1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
|
% \iffalse
%%
%% File `curve2e.dtx'.
%% Copyright (C) 2005--2006 Claudio Beccari all rights reserved.
%%
% What follows is the usual trick that is not typeset in the documentation
% dvi file that is produced by LaTeX. It is used to define the date, the version
% and the short description that characterizes both this file and the package;
% the point is that |\ProvidesFile| is being read only by the driver, while
% |\ProvidePackage| goes to the stripped package file; It must be done before
% starting the documentation otherwise |\GetFileInfo| can't get the necessary
% information.
% \fi
%<*package>
% \begin{macrocode}
\NeedsTeXFormat{LaTeX2e}
%</package>
%<*driver>
\ProvidesFile{curve2e.dtx}%
%</driver>
%<+package>\ProvidesPackage{curve2e}%
[2008/05/04 v.1.01 Extension package for pict2e]
%<*package>
% \end{macrocode}
%</package>
% \iffalse
%<*driver>
\documentclass{ltxdoc}
\hfuzz 10pt
\usepackage{multicol}
\usepackage[ansinew]{inputenc}
\GetFileInfo{curve2e.dtx}
\title{The extension package \textsf{curve2e}\thanks{Version number
\fileversion; last revised \filedate.}}
\author{Claudio Beccari}
\begin{document}
\maketitle
\begin{multicols}{2}
\tableofcontents
\end{multicols}
\DocInput{curve2e.dtx}
\end{document}
%</driver>
% \fi
%
% \CheckSum{2222}
% \begin{abstract}
% This file documents the |curve2e| extension package to the recent
% implementation of the |pict2e| bundle that has been described by Lamport
% himself in the second edition of his \LaTeX\ handbook.
%
% This extension redefines a couple of commands and introduces some more drawing
% facilities that allow to draw circular arcs and arbitrary curves with the
% minimum of user intervention. This beta version is open to the contribution of
% other users as well as it may be incorporated in other people's packages.
% Please cite the original author and the chain of contributors.
% \end{abstract}
%
% \section{Package \texttt{pict2e} and this extension \texttt{curve2e}}
% Package \texttt{pict2e} was announced in issue 15 of \texttt{latexnews}
% around December 2003; it was declared that the new package would replace the
% dummy one that has been accompanying every release of \LaTeXe\ since its
% beginnings in 1994. The dummy package was just issuing an info message that
% simply announced the temporary unavailability of the real package.
%
% Eventually Gäßlein and Niepraschk implemented what Lamport himself had already
% documented in the second edition of his \LaTeX\ handbook, that is a \LaTeX\
% package that contained the macros capable of removing all the limitations
% contained in the standard commands of the original \texttt{picture}
% environment; specifically:
% \begin{enumerate}
% \item the line and vector slopes were limited to the ratios of relatively
% prime one digit integers of magnitude not exceeding 6 for lines and 4 for
% vectors;
% \item filled and unfilled full circles were limited by the necessarily
% bounded number of specific glyphs contained in the special \LaTeX\
% \texttt{picture} fonts;
% \item quarter circles were also limited in their radii for the same reason;
% \item ovals (rectangles with rounded corners) could not be too small because
% of the unavailability of small radius quarter circles, nor could be too
% large, in the sense that after a certain radius the rounded corners remained
% the same and would not increase proportionally to the oval size.
% \item vector arrows had only one possible shape besides matching the limited
% number of vector slopes;
% \item for circles and inclined lines and vectors there were available just
% two possible thicknesses.
% \end{enumerate}
%
% The package \texttt{pict2e} removes most if not all the above limitations:
% \begin{enumerate}
% \item line and vector slopes are virtually unlimited; the only remaining
% limitation is that the direction coefficients must be three-digit integer
% numbers; they need not be relatively prime;
% \item filled and unfilled circles can be of any size;
% \item ovals can be designed with any specified corner curvature and there is
% virtually no limitation to such curvatures; of course corner radii should not
% exceed half the lower value between the base and the height of the oval;
% \item there are two shapes for the arrow tips; the triangular one traditional
% with \LaTeX\ vectors, or the arrow tip with PostScript style.
% \item the |\linethickness| command changes the thickness of all lines, straight,
% curved, vertical, horizontal, arrow tipped, et cetera.
% \end{enumerate}
%
% This specific extension adds the following features
% \begin{enumerate}
% \item commands for setting the line terminations are introduced; the user can
% chose between square or rounded caps; the default is set to rounded caps;
% \item the |\line| macro is redefined so as to allow integer and fractional
% direction coefficients, but maintaining the same syntax as in the original
% \texttt{picture} environment;
% \item a new macro |\Line| is defined so as to avoid the need to specify the
% horizontal projection of inclined lines;
% \item a new macro |\LINE| joins two points specified with their coordinates;
% of course there is no need to use the |\put| command with this line
% specification;
% \item similar macros are redefined for vectors; |\vector| redefines the
% original macro but with the vector slope limitation removed; |\Vector| gets
% specified with its two horizontal and vertical components; |\VECTOR|
% joins two specified points (without using the |\put| command) with the arrow
% pointing to the second point;
% \item a new macro |\polyline| for drawing polygonal lines is defined that
% accepts from two vertices up to an arbitrary (reasonably limited) number of
% them;
% \item a new macro |\Arc| is defined in order to draw an arc with arbitrary
% radius and arbitrary angle amplitude; this amplitude is specified in
% sexagesimal degrees, not in radians;
% \item two new macros are defined in order to draw circular arcs with one
% arrow at one or both ends;
% \item a new macro |\Curve| is defined so as to draw arbitrary curved lines
% by means of third order Bézier splines; the |\Curve| macro requires only the
% curve nodes and the direction of the tangents at each node.
% \end{enumerate}
%
% In order to make the necessary calculations many macros have been defined so
% as to use complex number to manipulate point coordinates, directions,
% rotations and the like. The trigonometric functions have also been defined in
% a way that the author believes to be more efficient that that implied by the
% \texttt{trig} package; in any case the macro names are sufficiently
% different to accommodate both definitions in the same \LaTeX\ run.
%
% Many aspects of this extension could be fine tuned for better performance;
% many new commands could be defined in order to further extend this extension.
% If the new service macros are accepted by other \TeX\ and \LaTeX\ programmers,
% this beta version could become the start for a real extension of the
% \texttt{pict2e} package or even become a part of it.
%
% For this reason I suppose that every enhancement should be submitted to
% Gäßlein and Niepraschk who are the prime maintainers of \texttt{pict2e};
% they only can decide whether or not to incorporate new macros in their package.
%
% \section{Acknowledgements}
% I wish to express my deepest thanks to Michel Goosens who spotted some errors
% and very kindly submitted them to me so that I was able to correct them.
%
% \StopEventually{%
% \begin{thebibliography}{9}
% \bibitem{pict2e} Gäßlein H.\ and Niepraschk R., \emph{The \texttt{pict2e}
% package}, PDF document attached to the ``new'' \texttt{pict2e} bundle; the
% bundle may be downloaded from any CTAN archive or one of their mirrors.
% \end{thebibliography}
% }
%
% \section{Source code}
% \subsection{Some preliminary extensions to the \texttt{pict2e} package}
% The necessary preliminary code has already been introduced. Here we require
% the \texttt{color} package and the \texttt{pict2e} one; for the latter one we
% make sure that a sufficiently recent version is used.
% \begin{macrocode}
\RequirePackage{color}
\RequirePackageWithOptions{pict2e}[2004/06/01]
% \end{macrocode}
% Next we define the line terminators and joins; the following definitions work
% correctly if the \texttt{dvips} or the \texttt{pdftex} driver are specified;
% probably other modes should be added so as to be consistent with
% \texttt{pict2e}.
% \begin{macrocode}
\ifcase\pIIe@mode\relax
\or %Postscript
\def\roundcap{\special{ps:: 1 setlinecap}}%
\def\squarecap{\special{ps:: 0 setlinecap}}%
\def\roundjoin{\special{ps:: 1 setlinejoin}}%
\def\beveljoin{\special{ps:: 2 setlinejoin}}%
\or %pdf
\def\roundcap{\pdfliteral{1 J}}%
\def\squarecap{\pdfliteral{0 J}}%
\def\roundjoin{\pdfliteral{1 j}}%
\def\beveljoin{\pdfliteral{2 j}}%
\fi
% \end{macrocode}
%
% The next macros are just for debugging. With the \texttt{tracing} package it
% would probably be better to define other macros, but this is not for the
% users, but for the developers.
% \begin{macrocode}
\def\TRON{\tracingcommands\tw@ \tracingmacros\tw@}%
\def\TROF{\tracingcommands\z@ \tracingmacros\z@}%
% \end{macrocode}
%
% Next we define some new dimension registers that will be used by the
% subsequent macros; should they be already defined, there will not be any
% redefinition; nevertheless the macros should be sufficiently protected so as
% to avoid overwriting register values loaded by other macro packages.
% \begin{macrocode}
\ifx\undefined\@tdA \newdimen\@tdA \fi
\ifx\undefined\@tdB \newdimen\@tdB \fi
\ifx\undefined\@tdC \newdimen\@tdC \fi
\ifx\undefined\@tdD \newdimen\@tdD \fi
\ifx\undefined\@tdE \newdimen\@tdE \fi
\ifx\undefined\@tdF \newdimen\@tdF \fi
\ifx\undefined\defaultlinewidth \newdimen\defaultlinewidth \fi
% \end{macrocode}
%
% It is better to define a macro for setting a different value for the line and
% curve thicknesses; the `|\defaultlinewidth| should contain the
% equivalent of |\@wholewidth|, that is the thickness of thick lines; thin lines
% are half as thick; so when the default line thickness is specified to, say,
% 1pt, thick lines will be 1pt thick and thin lines will be 0.5pt thick. The
% default whole width of thick lines is 0,8pt, but this is specified in the
% kernel of \LaTeX\ and\slash or in \texttt{pict2e}. On the opposite it is
% necessary to redefine |\linethickness| because the \LaTeX\ kernel global definition
% does not hide the space after the closed brace when you enter something such as
% |\linethickness{1mm}| followed by a space or a new line.\footnote{Thanks to
% Daniele Degiorgi (\texttt{degiorgi@inf.ethz.ch}).}
% \begin{macrocode}
\gdef\linethickness#1{\@wholewidth#1\@halfwidth.5\@wholewidth\ignorespaces}%
\newcommand\defaultlinethickness[1]{\defaultlinewidth=#1\relax
\def\thicklines{\linethickness{\defaultlinewidth}}%
\def\thinlines{\linethickness{.5\defaultlinewidth}}%
\thinlines\ignorespaces}
% \end{macrocode}
% The |\ignorespaces| at the end of this and the subsequent macros is for
% avoiding spurious spaces to get into the picture that is being drawn, because
% these spaces introduce picture deformities often difficult to spot and
% eliminate.
%
% \subsubsection{Improved line and vector macros}
% The new macro |\Line| allows to draw an arbitrary inclination line as if it
% was a polygon with just two vertices. This line should be set by means of a
% |\put| command so that its starting point is always at a relative 0,0
% coordinate point. The two arguments define the horizontal and the
% vertical component respectively.
% \begin{macrocode}
\def\Line(#1,#2){\pIIe@moveto\z@\z@
\pIIe@lineto{#1\unitlength}{#2\unitlength}\pIIe@strokeGraph}%
% \end{macrocode}
%
% A similar macro |\LINE| operates between two explicit points with absolute
% coordinates, instead of relative to the position specified by a |\put|
% command; it resorts to the |\polyline| macro that is to be defined in a while.
% The |\@killglue|command might be unnecessary, but it does not harm; it eliminates any
% explicit or implicit spacing that might precede this command.
% \begin{macrocode}
\def\LINE(#1)(#2){\@killglue\polyline(#1)(#2)}%
% \end{macrocode}
%
% The |\line| macro is redefined by making use of a new division routine that
% receives in input two dimensions and yields on output their fractional ratio.
% The beginning of the macro definition is the same as that of \texttt{pict2e}:
% \begin{macrocode}
\def\line(#1)#2{\begingroup
\@linelen #2\unitlength
\ifdim\@linelen<\z@\@badlinearg\else
% \end{macrocode}
% but as soon as it is verified that the line length is not negative, things
% change remarkably; in facts the machinery for complex numbers is invoked:
% |\DirOfVect| takes the only macro argument (that actually contains a comma
% separated pair of fractional numbers) and copies it to |\Dir@line| (an
% arbitrarily named control sequence) after re-normalizing to unit magnitude;
% this is passed to |GetCoord| that separates the two components into the
% control sequences |\d@mX| and|\d@mY|; these in turn are the values that are
% actually operated upon by the subsequent commands.
% \begin{macrocode}
\expandafter\DirOfVect#1to\Dir@line
\GetCoord(\Dir@line)\d@mX\d@mY
% \end{macrocode}
% The normalized vector direction is actually formed with the directing cosines
% of the line direction; since the line length is actually the horizontal
% component for non vertical lines, it is necessary to compute the actual line
% length for non vertical lines by dividing the given length by the
% magnitude of horizontal cosine |\d@mX|, and the line length is accordingly
% scaled:
% \begin{macrocode}
\ifdim\d@mX\p@=\z@\else
\DividE\ifdim\d@mX\p@<\z@-\fi\p@ by\d@mX\p@ to\sc@lelen
\@linelen=\sc@lelen\@linelen
\fi
% \end{macrocode}
% Finally the \texttt{moveto}, \texttt{lineto} and \texttt{stroke} language
% keywords are invoked by means of the internal \texttt{pict2e} commands in
% order to draw the line. Notice that even vertical lines are drawn with the
% ``PostScript'' commands instead of resorting to the dvi low level language
% that was used both in \texttt{pict2e} and in the original \texttt{picture}
% commands; it had a meaning in the old times, but it certainly does not have
% any when lines are drawn by the driver that drives the output to a visible
% document form, not by \TeX\ the program.
% \begin{macrocode}
\pIIe@moveto\z@\z@
\pIIe@lineto{\d@mX\@linelen}{\d@mY\@linelen}%
\pIIe@strokeGraph
\fi
\endgroup\ignorespaces}%
% \end{macrocode}
% The new macro |\GetCoord| splits a vector (or complex number) specification
% into its components:
% \begin{macrocode}
\def\GetCoord(#1)#2#3{%
\expandafter\SplitNod@\expandafter(#1)#2#3\ignorespaces}
% \end{macrocode}
% But the macro that does the real work is |\SplitNod@|:
% \begin{macrocode}
\def\SplitNod@(#1,#2)#3#4{\edef#3{#1}\edef#4{#2}}%
% \end{macrocode}
%
% The redefinitions and the new definitions for vectors are a little more
% complicated than with segments, because each vector is drawn as a filled
% contour; the original \texttt{pict2e} macro checks if the slopes are
% corresponding to the limitations specified by Lamport (integer three digit
% signed numbers) and sets up a transformation in order to make it possible to
% draw each vector as an horizontal left-to-right arrow and then to rotate it by
% its angle about its tail point; actually there are two macros for tracing the
% contours that are eventually filled by the principal macro; each contour
% macro draws the vector with a \LaTeX\ or a PostScript arrow whose parameters
% are specified by default or may be taken from the parameters taken from the
%\texttt{PSTricks} package if this one is loaded before \texttt{pict2e}; in any
% case we did not change the contour drawing macros because if they are
% modified the same modification is passed on to the arrows drawn with the
% \texttt{curve2e} package redefinitions.
%
% Because of these features the redefinitions and the new macros are different
% from those used for straight lines.
%
% We start with the redefinition of |\vector| and we use the machinery for
% vectors (as complex numbers) we used for |\line|.
% \begin{macrocode}
\def\vector(#1)#2{%
\begingroup
\GetCoord(#1)\d@mX\d@mY
\@linelen#2\unitlength
% \end{macrocode}
% As in \texttt{pict2e} we avoid tracing vectors if the slope parameters are
% both zero.
% \begin{macrocode}
\ifdim\d@mX\p@=\z@\ifdim\d@mY\p@=\z@\@badlinearg\fi\fi
% \end{macrocode}
% But we check only for the positive nature of the $l_x$ component; if it is
% negative, we simply change sign instead of blocking the typesetting process.
% This is useful also for macros |\Vector| and |\VECTOR| to be defined in a
% while.
% \begin{macrocode}
\ifdim\@linelen<\z@ \@linelen=-\@linelen\fi
% \end{macrocode}
% We now make a vector with the slope direction even if one or the other is
% zero and we determine its direction; the real and imaginary parts of the
% direction vector are also the values we need for the subsequent rotation.
% \begin{macrocode}
\MakeVectorFrom\d@mX\d@mY to\@Vect
\DirOfVect\@Vect to\Dir@Vect
% \end{macrocode}
% In order to be compatible with the original \texttt{pict2e} I need to
% transform the components of the vector direction in lengths with the specific
% names |\@xdim| and |\@ydim|
% \begin{macrocode}
\YpartOfVect\Dir@Vect to\@ynum \@ydim=\@ynum\p@
\XpartOfVect\Dir@Vect to\@xnum \@xdim=\@xnum\p@
% \end{macrocode}
% If the vector is really sloping we need to scale the $l_x$ component in order
% to get the vector total length; we have to divide by the cosine of the vector
% inclination which is the real part of the vector direction. I use my division
% macro; since it yields a ``factor'' I directly use it to scale the length of
% the vector. I finally memorize the true vector length in the internal
% dimension |@tdB|
% \begin{macrocode}
\ifdim\d@mX\p@=\z@
\else\ifdim\d@mY\p@=\z@
\else
\DividE\ifdim\@xnum\p@<\z@-\fi\p@ by\@xnum\p@ to\sc@lelen
\@linelen=\sc@lelen\@linelen
\fi
\fi
\@tdB=\@linelen
% \end{macrocode}
% The remaining code is definitely similar to that of \texttt{pict2e}; the
% real difference consists in the fact that the arrow is designed by itself
% without the stem; but it is placed at the vector end; therefore the first
% statement is just the transformation matrix used by the output driver to
% rotate the arrow tip and to displace it the right amount. But in order
% to draw only the arrow tip I have to set the |\@linelen| length to zero.
% \begin{macrocode}
\pIIe@concat\@xdim\@ydim{-\@ydim}\@xdim{\@xnum\@linelen}{\@ynum\@linelen}%
\@linelen\z@
\pIIe@vector
\pIIe@fillGraph
% \end{macrocode}
% Now we can restore the stem length that must be shortened by the dimension of
% the arrow; examining the documentation of \texttt{pict2e} we discover that
% we have to shorten it by an approximate amount of $AL$ (with the notations of
% \texttt{pict2e}, figs~10 and~11); the arrow tip parameters are stored in
% certain variables with which we can determine the amount of the stem
% shortening; if the stem was too short and the new length is negative, we
% refrain from designing such stem.
% \begin{macrocode}
\@linelen=\@tdB
\@tdA=\pIIe@FAW\@wholewidth
\@tdA=\pIIe@FAL\@tdA
\advance\@linelen-\@tdA
\ifdim\@linelen>\z@
\pIIe@moveto\z@\z@
\pIIe@lineto{\@xnum\@linelen}{\@ynum\@linelen}%
\pIIe@strokeGraph\fi
\endgroup}
% \end{macrocode}
%
% Now we define the macro that does not require the specification of the length
% or the $l_x$ length component; the way the new |\vector| macro works does not
% actually require this specification, because \TeX\ can compute the vector
% length, provided the two direction components are exactly the horizontal and
% vertical vector components. If the horizontal component is zero, the actual length
% must be specified as the vertical component.
% \begin{macrocode}
\def\Vector(#1,#2){%
\ifdim#1\p@=\z@\vector(#1,#2){#2}
\else
\vector(#1,#2){#1}\fi}
% \end{macrocode}
%
% On the opposite the next macro specifies a vector by means of the coordinates
% of its end points; the first point is where the vector starts, and the second
% point is the arrow tip side. We need the difference as these two coordinates,because % it represents the actual vector.
% \begin{macrocode}
\def\VECTOR(#1)(#2){\begingroup
\SubVect#1from#2to\@tempa
\expandafter\put\expandafter(#1){\expandafter\Vector\expandafter(\@tempa)}%
\endgroup\ignorespaces}
% \end{macrocode}
%
% The \texttt{pict2e} documentation says that if the vector length is zero the
% macro designs only the arrow tip; this may work with macro |\vector|,
% certainly not with |\Vector| and |\VECTOR|. This might be useful for adding
% an arrow tip to a circular arc
%
% \subsubsection{Polygonal lines}
% We now define the polygonal line macro; its syntax is very simple
% \begin{flushleft}\ttfamily
% \cs{polygonal}(\rmfamily{P}$_0$)(\rmfamily{P}$_1$)\rmfamily{P}$_2$)\dots
% (\rmfamily{P}$_n$)
% \end{flushleft}
% In order to write a recursive macro we need aliases for the parentheses;
% actually we need only the left parenthesis, but some editors complain about
% unmatched delimiters, so we define an alias also for the right parenthesis.
% \begin{macrocode}
\let\lp@r( \let\rp@r)
% \end{macrocode}
% The first call to |\polyline| examines the first point coordinates and moves
% the drawing position to this point; afterwards it looks for the second point
% coordinates; they start with a left parenthesis; if this is found the
% coordinates should be there, but if the left parenthesis is missing (possibly
% preceded by spaces that are ignored by the |\@ifnextchar| macro) then a
% warning message is output together with the line number where the missing
% parenthesis causes the warning: beware, this line number might point to
% several lines further on along the source file! In any case it's necessary to insert
% a |\@killglue| command, because |\polyline| refers to absolute coordinates
% not necessarily is put in position through a |\put| command that provides to
% eliminate any spurious spaces preceding this command.
% \begin{macrocode}
\def\polyline(#1){\@killglue\beveljoin\GetCoord(#1)\d@mX\d@mY
\pIIe@moveto{\d@mX\unitlength}{\d@mY\unitlength}%
\@ifnextchar\lp@r{\p@lyline}{%
\PackageWarning{curve2e}%
{Polygonal lines require at least two vertices!\MessageBreak
Control your polygonal line specification\MessageBreak}%
\ignorespaces}}
% \end{macrocode}
% But if there is a second or further point coordinate the recursive macro
% |\p@lyline| is called; it works on the next point and checks for a further
% point; if such a point exists it calls itself, otherwise it terminates the
% polygonal line by stroking it.
% \begin{macrocode}
\def\p@lyline(#1){\GetCoord(#1)\d@mX\d@mY
\pIIe@lineto{\d@mX\unitlength}{\d@mY\unitlength}%
\@ifnextchar\lp@r{\p@lyline}{\pIIe@strokeGraph\ignorespaces}}
% \end{macrocode}
%
% \subsubsection{The red service grid}
% The next command is very useful for debugging while editing one's drawings;
% it draws a red grid with square meshes that are ten drawing units apart;
% there is no graduation along the grid, since it is supposed to be a debugging
% aid and the user should know what he/she is doing; nevertheless it is
% advisable to displace the grid by means of a |\put| command so that its grid
% lines coincide with the graph coordinates multiples of 10. Missing to do so
% the readings become cumbersome. The |\RoundUp| macros provide to increase the
% grid dimensions to integer multiples of ten.
% \begin{macrocode}
\def\GraphGrid(#1,#2){\begingroup\textcolor{red}{\linethickness{.1\p@}%
\RoundUp#1modulo10to\@GridWd \RoundUp#2modulo10to\@GridHt
\@tempcnta=\@GridWd \divide\@tempcnta10\relax \advance\@tempcnta\@ne
\multiput(0,0)(10,0){\@tempcnta}{\line(0,1){\@GridHt}}%
\@tempcnta=\@GridHt \divide\@tempcnta10\advance\@tempcnta\@ne
\multiput(0,0)(0,10){\@tempcnta}{\line(1,0){\@GridWd}}\thinlines}%
\endgroup\ignorespaces}
% \end{macrocode}
% Rounding up is useful because also the grid margins fall on coordinates
% multiples of 10. It resorts to the |\Integer| macro that will be described in
% a while.
% \begin{macrocode}
\def\RoundUp#1modulo#2to#3{\expandafter\@tempcnta\Integer#1.??%
\count254\@tempcnta\divide\count254by#2\relax
\multiply\count254by#2\relax
\count252\@tempcnta\advance\count252-\count254
\ifnum\count252>0\advance\count252-#2\relax
\advance\@tempcnta-\count252\fi\edef#3{\number\@tempcnta}\ignorespaces}%
% \end{macrocode}
% The |\Integer| macro takes a possibly fractional number whose decimal
% separator, if present, \textit{must} be the decimal point and uses the point
% as an argument delimiter If one has the doubt that the number being passed
% to |\Integer| might be an integer, he/she should call the macro with a
% further point;
% if the argument is truly integer this point works as the delimiter of the
% integer part; if the argument being passed is fractional this extra point
% gets discarded as well as the fractional part of the number.
% \begin{macrocode}
\def\Integer#1.#2??{#1}%
% \end{macrocode}
%
% \subsection{The new division macro}
% Now comes one of the most important macros in the whole package: the division
% macro; it takes two lengths as input values ant computes their fractional
% ratio.
% It must take care of the signs, so that it examines the operand signs and
% determines the result sign separately conserving this computed sign in the
% macro |\segno|; this done, we are sure that both operands are or are
% made positive; should the
% numerator be zero it directly issues the zero quotient; should the
% denominator be zero it outputs a signed ``infinity'', that is the maximum
% allowable length measured in points that \TeX\ can deal with.
% Since the result is assigned a value, the calling statement must pass as the
% third argument either a control sequence or an active character. Of course the
% first operand is the dividend, the second the divisor and the third the
% quotient.
% \begin{macrocode}
\ifx\DividE\undefined
\def\DividE#1by#2to#3{%
\begingroup
\dimendef\Numer=254\relax \dimendef\Denom=252\relax
\countdef\Num 254\relax
\countdef\Den 252\relax
\countdef\I=250\relax
\Numer #1\relax \Denom #2\relax
\ifdim\Denom<\z@ \Denom -\Denom \Numer -\Numer\fi
\def\segno{}\ifdim\Numer<\z@ \def\segno{-}\Numer -\Numer\fi
\ifdim\Denom=\z@
\ifdim\Numer>\z@\def\Q{16383.99999}\else\def\Q{-16383.99999}\fi
\else
\Num=\Numer \Den=\Denom \divide\Num\Den
\edef\Q{\number\Num.}%
\advance\Numer -\Q\Denom \I=6\relax
\@whilenum \I>\z@ \do{\DividEDec\advance\I\m@ne}%
\fi
\xdef#3{\segno\Q}\endgroup
}%
% \end{macrocode}
% The |\DividEDec| macro takes the remainder of the previous division,
% multiplies it by 10, computes a one digit quotient that postfixes to the
% previous overall quotient, and computes the next remainder; all operations
% are done on integer registers to whom the dimensional operands are assigned
% so that the mentioned registers acquire the measures of the dimensions in
% scaled points; \TeX\ is called to perform integer arithmetics, but the long
% division takes care of the decimal separator and of the suitable number of
% fractional digits.
% \begin{macrocode}
\def\DividEDec{\Numer=10\Numer \Num=\Numer \divide\Num\Den
\edef\q{\number\Num}\edef\Q{\Q\q}\advance\Numer -\q\Denom}%
\fi
% \end{macrocode}
% In the above code the |\begingroup|\dots|\endgroup| maintain all registers
% local so that only the result must be globally defined. The |\ifx|\dots|\fi|
% construct assures the division machinery is not redefined; I use it in so
% many packages that its better not to mix up things even with slightly
% different definitions.
%
% The next two macros are one of the myriad variants of the dirty trick used by
% Knuth for separating a measure from its units that \textit{must} be points,
% ``\texttt{pt}''; One has to call |\Numero| with a control sequence and a
% dimension; the dimension value in points is assigned to the control sequence.
% \begin{macrocode}
\ifx\undefined\@Numero% s
{\let\cc\catcode \cc`p=12\cc`t=12\gdef\@Numero#1pt{#1}}%
\fi
\ifx\undefined\Numero
\def\Numero#1#2{\dimen254
#2\edef#1{\expandafter\@Numero\the\dimen254}\ignorespaces}%
\fi
% \end{macrocode}
% For both macros the |\ifx|\dots|\fi| constructs avoids messing up the
% definitions I have in several packages.
%
% \subsection{Trigonometric functions}
% We now start with trigonometric functions. We define the macros |\SinOf|,
% |\CosOf| and |\TanOf| (we might define also |\CotOf|, but the cotangent does
% not appear so essential) by means of the parametric formulas that require the
% knowledge of the tangent of the half angle. We want to specify the angles
% in sexagesimal degrees, not in radians, so we can make accurate reductions to
% the main quadrants. we use the formulas
% \begin{eqnarray*}
% \sin\theta &=& \frac{2}{\cot x + \tan x}\\
% \cos\theta &=& \frac{\cot x - \tan x}{\cot x + \tan x}\\
% \tan\theta &=& \frac{2}{\cot x - \tan x}\\
% \noalign{\hbox{where}}
% x &=& \theta/114.591559
% \end{eqnarray*}
% is the half angle in degrees converted to radians.
%
% We use this slightly modified set of parametric formulas because the cotangent
% of $x$ is a by product of the computation of the tangent of $x$; in this way
% we avoid computing the squares of numbers that might lead to overflows. For
% the same reason we avoid computing the value of the trigonometric functions
% in proximity of the value zero (and the other values that might involve high
% tangent or cotangent values) and in that case we prefer to approximate the
% small angle function value with its first or second order truncation of the
% McLaurin series; in facts for angles whose magnitude is smaller than $1^\circ$
% the magnitude of the independent variable $y=2x$ (the angle in degrees
% converted to radians) is so small (less than 0.017) that the sine and tangent
% can be freely approximated with $y$ itself (the error being smaller than
% approximately $10^{-6}$), while the cosine can be freely approximated with
% the formula $1-0.5y^2$ (the error being smaller than about $4\cdot10^{-9}$).
%
% We keep using grouping so that internal variables are local to these groups
% and do not mess up other things.
%
% The first macro is the service routine that computes the tangent and the
% cotangent of the half angle in radians; since we have to use always the
% reciprocal if this value, we call it |\X| but ins spite of the similarity it
% is the reciprocal of $x$. Notice that parameter \texttt{\#1} must be a length.
% \begin{macrocode}
\def\g@tTanCotanFrom#1to#2and#3{%
\DividE 114.591559\p@ by#1to\X \@tdB=\X\p@
% \end{macrocode}
% Computations are done with the help of counter |\I|, of the length |\@tdB|,
% and the auxiliary control sequences |\Tan| and |\Cot| whose meaning is
% transparent. The iterative process controlled by |\@whilenum| implements the
% (truncated) continued fraction expansion of the tangent function
% \[
% \tan x = \frac{1}{\displaystyle \frac{1\mathstrut}{\displaystyle x}
% -\frac{1}{\displaystyle \frac{3\mathstrut}{\displaystyle x}
% -\frac{1}{\displaystyle \frac{5\mathstrut}{\displaystyle x}
% -\frac{1}{\displaystyle \frac{7\mathstrut}{\displaystyle x}
% -\frac{1}{\displaystyle \frac{9\mathstrut}{\displaystyle x}
% -\frac{1}{\displaystyle \frac{11\mathstrut}{\displaystyle x}
% -\cdots}}}}}}
% \]
% \begin{macrocode}
\countdef\I=254\def\Tan{0}\I=11\relax
\@whilenum\I>\z@\do{%
\@tdC=\Tan\p@ \@tdD=\I\@tdB
\advance\@tdD-\@tdC \DividE\p@ by\@tdD to\Tan
\advance\I-2\relax}%
\def#2{\Tan}\DividE\p@ by\Tan\p@ to\Cot \def#3{\Cot}%
\ignorespaces}%
% \end{macrocode}
%
% Now that we have the macro for computing the tangent and cotangent of the
% half angle, we can compute the real trigonometric functions we are interested
% in. The sine value is computed after reducing the sine argument to the
% interval $0^\circ< \theta<180^\circ$; actually special values such as
% $0^\circ$,$90^\circ$, $180^\circ$, et cetera, are taken care separately, so
% that CPU time is saved for these special cases. The sine sign is taken care
% separately according to the quadrant of the sine argument.
% \begin{macrocode}
\def\SinOf#1to#2{\begingroup%
\@tdA=#1\p@%
\ifdim\@tdA>\z@%
\@whiledim\@tdA>180\p@\do{\advance\@tdA -360\p@}%
\else%
\@whiledim\@tdA<-180\p@\do{\advance\@tdA 360\p@}%
\fi \ifdim\@tdA=\z@
\gdef#2{0}%
\else
\ifdim\@tdA>\z@
\def\Segno{+}%
\else
\def\Segno{-}%
\@tdA=-\@tdA
\fi
\ifdim\@tdA>90\p@
\@tdA=-\@tdA \advance\@tdA 180\p@
\fi
\ifdim\@tdA=90\p@
\xdef#2{\Segno1}%
\else
\ifdim\@tdA=180\p@
\gdef#2{0}%
\else
\ifdim\@tdA<\p@
\@tdA=\Segno0.0174533\@tdA
\DividE\@tdA by\p@ to#2%
\else
\g@tTanCotanFrom\@tdA to\T and\Tp
\@tdA=\T\p@ \advance\@tdA \Tp\p@
\DividE \Segno2\p@ by\@tdA to#2%
\fi
\fi
\fi
\fi
\endgroup\ignorespaces}%
% \end{macrocode}
%
% For the computation of the cosine we behave in a similar way.
% \begin{macrocode}
\def\CosOf#1to#2{\begingroup%
\@tdA=#1\p@%
\ifdim\@tdA>\z@%
\@whiledim\@tdA>360\p@\do{\advance\@tdA -360\p@}%
\else%
\@whiledim\@tdA<\z@\do{\advance\@tdA 360\p@}%
\fi
%
\ifdim\@tdA>180\p@
\@tdA=-\@tdA \advance\@tdA 360\p@
\fi
%
\ifdim\@tdA<90\p@
\def\Segno{+}%
\else
\def\Segno{-}%
\@tdA=-\@tdA \advance\@tdA 180\p@
\fi
\ifdim\@tdA=\z@
\gdef#2{\Segno1}%
\else
\ifdim\@tdA<\p@
\@tdA=0.0174533\@tdA \Numero\@tempA\@tdA
\@tdA=\@tempA\@tdA \@tdA=-.5\@tdA
\advance\@tdA \p@
\DividE\@tdA by\p@ to#2%
\else
\ifdim\@tdA=90\p@
\gdef#2{0}%
\else
\g@tTanCotanFrom\@tdA to\T and\Tp
\@tdA=\Tp\p@ \advance\@tdA-\T\p@
\@tdB=\Tp\p@ \advance\@tdB\T\p@
\DividE\Segno\@tdA by\@tdB to#2%
\fi
\fi
\fi
\endgroup\ignorespaces}%
% \end{macrocode}
%
% For the tangent computation we behave in a similar way, except that we
% consider the fundamental interval as $0^\circ<\theta<90^\circ$; for the odd
% multiples of $90^\circ$ we assign the result a \TeX\ infinity value, that is
% the maximum number in points a dimension can be.
% \begin{macrocode}
\def\TanOf#1to#2{\begingroup%
\@tdA=#1\p@%
\ifdim\@tdA>90\p@%
\@whiledim\@tdA>90\p@\do{\advance\@tdA -180\p@}%
\else%
\@whiledim\@tdA<-90\p@\do{\advance\@tdA 180\p@}%
\fi%
\ifdim\@tdA=\z@%
\gdef#2{0}%
\else
\ifdim\@tdA>\z@
\def\Segno{+}%
\else
\def\Segno{-}%
\@tdA=-\@tdA
\fi
\ifdim\@tdA=90\p@
\xdef#2{\Segno16383.99999}%
\else
\ifdim\@tdA<\p@
\@tdA=\Segno0.0174533\@tdA
\DividE\@tdA by\p@ to#2%
\else
\g@tTanCotanFrom\@tdA to\T and\Tp
\@tdA\Tp\p@ \advance\@tdA -\T\p@
\DividE\Segno2\p@ by\@tdA to#2%
\fi
\fi
\fi
\endgroup\ignorespaces}%
% \end{macrocode}
%
% \subsection{Arcs and curves preliminary information}
% We would like to define now a macro for drawing circular arcs of any radius
% and any angular aperture; the macro should require the arc center, the
% arc starting point and the angular aperture. The command should have the
% following syntax:
% \begin{flushleft}\ttfamily
% \cs{Arc}(\meta{{\rmfamily center}})(\meta{{\rmfamily starting
% point}}){\meta{{\rmfamily angle}}}
% \end{flushleft}
% If the \meta{angle} is positive the arc runs counterclockwise from the
% starting point; clockwise if it's negative.
%
% It's necessary to determine the end point and the control points of the
% Bézier spline(s) that make up the circular arc.
%
% The end point is obtained from the rotation of the starting point around the
% center; but the \texttt{pict2e} command |\pIIe@rotate| is such that the
% pivoting point appears to be non relocatable.
% It is therefore necessary to resort to low level \TeX\ commands and the
% defined trigonometric functions and a set of macros that operate on complex
% numbers used as vector scale-rotate operators.
%
% \subsection{Complex number macros}
% We need therefore macros for summing, subtracting, multiplying, dividing
% complex numbers, for determining they directions (unit vectors); a unit vector
% is the complex number divided by its magnitude so that the result is the
% Cartesian form of the Euler's equation
% \[
% \mathrm{e}^{\mathrm{j}\phi} = \cos\phi+\mathrm{j}\sin\phi
% \]
%
% The magnitude of a vector id determined by taking a clever square root of a
% function of the real and the imaginary parts; see further on.
%
% It's better to represent each complex number with one control sequence; this
% implies frequent assembling and disassembling the pair of real numbers that
% make up a complex number. These real components are assembled into the
% defining control sequence as a couple of coordinates, i.e.\ two comma
% separated integer or fractional signed decimal numbers.
%
% For assembling two real numbers into a complex number we use the following
% elementary macro:
% \begin{macrocode}
\def\MakeVectorFrom#1#2to#3{\edef#3{#1,#2}\ignorespaces}%
% \end{macrocode}
% Another elementary macro copies a complex number into another one:
% \begin{macrocode}
\def\CopyVect#1to#2{\edef#2{#1}\ignorespaces}%
% \end{macrocode}
% The magnitude is determined with the macro |\ModOfVect| with delimited
% arguments; as usual it is assumed that the results are retrieved by means of
% control sequences, not used directly.
%
% The magnitude $M$ is determined by taking the moduli of the real and
% imaginary parts, changing their signs if necessary; the larger component is
% then taken as the reference one so that, if $a$ is larger than $b$, the
% square root of the sum of their squares is computed as such:
% \[
% M = \sqrt{a^2+b^2} = a\sqrt{1+(b/a)^2}
% \]
% In this way the radicand never exceeds 2 and its is quite easy taking its
% square root by means of the Newton iterative process; due to the quadratic
% convergence, five iterations are more than sufficient. When one of the
% components is zero, the Newton iterative process is skipped. The overall
% macro is the following:
% \begin{macrocode}
\def\ModOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
\@tempdima=\t@X\p@ \ifdim\@tempdima<\z@ \@tempdima=-\@tempdima\fi
\@tempdimb=\t@Y\p@ \ifdim\@tempdimb<\z@ \@tempdimb=-\@tempdimb\fi
\ifdim\@tempdima>\@tempdimb
\DividE\@tempdimb by\@tempdima to\@T
\@tempdimc=\@tempdima
\else
\DividE\@tempdima by\@tempdimb to\@T
\@tempdimc=\@tempdimb
\fi
\ifdim\@T\p@>\z@
\@tempdima=\@T\p@ \@tempdima=\@T\@tempdima
\advance\@tempdima\p@ %
\@tempdimb=\p@%
\@tempcnta=5\relax
\@whilenum\@tempcnta>\z@\do{\DividE\@tempdima by\@tempdimb to\@T
\advance\@tempdimb \@T\p@ \@tempdimb=.5\@tempdimb
\advance\@tempcnta\m@ne}%
\@tempdimc=\@T\@tempdimc
\fi
\Numero#2\@tempdimc
\ignorespaces}%
% \end{macrocode}
% As a byproduct of the computation the control sequence |\@tempdimc| contains
% the vector or complex number magnitude multiplied by the length of one point.
%
% Since the macro for determining the magnitude of a vector is available, we
% can now normalize the vector to its magnitude, therefore getting the Cartesian
% form of the direction vector. If by any chance the direction of the null
% vector is requested, the output is again the null vector, without
% normalization.
% \begin{macrocode}
\def\DirOfVect#1to#2{\GetCoord(#1)\t@X\t@Y
\ModOfVect#1to\@tempa
\ifdim\@tempdimc=\z@\else
\DividE\t@X\p@ by\@tempdimc to\t@X
\DividE\t@Y\p@ by\@tempdimc to\t@Y
\MakeVectorFrom\t@X\t@Y to#2\relax
\fi\ignorespaces}%
% \end{macrocode}
%
% A cumulative macro uses the above ones for determining with one call both the
% magnitude and the direction of a complex number. The first argument is the
% input complex number, the second its magnitude, and the third is again a
% complex number normalized to unit magnitude (unless the input was the null
% complex number); remember always that output quantities must be specified
% with control sequences to be used at a later time.
% \begin{macrocode}
\def\ModAndDirOfVect#1to#2and#3{%
\GetCoord(#1)\t@X\t@Y
\ModOfVect#1to#2%
\DividE\t@X\p@ by\@tempdimc to\t@X \DividE\t@Y\p@ by\@tempdimc to\t@Y
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
% \end{macrocode}
% The next macro computes the magnitude and the direction of the difference of
% two complex numbers; the first input argument is the minuend, the second is
% the subtrahend; the output quantities are the third argument containing the
% magnitude of the difference and the fourth is the direction of the difference.
% The service macro |\SubVect| executes the difference of two complex numbers
% and is described further on.
% \begin{macrocode}
\def\DistanceAndDirOfVect#1minus#2to#3and#4{%
\SubVect#2from#1to\@tempa \ModAndDirOfVect\@tempa to#3and#4\relax
\ignorespaces}%
% \end{macrocode}
% We now have two macros intended to fetch just the real or, respectively, the
% imaginary part of the input complex number.
% \begin{macrocode}
\def\XpartOfVect#1to#2{%
\GetCoord(#1)#2\@tempa
\ignorespaces}%
%
\def\YpartOfVect#1to#2{%
\GetCoord(#1)\@tempa#2\relax
\ignorespaces}%
% \end{macrocode}
% With the next macro we create a direction vector (second argument) from a
% given angle (first argument).
% \begin{macrocode}
\def\DirFromAngle#1to#2{\CosOf#1to\t@X%
\SinOf#1to\t@Y\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%
% \end{macrocode}
%
% Sometimes it is necessary to scale a vector by an arbitrary real factor; this
% implies scaling both the real and imaginary part of the input given vector.
% \begin{macrocode}
\def\ScaleVect#1by#2to#3{\GetCoord(#1)\t@X\t@Y
\@tempdima=\t@X\p@ \@tempdima=#2\@tempdima\Numero\t@X\@tempdima
\@tempdima=\t@Y\p@ \@tempdima=#2\@tempdima\Numero\t@Y\@tempdima
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
% \end{macrocode}
% Again, sometimes it is necessary to reverse the direction of rotation; this
% implies changing the sign of the imaginary part of a given complex number;
% this operation produces the complex conjugate of the given number.
% \begin{macrocode}
\def\ConjVect#1to#2{\GetCoord(#1)\t@X\t@Y
\@tempdima=-\t@Y\p@\Numero\t@Y\@tempdima
\MakeVectorFrom\t@X\t@Y to#2\ignorespaces}%
% \end{macrocode}
%
% With all the low level elementary operations we can now proceed to the
% definitions of the binary operations on complex numbers. We start with the
% addition:
% \begin{macrocode}
\def\AddVect#1and#2to#3{\GetCoord(#1)\tu@X\tu@Y
\GetCoord(#2)\td@X\td@Y \@tempdima\tu@X\p@
\advance\@tempdima\td@X\p@ \Numero\t@X\@tempdima \@tempdima\tu@Y\p@
\advance\@tempdima\td@Y\p@ \Numero\t@Y\@tempdima
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
% \end{macrocode}
% Then the subtraction:
% \begin{macrocode}
\def\SubVect#1from#2to#3{\GetCoord(#1)\tu@X\tu@Y
\GetCoord(#2)\td@X\td@Y \@tempdima\td@X\p@
\advance\@tempdima-\tu@X\p@ \Numero\t@X\@tempdima \@tempdima\td@Y\p@
\advance\@tempdima-\tu@Y\p@ \Numero\t@Y\@tempdima
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
% \end{macrocode}
%
% For the multiplication we need to split the operation according to the fact
% that we want to multiply by the second operand or by the complex conjugate of
% the second operand; it would be nice if we could use the usual
% postfixed asterisk notation for the complex conjugate, but I could not find
% a simple means for doing so; therefore I use the prefixed notation, that is
% I put the asterisk before the second operand. The first part of the
% multiplication macro just takes care of the multiplicand and then checks for
% the asterisk; if there is no asterisk it calls a second service macro that
% performs a regular complex multiplication, otherwise it calls a third
% service macro that executes the conjugate multiplication.
% \begin{macrocode}
\def\MultVect#1by{\@ifstar{\@ConjMultVect#1by}{\@MultVect#1by}}%
%
\def\@MultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y
\GetCoord(#2)\td@X\td@Y \@tempdima\tu@X\p@
\@tempdimb\tu@Y\p@
\@tempdimc=\td@X\@tempdima\advance\@tempdimc-\td@Y\@tempdimb
\Numero\t@X\@tempdimc
\@tempdimc=\td@Y\@tempdima\advance\@tempdimc\td@X\@tempdimb
\Numero\t@Y\@tempdimc
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}%
%
\def\@ConjMultVect#1by#2to#3{\GetCoord(#1)\tu@X\tu@Y
\GetCoord(#2)\td@X\td@Y \@tempdima\tu@X\p@ \@tempdimb\tu@Y\p@
\@tempdimc=\td@X\@tempdima\advance\@tempdimc+\td@Y\@tempdimb
\Numero\t@X\@tempdimc
\@tempdimc=\td@X\@tempdimb\advance\@tempdimc-\td@Y\@tempdima
\Numero\t@Y\@tempdimc
\MakeVectorFrom\t@X\t@Y to#3\ignorespaces}
% \end{macrocode}
%
% The division of two complex numbers implies scaling down the dividend by the
% magnitude of the divisor and by rotating the dividend scaled vector by the
% opposite direction of the divisor; therefore:
% \begin{macrocode}
\def\DivVect#1by#2to#3{\ModAndDirOfVect#2to\@Mod and\@Dir
\DividE\p@ by\@Mod\p@ to\@Mod \ConjVect\@Dir to\@Dir
\ScaleVect#1by\@Mod to\@tempa
\MultVect\@tempa by\@Dir to#3\ignorespaces}%
% \end{macrocode}
%
% \subsection{Arcs and curved vectors}
% We are now in the position of really doing graphic work.
% \subsubsection{Arcs}
% We start with tracing
% a circular arc of arbitrary center, arbitrary starting point and arbitrary
% aperture; The first macro checks the aperture; if this is not zero it
% actually proceeds with the necessary computations, otherwise it does
% nothing.
% \begin{macrocode}
\def\Arc(#1)(#2)#3{\begingroup
\@tdA=#3\p@ \ifdim\@tdA=\z@\else
\@Arc(#1)(#2)%
\fi
\endgroup\ignorespaces}%
% \end{macrocode}
% The aperture is already memorized in |\@tdA|; the |\@Arc| macro receives
% the center coordinates in the first argument and the coordinates of the
% starting point in the second argument.
% \begin{macrocode}
\def\@Arc(#1)(#2){%
\ifdim\@tdA>\z@
\let\Segno+%
\else
\@tdA=-\@tdA \let\Segno-%
\fi
% \end{macrocode}
% The rotation angle sign is memorized in |\Segno| and |\@tdA| now contains the
% absolute value of the arc aperture.
% If the rotation angle is larger than $360^\circ$ a message is issued that
% informs the user that the angle will be reduced modulo $360^\circ$; this
% operation is performed by successive subtractions rather than with modular
% arithmetics on the assumption that in general one subtraction suffices.
% \begin{macrocode}
\Numero\@gradi\@tdA
\ifdim\@tdA>360\p@
\PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
and gets reduced\MessageBreak%
to the range 0--360 taking the sign into consideration}%
\@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
\fi
% \end{macrocode}
% Now the radius is determined and the drawing point is moved to the stating
% point.
% \begin{macrocode}
\SubVect#2from#1to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
\CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
% \end{macrocode}
% From now on it's better to define a new macro that will be used also in the
% subsequent macros that trace arcs; here we already have the starting point
% coordinates and the angle to draw the arc, therefore we just call the new
% macro, stroke the line and exit.
% \begin{macrocode}
\@@Arc
\pIIe@strokeGraph\ignorespaces}%
% \end{macrocode}
% And the new macro |\@@Arc| starts with moving the drawing point to the first
% point and does everything needed for tracing the requested arc, except
% stroking it; I leave the \texttt{stroke} command to the completion of the
% calling macro and nobody forbids to use the |\@@Arc| macro for other purposes.
% \begin{macrocode}
\def\@@Arc{%
\pIIe@moveto{\@pPunX\unitlength}{\@pPunY\unitlength}%
% \end{macrocode}
% If the aperture is larger than $180^\circ$ it traces a semicircle in the
% right direction and correspondingly reduces the overall aperture.
% \begin{macrocode}
\ifdim\@tdA>180\p@
\advance\@tdA-180\p@
\Numero\@gradi\@tdA
\SubVect\@pPun from\@Cent to\@V
\AddVect\@V and\@Cent to\@sPun
\MultVect\@V by0,-1.3333333to\@V \if\Segno-\ScaleVect\@V by-1to\@V\fi
\AddVect\@pPun and\@V to\@pcPun
\AddVect\@sPun and\@V to\@scPun
\GetCoord(\@pcPun)\@pcPunX\@pcPunY
\GetCoord(\@scPun)\@scPunX\@scPunY
\GetCoord(\@sPun)\@sPunX\@sPunY
\pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
{\@scPunX\unitlength}{\@scPunY\unitlength}%
{\@sPunX\unitlength}{\@sPunY\unitlength}%
\CopyVect\@sPun to\@pPun
\fi
% \end{macrocode}
% If the remaining aperture is not zero it continues tracing the rest of the arc.
% Here we need the extrema of the arc and the coordinates of the control points
% of the Bézier cubic spline that traces the arc. The control points lay on the
% perpendicular to the vectors that join the arc center to the starting
% and end points respectively. Their distance $K$ from the adjacent nodes is
% determined with the formula
% \[
% K= \frac{4}{3}\,\frac{1-\cos\theta}{\sin\theta}R
% \]
% where $\theta$ is half the arc aperture and $R$ is its radius.
% \begin{macrocode}
\ifdim\@tdA>\z@
\DirFromAngle\@gradi to\@Dir \if\Segno-\ConjVect\@Dir to\@Dir \fi
\SubVect\@Cent from\@pPun to\@V
\MultVect\@V by\@Dir to\@V
\AddVect\@Cent and\@V to\@sPun
\@tdA=.5\@tdA \Numero\@gradi\@tdA
\DirFromAngle\@gradi to\@Phimezzi
\GetCoord(\@Phimezzi)\@cosphimezzi\@sinphimezzi
\@tdB=1.3333333\p@ \@tdB=\@Raggio\@tdB
\@tdC=\p@ \advance\@tdC -\@cosphimezzi\p@ \Numero\@tempa\@tdC
\@tdB=\@tempa\@tdB
\DividE\@tdB by\@sinphimezzi\p@ to\@cZ
\ScaleVect\@Phimezzi by\@cZ to\@Phimezzi
\ConjVect\@Phimezzi to\@mPhimezzi
\if\Segno-%
\let\@tempa\@Phimezzi
\let\@Phimezzi\@mPhimezzi
\let\@mPhimezzi\@tempa
\fi
\SubVect\@sPun from\@pPun to\@V
\DirOfVect\@V to\@V
\MultVect\@Phimezzi by\@V to\@Phimezzi
\AddVect\@sPun and\@Phimezzi to\@scPun
\ScaleVect\@V by-1to\@V
\MultVect\@mPhimezzi by\@V to\@mPhimezzi
\AddVect\@pPun and\@mPhimezzi to\@pcPun
\GetCoord(\@pcPun)\@pcPunX\@pcPunY
\GetCoord(\@scPun)\@scPunX\@scPunY
\GetCoord(\@sPun)\@sPunX\@sPunY
\pIIe@curveto{\@pcPunX\unitlength}{\@pcPunY\unitlength}%
{\@scPunX\unitlength}{\@scPunY\unitlength}%
{\@sPunX\unitlength}{\@sPunY\unitlength}%
\fi}
% \end{macrocode}
%
% \subsubsection{Arc vectors}
% We exploit much of the above definitions for the |\Arc| macro for drawing
% circular arcs with an arrow at one or both ends; the first macro
% |\VerctorArc| draws an arrow at the ending point of the arc; the second macro
% |\VectorARC| draws arrows at both ends; the arrows have the same shape as
% those for vectors; actually they are drawn by putting a vector of zero
% length at the proper arc end(s), therefore they are styled as traditional or
% PostScript arrows according to the option of the \texttt{pict2e} package.
%
% But the specific drawing done here shortens the arc so as not to overlap on
% the arrow(s); the only or both arrows are also lightly tilted in order to
% avoid the impression of a corner where the arc enters the arrow tip.
%
% All these operations require a lot of ``playing'' with vector directions,
% but even if the operations are numerous, they do not do anything else but:
% (a) determining the end point and its direction ; (b) determining the arrow
% length as an angular quantity, i.e. the arc amplitude that must be subtracted
% from the total arc to be drawn; (c) the direction of the arrow should be
% corresponding to the tangent to the arc at the point where the arrow tip is
% attached;(d) tilting the arrow tip by half its angular amplitude; (e)
% determining the resulting position and direction of the arrow tip so as to
% draw a zero length vector; (f) possibly repeating the same procedure for the
% other end of the arc; (g) shortening the total arc angular amplitude by the
% amount of the arrow tip(s) already set, and (h) then drawing the final circular
% arc that joins the starting point to the final arrow or one arrow to the other
% one.
%
% The calling macros are very similar to the |\Arc| macro initial one:
% \begin{macrocode}
\def\VectorArc(#1)(#2)#3{\begingroup
\@tdA=#3\p@ \ifdim\@tdA=\z@\else
\@VArc(#1)(#2)%
\fi
\endgroup\ignorespaces}%
%
\def\VectorARC(#1)(#2)#3{\begingroup
\@tdA=#3\p@
\ifdim\@tdA=\z@\else
\@VARC(#1)(#2)%
\fi
\endgroup\ignorespaces}%
% \end{macrocode}
% The single arrowed arc is defined with the following long macro where all the
% described operations are performed more or less in the described succession;
% probably the macro requires a little cleaning, but since it works fine I did
% not try to optimize it for time or number of tokens. The final part of the
% macro is almost identical to that of the plain arc; the beginning also is
% quite similar. The central part is dedicated to the positioning of the arrow
% tip and to the necessary calculations for determining the tip tilt and the
% reduction of the total arc length;pay attention that the arrow length, stored in
% |\@tdE| is a real length, while the radius stored in |\@Raggio| is just a multiple
% of the |\unitlength|, so that the division (that yields a good angular approximation
% to the arrow length as seen from the center of the arc) must be done with real
% lengths. The already defined |\@@Arc| macro actually draws the curved vector
% stem without stroking it.
% \begin{macrocode}
\def\@VArc(#1)(#2){%
\ifdim\@tdA>\z@
\let\Segno+%
\else
\@tdA=-\@tdA \let\Segno-%
\fi \Numero\@gradi\@tdA
\ifdim\@tdA>360\p@
\PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
and gets reduced\MessageBreak%
to the range 0--360 taking the sign into consideration}%
\@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
\fi
\SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
\@tdE=\pIIe@FAW\@wholewidth \@tdE=\pIIe@FAL\@tdE
\DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
\@tdD=\DeltaGradi\p@
\@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
\@tdD=\ifx\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
\DirFromAngle\@tempa to\@Dir
\MultVect\@V by\@Dir to\@sPun
\edef\@tempA{\ifx\Segno-\m@ne\else\@ne\fi}%
\MultVect\@sPun by 0,\@tempA to\@vPun
\DirOfVect\@vPun to\@Dir
\AddVect\@sPun and #1 to \@sPun
\GetCoord(\@sPun)\@tdX\@tdY
\@tdD\ifx\Segno--\fi\DeltaGradi\p@
\@tdD=.5\@tdD \Numero\DeltaGradi\@tdD
\DirFromAngle\DeltaGradi to\@Dird
\MultVect\@Dir by*\@Dird to\@Dir
\GetCoord(\@Dir)\@xnum\@ynum
\put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}%
\@tdE =\ifx\Segno--\fi\DeltaGradi\p@
\advance\@tdA -\@tdE \Numero\@gradi\@tdA
\CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
\@@Arc
\pIIe@strokeGraph\ignorespaces}%
% \end{macrocode}
%
% The macro for the arc terminated with arrow tips at both ends is again very
% similar, except it is necessary to repeat the arrow tip positioning also at
% the starting point. The |\@@Arc| macro draws the curved stem.
% \begin{macrocode}
\def\@VARC(#1)(#2){%
\ifdim\@tdA>\z@
\let\Segno+%
\else
\@tdA=-\@tdA \let\Segno-%
\fi \Numero\@gradi\@tdA
\ifdim\@tdA>360\p@
\PackageWarning{curve2e}{The arc aperture is \@gradi\space degrees
and gets reduced\MessageBreak%
to the range 0--360 taking the sign into consideration}%
\@whiledim\@tdA>360\p@\do{\advance\@tdA-360\p@}%
\fi
\SubVect#1from#2to\@V \ModOfVect\@V to\@Raggio \CopyVect#2to\@pPun
\@tdE=\pIIe@FAW\@wholewidth \@tdE=0.8\@tdE
\DividE\@tdE by \@Raggio\unitlength to\DeltaGradi
\@tdD=\DeltaGradi\p@ \@tdD=57.29578\@tdD \Numero\DeltaGradi\@tdD
\@tdD=\ifx\Segno--\fi\@gradi\p@ \Numero\@tempa\@tdD
\DirFromAngle\@tempa to\@Dir
\MultVect\@V by\@Dir to\@sPun
\edef\@tempA{\ifx\Segno-\m@ne\else\@ne\fi}%
\MultVect\@sPun by 0,\@tempA to\@vPun
\DirOfVect\@vPun to\@Dir
\AddVect\@sPun and #1 to \@sPun
\GetCoord(\@sPun)\@tdX\@tdY
\@tdD\ifx\Segno--\fi\DeltaGradi\p@
\@tdD=.5\@tdD \Numero\@tempB\@tdD
\DirFromAngle\@tempB to\@Dird
\MultVect\@Dir by*\@Dird to\@Dir
\GetCoord(\@Dir)\@xnum\@ynum
\put(\@tdX,\@tdY){\vector(\@xnum,\@ynum){0}}%
\@tdE =\DeltaGradi\p@
\advance\@tdA -2\@tdE \Numero\@gradi\@tdA
\CopyVect#1to\@Cent \GetCoord(\@pPun)\@pPunX\@pPunY
\SubVect\@Cent from\@pPun to \@V
\edef\@tempa{\ifx\Segno-\else-\fi\@ne}%
\MultVect\@V by0,\@tempa to\@vPun
\@tdE\ifx\Segno--\fi\DeltaGradi\p@
\Numero\@tempB{0.5\@tdE}%
\DirFromAngle\@tempB to\@Dird
\MultVect\@vPun by\@Dird to\@vPun
\DirOfVect\@vPun to\@Dir\GetCoord(\@Dir)\@xnum\@ynum
\put(\@pPunX,\@pPunY){\vector(\@xnum,\@ynum){0}}
\edef\@tempa{\ifx\Segno--\fi\DeltaGradi}%
\DirFromAngle\@tempa to \@Dir
\SubVect\@Cent from\@pPun to\@V
\MultVect\@V by\@Dir to\@V
\AddVect\@Cent and\@V to\@pPun
\GetCoord(\@pPun)\@pPunX\@pPunY
\@@Arc
\pIIe@strokeGraph\ignorespaces}%
% \end{macrocode}
%
% It must be understood that the curved vectors, the above circular arcs
% terminated with an arrow tip at one or both ends, have a nice appearance only
% if the arc radius is not too small, or, said in a different way, if the arrow
% tip angular width does not exceed a maximum of a dozen degrees (and this is
% probably already too much); the tip does not get curved as the arc is,
% therefore there is not a smooth transition from the curved stem and the
% straight arrow tip if this one is large in comparison to the arc radius.
%
% \subsection{General curves}
% Now we define a macro for tracing a general, not necessarily circular arc.
% This macro resorts to a general triplet of macros with which it is possible
% to draw almost anything. It traces a single Bézier spline from a first point
% where the tangent direction is specified to a second point where again it is
% specified the tangent direction. Actually this is a special (possibly useless)
% case where the general |\Curve| macro could do the same or a better job. In
% any case\dots
% \begin{macrocode}
\def\CurveBetween#1and#2WithDirs#3and#4{%
\StartCurveAt#1WithDir{#3}\relax
\CurveTo#2WithDir{#4}\CurveFinish}%
% \end{macrocode}
%
% Actually the above macro is a special case of concatenation of the triplet
% formed by macros |\StartCurve|, |\CurveTo| and|\CurveFinish|; the second of
% which can be repeated an arbitrary number of times.
%
% The first macro initializes the drawing and the third one strokes it; the
% real work is done by the second macro. The first macro initializes the
% drawing but also memorizes the starting direction; the second macro traces
% the current Bézier arc reaching the destination point with the specified
% direction, but memorizes this direction as the one with which to start the
% next arc. The overall curve is then always smooth because the various
% Bézier arcs join with continuous tangents. If a cusp is desired it is
% necessary to change the memorized direction at the end of the arc before the
% cusp and before the start of the next arc; this is better than stroking the
% curve before the cusp and then starting another curve, because the curve
% joining point at the cusp is not stroked with the same command, therefore we get
% two superimposed curve terminations. We therefore need another small macro
% |\ChangeDir| to perform this task.
%
% It is necessary to recall that the directions point to the control points,
% but they do not define the control points themselves; they are just
% directions, or, even better, they are simply vectors with the desired
% direction; the macros themselves provide to the normalization and
% memorization.
%
% The next desirable point would be to design a macro that accepts optional node
% directions and computes the missing ones according to a suitable strategy. I
% can think of many such strategies, but none seems to be generally applicable,
% in the sense that one strategy might give good results, say, with sinusoids
% and another one, say, with cardioids, but neither one is suitable for both
% cases.
%
% For the moment we refrain from automatic direction computation, but we design
% the general macro as if directions were optional.
%
% Here we begin with the first initializing macro that receives in the first
% argument the starting point and in the second argument the direction of the
% tangent (not necessarily normalized to a unit vector)
% \begin{macrocode}
\def\StartCurveAt#1WithDir#2{%
\begingroup
\GetCoord(#1)\@tempa\@tempb
\CopyVect\@tempa,\@tempb to\@Pzero
\pIIe@moveto{\@tempa\unitlength}{\@tempb\unitlength}%
\GetCoord(#2)\@tempa\@tempb
\CopyVect\@tempa,\@tempb to\@Dzero
\DirOfVect\@Dzero to\@Dzero}
% \end{macrocode}
% And this re-initializes the direction after a cusp
% \begin{macrocode}
\def\ChangeDir<#1>{%
\GetCoord(#1)\@tempa\@tempb
\CopyVect\@tempa,\@tempb to\@Dzero
\DirOfVect\@Dzero to\@Dzero
\ignorespaces}
% \end{macrocode}
%
% The next macro is the finishing one; it strokes the whole curve and closes the
% group that was opened with |\StartCurve|.
% \begin{macrocode}
\def\CurveFinish{\pIIe@strokeGraph\endgroup\ignorespaces}%
% \end{macrocode}
%
% The ``real'' curve macro comes next; it is supposed to determine the control
% points for joining the previous point (initial node) with the specified
% direction to the next point with another specified direction (final node).
% Since the control points are along the specified directions, it is necessary
% to determine the distances from the adjacent curve nodes. This must work
% correctly even if nodes and directions imply an inflection point somewhere
% along the arc.
%
% The strategy I devised consists in determining each control point as if it
% were the control point of a circular arc, precisely an arc of an
% osculating circle, a circle tangent to the curve at that node. The ambiguity
% of the stated problem may be solved by establishing that the chord of the
% osculating circle has the same direction as the chord of the arc being drawn,
% and that the curve chord is divided into two parts each of which should be
% interpreted as half the chord of the osculating circle; this curve chord
% division is made proportionally to the projection of the tangent directions
% on the chord itself. Excluding degenerate cases that may be dealt with
% directly, imagine the triangle built with the chord and the two tangents;
% this triangle is straightforward if there is no inflection point; otherwise it
% is necessary to change one of the two directions by reflecting it about the
% chord. This is much simpler to view if a general rotation of the whole
% construction is made so as to bring the curve chord on the $x$ axis, because
% the reflection about the chord amounts to taking the complex conjugate of one
% of the directions. In facts with a concave curve the ``left'' direction
% vector arrow and the ``right'' direction vector tail lay in the same half
% plane, while with an inflected curve, they lay in opposite half plains, so
% that taking the complex conjugate of one of directions re-establishes the
% correct situation for the triangle we are looking for.
%
% This done the perpendicular from the triangle vertex to the cord divides the
% chord in two parts (the foot of this perpendicular may lay outside the chord,
% but this is no problem since we are looking for positive solutions, so that
% if we get negative numbers we just negate them); these two parts are taken as
% the half chords of the osculating circles, therefore there is no problem
% determining the distances $K_{\mathrm{left}}$ and $K_{\mathrm{right}}$ from
% the left and right
% nodes by using the same formula we used with circular arcs. Well\dots\ the
% same formula means that we have to determine the radius from the half chord
% and its inclination with the node tangent; all things we can do with the
% complex number algebra and macros we already have at our disposal. If we look
% carefully at this computation done for the circular arc we discover that in
% practice we used the half chord length instead of the radius; so the coding
% is actually the same, may be just with different variable names.
%
% We therefore start with getting the points and directions and calculating the
% chord and its direction
% \begin{macrocode}
\def\CurveTo#1WithDir#2{%
\def\@Puno{#1}\def\@Duno{#2}\DirOfVect\@Duno to\@Duno
\DistanceAndDirOfVect\@Puno minus\@Pzero to\@Chord and\@DirChord
% \end{macrocode}
% Then we rotate everything about the starting point so as to bring the chord on
% the real axis
% \begin{macrocode}
\MultVect\@Dzero by*\@DirChord to \@Dpzero
\MultVect\@Duno by*\@DirChord to \@Dpuno
\GetCoord(\@Dpzero)\@Xpzero\@Ypzero
\GetCoord(\@Dpuno)\@Xpuno\@Ypuno
% \end{macrocode}
% The chord needs not be actually rotated because it suffices its length
% along the real axis; the chord length is memorized in |\@Chord|.
%
% We now examine the various degenerate cases, when either tangent is
% perpendicular to the chord, or when it is parallel pointing inward or outward,
% with or without inflection.
%
% We start with the $90^\circ$ case for the ``left'' direction
% separating the cases when the other direction is or is not $90^\circ$~\dots
% \begin{macrocode}
\ifdim\@Xpzero\p@=\z@
\ifdim\@Xpuno\p@=\z@
\@tdA=0.666666\p@
\Numero\@Mcpzero{\@Chord\@tdA}%
\edef\@Mcpuno{\@Mcpzero}%
\else
\@tdA=0.666666\p@
\Numero\@Mcpzero{\@Chord\@tdA}%
\SetCPmodule\@Mcpuno from\@ne\@Chord\@Dpuno%
\fi
% \end{macrocode}
% \dots\ from when the ``left'' direction is not perpendicular to the chord; it
% might
% be parallel and we must distinguish the cases for the other direction~\dots
% \begin{macrocode}
\else
\ifdim\@Xpuno\p@=\z@
\@tdA=0.666666\p@
\Numero\@Mcpuno{\@Chord\@tdA}%
\SetCPmodule\@Mcpzero from\@ne\@Chord\@Dpzero%
\else
\ifdim\@Ypzero\p@=\z@
\@tdA=0.333333\p@
\Numero\@Mcpzero{\@Chord\@tdA}%
\ifdim\@Ypuno\p@=\z@
\edef\@Mcpuno{\@Mcpzero}%
\fi
% \end{macrocode}
% \dots\ from when the left direction is oblique and the other direction is
% either parallel to the chord~\dots
% \begin{macrocode}
\else
\ifdim\@Ypuno\p@=\z@
\@tdA=0.333333\p@
\Numero\@Mcpuno{\@Chord\@tdA}%
\SetCPmodule\@Mcpzero from\@ne\@Chord\@Dpzero
% \end{macrocode}
% \dots\ and, finally, from when both directions are oblique with respect to
% the chord; we must see if there is an inflection point; if both direction
% point to the same half plane we have to take the complex conjugate of one
% direction so as to define the triangle we were speaking about above.
% \begin{macrocode}
\else
\@tdA=\@Ypzero\p@ \@tdA=\@Ypuno\@tdA
\ifdim\@tdA>\z@
\ConjVect\@Dpuno to\@Dwpuno
\else
\edef\@Dwpuno{\@Dpuno}%
\fi
% \end{macrocode}
% The control sequence |\@Dwpuno| contains the right direction for forming the
% triangle; we cam make the weighed subdivision of the chord according to the
% horizontal components of the directions; we eventually turn negative values
% to positive ones since we are interested in the magnitudes of the control
% vectors.
% \begin{macrocode}
\GetCoord(\@Dwpuno)\@Xwpuno\@Ywpuno
\@tdA=\@Xpzero\p@ \@tdA=\@Ywpuno\@tdA
\@tdB=\@Xwpuno\p@ \@tdB=\@Ypzero\@tdB
\DividE\@tdB by\@tdA to\@Fact
\@tdC=\p@ \advance\@tdC-\@Fact\p@
\ifdim\@tdC<\z@ \@tdC=-\@tdC\fi
\DividE\p@ by \@Fact\p@ to\@Fact
\@tdD=\p@ \advance\@tdD-\@Fact\p@
\ifdim\@tdD<\z@ \@tdD=-\@tdD\fi
% \end{macrocode}
% before dividing by the denominator we have to check the directions, although
% oblique to the chord are not parallel to one another; in this case there is
% no question of a weighed subdivision of the chord
% \begin{macrocode}
\ifdim\@tdD<0.0001\p@
\def\@factzero{1}%
\def\@factuno{1}%
\else
\DividE\p@ by\@tdC to\@factzero
\DividE\p@ by\@tdD to\@factuno
\fi
% \end{macrocode}
% We now have the subdivision factors and we call another macro for determining
% the required magnitudes
% \begin{macrocode}
\SetCPmodule\@Mcpzero from\@factzero\@Chord\@Dpzero
\SetCPmodule\@Mcpuno from\@factuno\@Chord\@Dwpuno
\fi
\fi
\fi
\fi
% \end{macrocode}
% Now we have all data we need and we determine the positions of the control
% points; we do not work any more on the rotated diagram of the horizontal
% chord, but we operate on the original points and directions; all we had to
% compute, after all, were the distances of the control point along the
% specified directions; remember that the ``left'' control point is along the
% positive ``left'' direction, while the ``right'' control point precedes the
% curve node along the ``right'' direction, so that a vector subtraction must
% be done.
% \begin{macrocode}
\ScaleVect\@Dzero by\@Mcpzero to\@CPzero
\AddVect\@Pzero and\@CPzero to\@CPzero
\ScaleVect\@Duno by\@Mcpuno to\@CPuno
\SubVect\@CPuno from\@Puno to\@CPuno
% \end{macrocode}
% Now we have the four points and we can instruct the internal \texttt{pict2e}
% macros to do the path tracing.
% \begin{macrocode}
\GetCoord(\@Puno)\@XPuno\@YPuno
\GetCoord(\@CPzero)\@XCPzero\@YCPzero
\GetCoord(\@CPuno)\@XCPuno\@YCPuno
\pIIe@curveto{\@XCPzero\unitlength}{\@YCPzero\unitlength}%
{\@XCPuno\unitlength}{\@YCPuno\unitlength}%
{\@XPuno\unitlength}{\@YPuno\unitlength}%
% \end{macrocode}
% It does not have to stroke the curve because other Bézier splines might still
% be added to the path. On the opposite it memorizes the final point as the
% initial point of the next spline
% \begin{macrocode}
\CopyVect\@Puno to\@Pzero
\CopyVect\@Duno to\@Dzero
\ignorespaces}%
% \end{macrocode}
%
% The next macro is used to determine the control vectors lengths when we have
% the chord fraction, the chord length and the direction along which to compute
% the vector; all the input data (arguments from \#2 to \#4) may be passed as
% control sequences so the calling statement needs not use any curly braces.
% \begin{macrocode}
\def\SetCPmodule#1from#2#3#4{%
\GetCoord(#4)\t@X\t@Y
\@tdA=#3\p@
\@tdA=#2\@tdA
\@tdA=1.333333\@tdA
\@tdB=\p@ \advance\@tdB +\t@X\p@
\DividE\@tdA by\@tdB to#1\relax
\ignorespaces}%
% \end{macrocode}
%
% We finally define the overall |\Curve| macro that recursively examines an
% arbitrary list of nodes and directions; node coordinates are grouped within
% regular parentheses while direction components are grouped within angle
% brackets. The first call of the macro initializes the drawing process and
% checks for the next node and direction; if a second node is missing, it issues
% a warning message and does not draw anything. The second macro defines the
% path to the next point and checks for another node; if the next list item is
% a square bracket delimited argument, it interprets it as a change of
% direction, while if it is another parenthesis delimited argument it interprets
% it as a new node-direction specification;
% if the node and direction list is terminated, it issues the stroking command
% and exits the recursive process. The |@ChangeDir| macro is just an interface
% for executing the regular |\ChangeDir| macro, but also for recursing again by
% recalling |\@Curve|.
% \begin{macrocode}
\def\Curve(#1)<#2>{%
\StartCurveAt#1WithDir{#2}%
\@ifnextchar\lp@r\@Curve{%
\PackageWarning{curve2e}{%
Curve specifications must contain at least two nodes!\Messagebreak
Please, control your Curve specifications\MessageBreak}}}
\def\@Curve(#1)<#2>{%
\CurveTo#1WithDir{#2}%
\@ifnextchar\lp@r\@Curve{%
\@ifnextchar[\@ChangeDir\CurveFinish}}
\def\@ChangeDir[#1]{\ChangeDir<#1>\@Curve}
% \end{macrocode}
%
% As a concluding remark, please notice the the |\Curve| macro is certainly the
% most comfortable to use, but it is sort of frozen in its possibilities. The
% user may certainly use the |\StartCurve|, |\CurveTo|, |\ChangeDir|, and
% |\CurveFinish| for a more versatile set of drawing macros; evidently nobody
% forbids to exploit the full power of the |\cbezier| original macro for cubic
% splines.
%
% I believe that the set of new macros can really help the user to draw his/her
% diagrams with more agility; it will be the accumulated experience to decide if
% this is true.
% \Finale
% \endinput
|