{\cellwidth=}\dim\d 1cm
   \csq{\cellwidth+=}\dim}
With flexible grids, the minimum distance between vertices at the ends of
horizontal alignment cells.\sindex tw{alignment cell!length}

{\edge{.5}
\side
\Dg A & \rTo & B & {} = C \\ \endDg
\qquad\cellwidth+=1cm
\Dg A & \rTo & B & {} = C \\ \endDg
\endside
}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{center} or \index mm{centre}}
Center diagrams on the math axis. With the exception of Diagrams
consisting of a single row, this is the default in math modes.
\endentry
\pagedef{center def}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{centermath} or \index mm{centremath}}
Center diagrams in math modes only. This is the default behaviour.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{columndist}%
   \csq{\columndist=}\dim\d 15mm
   \csq{\columndist+=}\dim}
With flexible grids, the minimum distance between the centers of columns at
either end of an unbraced diagonal arrow.
\sindex tw{grid!flexible}

\side
\Dg
A \\ & \rdTo \\ B & & X \\
\endDg
\qquad\columndist+=1cm
\Dg
A \\ & \rdTo \\ B & & X \\
\endDg
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{compileto}\{\name\}}
Compile a diagram to, or read a diagram from, the files \name{\tt .kdg} and
\name{\tt .kuv}. Spaces in \name\ are ignored.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{db}}
Make a diagonal arrow fully braced unless \index tm{braced} has been
specified, in which case the arrow is made unbraced.
\sindex tw{arrows!braced}

\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{deep}}
Make the baseline of a \sindex tw{Diagram!baseline}Diagram coincide
with that of its topmost row and the baseline of a \sindex
tw{Figure!baseline}Figure or \sindex tw{Graph!baseline}Graph coincide
with that of its upper edge. This is the default for Diagrams in
non-math modes.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mw{Dg@{\tt Dg}}\tt Dg}
Diagram type having \index tm{flexible}, \index tm{xgrid}{\tt =0pt},
\index tm{ygrid}{\tt +=-2mm}, \index tm{cellwidth}{\tt +=3mm} and
\index tm{bracewidth}{\tt +=-2.5mm}.

\eg
\Dg
\eta_k:\qquad & {\bb R} & \rInto & X_k & {} =
  \{\,(A,\vect v)\in W_k\times{\bb R}^n \mid A\vect v = \lambda_k\vect v\,\} \\
              &         &        & \dTo \\  % \vect is from arrsy10
              &         &        & W_k  \\
\endDg
\endeg
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{dh}\{\dim\}}
Fudge the length of an arrow at its head.

\side
\Diagram
A & \rTo \dh{-10pt} & B \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{dh}\{\dim\ or \num\ch\,\dim\}}
Fudge the positioning of an arrow at its head.
Equivalent to \csq\hx\{\dim\ or \num\} \csq\hy\{\dim\}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{%
   \index mm{dh}\{\dim1 or \num\ch\,\dim2\ch\;\dim3\}
   \csq\dh\{\dim3\ch\;\dim1 or \num\ch\,\dim2\}}
Fudge both the length and positioning at the head of an arrow.
Equivalent to \csq\hx\{\dim1 or \num\} \csq\hy\{\dim2\} \csq\dh\{\dim3\}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mw{Diag@{\tt Diag}}\tt Diag}
Diagram type having \csq\flexible\ and \csq{\xgrid=0pt}.

\eg
\ygrid=7mm
\Diag
\cdots& \rTo& H_n A& \rTo& H_n X& \rTo& H_n(X,A)& \rTo& H_{n-1}A& \rTo& \cdots \\
      &     & \dTo &     & \dTo &     & \dTo    &     & \dTo                   \\
\cdots& \rTo& H_n B& \rTo& H_n Y& \rTo& H_n(Y,B)& \rTo& H_{n-1}B& \rTo& \cdots \\
\endDiag
\endeg
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{Diagram}\endDiagram}
Diagram delimiters. Uses a rigid grid unless \csq\flexible\ is specified.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{diagramdot}\d\csq\bullet}
Token used with \csq\dotted\ and \csq\Dot.

\side
\let\diagramdot\circ \dotted
\Diagram
 & \\
   \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{Diagrampad}%
   \csq{\Diagrampad=}\dim\d 5pt
   \csq{\Diagrampad+=}\dim}
Padding added to all sides of a Diagram.

\side
\framed
\Diagram A & \rTo & B \\ \endDiagram
\Diagrampad=10pt \quad
\Diagram A & \rTo & B \\ \endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{displayall}}
Abbreviation for \index tm{displaybindings} \index tm{displaymovements}
\index tm{displaystretches}, each of which announce certain computations.
\endentry

\comment
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\csq\displaybindings}
Display the message (B:<C1>-<C2>) when column <C1> is bound to column <C2>.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\csq\displaymovements}
Display the message (X<C>) when a column is moved and
(Y<C>) when a row is moved.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\csq\displaystretches}
Display messages of the form (A:r<R>,c<Cl>-<Cr>),
(C:r<R>,c<C>) and (W:r<Rl>-<Rr>,c<Cl>-<Cr>) for stretches set by
horizontal arrows, column entries and diagonal arrows respectively.
\endentry
\endcomment

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{Displaybox}}
Control sequence, taking a single parameter (a box register),
which displays a diagram.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{dl}}
Move the column in which this control sequence occurs
so that the alignment entry in which it occurs abuts it nearest
neighbour to the left. Additionally, move each column to the right of the
given column by the same amount.
Many of the same effects can be obtained simply by using a flexible grid with
\csq{\xgrid=0pt}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{Dot}}
Abbreviation for \@\Math{\diagramdot}@\.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{dotted}}
Place a \csq\diagramdot\ in every empty alignment entry
in a Diagram unless prevented from doing so by \csq\nodot.

\side
\dotted
\Diagram
  & \nodot \\
A          \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{dr}}
Move the column in which this control sequence occurs
so that the alignment entry in which it occurs abuts it nearest
neighbour to the right.
Additionally, move each column to the left of the
given column by the same amount.
Many of the same effects can be obtained simply by using a flexible grid with
\csq{\xgrid=0pt}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{dt}\{\dim\}}
Fudge the length of an arrow at its tail.

\side
\Diagram
A & \rTo \dt{-10pt} & B \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{dt}{\{\dim1 or \num\ch\,\dim2\}}}
Fudge the positioning of an arrow at its tail.
Equivalent to \csq\tx\{\dim1 or \num\} \csq\ty\{\dim2\}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{%
   \index mm{dt}\{\dim1 or \num\ch\,\dim2\ch\;\dim3\}
   \csq\dt\{\dim3\ch\;\dim1 or \num\ch\,\dim2\}}
Fudge both the length and positioning at the tail of an arrow.
Equivalent to \csq\tx\{\dim1 or \num\} \csq\ty\{\dim2\} \csq\dt\{\dim3\}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{dx}\{\num\ or \dim\}}
Move the column in which this control sequence occurs.
\csq\dx\{\dim\} moves the column rightward by \dim\ and
also moves all columns to the right of the given column by the same amount.
If the distance to the next column (to the right) is currently $d$,
\csq\dx\{\num\} moves the column rightward by $\num\cdot d$ and also moves all
columns to the left of the given column by the same amount.

\side
\gridlines
\Diagram
A & B \dx{5mm} & C & D           & E \\
A & B          & C & D \dx{-.25} & E \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{dy}\{\num\ or \dim\}}
Move the row in which this control sequence occurs.
\csq\dy\{\dim\} moves the row upward by \dim\ and
also moves all rows above the given row by the same amount.
If the distance to the next row (above) is currently $d$,
\csq\dy\{\num\} moves the row upward by $\num\cdot d$ and also moves all
rows below the given row by the same amount.

\side
\gridlines
\Diagram
A                  \\
\dEq & \dy{1}      \\
B    & \rTo    & C \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{epi}}
An epimorphism arrow, as in $A\epi B$.
The {\tt arrsy10} font must be loaded for this to work. See \csq\arrsy.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{fd}\{\emph{fudge}\}}
Abbreviation for \csq\dt\{\emph{fudge}\} \csq\dh\{\emph{fudge}\}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{Figure}\endFigure}
Figure delimiters.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{Figurepad}%
   \csq{\Figurepad=}\dim\d 0pt
   \csq{\Figurepad+=}\dim}
Padding added to all sides of a Figure.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{Fillcell}\{{\it fill} \emph{macro}\}}
Like, \csq\Boxcell, typeset an arrow as a modification without naming a
cell type.
Has ten siblings for use in the alignment part of a Diagram:
\csq\aFillcell, \csq\bFillcell, \csq\rFillcell,
\csq\rdFillcell, \csq\dFillcell, \csq\ldFillcell, \csq\lFillcell,
\csq\luFillcell, \csq\uFillcell\ and \csq\ruFillcell.

\side
\Diagram
A & \rFillcell\lrrrightarrowfill & B \\
\Modify
\Fillcell\rrightarrowxfill (3,0) /{90}
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{flexible}}
Enable the flexible grid.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{flip}\endflip}
Rotate the enclosed material by 180 degrees.
The material cannot contain vertical commands (unless enclosed in a box).
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{forcekdg}}
Force diagrams to be read from \csq{\jobname.kdg} if not otherwise
being compiled. See \ref{Specifying Diagrams in Alignments}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{fr}\{\dim\}}
Abbreviation for \csq\tr\{\dim\} \csq\hr\{\dim\}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{Frame}}
Typeset a frame as a modification. The coordinates of two
diagonally opposite corners must be specified.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{frame}\endframe}
Put a frame around the enclosed material.
The material cannot contain vertical commands (unless enclosed in a box).

{\edge{.65}
\side
\frame\bf N\"ara skjuter ingen hare.\endframe
\endside
}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{framed}}
Place diagrams in a frame.

\eg
\framed
\Long
H_n X\otimes G & \rMono & H_n(X;G) & \rEpi & {\rm Tor}(H_{n-1}X,G) \\
\endLong
\endeg
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{framegray}\sindex mm{framegrey}%
   \csq{\framegray=}\num\ or \csq{\framegrey=}\num\d 0}
Set the graylevel of the frame used with \csqq\frame\endframe.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{framepad}%
   \csq{\framepad=}\dim\d 5pt
   \csq{\framepad+=}\dim}
Padding around material framed with \csqq\frame\endframe.

\side
\frame \TeX \endframe
\framepad=10pt \frame \TeX \endframe
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{Framerulewidth}%
   \csq{\Framerulewidth=}\dim\d .4pt
   \csq{\Framerulewidth+=}\dim}
Default thickness of the rule used when typesetting \csq\Frame\ modifications.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{framerulewidth}%
   \csq{\framerulewidth=}\dim\d .4pt
   \csq{\framerulewidth+=}\dim}
Thickness of the rule used when typesetting frames with \csq\framed\ or
\csqq\frame\endframe.

\side
\framerulewidth=2mm
\frame Which way to the home world?\endframe
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{fs}\{\dim\ or \num\}}
Abbreviation for \csq\ts\{\dim\ or \num\} \csq\hs\{\dim\ or \num\}.

The following trick with %\sidx{fs@{\csqn{fs}}!trick}%
\csq\fs\ can be used to typeset an arrow which is parallel to
another but offset by some distance.

\eg
\Dg
M &       & \rTo ^\theta  &       & \beta^{-1}(W) \\
  & \rdTo &               & \ldTo                 \\
  &       & \beta^{-1}(F)                         \\
\Modify
\Mapsto (0,2) (2,0) \fs{-50pt} \tl{x} \hd{R(x)}
\endDg
\endeg
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{fx}\{\dim\ or \num\}}
Abbreviation for \csq\tx\{\dim\ or \num\} \csq\hx\{\dim\ or \num\}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{fy}\{\dim\}}
Abbreviation for \csq\ty\{\dim\} \csq\hy\{\dim\}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{gr}\{{\it number}\}}
Typeset an arrow or modification with the specified graylevel.
Probably none too pretty on many an output device.

\side
\Graph{1cm}{1cm}
\Box (0,0) (1,1) \gr{.25}
\endGraph
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\csq\gr\{{\it number}\} \csq\endgr\sindex mp{gr}\endgr}
Typeset the enclosed material with the specified graylevel.

\side
\gr{.25}Anyone seen my bat'leth?\endgr
\endside
\sindex tw{bat'leth}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{Graph}\endGraph
   \csq\Graph\{\dim\}\{\dim\} \csq\endGraph
   \csq{\Graph\{\dim,}\dim\ or \int\}\{\dim\} \csq\endGraph
   \csq\Graph\{\dim\}\{\dim{\tt ,}\dim\ or \int\} \csq\endGraph
   \csq{\Graph\{\dim,}\dim\ or \int\}\{\dim{\tt ,}\dim\ or \int\} \csq\endGraph}
Graph delimiters.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{Graphpad}%
   \csq{\Graphpad=}\dim\d 0pt
   \csq{\Graphpad+=}\dim}
Padding added to all sides of a Graph.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{grav}}
Explicitly set the gravitating column.
Columns at the ends of an arrow which passes through the gravitating column
will tend to be centered on it.

\eg
\loose
\Dg
p^{-1}(U) &          & \rTo    &       & U\times F & {} \approx U\times {\bb R}P^2 \\
          & \rdTo <p &         & \ldTo >{\pi_1}    \\
          &          & U \grav &       &           \\
\endDg
\endeg
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{gravitateleft}}
Set the default location of the gravitating column to the first column of
an alignment.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{gravitateright}}
Set the default location of the gravitating column to the last column of
an alignment.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{gray} or \index mm{grey}}
Typeset an arrow or modification with the graylevel set by \csq\graygray.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{gray}\endgray\ or \index mp{grey}\endgrey}
Typeset the enclosed material with the graylevel set by \csq\graygray.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{graygray}\sindex mm{greygrey}%
   \csq{\graygray=}\num\ or \csq{\greygrey=}\num\d .5}
Set the graylevel used with \csq\gray.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{grid}%
   \csq{\grid=}\dim
   \csq{\grid+=}\dim}
Abbreviation for \csq{\xgrid=}\dim\ \csq{\ygrid=}\dim\ or
\csq{\xgrid+=}\dim\ \csq{\ygrid+=}\dim.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{gridgray}\sindex mm{gridgrey}%
   \csq{\gridgray=}\num\ or \csq{\gridgrey=}\num\d .5}
Set the graylevel used with \csq\gridlines.

\side
\gridlines \gridgray=0
\Diagram
A             \\
  & \rdTo     \\
  &       & B \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{gridlines}}
Display gridlines.

\side
\gridlines
\Diagram
A             \\
  & \rdTo     \\
  &       & B \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{hd}\{\math\}}
Attach math material to the head of a type 2 modification cell.
\sindex tw{modification cell!type 2}

\side
\Graph{5cm}{1cm}
\To (0,.5) (1,.5) \hd{B}
\endGraph
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{hmir}\endhmir}
Reflect the enclosed material across a horizontal mirror lying
on the baseline. The material cannot contain vertical commands
(unless enclosed in a box).
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{hpad}%
   \csq{\hpad=}\dim
   \csq{\hpad+=}\dim}
Abbreviation for \csq{\lpad=}\dim \csq{\rpad=}\dim\ or \csq{\lpad+=}\dim
\csq{\rpad+=}\dim.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{hr}\{\dim\}}
Raise the vertex attached to the head of a type 2 modification cell.
\sindex tw{modification cell!type 2}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{hs}\{\dim\ or \num\}}
Slide the vertex attached to the head of a type 2 modification cell
horizontally.
\sindex tw{modification cell!type 2}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{hx}\{\dim\ or \num\}}
Fudge the positioning of an arrow at its head.
Makes the head of an arrow point to a point which is offset horizontally
from the center of the math axis of the head vertex
($\num = 0 \leftrightarrow{}$left edge of
head vertex, $\num = 1 \leftrightarrow{}$right edge of head vertex).
Has no effect on type 1 modification cells.
\sindex tw{modification cell!type 1}

\side
\Diagram
X                             \\
  & \rdTo \hx{.2}             \\
  &               & X\times X \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{hy}\{\dim\}}
Fudge the positioning of an arrow at its head.
Makes the head of an arrow point to a point which is offset vertically
from the math axis of the head vertex.
Has no effect on type 1 modification cells.
\sindex tw{modification cell!type 1}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{into}}
Abbreviation for \@\lhook\joinrel\rightarrow@\, as in $A\into X$.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{jh}}
Join the head of an arrow to the point at the coordinate of its head
vertex by applying \csq\joinpush\ rather than \csq\cellpush\ (or \csq\ptpush\
and \csq\atpush) and ignoring the dimensions of the vertex.

\side
\Diagram
\bullet & \rLine \jh & \bullet \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{joined}}
Invert the action of the \csq\jh, \csq\jn\ and \csq\jt\ modifiers:
Ends of arrows are joined unless one of these is specified.

\side
\joined \scale=.5
\Diagram
       & \rLine     &        \\
\dLine &            & \dLine \\
       & \rLine \jn &        \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{joinpush}%
   \csq{\joinpush=}\dim\d -1pt
   \csq{\joinpush+=}\dim
   \csq{\joinpush\{\type\}=}\dim\hs\csq{\joinpush\{\type\}+=}\dim}
Global and type specific pushes used with \csq\jt, \csq\jh\ and \csq\jn.
Spaces in \type\ are ignored.
\endentry
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{jn}}
Abbreviation for \csqq\jt\jh.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{jt}}
Join the tail of an arrow to the point at the coordinate of its tail vertex.

\side
\Diagram
\bullet & \rLine \jt & \bullet \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{kuvio}}
Abbreviation for \@{\tt kuvio.tex}@\.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{kuviocs}\ch\\{\it name}}
Access a control sequence which \kuvio\ makes available but does not define
explicitly due to a name conflict with an existing control sequence.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{kuviodate}}
Expands to the date of the current patchlevel of \kuvio.
\endentry

\comment
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{kuviodef}}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{kuviodefine}}
\endentry
\endcomment

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{kuviofmt}}
Load all macros. This should be expanded when using \kuvio\ to build a
format file.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{kuvioforce}\ch\\{\it name}}
Force redefinition of \ch\\\emph{name} when \kuvio\ makes it available only
through \csq\kuviocs.
\endentry

\comment
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{kuviolet}}
\endentry
\endcomment

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{kuviopatchlevel}}
Expands to the current patchlevel of \kuvio.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{kuviorequire}\{\int\}}
A warning of forthcoming disaster will be issued if \csq\kuviopatchlevel\ is
not at least \int.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{kuviorevision}\{\text\}}
With compilation, cause the string \text\ to be written to {\tt .kuv} files.
A diagram is recompiled if this string doesn't match the one found in its
{\tt .kuv} file.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{kuviospecial}\ch\\{\it name}}
Set the \csq\special\ syntax. Not a good thing to do unless you know what
you're doing. The following two lines in \kuvio\ set the syntax for
{\tt dvips}.

\code
\def\dvipsspecial#1{\special{ps:#1}}
\kuviospecial\dvipsspecial
\endcode

Experimentation with other {\tt dvi} to \PS\ translators is possible using
\csq\kuviospecial.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{Label}\{\math\}}
Typeset math material as a modification in \csq\labelstyle.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{labelpad}%
   \csq{\labelpad=}\dim\d 3pt
   \csq{\labelpad+=}\dim
   \csq{\labelpad\{\type\}=}\dim\hs\csq{\labelpad\{\type\}+=}\dim}
Global and type-specific label pads. Spaces in \type\ are ignored.

\side
\labelpad{One}=5pt
\Diagram A & \rTo ^f & B \\ \endDiagram
\quad
\Diagram A & \rOne ^f & B \\ \endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{labelpoint}%
   \csq{\labelpoint=}\num\d .5
   \csq{\labelpoint\{\type\}=}\num}
Set the default location of labels tied to an arrow. Spaces in \type\ are
ignored.

\side
\labelpoint{One}=.75
\Diagram A & \rTo ^f & B \\ \endDiagram
\quad
\Diagram A & \rOne ^f & B \\ \endDiagram
\endside

Once a type-specific
default has been set it can be unset, causing the global default to be used,
by making an empty assignment of the form
\csq{\labelpoint\ch\{\type\ch\}=\ch\{\ch\}}.
All predefined cell types in \kuvio\ have their \csq\labelpoint\
unset.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{labelstyle}\d\csq\scriptstyle}
Style in which labels of a diagram are typeset.

\side
\let\labelstyle\textstyle
\Diagram
A & \rTo ^f & B \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{labelwidthpad}%
   \csq{\labelwidthpad=}\dim\d 5pt
   \csq{\labelwidthpad+=}\dim
   \csq{\labelwidthpad\{\type\}=}\dim\hs\csq{\labelwidthpad\{\type\}+=}\dim}
With a flexible grid, \kuvio\ will stretch a horizontal arrow
(specified using a \csq\l\type\ or \csq\r\type\ cell macro) so
that a label centered along its length isn't wider than the arrow
is long.  The value of \csq\labelwidthpad\ determines the minimum
allowable distance between the edges of the label and the ends of
the arrow. Note that the comparison of the arrow length and label
width occurs before the application of cell pushes specified using
\csq\dt\ and \csq\dh.

Spaces in \type\ are ignored.

\csq\labelwidthpad\ has no effect on labels which are not centered and
no attempt is made to ensure that these ``fit'' on the arrow to
which they are attached. Also, \csq\labelwidthpad\ may not work well
with arrows that are attached to other arrows and are thus also
affected by \csq\atpush\ and \csq\ptpush. See also \csq\lw.

\eg
\let\labelstyle\textstyle
\labelwidthpad{One}+=5pt
\leavevmode
\Dg
X(s)\times |u| & & \rTo ^{(f_{s\to t},\pi_2)}  &  & X(t)\times |u| \\
        & \rdTo <{f_{s\to u}} &      & \ldTo >{f_{t\to u}}         \\
        &                     & X(u)                               \\
\endDg\qquad
\Dg
X(s)\times |u| & & \rOne ^{(f_{s\to t},\pi_2)} &  & X(t)\times |u| \\
        & \rdTo <{f_{s\to u}} &      & \ldTo >{f_{t\to u}}         \\
        &                     & X(u)                               \\
\endDg
\endeg
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{land}\endland}
Rotate the enclosed material by 90 degrees counterclockwise.
The material cannot contain vertical commands (unless enclosed in a box).
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{landscape}}
Rotate a diagram 90 degrees counterclockwise.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{latexTo}}
Load the font {\tt line10}, define \csq\sleftarrowfill\ and
\csq\srightarrowfill\ using the arrowhead character from this font and do
\@\let\Tofill\srightarrowfill@\.

\side
\latexTo
\Dg
A & \rTo & B & \rOne & C \\
\endDg
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{lb}}
Make an arrow left braced.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mw{Long@{\tt Long}}\tt Long}
Diagram type having \csq\flexible, \csq{\xgrid=0pt} and \csq{\ygrid+=-5mm}.

\eg
\Long
0         &      &              &      &                  &      & 0             \\
\dEq      &      &              &      &                  &      & \dEq          \\
\pi_j S^k & \rTo & \pi_j V(n,k) & \rTo & \pi_j V(n-1,k+1) & \rTo & \pi_{j-1} S^k \\
\endLong
\endeg
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{loose}}
Make all diagonal alignment cells unbraced by default.
Additionally, sets \csq{\columndist=0pt}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{lpad}%
   \csq{\lpad=}\dim\d 0pt
   \csq{\lpad+=}\dim}
Padding added to the left of a diagram or framed material.

\side
\framed \lpad=10pt
\Diagram
A & \rTo & B \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{lw} or \csq\lw\{\dim\}}
In the first case, don't stretch a horizontal
arrow even if a centered label is wider than the arrow is long.
In the second case, increase the effective width of the label by twice
\dim. See \csq\labelwidthpad.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{Math}\{\math\}}
Typeset math material as a modification in \csq\textstyle.
\endentry

\comment
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{%
   \csq{\MinimumCellLength=}\dim\d 0pt
   \csq{\MinimumCellLength+=}\dim}
Minimum arrow length to be typeset.
\endentry
\endcomment

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{ml}}
Move the column in which this control sequence occurs
so that the alignment entry in which it occurs abuts it nearest
neighbour to the left.
Many of the same effects can be obtained simply by using a flexible grid with
\csq{\xgrid=0pt}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{Modify}}
Modifications are specified following an occurrence of this control sequence.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{mono}}
A monomorphism arrow, as in $A\mono B$. The {\tt arrsy10} font must be loaded
for this to work. See \csq\arrsy.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{mr}}
Move the column in which this control sequence occurs
so that the alignment entry in which it occurs abuts it nearest
neighbour to the right.
Many of the same effects can be obtained simply by using a flexible grid with
\csq{\xgrid=0pt}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{mx}\{\num\ or \dim\}}
Move the column in which this control sequence occurs.
\csq\mx\{\dim\} moves the column rightward by \dim.
If the distance to the next column (to the right) is currently $d$,
\csq\mx\{\num\} moves the column rightward by $\num\cdot d$.

\side
\gridlines
\Diagram
A & B \mx{5mm} & C & D           & E \\
A & B          & C & D \mx{-.25} & E \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{my}\{\num\ or \dim\}}
Move the row in which this control sequence occurs.
\csq\my\{\dim\} moves the row upward by \dim.
If the distance to the next row (above) is currently $d$,
\csq\my\{\num\} moves the row upward by $\num\cdot d$.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\sindex mm{mv}\csq{\mv\{\dim1,\dim2\}}}
Abbreviation for \csq\rt\{\dim1\} \csq\up\{\dim2\}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{newcell}\{\type\}}
Define a new cell type.
One must define either the fill macro
\ch{\\\type fill} or redefine
the box macro \ch{\\\type box} before using a cell macro associated with
this cell type. Spaces in \type\ are ignored.

\side
\newcell{Br}
\def\Brfill{\linefill\ \rightarrowfill}

\Diagram
A & \rBr & B \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{newDiagram}\{\type\}}
Define a new Diagram type. The macro pair \ch\\\type\ \csq\end\type\
delimits Diagrams of this type. The macro \csq\every\type\ can be used
to customize their setup. Spaces in \type\ are ignored.

\side
\newDiagram{Framed}
\def\everyFramed{\Diagrampad=10pt \framed}

\Framed
A & \rTo & B \\
\endFramed
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{newFigure}\{\type\}}
Define a new Figure type. The macro pair \ch\\\type\ \csq\end\type\
delimits Figures of this type. The macro \csq\every\type\ can be used
to customize their setup. Spaces in \type\ are ignored.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{newfill}\{\name\}\{\emph{tail} \emph{tokens}\}%
   \{\emph{mid} \emph{tokens}\}\{\emph{head} \emph{tokens}\}}
Define a fill macro, which can then be used to construct arrows for diagrams.
Spaces in \name\ are ignored.

\side
\font\tenln=line10
\def\ltxah{\smash{\hbox{\kern-4pt\raise\fontdimen22\textfont2
   \hbox{\tenln\char"2D}\hskip.5pt}}}
\newfill{srightarrow}--\ltxah

\hbox to 3cm{\srightarrowfill}
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{newGraph}\{\type\}}
Define a new Graph type. The macro pair \ch\\\type\ \csq\end\type\
delimits Graphs of this type. The macro \csq\every\type\ can be used
to customize their setup. Spaces in \type\ are ignored.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{nonkuviocs}\ch\\{\it name}}
Access the original definition of a control sequence which \kuvio\ has
redefined.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{nl}}
Typeset an arrow as a phantom.

{\edge{.7}
\side
\newcell{Adj}
\def\Adjbox#1{\vcenter{\offinterlineskip\dimen0=#1
   \hbox to #1{\hskip.2\dimen0\rightarrowfill}
   \hbox to #1{\leftarrowfill\hskip.2\dimen0}}}

\labelpad{Adj}=2.5pt
\Diagram
A & \rAdj ^{f_1} :{.6} \rAdj \nl _{f_2} :{.4} & B \\
\endDiagram
\endside
}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{nocompile}}
Equivalent (almost) to \@\def\compileto#1{}@\.
Note that \@\global\nocompile@\ behaves as expected.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{nodot}}
Inhibit the typesetting of a \csq\diagramdot\ in an alignment entry of
a Diagram for which \csq\dotted\ has been specified.
See \csq\dotted.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{nw}}
Ignore a horizontal alignment cell as far as positioning the columns at
its head and tail.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{opland}\endopland}
Rotate the enclosed material by 90 degrees clockwise.
The material cannot contain vertical commands (unless enclosed in a box).
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{oplandscape}}
Rotate a diagram 90 degrees clockwise.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{overgrid}}
Typeset a grid on top of a Figure.
For Diagrams and Graphs, synonymous with \csq\gridlines.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{pd}\{\math\}}
Abbreviation for \csq\hd\{\csq\phantom\{\math\}\}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{pl}\{\math\}}
Abbreviation for \csq\tl\{\csq\phantom\{\math\}\}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{pp}}
Typeset an alignment cell before those corresponding to cell macros
preceding it (above or to the left).
Usually alignment cells are typeset in the same order in which
their corresponding cell macros were processed (top to bottom, left to right)
but order is important when breaking arrows with \csq\br\ or \csq\rl.
Modification cells can be used for even greater control over the order in which
arrows are typeset.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{Pt}\{\name\}}
Name a point which can then be referenced using \csq\pt.
Spaces in \name\ are significant.

\side
\Graph{2cm}{15mm}
\Pt{tail} (0,1)
\Pt{head} (1,0)
\To \pt{tail} \tl{X} \pt{head} \hd{Y}
\endGraph
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\sindex mm{pt}%
   \csq{\pt\{\name,\num\}}
   \csq{\pt\{\name\}}}
Name, or reference as a coordinate, a point on an arrow.
The string \name\ must be enclosed in parentheses if it contains a comma.
Also, spaces in \name\ are significant.
For type 1 modification cells \csq\pt\ is somewhat stunted: A defined point
is always just the specified coordinate.
\sindex tw{modification cell!type 1}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{ptpoint}%
   \csq{\ptpoint=\num\d .5}
   \csq{\ptpoint\{\type\}=\num}}
Set the default location of points defined on arrows. Behaves like
\csq\labelpoint. Spaces in \type\ are ignored.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{ptpush}%
   \csq{\ptpush=}\dim\d 0pt
   \csq{\ptpush+=}\dim
   \csq{\ptpush\{\type\}=}\dim\hs\csq{\ptpush\{\type\}+=}\dim}
Global and type-specific amounts by which the end of an arrow attached
to another arrow (using \csq\pt) is shortened whenever a vertex has not been
attached using \csq\hd\ or \csq\tl.
The type-specific quantity applies to ends of arrows of cell type \type.
Spaces in \type\ are ignored.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{range}\csq{\range=}\int}
Set both \csq\xrange\ and \csq\yrange.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{rb}}
Make an arrow right braced.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{recompile}}
Equivalent (almost) to \@\let\compileto\recompileto@\.
Note that \@\global\recompile@\ behaves as expected.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{recompileto}\{\name\}}
Compile a diagram to the files \name{\tt .kdg} and \name{\tt .kuv}.
Spaces in \name\ are ignored.
\endentry

\comment
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{rekuviodef}}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{rekuviodefine}}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{rekuviolet}}
\endentry
\endcomment

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{%
   \index mm{rl}%
   \csq\rl\{\dim\}}
Like \csq\br\ except a white rule is typeset in place of an arrow.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\sindex mm{rm}\csq{\rm\{\dim1,\dim2\}}}
Abbreviation for \csq\rr\{\dim1\} \csq\ru\{\dim2\}. This meaning is only taken
when a modifier is expected so does not conflict with the usual meaning of
\csq\rm. This is also true of all other modifiers.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{ro}}
Rotate labels on an arrow.

{\edge{.7}
\side
\Diagram
  &                 & A                                \\
  & \ldTo <L >R \ro & \dTo <L >R \ro & \rdTo <L >R \ro \\
X &                 & X              &             & X \\
\endDiagram
\endside
}

If \csq\rotatedlabels\ is specified then \csq\ro\ inhibits rotation.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{rot}\endrot\csq\rot\{\num\} \csq\endrot}
Rotate the enclosed material by \num\ degrees counterclockwise.
The material cannot contain vertical commands (unless enclosed in a box).
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{rotatedlabels}}
Invert the action of the \csq\ro\ modifier: Labels are rotated
unless \csq\ro\ is specified.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{rpad}%
   \csq{\rpad=}\dim\d 0pt
   \csq{\rpad+=}\dim}
Padding added to the right of a diagram or framed material.

\side
\framed \rpad=10pt
\Diagram
A & \rTo & B \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{rr}\{\dim\}}
Move an arrow or modification
to the right relative to a rotated coordinate system.

\side
\Diagram
A & & B & \lTo ^f \rr{2\xgrid} & C \\
\endDiagram
\endside

Note that \csq\xgrid\ is not actually a dimension
register, although in the context of a Diagram it can be used as
such. Ditto for \csq\ygrid.
For a Figure or Graph one can use
\csq\xunit\ and \csq\yunit\ in the same way.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{rt}\{\dim\}}
Move an arrow or modification to the right.

\side
\Diagram
A & & B & \rTo ^f \rt{-2\xgrid} & C \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{ru}\{\dim\}}
Move an arrow or modification
upwards relative to a rotated coordinate system.

{\edge{.7}
\side
\Diagram
A                                            \\
  & \luTo _f \ru{5pt} \luTo ^g \ru{-5pt}     \\
  &                                      & B \\
\endDiagram
\endside
}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mw{Rule@{\tt Rule}}\tt Rule}
Cell type whose arrows are rules. The rule width can be set using \csq\rw.

{\edge{.7}
\side
\Diagram
A & \rRule ^{\rm above} _{\rm below} & B \\
\endDiagram
\endside
}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{Rulewidth}%
   \csq{\Rulewidth=}\dim\d 5pt
   \csq{\Rulewidth+=}\dim}
Default rule width used with {\tt Rule} cells.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{rw}\{\dim\}\d .4pt}
Set the rule width for a {\tt Rule} cell or \csq\Frame\ modification.

\side
\Graph{.25\hsize}{5mm,2}
\Frame (0,0) (.45,2) \rw{1mm}
\Rule  (.55,1) (1,1) \rw{3mm}
\endGraph
\endside
\endentry

\comment
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{safe}\ch\\{\it name}}
Inside an alignment, access the usual definition of a special control
sequence.
\endentry
\endcomment

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{scale}\csq{\scale=}\num}
Abbreviation for \csq{\xscale=\num} \csq{\yscale=\num}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{shade}\endshade
   \csq{\shade\{\dim,\dim\}\{\dim,\dim\}} \csq\endshade}
Place a shadow behind a frame by specifying its offsets from the
bottom left and top right corners of the enclosed material.
The values of \csq\framegray, \csq\framepad\ and \csq\framerulewidth\ apply.

\verbatim
\shade{5pt,-5pt}{3pt,-3pt}\epsfxsize=3cm \epsffile{harebra.eps}\endshade
\endverbatim

\leavevmode\hskip\egindent\shade{5pt,-5pt}{3pt,-3pt}\harebra\endshade
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{shadegray}\sindex mm{shadegrey}%
   \csq{\shadegray=}\num\ or \csq{\shadegrey=}\num\d 0}
Set the graylevel of the shadow produced by \csqq\shade\endshade.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{stop}}
Force an arrow to stop at an alignment entry.  Has no effect on
cell macros in the same alignment entry.

{\edge{.7}
\side
\Diagram
A & \rTo \up{-2pt} & \stop \rTo \up{2pt} & B \\
\endDiagram
\endside
}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{squash}}
Like \csq\smash\ from {\tt plain.tex} except typesets the following
parenthesized material in a box
having no height, depth or width. The typeset material is centered
horizontally.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{squish}}
Like \csq\smash\ from {\tt plain.tex} except typesets the following
parenthesized material in a box
having the same height and depth but no width.
The typeset material is centered horizontally.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{tall}}
Make the baseline of a Diagram coincide with that of
its bottommost row and
the baseline of a Figure or Graph coincide with that of
its lower edge.
This is the default for Figures and Graphs in non-math modes.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{Text}\{\text\}}
Typeset \text\ as a modification.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{tl}\{\math\}}
Attach math material to the tail of a type 2 modification cell.
\sindex tw{modification cell!type 2}

\side
\Graph{5cm}{5mm}
\To (0,.5) (1,.5) \tl{A}
\endGraph
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{tpad}%
   \csq{\tpad=}\dim\d 0pt
   \csq{\tpad+=}\dim}
Padding added to the top of a diagram or framed material.
Does not alter the baseline.

\side
\framed \tpad=10pt
\Diagram
A & \rTo & B \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{tr}\{\dim\}}
Raise the vertex attached to the tail of a type 2 modification cell.
\sindex tw{modification cell!type 2}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{ts}\{\dim\ or \num\}}
Slide the vertex attached to the tail of a type 2 modification cell
horizontally.
\sindex tw{modification cell!type 2}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{tx}\{\dim\ or \num\}}
Fudge the positioning of an arrow at its tail. See \csq\hx.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{Txt}\{\text\}}
Typeset \text\ as a modification, centered vertically on its math axis.

\eg
\gridlines
\Graph{2cm}{1cm,2}
\Text{left}   (0,1) *0  \Txt{right} (1,1) *1
\endGraph
\endeg
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{ty}\{\dim\}}
Fudge the positioning of an arrow at its tail.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\ch\\\type}
Typeset an arrow of cell type \type\ as a modification.
Has ten siblings for use in the alignment part of a Diagram:
\csq\a\type, \csq\b\type, \csq\r\type,
\csq\rd\type, \csq\d\type, \csq\ld\type, \csq\l\type,
\csq\lu\type, \csq\u\type\ and \csq\ru\type.

Non-empty alignment entries in a Diagram
are implicitly attached (a la \csq\pl\ and \csq\pd) to the end of any
type 2 modification cell having integral (no decimal point) coordinates.
\sindex tw{modification cell!type 2}
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{unit}%
   \csq{\unit=}\dim
   \csq{\unit+=}\dim}
Abbreviation for \csq{\xunit=\dim} \csq{\yunit=\dim} or \csq{\xunit+=\dim}
\csq{\yunit+=\dim}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{up}\{\dim\}}
Move an arrow or modification upwards.

\side
\Diagram
A & \rTo ^f \up{-\ygrid} & B \\
A &                      & B \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{Vertex}\{\math\}}
Typeset math material as a modification in \csq\vertexstyle.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mm{vertexstyle}\d\csq\displaystyle}
Style in which vertices of a diagram are typeset.

\side
\let\vertexstyle\scriptstyle
\Diagram
A & B \\
C & D \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{vmir}\endvmir}
Reflect the enclosed material across a vertical mirror located
horizontally at the midpoint of the material. The material
cannot contain vertical commands (unless enclosed in a box).
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{vpad}%
   \csq{\vpad=}\dim
   \csq{\vpad+=}\dim}
Abbreviation for \csq{\bpad=}\dim\ \csq{\tpad=}\dim\ or \csq{\bpad+=}\dim\
\csq{\tpad+=}\dim.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\mod\entry{\index mm{white}}
Typeset an arrow or modification with graylevel 1.

\eg
\font\big=cmss17
\Graph{.25\hsize}{1cm}
\Box (0,0) (1,1)
\Txt{\big \"Ovningsk\"orning} (.5,.5) \white
\endGraph
\endeg
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\index mp{white}\endwhite}
Typeset the enclosed material with graylevel 1.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{xgrid}%
   \csq{\xgrid=}\dim\d 1cm
   \csq{\xgrid+=}\dim}
Set the default distance between the vertical gridlines of a
Diagram. Sets \csq{\xscale=1}.

\side
\xgrid=2cm
\Diagram
A & B \\
C & D \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{xrange}\csq{\xrange=}\int\d 1}
Set the horizontal units for the coordinate
system used when typesetting modifications on a Figure or Graph
by dividing the default unit by \int.

\side
\xrange=2
\Graph{1cm}{5mm}
\Dot (0,.5) \Dot (1,.5) \Dot (2,.5)
\endGraph
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{xscale}\csq{\xscale=}\num\d 1}
Scale \csq\xgrid\ by \num.

\side
\xscale=1.5
\Diagram
A & B \\
C & D \\
\endDiagram
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{xunit}%
   \csq{\xunit=}\dim
   \csq{\xunit+=}\dim}
Set the horizontal units for the coordinate
system used when typesetting modifications on a Figure or Graph.

\side
\xunit=5mm
\Graph{1cm}{5mm}
\Dot (0,.5) \Dot (1,.5) \Dot (2,.5)
\endGraph
\endside
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{ygrid}%
   \csq{\ygrid=}\dim\d 1cm
   \csq{\ygrid+=}\dim}
Set the default distance between the horizontal gridlines of a
Diagram. Sets \csq{\yscale=1}.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{yrange}\csq{\yrange=}\int\d 1}
Set the vertical units for the coordinate
system used when typesetting modifications on a Figure or Graph
by dividing the default unit by \int. See \csq\xrange.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{yscale}\csq{\yscale=}\num\d 1}
Scale \csq\ygrid\ by \num. See \csq\xscale.
\endentry

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\entry{\sindex mm{yunit}%
   \csq{\yunit=}\dim
   \csq{\yunit+=}\dim}
Set the vertical units for the coordinate
system used when typesetting modifications on a Figure or Graph.
See \csq\xunit.
\endentry

\endinput


% Local Variables:
% mode:TeX
% agss-tex-jobname:"tdwk"
% End: